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Abstract
In this paper, we consider a preconditioned iterative method for solving the linear system Ax = b, which is
a generalization of a method proposed in Kotakemori et al. [3] and prove its convergence for the case when A4 is an

H-matrix.
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1. Introduction

For solving the linear system Ax = b or its preconditioned form
PAx = Pb, (1)
we consider the iterative process
Xk+1 =My 'Nyxi + M, 'Pb, k=0,1,..., (2)

which corresponds to a splitting PA = M, — N,, where A is an n x n matrix with unit diagonal
elements, P is an nxn preconditioning matrix and x and b are n-dimensional vectors. Let
A=1—-L—U and B =diag(fi, B2, ..., Bn-1,0) with ; > 0,1 < i < n — 1, where I is the identity
matrix, —L and —U are strictly lower and strictly upper triangular matrices of A4, respectively.
We propose here a preconditioned iterative method with P =1 + BU, M,=1— BD — L — BE
and N, = U — BU + BU? + BF, where D, E and F are the diagonal, strictly lower and strictly
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upper triangular parts of UL = D + E + F, respectively. If ; = --- = B,_; = B, then the method
reduces to the one discussed in a previous paper [3]. The purpose of this paper is to prove
a convergence theorem for the method for the case where 4 is an H-matrix.

We first recall the following: A real vector x = (x,, ..., x,)" is called nonnegative (positive) and
denoted by x =0 (x> 0), if x; >0 (x; >0) for all i. Similarly, a matrix A4 =(a;;) is called
nonnegative and denoted by 4 > O, if a;; > 0 for all i,j.

Definition 1.1. An n x n matrix A is an M-matrix, if a; > 0 for all i, a;; <Ofori #jand A~ > 0.

Definition 1.2. An nxn matrix 4 is an H-matrix, if its comparison matrix {(4) = («;) is an
M-matrix, where «;; is

oy = al, Ay = _Iaijla i #].

Definition 1.3 (Frommer [2]). The splitting A = M — N is called H-splitting if (M) — |N| is an
M-matrix.

Then the following results are known;

Theorem 1.4 (Fan [1]). Let A have nonpositive off-diagonal entries. Then a real matrix A is
M-matrix if and only if there exists some vector u = (uy, ... ,u,)’ > 0 such that Au > 0.

Theorem 1.5 (Frommer [2]). Let A = M — N be a splitting. If it is an H-splitting, then A and M are
H-matrices and p(M~N) < p({(M>"!|N|) < 1.

2. A convergence theorem

Lemma 2.1. Let A be a real matrix with unit diagonal elements. If there exists an integer | > i such
that |ay| > 0 for each i <n, then ¥;_, Y-, lawa] # 0.

Proof. If there exists an integer ! > i such that |a;| > 0 for each i < n, then we have for some [ > i
and each i <n

n

n n n n
Yo Y lawal =laal +lagl Y el + Y lawl Y law] #0. O
=1

j=1k=i+1 j=1,j#1 k=i+1 j
k1

Theorem 2.2. Let A be an H-matrix with unit diagonal elements, Ag = (I + BU)A = Mg — Na,
Mpg=1—BD —L —BEand Ny=U — BU + BU? + BF. Let u = (u,, ... ,u,)" be a positive vector
such that {A) u > 0. Assume that there exists an integer | > i such that |a;| > 0 for each i < n and put
i — Yy laglu; + 25— vy laglu;

Z;= 1 Tk=i+ 1 ||y

fi=
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Then B; > 1, for i < n and for 0 < B; < B; (i < n), the splitting Ag = My — Ng is an H-splitting and
p(Mg ' Ng) < 1 so that the iteration (2) converges to the solution of (1).

Proof. By assumption, the vector u > 0 satisfies

n
w— Y. lau;>0 foralli.
j=1.g i

Therefore, we have

i—1 n n n
Uy — Z |a;;u; + Z |a;jlu; — Z z |G axu;
j=1 j=i+1 j=1k=i+1

n

n n
=u;— Yy lafui+ Y Iaikl{uk— Y lak,-|uj}>0 for i < n.

j=1,j#i k=i+1 j=1,j#k

From Lemma 2.1, we obtain

i—1 n n n
w— Y lagluj+ Y laglu;> Y, Y lawawju; >0 fori<n.
i j=it1 j=1k=it1

This implies
i—1
w — Yoy lagluy + Yo laluy;
Yim1 Yk=i+1 |Gut|u;

Hence, ;> 1 for i < n.
Let {({Mg) — |Ng|)u}; be the ith element in the vector ((Mp) — |Ngl|)u for i < n. Then we obtain
fori<n

{(<M3> - |NB|u}i

>1 fori<n.

n i—1 n
=l —§; Z Qg Qi | Ui — Z |aij — B Z Qi Ay j| U

k=i+1 j=1 k=i+1
n n
— Z la;; — B Z ik Oy j| U
j=i+1 k=i+1
n i~-1 i—1 n
= u; — fi z | @i agil u; — z |aij|“j—ﬁiz Z | @i axjlu;
k=i+1 ji=1 j=1k=i+1
n n n
- z I(l_ﬂi)aijluj—ﬂi z z |aikakj|uj,
j=it1 jEitlk=i+ Lk#j

and

n

{(<MB> - |NB|)u}n = Uy — Z 'anjluj > 0.

j=1,j#i
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If 0 < B; <1 for i < n, then we have

{(<MB> - INB')u}i

n n n n
= U — Z |a;jlu; + B; Z la;ju; — B Z Z |G axjlu;
[ j=it1 FElk=i+ k]
n n n
=u; — Z |la;jlu; + B; Z |aik|{uk - Z |akj|uj} > 0.
j=1,j%i k=i+1 J=1.j%k

Furthermore, if 1 < ; < B; for i < n, then we obtain

i—1 n n n
{({Mg) — [Nplu}; = u; — Z lajlu; + Z laijlu; — Bi Z Z |lanax;lu; > 0.
j=1 j=i+1 j=1k=i+1
Therefore, by Theorem 1.4, {(Mp)> — |[Ny| is an M-matrix for 0 < f; < f; (i <n). That is,
Ag = Mp — Ny is an H-splitting for 0 < f; < B; (i < n). Hence, an application of Theorem 1.5 yields
p(Mg'Ng) <1forO< B;<Bi(i<n). [
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