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Let G be a graph with vertex set V and let g, f: V- Z*. We say that G has all
(g, f)-factors if G has an h-factor for every h: V' — Z* such that g(v) <h(v) < f(v)
for every veV and at least one such / exists. In this note, we derive from
Tutte’s f-factor theorem a similar characterization for the property of having
all (g, f)-factors. An analogous result for parity-factors is presented also. © 1998

Academic Press

Let G be a finite graph with possible multiple edges and loops and let
g [ V> 77", where V= V(G) is the vertex set of G and Z* denotes the set
of nonnegative integers. For a vertex ve V we let d;(v) denote the degree
of v in G. A (g, f)factor of G is a spanning subgraph F such that
g(v) <dgp(v)< f(v) for all ve V. An (f, f)-factor is called an f-factor. Let
U, W<V be disjoint sets. We write f(U) instead of >, ., f(v) and dg(U)
instead of 3, . ds(v). By eq(U, W) we denote the number of edges of G
joining a vertex of U to a vertex of W.

Lovasz [ 6] gave a characterization of graphs having a (g, f)-factor and
thereby he generalized Tutte’s f-factor theorem [8]. In [9] Tutte showed
that the (g, f)-factor theorem can be derived from the f-factor theorem.
Given positive integers @ and b, the f-factor theorem has been applied in
[4] and [5] to obtain conditions implying the existence of A-factors for
every h: V—{a,a+1,.. b} with h(V)=0 (mod 2). More generally, one
can ask for the existence of Ai-factors, where h: V' — Z* is any function such
that g(v) <h(v) < f(v) for every ve V and h(V)=0 (mod 2). The aim of
this note is to present a characterization of graphs having these factors. The
result will be proved using Tutte’s theorem, and so the f-factor theorem is
also self-refining in this direction.

In the following let g, /: V= Z* such that there exists a function
h: V—>277* with g(v)<h(v)< f(v) for every vertex veV and A(V)=0
(mod 2). We will say that G has all (g, f)-factors if and only if G has an
h-factor for every & described above.
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THEOREM 1. G has all (g, f)-factors if and only if

-1, if f#g
0, if f=g
for all disjoint sets D, S<V, where q¥(D, S, g, ) denotes the number of

components C of G— (DU S) such that there exists a vertex ve V(C) with
g(v) < f(v) or eg(V(C), S)+ f(V(C))=1 (mod 2).

g(D)—f(S)+dg_p(S)—q&(D, S, g,f)>{ (1)

We excluded above the particular situation in which g= fand f(V)=1
(mod 2), that is, a situation where no (g, f)-factor exists. By means of
Lovasz’ result we can see the necessity for that.

THEOREM 2 ((g, f)-factor theorem [6]). G has a (g, f)-factor if and
only if

S(D)—g(8)+dg_p(S)—4s(D, S, g ) =0

for all disjoint sets D, SV, where §5(D, S, g, ) denotes the number of
components C of G—(DuS) with g(v)=f(v) for all veV(C) and
eq(V(C), S)+ f(N(C)) =1 (mod 2).

Note that every component counted by §;(D, S, g, f) is also counted by
qé(D, S, g, ), and hence it holds that ¢&(D, S, g, /)= 4s(D, S, g, f) for
all disjoint sets D,S< V. Moreover, it holds that ¢%(D,S, g, f)=
4e(D, S, g, f) if and only if g(v) = f(v) for all ve V— (D U S). So, we have

g(D)—=f(S)+dg_p(S)—q&D, S, g, )
<f(D)—g(S)+ds_p(S)—qs(D, S, g, f),
with equality if and only if /= g. Therefore, a graph satisfying (1) for all

disjoint sets D, S< V has a (g, f)-factor by Theorem 2, but if g= f and
f(V)=1 (mod 2), no (g, f)-factor exists.

THEOREM 3. ( f-Factor Theorem [8].) G has an f-factor if and only if
O6(D, S, f):=f(D)=f(S)+dc_p(S)—qs(D, S, )20

for all disjoint sets D, S< V, where qg(D, S, f) denotes the number of com-
ponents C of G—(DuUS) such that eg(V(C),S)+ f(V(C))=1 (mod 2).
Moreover, O@4(D, S, f)= f(V) (mod 2) for all disjoint sets D, SS V.

Proof of Theorem 1. We first verify that (1) guarantees that G has all
(g, f)-factors. Therefore let si: V- Z* be such that g(v) <h(v)< f(v) for
every ve V and h(V)=0 (mod 2). Then we have for disjoint sets D, SV
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O5(D. S, h) =h(D)—h(S)+dG_p(S)—q6(D, S, h)

> g(D)—f(S) +dg_p(S)—q¥&(D, S, g f)
= —1

So, G has an Ah-factor by Theorem 3.

Next we show that (1) is satisfied if G has all (g, f)-factors. Let D, S< V'
be disjoint sets. We define 4: V—Z* as follows. For all ve D, we let
h(v) = g(v), and for all ve S, we let i(v) = f(v). Now let C be a component
of G—(DuS). If f(v) = g(v) for all ve V(C), then we let h(v) = f(v) for all
ve V(C). Otherwise there exists a vertex ue€ V(C) such that g(u) < f(u)
Then we let i(v) = f(v) for all ve V(C)— {u} and choose h(u) to be f(u)
or f(u)—1 such that eg5(V(C), S)+ h(C) becomes odd. Thereby, we have
qé(Da S’ g f) = qG(D: S, h)’ and so

gD) = f(S)+dg_p(S)—q&(D, S, g f)=0Os(D, S, h).

Hence (1) is satisfied for D and S by Theorem 3, if 4( V) is even, since G
has an A-factor. Finally, if 4( V) is odd, we have f # g, since G has a (g, f)-
factor. So there exists a vertex ue€ V such that g(u) <h(u) or h(u) < f(u).
Now we define h*: V' —Z* by h*(v)=h(v) for all ve V— {u} and

h(u)—1, if h(u)= f(u)
h*(u) = .
h(u) +1, otherwise.
Therefore, 2*(V) is even and g(v) <h*(v) < f(v) holds for all ve V. So, G
has an h*-factor and thus @ D, S, h* >0 Moreover, it holds that
if ueD
Os(D, S, h)—0O4D, S, h*)= if ueS

qG(D S, h* —qs(D, S, h), otherwise,
and so we have @4(D, S, h)—O4(D, S, h*)> —1. Thus
g(D) _f(S) +dG7D(S) _qz(Da Sa &, f) = @G(Da Sa h)
=>04D, S, h*)—1=—1.

Since f # g, this shows that (1) is also satisfied, if 4( V") is odd.
This completes the proof of Theorem 1. |

It is quite natural to proceed similarily in related situations. As a simple
example, we consider parity-factors. Let therefore g, f: VV— Z* such that

v)<f(v) and  g(v) = f(v) (mod 2) (2)
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for every ve V. Then a spanning subgraph F of G is called a (g, f)-parity-
factor, if g(v) <dp(v) < f(v) and d(v) = f(v) (mod 2) for all ve V.

THEOREM 4 [2,7]. G has a (g, f)-parity-factor if and only if

S(D)—g(S)+dg_p(S)—qa(D, S, )20
for all disjoint sets D, S< V.

We say that G has all (g, f)-parity-factors, if G has an h-factor for every
h: V—Z%, such that g(v)<h(v)< f(v) and h(v)= f(v) (mod2) for all
vel.

THEOREM 5. G has all (g, f)-parity-factors if and only if

gD)—=f(S)+dg_p(S)—qs(D, S, )20 (3)
for all disjoint sets D, S< V.

Proof. We first show that G has all (g, f)-parity-factors, if (3) is
satisfied. Therefore let h: V—Z* be such that g(v)<h(v)< f(v) and
h(v)= f(v) (mod2) for all veV. Then it holds that ¢q4(D, S, h)=
qs(D, S, f) for all disjoint sets D, S< V, and thus

O6(D, S, h)=h(D)—h(S)+dG_p(S)—qs(D, S, h)
= g(D) = f(8) +dG_p(S)—qs(D, S, f)=0.

So, G has an A-factor by Theorem 3.

Next we verify (3), if G has all (g, f)-parity-factors. Let D, S < V' be dis-
joint sets. We define i: V' — Z* as follows. For all ve D, we let h(v) = f(v),
and for all v¢ D, we let h(v)=g(v). Then we have ¢q4(D, S, h)=
q6(D, S, g)=qs(D, S, ) by (2), and since G has an A-factor, we get

gD) = f(8)+dg_p(S)—q6(D, S, f)=0g(D, S, 1) =0,

as desired. ||

Remarks. Both referees pointed out that our results are related to a
more general factor problem. Suppose that for every vertex v e V of a graph
G a set B,=Z" is given. The general factor problem asks whether there
exists a factor F of G such that d.(v)e B, for every ve V. A set BcZ is
said to have a gap of length p > 1 if there exists an integer k € B such that
k+1,..,k+pé¢B and k+ p+1eB. The general factor problem is well
understood, if every B, has no gap of length greater than 1 (or, using the
terminology of [ 1], every B, is a one-dimensional jump system). Charac-
terizations in the spirit of Tutte’s f-factor theorem are presented in [7, 3].
Note that Theorems 2-4 are special cases thereof. It seems however that
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there is no obvious generalization of Theorems 1 and 5 for the property of
having all (B,: ve V)-factors.

Another problem posed by one of the referees remains open also: Is there a
polynomial algorithm for testing whether a graph G has all (g, f')-factors?
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