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The Arabidopsis Heterochronic Gene ZIPPY
Is an ARGONAUTE Family Member

about three transition leaves before finally producing
leaves with a full complement of abaxial trichomes (Fig-
ure 1C). Similarly, zip produced a forward shift in hyda-
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University of Pennsylvania thode number and leaf morphology but did not acceler-

ate the rate at which these characteristics developedPhiladelphia, Pennsylvania 19104-6018
(Figure 1D). Thus, zip mutations appear to trigger an
early transition to the adult phase without speeding up
the developmental “clock” that regulates vegetativeSummary
phase change.

Abaxial trichome production is also promoted by mu-Plants progress through a temporal sequence of juve-
tations that disrupt adaxial/abaxial leaf polarity [5, 6].nile, adult, and reproductive phases, each marked by
Unlike these mutations, zip-1 does not disrupt the polar-the expression of phase-specific traits. Here we show
ity of the mesophyll, nor does it affect leaf expansionthat loss-of-function mutations in ZIPPY (ZIP) cause
in a manner that is consistent with a loss of abaxial cellthe premature expression of adult vegetative traits but
identity. We observed no obvious difference in the shapedo not accelerate the onset of reproductive compe-
of cells in the upper and lower mesophyll layers of leavestence or flowering time. ZIP encodes ARGONAUTE7
1 and 2 in zip-1 and wild-type plants (Figure 1H); further-(AGO7), one of ten members of the ARGONAUTE family
more, mutations that affect abaxial cell identity typicallyin Arabidopsis [1]. In addition to playing developmental
cause leaves to be flat, upcurled, or even radial [5, 6],roles, some ARGONAUTE family members are re-
not downwardly curled as in the case of zip. Thesequired for RNAi-like phenomena, such as posttran-
observations indicate that the effect of zip on leaf mor-scriptional gene silencing [2]. In contrast to Arabidop-
phology reflects a change in leaf identity, not leaf po-sis ARGONAUTE1 [1], ZIP has no significant role in
larity.transgene silencing; its primary function is in the regu-

Although zip mutants express adult vegetative traitslation of developmental timing.
precociously, they do not flower early under either long-
day or short-day conditions (Table 1). In some experi-

Results and Discussion ments we observed a slight delay in the opening of the
first flower, whereas in other experiments there was no

In Arabidopsis, the juvenile phase of shoot development significant difference in the timing of flower opening in
is marked by the production of small round leaves that zip versus wild-type plants. Furthermore, there was no
have a smooth margin and lack abaxial trichomes [3]. significant difference in the total number of leaves in
Plants in the adult phase produce elongated leaves that mutant versus wild-type plants grown under continuous
curl downward, have a serrate margin and short petioles, light, and there was only a small decrease (36.1 � 0.9
and produce abaxial trichomes. The ZIP gene was iden- for zip-1 versus 39.3 � 0.7 for the wild-type) in the total
tified in a screen for mutations that cause the precocious leaf number in plants grown under short days. To deter-
appearance of adult leaf traits. zip mutations cause the mine if ZIP regulates reproductive competence, we ex-
first two rosette leaves to become elongated and curl amined the effect of zip-1 on the flowering time of plants
downward (Figure 1A) and also cause a forward shift in heterozygous for 35S::LFY, a transgene that induces
the expression of other phase-related traits, including plants to flower soon after they enter the adult phase
leaf serration (Figure 1C) and the number of hydathodes [7]. Although zip-1;35S:LFY/� plants produced one less
per leaf ([4]; Figure 1D). Although these mutations affect leaf than their 35S:LFY/� siblings (7.3 � 0.2 versus 8.5 �
all rosette leaves, their phenotype is most obvious in 0.2; p � 0.01), they actually flowered at approximately
leaves 1 and 2 (Figure 1B). the same time as 35S:LFY/� plants (21.1 � 0.1 days

Under constant light, zip-1 and zip-2 reduced the versus 20.7 � 0.1 days; p � 0.07). Because zip does
number of leaves without abaxial trichomes from 3.3 � not have correlated effects on flowering time and leaf
0.2 to 2.1 � 0.1 (Table 1) and produced abaxial trichomes number, we believe that the differences we observed—
almost 2 days earlier than Col (Figure 1E). Under short- although statistically significant—are probably an indi-
day conditions, both Col and zip-1 plants had delayed rect result of the effect of zip on vegetative morphology
abaxial trichome production, but zip-1 plants produced and floral morphogenesis, which may influence the ces-
4.5 � 0.4 leaves without abaxial trichomes, whereas Col sation of vegetative growth and the timing of floral bud
plants produced 7.9 � 0.3 such leaves (Table 1). We opening (see below).
conclude that zip causes a premature transition to the Although zip has no major effect on the reproductive
adult state but does not override environmental cues behavior of the shoot apical meristem, it does accelerate
or cause leaves to unconditionally adopt an adult fate. the appearance of leaf traits that are normally associ-
Although zip accelerated the onset of abaxial-trichome ated with floral induction. In particular, the last several
production, it did not alter the gradual increase in their rosette leaves in zip mutants resemble inflorescence
production; mutant and wild-type plants both produced leaves in having a strongly serrate base and a well-

defined, dome-like apex (Figure 1C). zip plants also dis-
played an early plateau in hydathode development (Fig-*Correspondence: spoethig@sas.upenn.edu
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Figure 1. Phenotype of zippy

(A) Ten-day-old Col (left) and zip-1 (right)
plants. Cotyledons and the first two leaves
are indicated.
(B) Eighteen-day-old Col (left) and zip-1 (right)
plants; the first two leaves are indicated.
(C) zip-1 accelerates the appearance of
leaves with an adult shape and adult pattern
of abaxial trichomes. Leaves are shown in
order of production, from left to right, and
shaded to indicate no abaxial trichomes
(light gray), abaxial trichomes (dark gray), or
bracts (black). An arrow indicates a bract-like
leaf tip.
(D) zip-1 increases the number of hydathodes
per leaf and accelerates the appearance of a
brief plateau in hydathode number; this pla-
teau occurs between leaves 6 and 7 in zip-1
plants and between leaves 7 and 8 in wild-
type plants.
(E) Col, zip-1, and zip-2 plants have a similar
rate of leaf initiation, but abaxial trichomes
(arrow) appear earlier in zip plants.
(F) zip-1 carpels (right, with valve and seeds
removed) have a split septum and ectopic
stigmatic tissue. The scale bar represents 200
�m.
(G) Col (left) and zip-1 (right) flowers; arrows
indicate stamens.
(H) zip-1 does not affect mesophyll cell mor-
phology in the first two leaves.
(I) zip-1 (right) only slightly increases GUS ex-
pression in the L2 transgenic line.

ure 1D). These results may indicate that zip causes ro- 1F). In addition, zip plants have variable seed-set be-
cause stamens frequently fail to contact the stigma (Fig-sette leaf primordia to prematurely adopt a reproductive

fate, without causing the shoot apical meristem to adopt ure 1G). We have not determined the basis of this defect,
but because zip-1 has no significant effect on maturea similar fate, and suggest that these tissues can re-

spond independently to induction of the reproductive stamen length (long stamens are 38.2 � 0.1 mm in zip-1
plants and 38.2 � 0.1 mm in the wild-type; n � 100, p �phase. Although it has no effect on flowering time, zip

is required for floral morphogenesis; zip plants produce 0.54), it probably results from a change in the timing of
carpel or stamen elongation.stigmatic tissue in the middle of the septum, which is

often accompanied by splitting of the septum (Figure Mutations of HASTY (HST) [8, 9] and SQUINT (SQN)
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Table 1. Effect of zip on Leaf Identity and Flowering Time

Leaves without Leaves with Days to
Abaxial Trichomes Abaxial Trichomes Rosette Leaves Bracts Flowering n

Continuous Light
Wild-type (Col) 3.3 � 0.1 8.4 � 0.2 11.8 � 0.2 3.3 � 0.1 22.8 � 0.2 46
zip-1 2.1 � 0.1a 10.1 � 0.3a 12.2 � 0.2 4.3 � 0.1a 24.7 � 0.3a 45
zip-2 2.1 � 0.1a 9.9 � 0.2a 12.0 � 0.2 4.4 � 0.1a 24.7 � 0.3a 46
�/� and �/zip-1(Col)b 3.4 � 0.1 8.5 � 0.2 11.9 � 0.2 3.8 � 0.1 22.4 � 0.2 30
zip-1b 2.2 � 0.2a 9.1 � 0.3 11.3 � 0.3 4.0 � 0.1 23.0 � 0.2 16
Short Days
Wild-type (Col) 7.9 � 0.1 31.3 � 0.8 39.3 � 0.7 7.3 � 0.3 58.9 � 0.7 21
zip-1 4.5 � 0.2a 31.5 � 1.0 36.1 � 0.9a 7.9 � 0.3 58.1 � 1.1 21

a Significantly different from wild type (t test, p � 0.01). Values are � SEM.
b Siblings from the cross �/zip-1 � �/zip-1 were characterized phenotypically, and their genotype was subsequently determined with a PCR
assay, as described in the Experimental Procedures; because �/� and �/zip-1 plants were not significantly different from one another (p �

0.1), these genotypes were pooled for this analysis.

[10] have a precocious phenotype like that of zip and a 32 kb BAC F10D13 region containing seven predicted
transcripts (Figure 3A). Sequencing of these genes inappear to operate in independent pathways [9]. In order

to determine the functional relationship between ZIP zip-1 revealed a single base pair change that generated
a premature stop codon in the predicted transcript ofand these two genes, we examined the phenotype of

double mutants. We found that zip-1;sqn-1 plants had At1g69440 (Figure 3B). This allele is likely to be function-
ally null; it is predicted to delete more than half of thea stronger mutant phenotype than either single mutant

parent (Figure 2A), whereas the phenotype of zip-1;hst-1 C-terminal conserved domain (see below) and is pheno-
typically indistinguishable from two deletions (zip-2 andplants was no more severe than that of hst-1 (Figure

2B). zip-1;sqn-1 plants produced abaxial trichomes on zip-3) that remove the entire gene. A T-DNA insertion
(SALK_037458) in the first intron of At1g69440 has aleaf 1.1 � 0.1 (n � 24), compared to leaf 3.4 � 0.3 (n �

22) for either single mutant. hst-1;zip-1 double mutant phenotype similar to that produced by these three al-
leles. Transformation with an 8.4 kb genomic fragmentplants produced abaxial trichomes on leaf 2.7 � 0.3 (n �

20), which was not significantly different from findings containing At1g69440 (Figure 3A) rescued the pheno-
type of zip-1 and zip-2, confirming that this gene corre-with hst-1 alone (2.9 � 0.2, n � 20). These results sug-

gest that zip acts in parallel to SQN and in the same sponds to ZIP.
The ZIP transcript consists of three exons totallingpathway as HST.

ZIP maps near the marker nga111 on chromosome 1; approximately 3.2 kb and is predicted to encode a 990
amino acid protein containing a central PAZ domainthe approximate breakpoints of the fast-neutron-

induced deletion mutations zip-2 and zip-3 limited ZIP to and a C-terminal PIWI domain [11]. These two domains
define the PPD class of proteins, of which there are ten
in Arabidopsis. Phylogenetic analysis indicates that PPD
proteins can be divided into a subgroup related to the
Drosophila protein PIWI and a subgroup related to the
Arabidopsis protein AGO1 [2]. All ten of the predicted
Arabidopsis PPD-proteins (including AGO1 [12], AGO4
[13], and PNH [14, 15]) are in the AGO subgroup (Figure
3C); of these, ZIP is the only one with no close relatives.

We analyzed ZIP expression by using real-time RT-
PCR (Table S1) because its mRNA was undetectable by
Northern analysis. As controls for primer specificity, we
measured expression in zip-1, which contains a prema-
ture stop codon, and zip-2, a deletion of the entire locus;
expression was reduced by half in zip-1 and was unde-
tectable in zip-2. Very little ZIP transcript was detected
in the roots of wild-type plants, consistent with the ob-
servation that zip has no phenotype in roots. Expression
was highest in mature rosette leaves and slightly lessFigure 2. Genetic Interaction between zip-1 and Other Mutations
in floral buds. The shoot apices of plants grown underAffecting Vegetative Phase Change

short days to delay flowering showed a 2-fold increase(A) zip-1 enhances the early adult phenotype of the sqn-1 mutant,
causing precocious serration of the leaf margin and abaxial trichome in expression between 8 and 22 days after planting. This
production. latter result is somewhat unexpected because the loss-
(B) zip-1 has little or no effect on the hst-1 phenotype. Leaves are of-function phenotype of ZIP suggests that it is required
shown in order of production from left to right and are shaded to

in the juvenile phase. However, the observation that ZIPindicate no abaxial trichomes (light gray), abaxial trichomes (dark
is expressed throughout shoot development is consis-gray), or bracts (black). Both the sqn-1 and hst-1 mutations reduce

the number of rosette leaves. tent with its mutant phenotype and may indicate that
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is required for development and PTGS [1, 12], PNH has
developmental functions but is not required for PTGS
[14–16], and AGO4 is required for transcriptional gene
silencing but not development [13]. To determine if ZIP
plays a role in PTGS, we introduced zip-1 into the L2
transgenic line. This line contains a 35S::GUS transgene
that is silenced posttranscriptionally by a mechanism
that depends on AGO1 [1]. zip-1 had no effect on the
pattern of gene silencing during shoot development (Fig-
ure 1I) and produced little increase in GUS activity. Spec-
trophotometric analysis of zip-1 and wild-type segre-
gants in F2 families homozygous for the L2 transgene
revealed that zip-1 plants produced 39 � 12 ng GUS/�g
protein (n � 28), whereas their wild-type siblings pro-
duced 23 � 10 ng GUS/�g protein (n � 27). By compari-
son, ago1-1 plants in an L2 background had nearly ten
times as much GUS activity as wild-type plants (275 �
25 ng GUS/�g protein; n � 6). We conclude that ZIP
plays little or no role in PTGS.

The phenotype of zip is significant for several reasons.
The observation that zip has little or no effect on either
flowering time or reproductive competence is consistent
with the phenotype of other phase change mutations in
Arabidopsis [10] and maize [17, 18] and indicates that
vegetative maturation and floral induction are regulated
by different pathways. This is similar to the situation in C.
elegans, for which somatic maturation and reproductive
development are regulated independently [19]. The phe-
notype of zip is also interesting because of its specificity.
Other genes involved in vegetative phase change in
Arabidopsis are required for many different processes
in shoot development [8–10, 20–22]. Although ZIP plays
a role in floral development, during vegetative growth
its only obvious mutant phenotype is a defect in the
regulation of the juvenile-to-adult transition. It is of
course possible that the lack of additional phenotypes
reflects a functional overlap between ZIP and other PPD
genes in the Arabidopsis family. We think this is unlikely,
however, because ZIP has no close relatives within this
family (Figure 3C).

Members of the PPD protein family participate in a
variety of regulatory mechanisms, including transcrip-
tional silencing, posttranscriptional silencing, and both
positive and negative translational regulation, with some
PPD proteins having more than one of these functions

Figure 3. ZIP Is a Member of the AGO Family
[2]. Both genetic and biochemical evidence indicates

(A) Chromosomal region surrounding ZIP. Approximate breakpoints
that PPD proteins may act in conjunction with smallof the zip-2 and zip-3 deletion alleles are shown, along with the
regulatory RNAs, such as miRNAs and siRNAs [2]. Ingenomic fragment, p[ZIP�], that was used to generate a rescue
light of the genetic evidence that ZIP and HST act inconstruct.

(B) The genomic structure of the ZIP transcript (oriented 5� to 3�) the same pathway (Figure 2B), it is interesting to note
showing the position of the T-DNA insertion and the zip-1 point that the mammalian ortholog of HST, Exportin 5, pro-
mutation. Exons are represented by thick lines; open areas represent motes the nuclear export of small double-stranded
the 5� and 3� UTRs.

RNAs [23].(C) A bootstrap cladogram showing the relationship of ZIP to the
Although we have not yet identified the targets of ZIP,predicted Arabidopsis PPD proteins (green) and other selected

many of the miRNAs isolated from Arabidopsis displaymembers of this family.
temporal variation in their level of expression [24–26]
and could therefore play a role regulating vegetative

ZIP plays a permissive role in vegetative phase change, phase change. Temporal fate in C. elegans is controlled
rather than a regulatory one. by the miRNAs lin-4 and let-7 [27, 28]. Although there

PPD proteins have been shown to be involved in both are no Arabidopsis lin-4 or let-7 homologs [29], there is
the regulation of developmental pathways and RNAi-like an intriguing similarity between the phenotype of zip and
phenomena such as posttranscriptional gene silencing the phenotype of mutations in the C. elegans Argonaute-

like genes, ALG-1 and ALG-2; animals mutant for both(PTGS) of transgenes in plants [2]. In Arabidopsis, AGO1
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Transgene Silencing Assayof these genes have a heterochronic phenotype associ-
We assayed transgene silencing by crossing zip-1 or ago1-1 [12]ated with a reduction in levels of the lin-4 and let-7
to the L2 line [1] (a gift of H. Vaucheret) and then selecting F3miRNAs but do not display a defect in PTGS (RNAi) [30].
families that were homozygous for 35S::GUS and segregating these

Whether ZIP is also required for the biogenesis and/or mutations. Protein was extracted from individual plants in 5 mM
activity of miRNAs should become apparent from future Na2HPO4, 10 mM �-mercaptoethanol, 10 mM EDTA, and 0.1% SDS.

Protein concentration was determined with the Bio-Rad Proteinstudies of this and other genes that have similar effects
Assay, and 10 �g of protein was added to 1 ml of 1 mM PNPG inon vegetative phase change in Arabidopsis.
50 mM Na2HPO4 and 10 mM �-mercaptoethanol and incubated at
30	C for 5 min before the OD405 was measured. A standard curve for

Experimental Procedures the PNPG assay was prepared with E. coli �-glucuronidase (Roche).
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