
File: DISTIL 179701 . By:CV . Date:28:01:98 . Time:08:19 LOP8M. V8.B. Page 01:01
Codes: 3838 Signs: 2292 . Length: 50 pic 3 pts, 212 mm

Journal of Combinatorial Theory, Series B � TB1797

Journal of Combinatorial Theory, Series B 72, 152�156 (1998)

NOTE

A Characterization of Graphs Having All (g, f )-Factors

Thomas Niessen

Institut fu� r Statistik, RWTH Aachen, 52056 Aachen, Germany

Received March 21, 1996

Let G be a graph with vertex set V and let g, f : V � Z+. We say that G has all
(g, f )-factors if G has an h-factor for every h: V � Z+ such that g(v)�h(v)� f (v)
for every v # V and at least one such h exists. In this note, we derive from
Tutte's f -factor theorem a similar characterization for the property of having
all (g, f )-factors. An analogous result for parity-factors is presented also. � 1998

Academic Press

Let G be a finite graph with possible multiple edges and loops and let
g, f : V � Z+, where V=V(G) is the vertex set of G and Z+ denotes the set
of nonnegative integers. For a vertex v # V we let dG(v) denote the degree
of v in G. A (g, f )-factor of G is a spanning subgraph F such that
g(v)�dF (v)� f (v) for all v # V. An ( f, f )-factor is called an f-factor. Let
U, W�V be disjoint sets. We write f (U) instead of �v # U f (v) and dG(U)
instead of �v # U dG(v). By eG(U, W) we denote the number of edges of G
joining a vertex of U to a vertex of W.

Lova� sz [6] gave a characterization of graphs having a (g, f )-factor and
thereby he generalized Tutte's f -factor theorem [8]. In [9] Tutte showed
that the (g, f )-factor theorem can be derived from the f-factor theorem.
Given positive integers a and b, the f -factor theorem has been applied in
[4] and [5] to obtain conditions implying the existence of h-factors for
every h: V � [a, a+1, ..., b] with h(V )#0 (mod 2). More generally, one
can ask for the existence of h-factors, where h: V � Z+ is any function such
that g(v)�h(v)� f (v) for every v # V and h(V )#0 (mod 2). The aim of
this note is to present a characterization of graphs having these factors. The
result will be proved using Tutte's theorem, and so the f-factor theorem is
also self-refining in this direction.

In the following let g, f : V � Z+ such that there exists a function
h: V � Z+ with g(v)�h(v)� f (v) for every vertex v # V and h(V)#0
(mod 2). We will say that G has all (g, f )-factors if and only if G has an
h-factor for every h described above.
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Theorem 1. G has all (g, f )-factors if and only if

g(D)& f (S)+dG&D(S)&q*G(D, S, g, f )�{&1,
0,

if f{ g
if f = g

(1)

for all disjoint sets D, S�V, where q*G(D, S, g, f ) denotes the number of
components C of G&(D _ S) such that there exists a vertex v # V(C) with
g(v)< f (v) or eG(V(C), S)+ f (V(C))#1 (mod 2).

We excluded above the particular situation in which g= f and f (V)#1
(mod 2), that is, a situation where no (g, f )-factor exists. By means of
Lova� sz' result we can see the necessity for that.

Theorem 2 ((g, f )-factor theorem [6]). G has a (g, f )-factor if and
only if

f (D)& g(S)+dG&D(S)&q̂G(D, S, g, f )�0

for all disjoint sets D, S�V, where q̂G(D, S, g, f ) denotes the number of
components C of G&(D _ S) with g(v)= f (v) for all v # V(C) and
eG(V(C), S)+ f (V(C))#1 (mod 2).

Note that every component counted by q̂G(D, S, g, f ) is also counted by
q*G(D, S, g, f ), and hence it holds that q*G(D, S, g, f )�q̂G(D, S, g, f ) for
all disjoint sets D, S�V. Moreover, it holds that q*G(D, S, g, f )=
q̂G(D, S, g, f ) if and only if g(v)= f (v) for all v # V&(D _ S). So, we have

g(D)& f (S)+dG&D(S)&q*G(D, S, g, f )

� f (D)& g(S)+dG&D(S)&q̂G(D, S, g, f ),

with equality if and only if f = g. Therefore, a graph satisfying (1) for all
disjoint sets D, S�V has a (g, f )-factor by Theorem 2, but if g= f and
f (V )#1 (mod 2), no (g, f )-factor exists.

Theorem 3. ( f-Factor Theorem [8].) G has an f-factor if and only if

3G(D, S, f ) := f (D)& f (S)+dG&D(S)&qG(D, S, f )�0

for all disjoint sets D, S�V, where qG(D, S, f ) denotes the number of com-
ponents C of G&(D _ S) such that eG(V(C), S)+ f (V(C))#1 (mod 2).
Moreover, 3G(D, S, f )# f (V) (mod 2) for all disjoint sets D, S�V.

Proof of Theorem 1. We first verify that (1) guarantees that G has all
(g, f )-factors. Therefore let h: V � Z+ be such that g(v)�h(v)� f (v) for
every v # V and h(V )#0 (mod 2). Then we have for disjoint sets D, S�V
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3G(D, S, h)=h(D)&h(S)+dG&D(S)&qG(D, S, h)

� g(D)& f (S)+dG&D(S)&q*G(D, S, g, f )

�&1.

So, G has an h-factor by Theorem 3.
Next we show that (1) is satisfied if G has all (g, f )-factors. Let D, S�V

be disjoint sets. We define h: V � Z+ as follows. For all v # D, we let
h(v)= g(v), and for all v # S, we let h(v)= f (v). Now let C be a component
of G&(D _ S). If f (v)= g(v) for all v # V(C), then we let h(v)= f (v) for all
v # V(C). Otherwise there exists a vertex u # V(C) such that g(u)< f (u).
Then we let h(v)= f (v) for all v # V(C)&[u] and choose h(u) to be f (u)
or f (u)&1 such that eG(V(C), S)+h(C) becomes odd. Thereby, we have
q*G(D, S, g, f )=qG(D, S, h), and so

g(D)& f (S)+dG&D(S)&q*G(D, S, g, f )=3G(D, S, h).

Hence (1) is satisfied for D and S by Theorem 3, if h(V ) is even, since G
has an h-factor. Finally, if h(V) is odd, we have f { g, since G has a (g, f )-
factor. So there exists a vertex u # V such that g(u)<h(u) or h(u)< f (u).
Now we define h*: V � Z+ by h*(v)=h(v) for all v # V&[u] and

h*(u)={h(u)&1,
h(u)+1,

if h(u)= f (u)
otherwise.

Therefore, h*(V ) is even and g(v)�h*(v)� f (v) holds for all v # V. So, G
has an h*-factor and thus 3G(D, S, h*)�0. Moreover, it holds that

h(u)&h*(u), if u # D

3G (D, S, h)&3G (D, S, h*)={h*(u)&h(u), if u # S

qG (D, S, h*)&qG (D, S, h), otherwise,

and so we have 3G(D, S, h)&3G(D, S, h*)�&1. Thus

g(D)& f (S)+dG&D(S)&q*G(D, S, g, f )=3G(D, S, h)

�3G(D, S, h*)&1�&1.

Since f { g, this shows that (1) is also satisfied, if h(V ) is odd.
This completes the proof of Theorem 1. K

It is quite natural to proceed similarily in related situations. As a simple
example, we consider parity-factors. Let therefore g, f : V � Z+ such that

g(v)� f (v) and g(v)# f (v) (mod 2) (2)
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for every v # V. Then a spanning subgraph F of G is called a (g, f )-parity-
factor, if g(v)�dF (v)� f (v) and dF (v)# f (v) (mod 2) for all v # V.

Theorem 4 [2, 7]. G has a (g, f )-parity-factor if and only if

f (D)& g(S)+dG&D(S)&qG(D, S, f )�0

for all disjoint sets D, S�V.

We say that G has all (g, f )-parity-factors, if G has an h-factor for every
h: V � Z+, such that g(v)�h(v)� f (v) and h(v)# f (v) (mod 2) for all
v # V.

Theorem 5. G has all (g, f )-parity-factors if and only if

g(D)& f (S)+dG&D(S)&qG(D, S, f )�0 (3)

for all disjoint sets D, S�V.

Proof. We first show that G has all (g, f )-parity-factors, if (3) is
satisfied. Therefore let h: V � Z+ be such that g(v)�h(v)� f (v) and
h(v)# f (v) (mod 2) for all v # V. Then it holds that qG(D, S, h)=
qG(D, S, f ) for all disjoint sets D, S�V, and thus

3G(D, S, h)=h(D)&h(S)+dG&D(S)&qG(D, S, h)

� g(D)& f (S)+dG&D(S)&qG(D, S, f )�0.

So, G has an h-factor by Theorem 3.
Next we verify (3), if G has all (g, f )-parity-factors. Let D, S�V be dis-

joint sets. We define h: V � Z+ as follows. For all v # D, we let h(v)= f (v),
and for all v � D, we let h(v)= g(v). Then we have qG(D, S, h)=
qG(D, S, g)=qG(D, S, f ) by (2), and since G has an h-factor, we get

g(D)& f (S)+dG&D(S)&qG(D, S, f )=3G(D, S, h)�0,

as desired. K

Remarks. Both referees pointed out that our results are related to a
more general factor problem. Suppose that for every vertex v # V of a graph
G a set Bv /Z+ is given. The general factor problem asks whether there
exists a factor F of G such that dF (v) # Bv for every v # V. A set B/Z is
said to have a gap of length p�1 if there exists an integer k # B such that
k+1, ..., k+ p � B and k+ p+1 # B. The general factor problem is well
understood, if every Bv has no gap of length greater than 1 (or, using the
terminology of [1], every Bv is a one-dimensional jump system). Charac-
terizations in the spirit of Tutte's f-factor theorem are presented in [7, 3].
Note that Theorems 2�4 are special cases thereof. It seems however that
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there is no obvious generalization of Theorems 1 and 5 for the property of
having all (Bv : v # V )-factors.

Another problem posed by one of the referees remains open also: Is there a
polynomial algorithm for testing whether a graph G has all (g, f )-factors?
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