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1. INTRODUCTION 

LET X be a compact ANR and let f:X + X be a continuous self-mapping. Then X admits 
a local fixed point index and one defines the Nielsen number, N(f), off as follows: first, an 
equivalence relation is defined on the set of fixed points off, denoted Fix(f), by x N y if and 
only if there exists a path a in X going from x to y such that f(a) is homotopic to a rel 

endpoints. An equivalence class under this relation is often referred to as a Nielsen class. 

Each component of Fix(f) has an integer-valued index, and the index of a Nielsen class is 
the sum of the indices of the components which belong to that class. Then N(f) is defined to 
be the number of Nielsen classes which have a nonzero index. The Jixed point data of 
f consists of the Nielsen classes together with their indices. An excellent treatment of the 
basics of Nielsen theory can be found in [2]. An alternative approach, using covering space 
theory, can be found in [7]. In this context, the fixed point data naturally appears as an 
element in an appropriate Oth-Hochschild homology group [S]. It is classically known as 
the Reidemeister trace of the map. 

Clearly, N(f) gives a lower bound, for the number of fixed points of f, and by the 
homotopy invariance of the Nielsen number, a lower bound among all maps homotopic to 
f. In a number of cases this lower bound is realizable; for example, when X is a topological 
manifold and f is a homeomorphism. In such cases, we may think of the Nielsen number as 
giving the fixed point count of an “optimal” representative for a given homotopy class of 
maps. 

This paper is concerned with the problem of computing the Nielsen number. With input 
data being the topological space X and a homotopy class of self-mappings of X, denoted by 
f, we are interested in an effective method which outputs the value of N(f). This should 
depend on the topology of X and on the given homotopy class of self-mappings. Once 
a base point is chosen, for many spaces the latter is equivalent to being given the induced 
action on the fundamental group of X. Some results on the computation of N(f) can be 
found in [12] where computational algorithms are given when X is either a polyhedron 
with finite fundamental group, a Jiang space, or an Infrasolvmanifold. As the main result of 
this paper we present an algorithm which allows one to compute N(f) in the case that X is 
a compact surface and the homotopy class of self-mappings is a mapping class; that is, a class 
that contains a homeomorphism. This allows us to take advantage of the Nielsen-Thurston 
theory of surface automorphisms and the recent algorithm due to Bestvina and Handel [ 11. 

The basic idea of this algorithm can be described as follows. By a theorem of Jiang and 
Guo [8], the Nielsen number is the same as the minimal number of fixed points occurring 
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among all maps homotopic to the given mapping f. This minimal number is denoted by 
MF[f]. The Jiang-Gao result allows us to use methods developed by this author [9, lo] 
for studying the fixed point behavior of self-mappings of surfaces. In Section 2 we present 
these methods in the context needed for our algorithm. For self-mappings in general it is not 
known whether or not these methods are algorithmic, but in the special case of a mapping 
class an improvement is given in Section 3. This improvement reduces the computation of 
MF [ f ] to the problem of finding a maximal reducing family of simple closed curves for the 

mapping class. The Bestvina-Handel algorithm is now applied to find such a reducing 
family, and hence, the algorithm for N(f). Section 4 gives the details of the algorithm for 
computing Nielsen numbers and in Section 5 some illustrative examples are given. 

We would like to point out here that the Bestvina-Handel algorithm can also be applied 
to the computation of Nielsen numbers in the case of an orientation-preserving homeomor- 
phism of an orientable surface. In practice this turns out to be much more complicated than 
the algorithm presented here. The reason is that one needs to find train-tracks for both the 
stable and unstable laminations as well as have a good estimation of the induced action on 
these laminations so as to determine precisely which domains are invariant under the 

action. Our algorithm approaches the computation of N(f) directly. It starts by consider- 
ing a certain representative mapping for the given mapping class and then decides when, if 
ever, any of its fixed points are in the same Nielsen class. Thus, in addition to the Nielsen 
number, the algorithm gives the Reidemeister trace of the mapping class. 

2. A METHOD FOR FINDING THE LEAST NUMBER OF FIXED POINTS 

Let F be a compact surface with nonempty boundary, dF. Throughout this section we 
assume that F is equipped with a handle structure consisting of O-handles D1, . . ..D. 
together with l-handles HI,. . ., Hk attached to the boundary of UDi. Let A denote the 
union of the 2k attaching arcs Ai, . . ., Azk. By a l-dimensional submanifold of F we mean 
a finite collection of properly embedded curves I in F which (i) are pairwise disjoint, (ii) are 
transverse to A, (iii) contains no one-sided simple closed curves, (iv) contains no inessential 
simple closed curves or any arcs which are homotopic (rel. endpoints) to an arc in the 
boundary. The collection of curves I is said to be taut if the cardinality of r n A is minimal 
among all collections r’ isotopic rel endpoints to r. If we allow isotopies which move 
endpoints in the above, we say that I’ has minimal geometric intersection with A. 

Let I be a l-dimensional submanifold of F and suppose that p:I + { 1, . . . . 2k) is 
a continuous function. The pair (r,p) is called a combinatorial mapping if there exists 
a self-mapping f of F such that (i) f- ’ (A) = r, (ii) p(C) = 1 if and only if f(C) c A, for each 
component C of r, (iii) f has no fixed points on I, and (iv) for each open set 0 meeting I, 
f(0) meets at least two components of F\A. The mapping f is referred to as a topological 

representative for r. 
Given S: F + F such that f- ‘(A) is a l-dimensional submanifold of F there is a natural 

induced combinatorial mapping, denoted r, with r, = f- '(A). (The obvious function p is 
suppressed in the notation.) More generally, given a self-mapping f and a combinatorial 
mapping (I-, p) we say that (r, p) represents f if (r, p) has a topological representative which 
is homotopic to f. The use of homotopy in this definition does not create any ambiguity due 
to the following lemma. 

LEMMA 2.1. Zf f and g are self-mappings of F such that r, = r,, then f is homotopic to g. 
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Proof: The given handle structure for F together with the function p determine the 

induced map f# of n1 (F) up to an inner automorphism of x 1. Since surfaces are K(~c, 1)‘s the 

result follows. 0 

Given the pair (r,~) and a topological representative f for the pair, assign to each 
component X of F\(A u r) an integer, denoted index(X, f), which is the topological fixed 
point index off on the domain X. The value of this index depends on the positioning of 
X inside the surface F, and on the action off on the points of r n A which lie on the frontier 
of X. An algorithm for the computation of index(X, f) is given in Section 2 of [9]. This 
algorithm is part of the algorithm given in Proposition 2.2 below. For a given topological 
representative f let M(T, f) denote the number of components which have nonzero index. 
This gives a rough estimate for the number of fixed points of f, and provides an upper 

bound for estimating MF [ f]. 

In order to eliminate the dependence on the choice of topological representative in the 
estimate M(T, f) we consider the following. Let C be an oriented curve in F which meets 
both A and r transversely. The A-itinerary of C is a finite sequence, taken from the set 
{ 1,. . ., 2k}, which measures the curve’s points of intersection (in order and without repiti- 
tion) with the components of A. For example, an arc which traverses Ai, then AZ twice 

followed by A4 S-times and then A3 once would have (1,2,4,3) as its A-itinerary. For closed 
curves this is well defined only up to a cyclic permutation. We say that l-dimensional 
submanifolds r1 and lYZ are A-equivalent if there is a choice of orientations and an isotopy of 
F taking r1 to r, which is A-itinerary preserving. The r-itinerary of the curve C is the finite 
sequence whose ith entry is the ,u-value of the ith point of intersection of C with r. This 
allows for repetition. For example, the r-itinerary (1,2,2,1) indicates an oriented curve 
intersecting r in components yl, y2, y3,y4 such that p(yl) = p(y4) = 1 and 

AY2) = AY3) = 2. 

Let FPN(T,A) denote the minimum among all possible values of M(Qg) where Q is 
A-equivalent to r and g is a topological representative for R. 

PROPOSITION 2.2. Given the combinatorial mapping (r, p) there is an algorithm for 

computing FPN(T,A). 

Proof: For a fixed choice of R and g let RQ denote the set of components of F\(A u Q) 
whose frontier does not consist of a single subarc of R together with a single subarc of A. 
Define a graph G in the surface F as follows: first choose one vertex in each X E Rn for 
which X and g(X) lie in the same component of F\A. For a vertex v, let X, denote the 
component corresponding to v. Join vertices v and w with an edge if and only if there is 
a point x common to the frontiers of X, and X, with the property that x is in Ai n p-l(i) for 
some i. Observe that for any two A-equivalent combinatorial mappings their associated 
graphs are naturally isomorphic. In fact, there is an isotopy of F taking one to the other for 
which the path of each vertex under the isotopy is contained in a single handle. Thus, the 
first step in the algorithm is to produce the graph G in F. 

The second and main step involves computing indices. Assign to each vertex v the value 
i(v) = index(X,, g). We now need to optimize the number of vertices with i(v) = 0. This turns 
out to be a linear optimization problem (using the algorithm for computing i(v)). First, for 
each isolated vertex v of G, the value of i(v) is independent of the choice of topological 
representative. Next, on each maximal connected subgraph of G whose vertices are all of 
valence at most two (in G), optimize the number having i(i) = 0. Finally, each such 
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subgraph can be done in such a way as to optimize the number of remaining vertices having 
i(l) = 0. 0 

The following lemma gives two invariance properties of FPN. The proof follows directly 
from the definition. 

LEMMA 2.3. (a) Let (r, p) be a combinatorial mapping and g : F + F a homeomorphism. 

Then g(T) is a combinatorial mapping (with respect to g(A)) and FPN(g(T), 

g(A)) = FPN(~,A). (b) zf r and r’ are A-equivalent combinatorial mappings, then 

FPN(T,A) = FPN(T’, A). 

Our approach to finding MF [ f ] is to note that this minimal number for maps is 
achieved by some mapping g for which I, is a combinatorial mapping. Hence, 

MF[f] = FPN(T,, A). In the light of Proposition 2.2 it remains to find an algorithm for 
producing this I, given the input homotopy class [f] and the handle structure which 

determines A. 
A stable arc for (I, p) is an arc A in the interior of F with the properties: (1) its endpoints 

are in distinct components of the complement of I u A; (2) it has minimal geometric 
intersection (rel. endpoints) with A; and (3) its A- and r-itineraries are the same. Two stable 
arcs are said to be equivalent if their respective endpoints lie in the same components and 
they have the same A-itineraries. A stable arc is minimal if any subarc which is also a stable 
arc is A-equivalent to the entire arc. Thus, minimal stable arcs are those that cannot be split 
into two proper arcs each of which is stable. A stable arc is said to be trivial if it is 
A-equivalent to a stable arc which intersects I only in points of A n r. The graph 
G constructed in the proof of Proposition 2.2 contains all possible equivalence classes of 
trivial stable arcs for the given combinatorial mapping. Hence, trivial stable arcs are easy to 
find. Theorem 2.4 below indicates the need for finding nontrivial minimal stable arcs. 

The following construction defines an action of stable arcs on combinatorial mappings. 
Let I be a combinatorial mapping and let a be a stable arc for I with a n r n A = 8. There 
is a natural pairing between the finite sets CI n A and a n r. Given a point p in the latter, let 
p’ be its paired point in the former, and let ap be the subarc of a joining the two. Let C, be 
a disk which contains ap and meets both of A and I in a number of arcs, one for each point 
in ap n (A u r). Let yp be the arc in C, n r containing p, let B, be the component of C,\y, 
which contains p’, and let i, denote the arc X, n B,. Replace yp by [,, to obtain a new curve. 
Loosely, a “finger-push” of y,, along a,, has been performed to obtain this new curve. If q is 
another point in a n I- the disk C, is chosen as above but with the additional requirement 
that the arc c, is kept disjoint from i,. Repeating this for each point in a n r we obtain 
a new collection of curves a(T), and a new combinatorial mapping by keeping the 
assignment p unchanged. An ordered sequence A of minimal, nontrivial stable arcs which 
are pairwise disjoint is called a merging sequence. The action described above applied in the 
same manner to the sequence A yields a combinatorial mapping (h(I),p). 

In our present notation, Theorem 3.1 of [lo] generalizes naturally to the following. 

THEOREM 2.4. Given a self-mapping f of F, there is a taut combinatorial mapping (r,p) 
representing f and a merging sequence A such that FPN(A(T), A) = MF [ f 1. Moreover, if 
h is a given jxed point minimizing map we may assume that r is isotopic to hh’ (A). 

Proof: The proof of [lo; Theorem 3.11 goes through unchanged. Merging arcs are 
replaced here by nontrivial, minimal stable arcs and the map fmin is replaced by the 
computation of FPN (I). 0 
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3. SURFACE AUTOMORPHISMS AND FIXED POINTS 

In order to use Theorem 2.4 to get an algorithm for MF [f] one needs to produce all 

possible taut combinatorial mappings representing f, and for each one determine all 
possible merging sequences. This would be a difficult task in general, but in the special case 
that f is a homeomorphism we give an improvement below in Theorem 3.1 which will lead 
to an algorithm. 

Suppose that F is a compact surface with nonempty boundary and negative Euler 
characteristic. Let h : F + F be a homeomorphism and suppose that C,, is a maximal family 
of h-invariant simple closed curves in F. In particular, h(C,) is isotopic to C,,, no two 
components of C,, are isotopic. We assume that Ch is contained in the interior of F, has 
minimal geometric intersection with A, and no component borders two distinct periodic 
components of F\Ch such that their union is also periodic. The collection C,, is often 
referred to as a reducing family for h. 

For each component Ai of A, we let Pi denote the disk formed by taking the union of all 
handles which meet A in exactly two arcs, both of which are isotopic to Ai. Suppose C is 
a collection of taut proper arcs in F each isotopic to Ai. We say that C is A-admissible if (1) 
neither endpoint lies in Pi, (2) any two components have the same A-itinerary, and (3) if the 
A-itinerary is empty, then X is contained in a single component of F\A. In general, r is 

A-admissible if a taut collection of curves which is isotopic to r rel. endpoints has the 
property that for each i, the subcollection of arcs isotopic to Ai is A-admissible. 

THEOREM 3.1. Given h and Ch as described above, there exist an A-admissible combina- 
torial mapping r representing h, which has minimal geometric intersection with A and is 

isotopic to h-‘(A), and a merging sequence A such that N(h) = FPN(A(T), A) and each stable 

arc in A is contained in C,,. 

Remark. If no component of h - 1 (A) is isotopic to a component of A, then r is unique up 
to A-equivalence. If the subcollection of curves in r which are isotopic to Ai is nonempty, 
then it follows from the definition of admissible that there are exactly two choices for the 
placement of these curves. 

Proof of Theorem 3.1. Without loss we assume that h(C,) = C,,. First consider the case 
when C,, only contains simple closed curves which are parallel to a boundary component of 
F. Then by the Nielsen-Thurston classification theorem [13], h is isotopic to either 
a periodic or pseudo-Anosov homeomorphism. 

Suppose h is isotopic to a pseudo-Anosov mapping. Let B,-, be a collection of proper 
geodesic arcs in F such that each Ai is isotopic to a unique member of B,,. Then there is 
a pseudo-Anosov mapping p isotopic to h and a train-track T which carries the stable 
lamination for p and further has the property that z meets B0 efficiently [6, Theorem 2.5.11. 
As a result p-‘(B,) is a taut (relative to B,) collection of curves. By choosing a number of 
arcs sufficiently close to those in B0 we obtain a collection B and an associated handle 
structure on F such that B is isotopic to A and the collection of curves p-‘(B) is taut 
(relative to B) and is also B-admissible. Let I: F + F denote the end of an isotopy with 

Z(A) = B. 
Now the mapping p may have more than N(h) fixed points, but for a pseudo-Anosov any 

excess fixed points occur on invariant boundary components and have zero index. Thus by 
an arbitrarily small deformation we can replace p by an embedding which, by abuse of 
notation, we will also denote by p. This embedding has exactly N(h) fixed points and is 
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chosen so that p- l(B) is taut and so that no fixed points occur on B. It follows directly from 
the definition that the induced combinatorial mapping I, is such that FPN(I,, B) = N(h). 

In order to get the desired combinatorial mapping and merging sequence in the theorem 
the following construction is used to produce a new combinatorial mapping representing 
h which also realizes N(h): let P denote the surface obtained by attaching an annulus to each 
component of aF. Let K denote the closure of E\F. Extend each arc component of A (resp. 
B) vertically outwards in the product structure of the annuli to obtain the collection of arcs 
A (resp. B) in fl. The isotopy taking A to B extends to one of fi taking a to B. Let I^ denote 
the end of this isotopy. Since Ch has minimal geometric intersection with A there is 
a homeomorphism J:fi + F such that J(k) = Ai and J(8F) = Ch. 

We now extend I, to a combinatorial mapping of P. Let N be an arbitrarily small 
regular neighborhood of 8F in fl. Let 4 be a component of I,. Since 4 is B-admissible, we 
can attach two taut proper arcs in K to 4 so that the union is a B-admissible proper arc in 
P which, up to &equivalence, has the following form: ui 9 u2. u3 . u4. u5 where u1 and u5 are 
contained in K \B; u2 and u4 are contained in N, with each having a B-itinerary of the form 
(Y,x,r(Y)) where x is an integer and r(Y) denotes the reverse of the sequence Y; and 
u3 c F\&(N) is such that if ut and u4 are replaced by arcs in N\& then the resulting curve 
has minimal geometric intersection with B. Repeating this construction for each component 
of I, produces a &admissible combinatorial mapping denoted by TP. Since any topological 
representative for rP extends to a self-map g of P such that g-‘(B) = pP and g(K) c F, it 
follows that FPN(T,, B) = FPN(T,, B). 

Now, proceed as in the proof of Theorem 3.1 in [lo], but only making alterations to rP 
inside the neighborhood N defined above. Here, the only move required involves reducing 
curves with B-itinerary of the form (Y, x, r( Y)) by cutting along an arc parallel to a subarc of 

B (this is [9, Lemma 3.51). After removing inessential simple closed curves the resulting 
collection of curves is isotopic (rel. endpoints) to the original PP. Also, it follows that after 
this reduction process, all nontrivial stable arcs can be chosen to lie on 8F. As a result, we 
obtain a &admissible combinatorial mapping Y which has minimal geometric intersection 
with & and a merging sequence A contained in dF with FPN(A(Y),d) = FPN(r’,,& = 
N(h). Finally, Lemma 2.3 ensures that J 0 i- ‘(‘I!) is the desired combinatorial mapping and 
that J 0 f-‘(A) is the desired merging sequence. This completes the proof in the pseudo- 
Anosov case. 

If h is isotopic to the identity, one can construct by hand an A-admissible combinatorial 
mapping I such that I n A = 0 and FPN(r, A) = 1. 

If h is isotopic to a nontrivial periodic mapping, choose B0 as in the pseudo-Anosov case 
and then fix a metric on F so that each component of Be is a proper geodesic arc and h is 
isotopic to an isometry p with this metric. If B0 contains an arc r such that p(r) = t, replace 
r by an arc parallel to r. This ensures that p-i(&) is taut relative to &,, Since each fixed 
point class of p is connected a small deformation will produce an embedding having exactly 
N(h)fixed points. Now proceed as in the pseudo-Anosov case to get the desired combina- 
torial mapping. 

In the reducible case first divide Ch into two classes: those parallel to the boundary Ca 
and the rest, Ci”t. For each C E Cint let Nc be a regular neighborhood of C. Since Ch has 
minimal geometric intersection with A we can assume the Nc are chosen so that the original 
handle structure on F induces a handle structure on each component of F\ IJ Nc, as well as 
on each Nc. 

On each h-invariant component Y of F \ u Nc get an embedding p as in the pseudo- 
Anosov or periodic case. Thus, p-l(A n Y) is taut and p has N(hl,) fixed points. On pieces 
that are permuted by h define p so that p- ‘(A n Y) is taut. For each C E Cint which is 
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h-invariant extend p to Nc as follows: first, set p(C) = C so that p- ‘(A n C) n A = 8 and 
Fix@ Ic) consists of two points if orientation-reversing and empty otherwise. Second, extend 
to Nc\C so that each component of p-‘(A) n Nc\C is taut and no fixed points occur in 
Nc\C. These two conditions are easy to guarantee. (Since p maps aNc away from C, we may 
assume that p maps circles parallel to C away from C. In doing so any violation of tautness 
can be removed by pulling across A without introducing any fixed points.) Finally, if C is 
permuted by h, then extend p so that tautness is obtained just as above. 

It follows from the results in [S] that p has exactly N(h) fixed points. Now follow the 
proof given in the pseudo-Anosov case-starting with the construction of P and reducing 
curves as needed in UNc as well as to a regular neighborhood of Cd. 0’ 

This section is concluded with two variations on the previous theorem. The first is 
a relative version of the theorem while the second is used to cover the case when the surface 
has no boundary. The idea behind the second variation is that other collections besides 
A can be used to locate fixed points. 

For a relative version we simply observe that each combinatorial mapping with 
I isotopic to h-‘(A) corresponds to a homeomorphism of F which is isotopic to h. Thus, 
following through the proof of Theorem 3.1 with N(h) replaced by the relative Nielsen 
number N#) [8] we obtain Theorem 3.2 below. In this setting the computation of FPN is 
slightly different in that indices are computed assuming that boundary is mapped to 
boundary and interior to interior. Here the notation FPNa will be used. 

THEOREM 3.2. Given h and Ch as described above, there exist an A-admissible combina- 
torial mapping r representing h, which has minimal geometric intersection with A and is 
isotopic to h-‘(A), and a merging sequence A such that Na(h) = FPN,(A(T), A) and each 

stable arc in A is contained in Ch. 

For the following let F be a compact orientable surface, possibly with empty boundary. 
Suppose that K is a collection of pairwise disjoint simple closed curves in F which give 
a pants decomposition for F. That is, each component of F\K is homeomorphic to a three 
times punctured sphere. If F is closed, a transversal to K is a simple closed curve T which has 
minimal geometric intersection with K and is such that each component of F\(K u T) is 
simply connected. If dF # 8, a transversal is a finite collection of proper arcs satisfying the 
same property. In place of A we will use the pair (K, T) which we denote by X. In this 
setting, a combinatorial mapping means the collection h-‘(X), where h is a homeomor- 
phism transverse to X with no fixed points on K u T. Alternatively, a combinatorial 
mapping I can be thought of as a pair (I,, I,) together with a pair of assignments (,LL~, pr). 
It is said to be taut if each component taken from the pair has minimal geometric 
intersection with each member of K u T. 

As before, a combinatorial mapping I determines a fixed point count which we now 
denote by FPN(r, X). The analog of M(T, f ) defined in Section 2 is obtained by finding the 
index of each component of F \(r, u l-r u K u T). The proof of Theorem 3.1 applies 

directly using X in place of A to obtain the following. 

THEOREM 3.3. Let F and X be as above and let h: F + F be a homeomorphism with 
maximal reducing family C,,. Then there exist a taut combinatorial mapping r representing h, 
and a merging sequence A, such that N(h) = FPN(A(lY), X) and each stable arc in A is 
contained in Cr,. 
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4. THE ALGORITHM 

Let F denote a compact surface which we assume has negative Euler characteristic, The 
computation of the Nielsen number for the surfaces with nonnegative Euler characteristic is 
straightforward. Let h be a self-homeomorphism of F which for our purposes we regard as 
being given either as a composition of Dehn twists and periodic homeomorphisms, or by its 
induced action on the fundamental group (but knowing a priori that this action comes from 
a homeomorphism). Before describing the algorithm we first give some preliminary results 
needed for its implementation. The most important is the algorithm due to Bestvina and 
Handel [l]. We state in the following Proposition 4.1 the only part of that algorithm needed 
for the algorithm given in this section. Other authors have also developed algorithms which 
find maximal reducing families for orientation-preserving homeomorphisms. See for in- 

stance [4] or [l 1). 

PROPOSITION 4.1. Let F be an orientable surface and h an orientation-preserving self- 

homeomorphism of F. Then there is an algorithm for finding a maximal reducing family C,,. 

A homeomorphism h: F + F is said to be fixed point reduced if Fix(h) has exactly N(h) 

components and each component is either a point or a surface with negative Euler 
characteristic. Let nh denote the number of nonorientable surfaces fixed by h and let 

wh = max,{n,lg is isotopic to h and is fixed point reduced}. 

LEMMA 4.2. Suppose F is nonorientable and let F be the orientable surface which double 

covers F. Let p be a nontrivial involution off corresponding to the covering. Given any 
homeomorphism h : F + F and a lift Ii: F” + F 

N(h) = 1/2(N(iE) + N(p’ h) + w,,). 

Proof. We follow the proof of [3; Theorem 2.51 when restricted to self-mappings of F. 
Given h: F --f F let ho be a homeomorphism isotopic to h and in standard form as in [S]. 
Perturb ho slightly to a homeomorphism g which is fixed point reduced and such that 
n, = co,, [8; Corollary 3.51. Each of the nonorientable surface components of Fix(g) is 
covered by exactly one component from Fix@) u Fix(pog”), where J is a lift of g. This gives 
exactly one essential Nielsen class and a contribution of one towards ah. All other 
components of Fix(g) are covered either by two components of Fix(g) or by two compo- 
nents of Fix(pog”). By construction, these two components must be in distinct Nielsen 
classes. As each is essential and the contribution towards oh is zero, the result follows. Cl 

LEMMA 4.3. Let W be a maximal reducing family for h2, then % is also a maximal reducing 

family for h. 

Proof. Without loss, we assume that %? and h are chosen so that % meets h(%‘) 
transversely and each pair of components has minimal geometric intersection. Let C E V 
such that h(C) n C # 0. If either domain of F \% bordered by C is a pseudo-Anosov piece, 
then the sequence length(h”(h(C))) + CO as n --) co. Similarly, if each of the domains is 
periodic and h acts by a nontrivial Dehn twist along C. But this is a contradiction as 
length(h”(h(C))) = length(h”+l(C)) s K where K is the maximal length of a member of 
V u h(W). It follows that ‘% u h(V) = 0 and thus, by the maximality of $7, that h(W) is 
isotopic to V. The result now follows. q 
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We are now in a position to give the algorithm for computing N(h). 

ALGORITHM 4.4 (N(h) for homeomorphisms of bounded surfaces). Gioen a compact 
surface F with nonempty boundary and a homeomorphism h: F -+ F the integer N(h) can be 
computed using the following procedure: 

Step 1. If F is nonorientable, construct the double covering by an orientable surface and 
use Lemma 4.2 to compute N(h). For the remainder of the algorithm we assume that F is 

orientable. 
Step 2. Appeal to Proposition 4.1 and Lemma 4.3 to get a maximal reducing family C,, for 

h. 

Step 3. Introduce a handle structure on F to obtain A. List all of the combinatorial 

mappings, up to A-equivalence, which satisfy the hypothesis of Theorem 3.1. If a handle 
structure with only one O-handle is used, then they are in one-to-one correspondence with the 

set of components of A which are isotopic to some component of h-‘(A). 

Step 4. For each rfrom Step 3, it follows from Theorem 3.1 that any stable arc for r must 
lie on a collection e,, which is A-equivalent to C,,. Thus it is possible to list all of the relevant 

merging sequences for I-. For each one, compute the oalue of FPN. 

Step 5. Repeat Step 4 for each combinatorial mapping from Step 3. By Theorem 3.1 the 
minimal value among all the FPNs is equal to N(h). 

For closed surfaces the above algorithm does not apply. Instead we use the variation 
leading to Theorem 3.3. This variation could also be used for surfaces with boundary but it 
turns out that Algorithm 4.4 is much easier to implement than Algorithm 4.5. 

ALGORITHM 4.5. (N(h) for homeomorphisms of closed surfaces). Given a closed surface 
F and a homeomorphism h: F + F the integer N(h) can be computed using the following 

procedure: 

Step 1. Same as in Algorithm 4.4. 
Step 2. Same as in Algorithm 4.4. 

Step 3. Choose a pants decomposition K and a transversal T as defined in Section 3. To 
facilitate computations one can make choices so that Ch c K. List all of the combinatorial 
mappings which satisfy the hypothesis of Theorem 3.3. 

Step 4. As in Algorithm 4.4 list all of the relevant merging sequences for a given 

combinatorial mapping r. Note that if C,, c K, then the merging sequences do not intersect 
r,. Compute FPN(A(T), Xx) for each such A. 

Step 5. Same as in Algorithm 4.4. 

Remark. If C,, # 8 in the case of a closed surface, one could use Algorithm 4.4 applied to 
each invariant piece, together with the results of [S], to obtain N(h). 

S. SOME EXAMPLES 

In this section we present two examples which illustrate some of the features of 
Algorithm 4.4. For the sake of brevity the calculation involved in finding maximal reducing 
families is omitted. Also, the homeomorphisms in the examples are defined in terms of 
combinatorial mappings. If a homeomorphism h is given as a composition of Dehn twists 
and periodics, then a combinatorial mapping satisfying the hypothesis of Theorem 3.1 can 
be found by computing h-‘(A) and then isotoping to get minimal geometric intersection 
with A. On the other hand, if the induced action on the fundamental group is given, first find 
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some I that represents the homotopy class. Now, if I has more components than A, the fact 
that we are dealing with a mapping class ensures that two components with the same 
p-value can be joined by an arc whose interior is disjoint from I. By fusing these compo- 
nents together along the arc, and removing arcs parallel to the boundary, one reduces the 
number of components. Repeat this process until the desired combinatorial mapping is 

reached. 

Example 5.1. Let F denote the twice punctured torus. It has a handle structure 
consisting of three l-handles attached to a disk D. Let Ai, . . ., A6 be the attaching arcs for 
the handles as indicated by the dashed segments in Fig. l(a). For each 1 I k I 3, let Hk 

denote the l-handle which meets AZk_ 1 and Azk. The three proper arcs &, c&, d3 appearing 
in Fig. l(a) determine an orientation-preserving homeomorphism h of F as follows: thicken 
6i to a disk Ai which meets 8F in two arcs. Define h by first mapping the pair (Ai, Ai n 8F) 
homeomorphically onto (Hi, Hi n i?F). Up to isotopy there are four ways to do this. Choose 
the one that preserves the orientation on F and also the direction of the arrows given in 
the figure. One can check that hlua, extends to all of F by mapping the remaining domain 
onto D. 

An application of the Bestvina-Handel algorithm shows that h is irreducible and, in fact, 
gives a pseudo-Anosov mapping class. As defined in Section 2, the combinatorial mapping 
r,, consists of, for each i, two arcs running parallel to 6i. It satisfies the hypothesis of 
Theorem 3.1 and is one of two that must be considered in order to use the theorem to 
compute N(h). The other A-admissible combinatorial mapping, I’, is obtained from the 
same construction, but with d3 appearing on the other side of the handle Ha. 

We first compute FPN(T,, A). The graph G constructed in the proof of Proposition 2.2 is 
indicated in Fig. l(b). The vertices are labelled x0, . . ., x7 with x7 lying in the region between 
two curves in I,, parallel to 6i. In general, each edge of G must cross A exactly once. Thus, 
one of the vertices must be x7. The orientation of 6i determines ~2x7 and x7x5 as the edges 
of G. A direct index calculation on the isolated vertices yields 

i(x()) = i(G) = 0 

i(Xi) = i(x3) = i(x‘$) = - 1. 

HI - 

Fig. 1. 
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To optimize on the remaining l-dimensional component of G simply arrange that h is 
defined so that it maps the point Ai n h- ‘(A,) to the right (in the figure) along Ai. This 

makes i(xz) = 0. Similarly, map A2 n h-‘(A,) to the left. Then i(q) = 0 and i(xs) = - 1 

and so FPN(r,, A) = 4. 
According to Theorem 3.1 we need only find those minimal stable arcs which are 

parallel to 8F. Inspection shows that there are three: one from x3 to x1 with A-itinerary 
(4,3); one from x3 to x6 with A-itinerary (1,2); the third from x4 to x6 with A-itinerary (3,4). 
Let i denote the one from x3 to x1. The combinatorial mapping n(I,,) is depicted in 
Fig. l(c). Except for the part obtained by pushing I,, along A, each curve in the figure 

corresponds to two parallel arcs in n(I,,). Also in the figure are the vertices yo, . . ., y, of the 
corresponding graph needed for computing FPN. Note that y,, . . ., y, correspond naturally 
to x o, . . . . x7 in Fig. l(b). The l-dimensional components for this graph are ~2~7~5 and 

L 

Fig. l(c) (continued) 
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yay8y1. Similar to those for the x’s, the index calculations for this combinatorial mapping 
are 

i(yO) = i(ys) = i&) = ib2) = i(y,) = 0 

i(y4) = i(ys) = - 1. 

For the new component y,y,y, it is possible to arrange that 

iCy3)= i&)=0 and i(yl)= -2. 

In the language of Nielsen theory, the stable arc I had the effect of joining the Nielsen 
equivalent fixed points x1 and xJ and forming a single fixed point of index - 2. 

To finish the computation of N(h) we remark that neither of the other two stable arcs will 
have the effect of reducing the value of FPN. Also, due to the symmetry, the same 
calculations occur when I’ is used in place of I,,. Thus, N(h) = FPN(A(,(T,J,A) = 3. 

Example 5.2. For this example F denotes the three times punctured torus. A handle 
structure is determined by Al, . . ., A8 as indicated in Fig. 2. Let Hk denote the l-handle 
which meets AZk- 1 and AZk. Similar to Example 5.1, a homeomorphism g is determined by 
the oriented arcs ii, . .., (I4 given in Fig. 2. This time choices are made so that g is 
orientation-reversing. The Bestvina-Handel algorithm applied to g2 shows that the simple 
closed curve with A-itinerary (1,2,4,3,2,1,3,4) is a reducing curve which reduces F into two 
components. The mapping class g2 reduces to the identity on the “outside” (this is 

a 4 times punctured sphere) and is pseudo-Anosov on the punctured torus “inside”. By 
Lemma 4.3, this same curve acts as the reducing family for g. 

To compute FPN(T,, A) let rl, . . ., r8 denote the vertices of G which lie in the O-handle 
(Fig. 2). There is one other vertex r9, which lies in Hz, and two resulting edges r4r9 and r9r7. 
After adjusting g appropriately a calculation yields 

i(rl) = i(r2) = i(r7) = 1 

with all others being equal to zero. Thus, FPN(T,, A) = 3. 

HI - 

- H3 - H4 

Fig. 2. 
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The combinatorial mapping I-, has exactly two nontrivial stable arcs which satisfy the 

hypothesis of Theorem 3.1. One goes from r3 to rE with A-itinerary (3,4); the other goes 
from r6 to r5 with A-itinerary (4,3). But as neither have an endpoint in common, and neither 
joins two vertices having nonzero index, the value of FPN cannot be reduced by a merging 
sequence taken from the two. Finally, as in the previous example, there is one other 
combinatorial mapping satisfying the hypothesis of Theorem 3.1. It is obtained by isotoping 
c3 to the other side of H3. It can be checked that all of the above computations for r, are 
identical in this case and hence, N(g) = FPN(T,,A) = 3. 
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