
Journal of Number Theory 117 (2006) 146–159
www.elsevier.com/locate/jnt

The 3x + 1 semigroup

David Applegatea, Jeffrey C. Lagariasb,∗
aAT&T Laboratories, Florham Park, NJ 07932-0971, USA

bDepartment of Mathematics, University of Michigan, Ann Arbor, MI 48109-1109, USA

Received 6 June 2004; revised 20 April 2005

Available online 13 September 2005

Communicated by D. Goss

Abstract

The 3x+1 semigroup is the multiplicative semigroup S of positive rational numbers generated
by { 2k+1

3k+2 : k�0} together with {2}. This semigroup encodes backwards iteration under the 3x+1
map, and the 3x + 1 conjecture implies that it contains every positive integer. This semigroup
is proved to be the set of positive rationals a

b
in lowest terms with b /≡ 0 (mod 3), and so

contains all positive integers.
© 2005 Elsevier Inc. All rights reserved.

MSC: primary 11B83; secondary 11Y16; 58F13

1. Introduction

The 3x + 1 problem concerns the behavior under iteration of the 3x + 1 function
T : Z → Z given by

T (n) =

⎧⎪⎨
⎪⎩

n

2
if n ≡ 0 (mod 2)

3n + 1

2
if n ≡ 1 (mod 2)

(1)
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The 3x + 1 Conjecture asserts that for each n�1, some iterate T (k)(n) = 1. This is a
notoriously hard problem, work on which is surveyed in Lagarias [2] and Wirsching
[7]. It has been verified for all n < 2.8 × 1017 (see Oliveira e Silva [4]) but remains
unsolved.

Recently Farkas [1] proposed an interesting weakening of the 3x + 1 problem, as
follows. Let S denote the multiplicative semigroup of positive rational numbers gener-
ated by { n

T (n)
: n�0}, i.e. by 2 and by { 2k+1

3k+2 : k�0}. We call S the 3x + 1 semigroup,
and write

S :=
〈
2,

1

2
,

3

5
,

5

8
,

7

11
· · ·
〉
.

Farkas formulated the following conjecture.

Weak 3x+1 Conjecture. The 3x + 1 semigroup S contains every positive integer.

The semigroup S encodes inverse iteration by the 3x + 1 function. That is, the
semigroup S contains 1 = 2 · 1

2 , and has the property that if T (n) ∈ S, then also n ∈ S,
because each n

T (n)
is a generator of S. It follows that if the 3x + 1 iteration eventually

takes n to 1, then n belongs to S. Thus the 3x + 1 conjecture implies the weak 3x + 1
conjecture.

The weak 3x + 1 conjecture appears a potentially easier question to resolve than
the 3x + 1 conjecture, since the semigroup S permits some representations of integers
as products of generators not corresponding to 3x + 1 iteration. Indeed, the object of
this paper is to prove the following result characterizing all elements of the 3x + 1
semigroup, which implies the weak 3x + 1 conjecture.

Theorem 1.1. The 3x + 1 semigroup S equals the set of all positive rationals a
b

in
lowest terms having the property that b /≡ 0 (mod 3). In particular, it contains every
positive integer.

In order to prove this result, we shall need to study the inverse semigroup W := S−1

generated by {T (n)
n

: n�1}, i.e. by 1
2 and by { 3k+2

2k+1 : n�0}. That is,

W := S−1 =
〈

1

2
,

2

1
,

5

3
,

8

5
, . . .

〉
.

We call this semigroup the wild semigroup, following the terminology used in a paper
[3] of the second author, which was inspired by the novel “The Wild Numbers” [6].
The paper [3] formulated the following conjecture.

Wild Numbers Conjecture. The integers in the wild semigroup W consist of all
integers m�1 with m /≡ 0 (mod 3). Equivalently, the 3x + 1 semigroup S contains all
unit fractions 1

m
such that m /≡ 0 (mod 3).
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Theorem 1.1 is equivalent to the truth of both the weak 3x + 1 conjecture and the
wild numbers conjecture. In [3] the two conjectures were shown to be equivalent, so to
deduce Theorem 1.1 it would suffice to prove either one of them separately. However
in the approach taken here we consider them together, and prove them simultaneously
using an inductive method in which the truth of the conjectures to given bounds implies
their truth to a larger bound. We use a see-saw method that increases the bound first
of one, then the other.

In Section 2 we show the relevance of the 3x + 1 iteration to the weak 3x + 1
conjecture. This is the new ingredient introduced here relative to [3]. In Section 3 we
then prove properties of integers in W and in Section 4 we complete the argument for
Theorem 1.1.

2. Modified 3x + 1 iterations

To prove the weak 3x + 1 conjecture by induction on the size of the integer m, it
would suffice to prove that under forward iteration of the 3x + 1 map starting at a
given m�2, we eventually arrive at a smaller integer m′, which would belong to the
semigroup S by the induction hypothesis. The sequence of reverse 3x+1 iterates going
from m′ back to m are multiplications by elements of S, and this would establish that
m ∈ S. However, if this argument could be carried out, it would prove more, namely
the 3x + 1 conjecture itself. Since this problem seems out of reach, we considered a
modification of this approach.

We take advantage of the fact that the 3x + 1 iteration decreases “almost all” inte-
gers, in the sense of [2, Theorem A]. We recall that forward iteration of the 3x + 1
function T (·) for j steps is known to decrease the value of an integer n in most con-
gruence classes n (mod 2j ). Recall that the first j steps of the 3x + 1 iteration are
uniquely determined by the class n (mod 2j ) and that every symbol pattern of even
and odd integers of length j occurs in some trajectory of length j, cf. Lagarias [2,
Theorem B]. A residue class s (mod 2j ) is said to have a strong stopping time k�j

if the smallest integer s�2 in the residue class decreases after k steps of iteration.
This property is then inherited by all members �2 of the residue class. As j increases
the fraction of integers not having a strong stopping time goes to zero, but there still
remain exponentially many residue classes (mod 2j ) not having this decreasing property
[2, Theorems C, D].

The semigroup S permits the possibility of going “uphill” by taking an initial value
n to a value mn via some integer multiplier m, provided m ∈ S−1 = W . That is, if
1
m

∈ S and if we know mn ∈ S then we may deduce n = 1
m

· mn ∈ S. We pay a price
in going “uphill” of increasing the initial size of the integer, but in doing so, we may
move from a “bad” residue class s (mod 2j ) to a “good” residue class ms (mod 2j )

which under iteration results in such a large decrease in the size of the number that it
overcomes the added multiplicative factor m and arrives at an integer smaller than n in
�j steps. One can use this procedure only for j steps ahead because the members of
the residue class only possess the same symbolic dynamics for j steps, and we wish the
property of decrease to hold for all members of the residue class. If so, we can carry
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out the induction step for all integers in this particular “bad” residue class s (mod 2j ).
Another variation of this idea is to multiply by various m’s in the middle of the first
j steps of the iteration; there is no reason why the multiplication must be done only
at the first step, one may still gain by switching the residue class in the middle of the
iteration.

One can now ask: is there a finite j and a finite list {m1, m2, . . . mr} of integer
elements in W such that suitable multiplications by elements of this list will decrease
elements in every residue class (mod 2j ) in this fashion? If so, this would yield a proof
of the weak 3x + 1 conjecture by induction on n.

This approach comes very close to succeeding, but there is an obstruction that in
principle prevents complete success. We found by computer search, for small values
of j, multiplier lists that established decrease for every residue class (mod 2j ) except
for the class −1 (mod 2j ). These searches revealed that the class −1 (mod 2j ) resisted
elimination for 12�j �30. We then looked for and found the following proof that the
class −1 (mod 2j ) can never be eliminated by this method. The iterates of a positive
integer n in the congruence class −1 (mod 2j ) will behave exactly the same way as
−1 does for the first j steps, allowing multipliers. We may write the jth iterate of −1

obtained using multipliers as
m1m2···mj a(−1)+b

2j , in which mk is the multiplier used at
the kth step (we allow mk = 1), a is a power of 3, and b is a positive integer. For
this multiplier sequence any n ≡ −1 (mod 2j ) will map to

m1m2···mj an+b

2j after j steps.
However we must have

(m1m2 · · · mj)a(−1) + b

2j
� − 1,

because all iterates of −1, times multipliers, remain negative. Rearranging this inequality
gives

(m1m2 · · · mj)a�2j + b.

Now, for positive n, multiplying both sides by n
2j yields

(m1m2 · · · mj)an + b

2j
�n + b(n + 1)

2j
> n.

It follows that decrease cannot have occurred after j steps, and an argument for no
decrease at any intermediate step is similar.

We conclude that to get an inductive proof of the weak 3x + 1 conjecture along
these lines, a new method will be needed to handle integers in the “bad” congruence
class −1 (mod 2j ), and it will be necessary to consider an infinite set of multipliers
in W .

We now prove the decrease mentioned above for all residue classes (mod 4096)

except the class −1 (mod 4096), using a fixed finite set H of multipliers given below;
these are residue classes (mod 2j ) for j = 12. In what follows it will be important
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that the decrease is by a constant factor strictly smaller than one. In Section 3 we will
verify the hypothesis H ⊂ W made in this lemma.

Lemma 2.1. If H = {5, 7, 11, 13, 23, 29, 43} ⊂ W , then for every integer x > 1 with
x /≡ −1 (mod 4096) there exists s ∈ W such that sx ∈ Z and sx� 76

79x.

Proof. This is established case by case in Tables 1 and 2. Every path shown consists
of iterations of T (·) and multiplications by integers in H, and thus consists of iterations
of multiplications by elements of W . The iteration takes k steps, where k is the given
number of bits, and for integers n in the class s (mod 2k), one has T (k)(n) = c(s)n +
d(s), with

c(s) = 3lm1m2 · · · mk

2k
,

in which the mi are the multipliers at each step and l is the number of odd elements
in the resulting trajectory, and d(s)�0. The quantity c(s) is the “asymptotic ratio”
reported in the second column of the tables.

The “class bits” presented in these tables are binary strings comprising the binary
expansion of the residue class written in reverse order. The set of these binary strings
together form a prefix code which by inspection certifies that every residue class
(mod 4096) is covered except −1 (mod 4096). The data on the far right in the ta-
ble gives the action on the smallest positive element in the congruence class (resp.
second smallest element for the class containing n = 1). In each case the factor of
decrease on all elements of the progression (excluding the element n = 1), reported
as the “worst-case ratio” in the table, is that given by the decrease on this particular
element. �

To deal with the residue class −1 (mod 2j ), we next show that there always exists
a simple (but infinite) sequence of multipliers having the property that, starting from
n ≡ −1 (mod 2j ), with n > 0 one arrives at a final integer n′ that is only slightly
larger than the initial starting point n. We will later make use of this to eliminate the
congruence class −1 + 2j (mod 2j+1), in an induction on j.

Lemma 2.2. Let x, k, and j be positive integers such that x ≡ −1 (mod 2k), with

1�j �k and j ≡ 1, 5 (mod 6). Then the multiplier m = 2j +1
3 is an integer satisfying

m ≡ 1, 5 (mod 6), with the property that the jth iterate of mx satisfies the bound

T j (mx) = x + x + 1

2j
� 2j + 2

2j
x ,

and T j (mx) ≡ −1 (mod 2k−j ). If in addition x /≡ −1 (mod 2k+1), then T j (mx) /≡
−1 (mod 2k+1−j ).
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Table 1
Decreasing weak 3x + 1 paths, for x ≡/ 15 (mod 16)

Residue class Asymptotic Worst-case Path
Class bits ratio ratio

0 (mod 2) 1
2

1
2

∗
2 → 1

0 0.5000 0.5000

1 (mod 4) 3
4

4
5

∗
5 → 8 → 4

10 0.7500 0.8000

3 (mod 16) 9
16

2
3 3 → 5 → 8 → 4 → 2

1100 0.5625 0.6667

11 (mod 32) 27
32

10
11 11 → 17 → 26 → 13 → 20 → 10

11010 0.8438 0.9091

27 (mod 128) 117
128

25
27 27 → 41 ∗ 13 = 533 → 800 → 400 →

1101100 0.9141 0.9259 → 200 → 100 → 50 → 25

91 (mod 256) 225
256

80
91 91 ∗ 25 = 2275 → 3413 → 5120 →

11011010 0.8789 0.8791 → 2560 → 1280 → 640 → 320 →
→ 160 → 80

219 (mod 256) 243
256

209
219 219 → 329 → 494 → 247 → 371 →

11011011 0.9492 0.9543 → 557 → 836 → 418 → 209

59 (mod 128) 81
128

38
59 59 → 89 → 134 → 67 → 101 →

1101110 0.6328 0.6441 → 152 → 76 → 38

123 (mod 256) 189
256

91
123 123 ∗ 7 = 861 → 1292 → 646 →

11011110 0.7383 0.7398 → 323 → 485 → 728 → 364 →
→ 182 → 91

251 (mod 256) 207
256

203
251 251 ∗ 23 = 5773 → 8660 → 4330 →

11011111 0.8086 0.8088 → 2165 → 3248 → 1624 → 812 →
→ 406 → 203

7 (mod 64) 45
64

5
7 7 ∗ 5 = 35 → 53 → 80 → 40 → 20 →

111000 0.7031 0.7143 → 10 → 5

39 (mod 128) 105
128

32
39 39 ∗ 35 = 1365 → 2048 → 1024 →

1110010 0.8203 0.8205 → 512 → 256 → 128 → 64 → 32

103 (mod 512) 351
512

71
103 103 → 155 → 233 ∗ 13 = 3029 →

111001100 0.6855 0.6893 → 4544 → 2272 → 1136 → 568 →
→ 284 → 142 → 71

359 (mod 512) 315
512

221
359 359 ∗ 35 = 12565 → 18848 → 9424 →

111001101 0.6152 0.6156 → 4712 → 2356 → 1178 → 589 →
→ 884 → 442 → 221

231 (mod 256) 135
256

122
231 231 ∗ 5 = 1155 → 1733 → 2600 →

11100111 0.5273 0.5281 → 1300 → 650 → 325 → 488 →
→ 244 → 122

23 (mod 32) 27
32

20
23 23 → 35 → 53 → 80 → 40 → 20

11101 0.8438 0.8696
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Table 2
Decreasing weak 3x + 1 paths, for x ≡ 15 (mod 16)

Residue class Asymptotic Worst-case Path
Class bits ratio ratio

15 (mod 128) 81
128

10
15 15 → 23 → 35 → 53 → 80 → 40 →

1111000 0.6328 0.6667 → 20 → 10

79 (mod 256) 243
256

76
79 79 → 119 → 179 → 269 → 404 →

11110010 0.9492 0.9620 → 202 → 101 → 152 → 76

207 (mod 256) 225
256

182
207 207 ∗ 5 = 1035 → 1553 ∗ 5 = 7765 →

11110011 0.8789 0.8792 → 11648 → 5824 → 2912 →
→ 1456 → 728 → 364 → 182

47 (mod 128) 117
128

43
47 47 ∗ 13 = 611 → 917 → 1376 →

1111010 0.9141 0.9149 → 688 → 344 → 172 → 86 → 43

111 (mod 128) 99
128

86
111 111 ∗ 11 = 1221 → 1832 → 916 →

1111011 0.7734 0.7748 → 458 → 229 → 344 → 172 → 86

31 (mod 64) 33
64

16
31 31 ∗ 11 = 341 → 512 → 256 →

111110 0.5156 0.5161 → 128 → 64 → 32 → 16

63 (mod 128) 99
128

49
63 63 ∗ 11 = 693 → 1040 → 520 →

1111110 0.7734 0.7778 → 260 → 130 → 65 → 98 → 49

127 (mod 256) 129
256

64
127 127 ∗ 43 = 5461 → 8192 → 4096 →

11111110 0.5039 0.5039 → 2048 → 1024 → 512 → 256 →
→ 128 → 64

255 (mod 512) 387
512

193
255 255 ∗ 43 = 10965 → 16648 → 8224 →

111111110 0.7559 0.7569 → 4112 → 2056 → 1028 →
→ 514 → 257 → 386 → 193

511 (mod 1024) 783
1024

391
511 511 → 767 ∗ 29 = 22243 → 33365 →

1111111110 0.7646 0.7652 → 50048 → 25024 → 12512 →
→ 6256 → 3128 → 1564 →
→ 782 → 391

1023 (mod 2048) 1089
2048

544
1023 1023 ∗ 11 = 11253 → 16880 →

11111111110 0.5317 0.5318 → 8440 → 4220 → 2110 →
→ 1055 ∗ 11 = 11605 → 17408 →
→ 8704 → 4352 → 2176 →
→ 1088 → 544

2047 (mod 4096) 3267
4096

1633
2047 2047 ∗ 11 = 22517 → 33776 →

111111111110 0.7976 0.7978 → 16888 → 8444 → 4222 →
→ 2111 ∗ 11 = 23221 → 34832 →
→ 17416 → 8708 → 4354 →
→ 2177 → 3266 → 1633
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Proof. Since j ≡ 1, 5 (mod 6), 2j ≡ 2, 5 (mod 9), so m = 2j +1
3 is an odd integer and

m /≡ 0 (mod 3). Since mx ≡ −m (mod 2k), mx is odd, so

T (mx) = 3mx + 1

2
= 2j x + x + 1

2
.

Since x ≡ −1 (mod 2k) and k�j , 2j x + x + 1 ≡ 0 (mod 2j ). Thus

T j (mx) = 2j x + x + 1

2j
= x + x + 1

2j
.

Now x+1
2j ≡ 0 (mod 2k−j ), so T j (mx) ≡ −1 (mod 2k−j ). If in addition x /≡ −1

(mod 2k+1), then x+1
2j /≡ 0 (mod 2k+1−j ), so T j (mx) /≡ −1 (mod 2k+1−j ). �

To make use of Lemma 2.2 in an inductive proof, we need to establish that after
using it on n to obtain n′ = T (j)(n) a single 3x + 1 iteration applied to n′ produces
an integer n′′ smaller than n. This is the aim of the following lemma, which gives an
inductive method of eliminating the class −1 + 2j (mod 2j+1) using a suitable integer
multiplier m, assuming that m is a wild integer.

Lemma 2.3. Suppose H ⊂ W . Let x ≡ −1 (mod 2k) and x /≡ −1 (mod 2k+1), for
a fixed k�12. Now choose j so that j ≡ 1 (mod 6) and k − 10�j �k − 5. Then
m = (2j + 1)/3 is an integer, and if m ∈ W , then there exists s ∈ W such that sx ∈ Z

and sx� 1235
1264x.

Proof. First, note that for all k�12, since j ≡ 1 (mod 6) and j �k − 10�2, we have
j �7. From Lemma 2.2, m ∈ Z and T j (mx) = x+ x+1

2j , so there exists s1 ∈ W such that

s1mx ∈ Z, s1mx = x+ x+1
2j , s1mx ≡ −1 (mod 2k−j ), and s1mx /≡ −1 (mod 2k+1−j ). But

k − j �10, so s1mx /≡ −1 (mod 211). Thus from Lemma 2.1, there exists s2 ∈ W such
that s2(s1mx) ∈ Z and s2(s1mx)� 76

79 (s1mx). Now j �7 and the bound of Lemma 2.2
gives

x + x + 1

2j
� 2j + 2

2j
x� 130

128
x,

so that s2s1mx� 76
79

130
128x = 1235

1264x. �

3. Wild integers

The wild integers are the integers in the wild semigroup W . The “multiplier” ap-
proach begun in Section 2 required the use of multipliers that are wild integers, and
indicated that in taking this approach one would need to consider an infinite set of
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Table 3
Membership certificates in W for members of H

5 = ( 1
2 )2 · ( 11

7 )2 · 17
11 · 26

17 · 83
55 · 98

65 · 125
83

= ( 1
2 )2 · g(3)2 · g(5) · g(8) · g(27) · g(32) · g(41)

7 = ( 1
2 )2 · 11

7 · 26
17 · 35

23 · 215
143 · 299

199 · 323
215 · 371

247 · 398
265

= ( 1
2 )2 · g(3) · g(8) · g(11) · g(71) · g(99) · g(107) · g(123) · g(132)

11 = ( 1
2 )2 · ( 11

7 )2 · 26
17 · 35

23 · 215
143 · 299

199 · 323
215 · 371

247 · 398
265

= ( 1
2 )2 · g(3)2 · g(8) · g(11) · g(71) · g(99) · g(107) · g(123) · g(132)

13 = ( 1
2 )3 · ( 11

7 )2 · ( 17
11 )3 · ( 26

17 )2 · 35
23 · 215

143 · 299
199 · 323

215 · 371
247 · 398

265

= ( 1
2 )3 · g(3)2 · g(5)3 · g(8)2 · g(11) · g(71) · g(99) · g(107) · g(123) · g(132)

23 = ( 1
2 )5 · 11

7 · 26
17 · 35

23 · 47
31 · 137

91 · 155
103 · 206

137 · 215
143 · ( 299

199 )2 · 323
215 · 353

235 · 371
247 ·

· ( 398
265 )2 · 530

353

= ( 1
2 )5 · g(3) · g(8) · g(11) · g(15) · g(45) · g(51) · g(68) · g(71) · g(99)2 ·
· g(107) · g(117) · g(123) · g(132)2 · g(176)

29 = ( 1
2 )5 · ( 11

7 )4 · ( 17
11 )2 · ( 26

17 )2 · 29
19 · 38

25 · ( 83
55 )2 · ( 98

65 )2 · ( 125
83 )2

= ( 1
2 )5 · g(3)4 · g(5)2 · g(8)2 · g(9) · g(12) · g(27)2 · g(32)2 · g(41)2

43 = ( 1
2 )11 · ( 11

7 )5 · ( 17
11 )2 · ( 26

17 )3 · 29
19 · 35

23 · 38
25 · ( 83

55 )2 · ( 98
65 )2 · ( 125

87 )2 · 215
143 ·

· 299
199 · 305

203 · 323
215 · 344

229 · 371
247 · 398

265 · 458
305

= ( 1
2 )11 · g(3)5 · g(5)2 · g(8)3 · g(9) · g(11) · g(12) · g(27)2 · g(32)2 · g(41)2 ·
· g(71) · g(99) · g(101) · g(107) · g(114) · g(123) · g(132) · g(152)

multipliers. This in turn seems to require understanding the complete structure of the
integer elements in W , which leads to investigation of the wild numbers conjecture.

In this section we establish properties of wild integers, giving criteria for establishing
their existence. We first show that the elements in H in Section 2 are wild integers.
Here we write g(n) = 3n+2

2n+1 .

Lemma 3.1. The set H = {5, 7, 11, 13, 23, 29, 43} is contained in the wild semigroup
W = S−1.

Proof. Table 3 gives certificates showing that the elements in H belong to W , repre-
senting them in terms of the generators of W . The table uses the notation g(n) = 3n+2

2n+1 ,
for n�1. Aside from p = 5, these identities were found by computer search by Allan
Wilks, see Section 2 of [3]. �

The following lemma uses the truth of the weak 3x + 1 conjecture on an initial
interval to extend the range on which the wild numbers conjecture holds.
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Lemma 3.2. Suppose that the weak 3x + 1 conjecture holds for 1�n�2j − 2 and

that the wild numbers conjecture holds for 1�m� 2j −1
189 , with j �16. Then the wild

numbers conjecture holds for 1�m� 2j+1−1
189 .

Proof. It suffices to prove that every prime q with 2j −1
189 < q � 2j+1−1

189 lies in W . Pro-
ceeding by induction on increasing q, we may assume every prime p with
3 < p < q lies in W . It now suffices to prove: there exists a positive integer
n�2j − 2 with nq ∈ W . For if so, then the induction hypothesis implies that n ∈ S
so that q = 1

n
· nq ∈ W . In establishing this we will consider only those n such that

nq ≡ −1 (mod 9). Then nq = 3l + 2 for some positive integer l, and nq = t · (2l + 1),
where t = 3l+2

2l+1 ∈ W . Thus it will suffice to show 2l + 1 ∈ W .
To carry this out, define a as the least positive residue with aq ≡ −1 (mod 9), so

that 0 < a < 9. For n in the arithmetic progression n = 9k + a, setting nq = 3l + 2,
we have

2l + 1 = 2

(
nq − 2

3

)
+ 1 = 2

3
((9k + a)q − 2) + 1 = 6qk + r with r := 2aq − 1

3
.

The condition aq ≡ −1 (mod 9) gives r ≡ −1 (mod 6), and r (mod 6q) is invertible
(mod 6q). For the given prime q the values a and r are determined, and we need to
find a suitable value of k. If 0�k < 6q then:

n = 9k + a�9(6q − 1) + a < 54q �54

(
2j+1 − 1

189

)
= 2

7
(2j+1 − 1)�2j − 2,

so n ∈ S by hypothesis. Therefore it suffices to prove: for each prime q with
2j −1
189 < q � 2j+1−1

189 there exists an integer 0�k < 6q such that 6qk + r ∈ W .
Define a positive integer to be q-smooth if all its prime factors are smaller than q. Let

�q denote the set of q-smooth integers s with 0 < s < 6q and gcd(s, 6q) = 1. Then
every s ∈ �q is a product of primes p with 5�p < q, and the induction hypothesis
implies that s ∈ W .

Claim. If q �256 then |�q | > q − 1.

Assuming the claim is true, we can apply it in our situation because q > 2j −1
189 �

216−1
189 > 346. The claim implies that �q contains more than half of the invertible

residue classes (mod 6q), since �(q) = 2(q − 1). Therefore, in the group of invertible
residue classes (mod 6q), the sets �q and r · �−1

q must meet, since each contains more

than half of the classes. Therefore s1 ≡ r · s−1
2 (mod 6q), for some s1, s2 ∈ �q . Now

s1s2 ≡ r (mod 6q), and we may define k�0 by setting s1s2 = 6qk + r . Since each
si ∈ �q ⊆ W we have 6qk+r ∈ W . Since s1, s2 < 6q we find that k < 6q, as required.
Thus the proof of Lemma 3.2 will be complete once the claim is established.
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To prove the claim, since �(6q) = 2q − 2 we may reformulate it as the assertion:
there are at most q − 2 invertible residue classes below 6q which are not q-smooth.
The non-q-smooth numbers below 6q relatively prime to q consist of the primes q ′
with q < q ′ < 6q together with the integers 5q ′ where q ′ is prime with q < q ′ < 6

5q.

Thus we must show that for q > 256,

(�(6q) − �(q)) + �
( 6

5q
)− �(q)�q − 2. (2)

The left side of (2) is O(
q

log q
) by the prime number theorem, so (2) holds for all suf-

ficiently large q; it remains to establish the specific bound. We use explicit inequalities
for prime counting functions due to Rosser and Schoenfeld [5, Theorems 1,2], which
state that for all x�17,

x

log x
< �(x) <

x

log x − 3
2

, (3)

and also that, for all x�114,

�(x) <
5

4

x

log x
.

The first of these inequalities gives

�(6x)� 6x

log(6x) − 3
2

� 6x

log x

since log 6� 3
2 . The second gives, for x�256,

�
( 6

5 x
)

<
5

4

(
6
5x

log( 6
5x)

)

<
3

2

x

log x

(
log x

log x + log 6
5

)

<
3

2

x

log x

(
1 −

1
6

log x + 1
6

)

<
3

2

x

log x
− 2,

where we used log 6
5 > 1

6 , and x�256 was used at the last step. Combining these
bounds gives, for x�256 > e11/2,

�(6x) + �

(
6

5
x

)
− 2�(x) <

11

2

x

log x
− 2�x − 2,

which proves the claim. �
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4. Completion of proofs

Proof of Theorem 1.1. The theorem is equivalent to the truth of the weak 3x + 1
conjecture and the wild numbers conjecture. Together these two conjectures imply that
the semigroup S contains all rationals a

b
= a · 1

b
with b /≡ 0 (mod 3). However S

contains no rational a
b

in lowest terms with b ≡ 0 (mod 3), because no generator of S
contains a multiple of 3 in its denominator. Conversely, if S contains all such rationals,
then both conjectures hold.

We prove the weak 3x + 1 conjecture and wild numbers conjecture simultaneously
by induction on k�12, using the following three inductive hypotheses.

(1) For each integer x > 1 with x /≡ −1 (mod 2k) there is an element s ∈ W such that
sx is an integer and sx� 1235

1264x.
(2) The weak 3x + 1 conjecture is true for 1�n�2k − 2.

(3) The wild integers conjecture is true for 1�m� 2k−1
189 .

We treat the induction step first, and the base case afterwards. We suppose the
inductive hypotheses hold for some k�12, and must show they then hold for k + 1.

Hypotheses (2) and (3) for k permit Lemma 3.2 to apply, whence for k�16 we con-
clude that inductive hypothesis (3) holds for k + 1. For the remaining cases 12�k�15
we verify inductive hypothesis (3) for k +1 directly by computation, which is included
in the base case below.

Inductive hypothesis (1) for k gives that all elements smaller than 2k+1 − 1 except
possibly 2k − 1 can be decreased by multiplication by an element of W to a smaller
integer. We wish to apply Lemma 2.3 to show that all elements in the congruence class
−1 + 2k (mod 2k+1) can also be decreased by multiplication by an element of W to
an integer smaller by the multiplicative factor 1235

1264 . First, Lemma 3.1 shows that the
elements of H belong to W , establishing one hypothesis of Lemma 2.3. Second, the

other multiplier m = 2j +1
3 in the hypothesis of Lemma 2.3 has j = k−5−(k (mod 6)),

and satisfies m� 2(k+1)−6+1
3 � 2k+1−1

189 , so m ∈ W by inductive hypothesis (3), which
is already established to hold for k + 1. Thus all the hypotheses of Lemma 2.3 are
satisfied, and its conclusion verifies the inductive hypothesis (1) for k + 1.

Next, inductive hypothesis (1) for k + 1 establishes the decreasing property for all
integers 1 < n�2k+1 − 2, hence the weak 3x + 1 conjecture follows for all integers
in this range. This verifies inductive hypothesis (2) for k + 1, and so completes the
induction step.

It remains to treat the base case, which is k = 12 for hypotheses (1) and (2),
and k = 16 for hypothesis (3). For k = 12 inductive hypothesis (1) is verified by
Lemma 2.1. The inductive hypothesis (2) for k = 12 is verified by the fact that the
3x + 1 conjecture has been checked over the range 1�n�212 = 4096.

Finally we must verify inductive hypothesis (3) for k = 16. This requires verifying
the wild numbers conjecture for 1�m� 216−1

189 = 65535
189 < 400. It suffices to do this

for all primes below 400, except p = 3. Representations in the generators of W for
all such primes below 50, are given in [3]. (Table 3 gives representations for some
of these primes.) For primes 50�p�400, one can check the criterion by computer
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using the method of Lemma 3.2, finding by computer search a q-smooth number in the
appropriate arithmetic progression, for each prime q in the interval, and using the truth
of the 3x + 1 conjecture for 1 < x < 105. In fact, this q-smooth calculation can be
carried out by computer for every q with 11 < q < 400, and only the certificates for
p = 5, p = 7, p = 11 in Table 3 are needed to begin the induction. As an example, for
q = 13 we have a = 2 and r = 2aq−1

3 = 17, and the arithmetic progression 78k + 17
contains 875 = 53 · 7. �

5. Concluding remarks

The proofs in this paper are computer-intensive. Computer experimentation played an
important role in the discovery of the patterns underlying the induction. This included
the efficacy of using multipliers to eliminate congruence classes (mod 2k) in Section 2,
and in uncovering the existence of the “intractable” residue class −1 (mod 2k). If one
had studied the problem without using the computer, the “intractable” case −1 (mod 2k)

could have been uncovered first, and this might have discouraged further investigation
of this proof approach. It was also important to have the evidence detailed in [3], which
provided a strong element of confidence in the truth of the weak 3x + 1 conjecture
and wild numbers conjecture.

Extensive computations were needed to find the data in the tables. Once found,
this data in the tables provides “succinct certificates” for checking correctness of the
congruence class properties, which can be verified by hand. Similarly the induction
step is in principle checkable by hand.

The proof methods developed in this paper should apply more generally in deter-
mining the integers in various multiplicative semigroups of rationals having a similar
nature.
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