NOTE

A Characterization of Graphs Having All (q, f) -Factors

Thomas Niessen

Institut für Statistik, RWTH Aachen, 52056 Aachen, Germany

Received March 21, 1996

Let G be a graph with vertex set V and let g, $f: V \to \mathbb{Z}^+$. We say that G has all (g, f) -factors if G has an h-factor for every h: $V \to \mathbb{Z}^+$ such that $g(v) \le h(v) \le f(v)$ for every $v \in V$ and at least one such h exists. In this note, we derive from Tutte's f-factor theorem a similar characterization for the property of having all (g, f) -factors. An analogous result for parity-factors is presented also. \circ 1998 Academic Press

Let G be a finite graph with possible multiple edges and loops and let g, f: $V \rightarrow \mathbb{Z}^+$, where $V=V(G)$ is the vertex set of G and \mathbb{Z}^+ denotes the set of nonnegative integers. For a vertex $v \in V$ we let $d_G(v)$ denote the degree of v in G. A (g, f) -factor of G is a spanning subgraph F such that $g(v) \leq d_F(v) \leq f(v)$ for all $v \in V$. An (f, f) -factor is called an f-factor. Let U, $W \subseteq V$ be disjoint sets. We write $f(U)$ instead of $\sum_{v \in U} f(v)$ and $d_G(U)$ instead of $\sum_{v \in U} d_G(v)$. By $e_G(U, W)$ we denote the number of edges of G joining a vertex of U to a vertex of W .

Lovász [6] gave a characterization of graphs having a (g, f) -factor and thereby he generalized Tutte's f-factor theorem [8]. In [9] Tutte showed that the (g, f) -factor theorem can be derived from the f-factor theorem. Given positive integers a and b , the f-factor theorem has been applied in [4] and [5] to obtain conditions implying the existence of h -factors for every h: $V \rightarrow \{a, a+1, ..., b\}$ with $h(V) \equiv 0 \pmod{2}$. More generally, one can ask for the existence of h-factors, where h: $V \rightarrow \mathbb{Z}^+$ is any function such that $g(v) \le h(v) \le f(v)$ for every $v \in V$ and $h(V) \equiv 0 \pmod{2}$. The aim of this note is to present a characterization of graphs having these factors. The result will be proved using Tutte's theorem, and so the f-factor theorem is also self-refining in this direction.

In the following let g, $f: V \to \mathbb{Z}^+$ such that there exists a function h: $V \rightarrow \mathbb{Z}^+$ with $g(v) \le h(v) \le f(v)$ for every vertex $v \in V$ and $h(V) \equiv 0$ (mod 2). We will say that G has all (g, f) -factors if and only if G has an h -factor for every h described above.

NOTE 153

THEOREM 1. G has all (g, f) -factors if and only if

$$
g(D) - f(S) + d_{G-D}(S) - q_G^*(D, S, g, f) \ge \begin{cases} -1, & \text{if } f \ne g \\ 0, & \text{if } f = g \end{cases} (1)
$$

for all disjoint sets $D, S \subseteq V$, where $q_G^*(D, S, g, f)$ denotes the number of components C of $G - (D \cup S)$ such that there exists a vertex $v \in V(C)$ with $g(v) < f(v)$ or $e_G(V(C), S) + f(V(C)) \equiv 1 \pmod{2}$.

We excluded above the particular situation in which $g = f$ and $f(V) \equiv 1$ (mod 2), that is, a situation where no (g, f) -factor exists. By means of Lovász' result we can see the necessity for that.

THEOREM 2 ((g, f) -factor theorem [6]). G has a (g, f) -factor if and only if

$$
f(D) - g(S) + d_{G-D}(S) - \hat{q}_G(D, S, g, f) \ge 0
$$

for all disjoint sets $D, S \subseteq V$, where $\hat{q}_G(D, S, g, f)$ denotes the number of components C of $G-(D \cup S)$ with $g(v)=f(v)$ for all $v \in V(C)$ and $e_G(V(C), S) + f(V(C)) \equiv 1 \pmod{2}$.

Note that every component counted by $\hat{q}_G(D, S, g, f)$ is also counted by $q_G^*(D, S, g, f)$, and hence it holds that $q_G^*(D, S, g, f) \ge \hat{q}_G(D, S, g, f)$ for all disjoint sets $D, S \subseteq V$. Moreover, it holds that $q_G^*(D, S, g, f) =$ $\hat{q}_G(D, S, g, f)$ if and only if $g(v) = f(v)$ for all $v \in V - (D \cup S)$. So, we have

$$
g(D) - f(S) + d_{G-D}(S) - q_G^*(D, S, g, f)
$$

\$\leq f(D) - g(S) + d_{G-D}(S) - \hat{q}_G(D, S, g, f)\$,

with equality if and only if $f = g$. Therefore, a graph satisfying (1) for all disjoint sets $D, S \subseteq V$ has a (g, f) -factor by Theorem 2, but if $g = f$ and $f(V) \equiv 1 \pmod{2}$, no (g, f) -factor exists.

THEOREM 3. (f -Factor Theorem [8].) G has an f -factor if and only if

$$
\Theta_G(D, S, f) := f(D) - f(S) + d_{G-D}(S) - q_G(D, S, f) \ge 0
$$

for all disjoint sets D, $S \subseteq V$, where $q_G(D, S, f)$ denotes the number of components C of $G-(D \cup S)$ such that $e_G(V(C), S) + f(V(C)) \equiv 1 \pmod{2}$. Moreover, $\Theta_G(D, S, f) \equiv f(V) \pmod{2}$ for all disjoint sets $D, S \subseteq V$.

Proof of Theorem 1. We first verify that (1) guarantees that G has all (g, f) -factors. Therefore let $h: V \to \mathbb{Z}^+$ be such that $g(v) \le h(v) \le f(v)$ for every $v \in V$ and $h(V) \equiv 0 \pmod{2}$. Then we have for disjoint sets $D, S \subseteq V$

$$
\Theta_G(D, S, h) = h(D) - h(S) + d_{G-D}(S) - q_G(D, S, h)
$$

\n
$$
\ge g(D) - f(S) + d_{G-D}(S) - q_G^*(D, S, g, f)
$$

\n
$$
\ge -1.
$$

So, G has an h-factor by Theorem 3.

Next we show that (1) is satisfied if G has all (g, f) -factors. Let $D, S \subseteq V$ be disjoint sets. We define $h: V \to \mathbb{Z}^+$ as follows. For all $v \in D$, we let $h(v) = g(v)$, and for all $v \in S$, we let $h(v) = f(v)$. Now let C be a component of $G-(D \cup S)$. If $f(v)=g(v)$ for all $v \in V(C)$, then we let $h(v)=f(v)$ for all $v \in V(C)$. Otherwise there exists a vertex $u \in V(C)$ such that $g(u) < f(u)$. Then we let $h(v) = f(v)$ for all $v \in V(C) - \{u\}$ and choose $h(u)$ to be $f(u)$ or $f(u) - 1$ such that $e_G(V(C), S) + h(C)$ becomes odd. Thereby, we have $q_G^*(D, S, g, f) = q_G(D, S, h)$, and so

$$
g(D) - f(S) + d_{G-D}(S) - q_G^*(D, S, g, f) = \Theta_G(D, S, h).
$$

Hence (1) is satisfied for D and S by Theorem 3, if $h(V)$ is even, since G has an h-factor. Finally, if $h(V)$ is odd, we have $f \neq g$, since G has a (g, f) factor. So there exists a vertex $u \in V$ such that $g(u) < h(u)$ or $h(u) < f(u)$. Now we define $h^*: V \to \mathbb{Z}^+$ by $h^*(v) = h(v)$ for all $v \in V - \{u\}$ and

$$
h^*(u) = \begin{cases} h(u) - 1, & \text{if } h(u) = f(u) \\ h(u) + 1, & \text{otherwise.} \end{cases}
$$

Therefore, $h^*(V)$ is even and $g(v) \leq h^*(v) \leq f(v)$ holds for all $v \in V$. So, G has an h^{*}-factor and thus $\Theta_G(D, S, h^*)\geq 0$. Moreover, it holds that

$$
(h(u) - h^*(u)), \qquad \text{if} \quad u \in D
$$

$$
\Theta_G(D, S, h) - \Theta_G(D, S, h^*) = \begin{cases} h^*(u) - h(u), & \text{if } u \in S \\ q_G(D, S, h^*) - q_G(D, S, h), & \text{otherwise,} \end{cases}
$$

and so we have $\Theta_G(D, S, h) - \Theta_G(D, S, h^*) \geq -1$. Thus

$$
g(D) - f(S) + d_{G-D}(S) - q_G^*(D, S, g, f) = \Theta_G(D, S, h)
$$

\$\ge \Theta_G(D, S, h^*) - 1 \ge -1\$.

Since $f \neq g$, this shows that (1) is also satisfied, if $h(V)$ is odd.

This completes the proof of Theorem 1. \blacksquare

It is quite natural to proceed similarily in related situations. As a simple example, we consider parity-factors. Let therefore g, $f: V \rightarrow \mathbb{Z}^+$ such that

$$
g(v) \le f(v) \qquad \text{and} \qquad g(v) \equiv f(v) \pmod{2} \tag{2}
$$

NOTE 155

for every $v \in V$. Then a spanning subgraph F of G is called a (g, f) -parityfactor, if $g(v) \le d_F(v) \le f(v)$ and $d_F(v) \equiv f(v)$ (mod 2) for all $v \in V$.

THEOREM 4 [2, 7]. G has a (g, f) -parity-factor if and only if

 $f(D) - g(S) + d_{G-D}(S) - g_G(D, S, f) \geq 0$

for all disjoint sets $D, S \subseteq V$.

We say that G has all (g, f) -parity-factors, if G has an h-factor for every h: $V \rightarrow \mathbb{Z}^+$, such that $g(v) \le h(v) \le f(v)$ and $h(v) \equiv f(v)$ (mod 2) for all $v \in V$.

THEOREM 5. G has all (g, f) -parity-factors if and only if

$$
g(D) - f(S) + d_{G-D}(S) - q_G(D, S, f) \ge 0
$$
\n(3)

for all disjoint sets $D, S \subseteq V$.

Proof. We first show that G has all (g, f) -parity-factors, if (3) is satisfied. Therefore let $h: V \to \mathbb{Z}^+$ be such that $g(v) \le h(v) \le f(v)$ and $h(v) \equiv f(v) \pmod{2}$ for all $v \in V$. Then it holds that $q_G(D, S, h) =$ $q_G(D, S, f)$ for all disjoint sets $D, S \subseteq V$, and thus

$$
\Theta_G(D, S, h) = h(D) - h(S) + d_{G-D}(S) - q_G(D, S, h)
$$

\n
$$
\geq g(D) - f(S) + d_{G-D}(S) - q_G(D, S, f) \geq 0.
$$

So, G has an h-factor by Theorem 3.

Next we verify (3), if G has all (g, f) -parity-factors. Let D, $S \subseteq V$ be disjoint sets. We define h: $V \rightarrow \mathbb{Z}^+$ as follows. For all $v \in D$, we let $h(v) = f(v)$, and for all $v \notin D$, we let $h(v) = g(v)$. Then we have $q_G(D, S, h) =$ $q_G(D, S, g) = q_G(D, S, f)$ by (2), and since G has an h-factor, we get

$$
g(D) - f(S) + d_{G-D}(S) - q_G(D, S, f) = \Theta_G(D, S, h) \ge 0,
$$

as desired. \blacksquare

Remarks. Both referees pointed out that our results are related to a more general factor problem. Suppose that for every vertex $v \in V$ of a graph G a set $B_n \subset \mathbb{Z}^+$ is given. The *general factor problem* asks whether there exists a factor F of G such that $d_F(v) \in B_v$ for every $v \in V$. A set $B \subset \mathbb{Z}$ is said to have a *gap of length* $p\geq 1$ if there exists an integer $k \in B$ such that $k+1, ..., k+p \notin B$ and $k+p+1 \in B$. The general factor problem is well understood, if every B_v has no gap of length greater than 1 (or, using the terminology of [1], every B_v is a one-dimensional jump system). Characterizations in the spirit of Tutte's f -factor theorem are presented in [7, 3]. Note that Theorems 2–4 are special cases thereof. It seems however that there is no obvious generalization of Theorems 1 and 5 for the property of having all $(B_n : v \in V)$ -factors.

Another problem posed by one of the referees remains open also: Is there a polynomial algorithm for testing whether a graph G has all (g, f) -factors?

ACKNOWLEDGMENTS

I thank both referees for their helpful comments and suggestions.

REFERENCES

- 1. A. Bouchet and W. H. Cunningham, Delta-matroids, jump systems, and bisubmodular polyhedra, SIAM J. Discrete Math. 8 (1995), 17-32.
- 2. C. Chen and M. Kano, Odd and even factors with given properties, Chinese Quart. J. Math. 7 (1992), 65-71.
- 3. G. Cornuéjols, General factors of graphs, *J. Combin. Theory Ser. B* 45 (1988), 185-198.
- 4. P. Katerinis, Toughness of graphs and the existence of factors, *Discrete Math.* 80 (1990), 81-92.
- 5. M. Kano and N. Tokushige, Binding numbers and f-factors of graphs, J. Combin. Theory Ser. B 54 (1992), $213-221$.
- 6. L. Lovász, Subgraphs with prescribed valencies, J. Combin. Theory 8 (1970), 391-416.
- 7. L. Lovász, The factorization of graphs, II, Acta Math. Sci. Hungar. 23 (1972), 223-246.
- 8. W. T. Tutte, The factors of graphs, *Canad. J. Math.* 4 (1952), 314-328.
- 9. W. T. Tutte, Graph factors, Combinatorica 1 (1981), 79-97.