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SUMMARY

Bromine is ubiquitously present in animals as ionic
bromide (Br�) yet has no known essential function.
Herein, we demonstrate that Br� is a required
cofactor for peroxidasin-catalyzed formation of sulfi-
limine crosslinks, a posttranslational modification
essential for tissue development and architecture
found within the collagen IV scaffold of basement
membranes (BMs). Bromide, converted to hypobro-
mous acid, forms abromosulfonium-ion intermediate
that energetically selects for sulfilimine formation.
Dietary Br deficiency is lethal in Drosophila, whereas
Br replenishment restores viability, demonstrating its
physiologic requirement. Importantly, Br-deficient
flies phenocopy the developmental and BM defects
observed in peroxidasin mutants and indicate a
functional connection between Br�, collagen IV, and
peroxidasin. We establish that Br� is required for sul-
filimine formation within collagen IV, an event critical
for BM assembly and tissue development. Thus,
bromine is an essential trace element for all animals,
and its deficiency may be relevant to BM alterations
observed in nutritional and smoking-related disease.

INTRODUCTION

Basement membranes (BMs) are specialized extracellular

matrices that are key mediators of signal transduction and me-

chanical support for epithelial cells (Daley and Yamada, 2013;
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Hynes, 2009; Lin and Bissell, 1993; Werb, 1997; Yurchenco,

2011). Indeed, BMs coordinate branching morphogenesis and

define epithelial tissue architecture, facilitate tissue repair after

injury, and guide pluripotent cells in tissue-engineered organ

regeneration (Song and Ott, 2011; Vracko, 1974). Embedded

within the BM is a sulfilimine-crosslinked collagen IV scaffold

that imparts functionality to the matrix of multicellular tissues in

all animal phyla (Bhave et al., 2012; Fidler et al., 2014; Vanacore

et al., 2009). Collagen IV scaffolds provide mechanical strength,

serve as a ligand for integrins and other cell-surface receptors,

and interact with growth factors such as BMPs to establish

signaling gradients (Wang et al., 2008). Mutations in the collagen

IV scaffold cause BM destabilization and tissue dysfunction in

humans, nematodes, flies, and mice (Borchiellini et al., 1996;

Gould et al., 2005; Gupta et al., 1997; Hudson et al., 2003;

Pastor-Pareja and Xu, 2011; Pöschl et al., 2004; Rodriguez

et al., 1996).

Assembly of the collagen IV scaffold is an intricate process of

organization and covalent reinforcement. Triple-helical proto-

mers extracellularly self-assemble into insoluble lattices, and

nascent scaffolds are stabilized via the enzymatic formation of

sulfilimine crosslinks between the NC1 domains of two juxta-

posed protomers at residues methionine 93 (Met93) and

hydroxylysine 211 (Hyl211) (Vanacore et al., 2009) (Figure 1A).

Peroxidasin, a heme peroxidase embedded within BMs, cata-

lyzes the formation of sulfilimine crosslinks, which confer critical

structural reinforcement to collagen IV scaffolds, as seen in nem-

atodes, flies, and zebrafish, where loss of peroxidasin causes

BM dysfunction (Bhave et al., 2012; Fidler et al., 2014, Goten-

stein et al., 2010).

Peroxidasin forms hypobromous acid (HOBr) and hypochlo-

rous acid (HOCl) from bromide and chloride, respectively, both
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Figure 1. Measurement of Sulfilimine-Crosslink Content within NC1 Domains of Collagen IV Scaffolds

(A) Diagram of the collagen IV scaffold, showing the relationship of NC1 hexamer sulfilimine crosslinks, peroxidasin (PXDN), and hypohalous acids (HOX). Inset

shows resolution of dimeric (D1 and D2) and monomeric (M) NC1 domains by SDS-PAGE. Representative NC1 domains are shown from bovine placental BM

(PBM), bovine glomerular BM (GBM), and murine collagen IV matrix produced in PFHR-9 cell culture.

(B) High-resolution mass spectrum depicting the multiple oxidation states of tryptic peptides containing the sulfilmine (S = N) crosslink.

(C) Extracted ion current (XIC) based quantitation of S = N crosslinked peptides from D1 and D2. Full data appear in Figure S1.

(D) Diagram showing the crosslinking status of observed NC1 banding in SDS-PAGE, where D1 is singly crosslinked and D2 is doubly crosslinked with a resultant

higher electrophoretic mobility.
of which can mediate crosslink formation (Figure 1A). In vitro

studies point to a preference for Br� during enzymatic sulfilimine

formation, but its role within the in vivo reaction is unknown,

particularly in light of the vast excess of Cl� over Br� in most

animals (Weiss et al., 1986). Despite its ubiquitous yet trace pres-

ence within animals, Br� is without a known essential function.

Bromide is a cofactor for eosinophil peroxidase (EPO) following

eosinophil activation (Mayeno et al., 1989; Weiss et al., 1986),

but the relevance of this is unclear as EPO preferentially oxidizes

SCN� over Br� (Nagy et al., 2006). Thus, the definitive identifica-
tion of Br� as a cofactor for peroxidasin-mediated crosslink for-

mation would represent the first essential function for the

element bromine.

Herein, we generated Br-free Cl� salts and found that per-

oxidasin uses Br� to catalyze formation of sulfilimine crosslinks

with at least 50,000-fold greater efficiency compared to Cl�.
Drosophila raised on Br-deficient diets resemble peroxidasin

loss-of-function mutations, including developmental abnormal-

ities, lethality, and altered BM and tissue morphologies. Impor-

tantly, replenishment of Br� to the diet restores the normal
Cell 157, 1380–1392, June 5, 2014 ª2014 Elsevier Inc. 1381
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Figure 2. Bromide Is the Required Cofactor for Sulfilimine-Crosslink

Formation

(A) The effect of halide ions on sulfilimine-crosslink formation is examined in

PFHR-9 matrix. Inhibition values were calculated from nonlinear curve fitting:

KI (IC50 = 84 mM 95%CI[ 30–241 mM]), KSCN (IC50 = 17 mM 95%CI[3–24 mM]).

Contrasting with these effects, exogenous potassium bromide (KBr) enhanced

the reaction. Points represent mean ± SD (n = 3). See also Figure S2.

(B) Uncrosslinked PFHR9matrix was crosslinked in vitro in the presence of KCl

and KBr and reacted for 1 hr at 37�Cwith 1mMH2O2, with 100mMKF used as

ionic strength control. Collagenase digest was analyzed by SDS-PAGE and

Coosmassie staining.

(C) Schematic of Br-free Cl� salt purification apparatus and setup. Resulting

salt was analyzed by ICP-MS for bromide content. Further analysis of salt

reagents appears in Table S1 and Figure S3.

(D) Crosslink formation in PFHR-9 matrix with Br-free KCl. Reaction buffer

contained 10 mM phosphate buffer (pH 7.4), 100 mMBr-free or reagent-grade

KCl, and 1 mM H2O2 and 200 mM PHG where appropriate. Displayed SDS-

PAGE gels were stained with Coomassie blue.

(E) Sulfilimine (S=N) crosslink formation in PFHR-9 cell culture tested under

Br-free conditions. Culture conditions and media formulations are presented in

detail in the Extended Experimental Procedures. NC1 hexamers were isolated

via collagenase treatment and analyzed by SDS-PAGE. The amount of cross-

links per hexamer is graphed as the mean ± 95% CI (n = 3). All sample groups

hadequal variance,one-wayANOVAwasperformed (p<0.001), anddifferences

between groups were tested with Tukey’s post-hoc analysis (***p < 0.001).
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phenotype in all metrics addressed here. Collectively, our find-

ings establish a physiologic requirement for Br� in animals, the

mechanism by which Br� functions, and the essentiality of a

sulfilimine-crosslinked collagen IV scaffold in the assembly and

function of BMs.

RESULTS

Structural Basis for Sulfilimine-Crosslink Heterogeneity
in the Collagen IV Scaffold
Sulfilimine crosslinks join NC1 domains at the interface of two

adjoining triple helical protomers within the collagen IV scaffold,

forming a globular hexameric structure. Dimerized NC1 domains

maybebound together by either oneor two sulfilimine crosslinks,

due to the presence of Met93 and Hyl211 in both domains.

Following biochemical isolation and SDS-PAGE analysis, NC1

hexamers dissociate into crosslinked dimers, termed D1 and

D2, and uncrosslinked monomers (Figure 1A). The structural

distinction between D1 and D2 is unknown but of long-standing

interest (Langeveld et al., 1988). Because HOBr reacts with un-

crosslinked NC1 hexamer to uniquely form D2 with a pattern

resembling native placental and glomerular BMs,we endeavored

to structurally define the D1 and D2 isoforms of crosslinked hex-

amer. We hypothesized that D1 and D2 differed by the number of

crosslinks, D1 having one andD2with two crosslinks. Using liquid

chromatography-mass spectrometry (LC-MS) to determine the

abundance of crosslinks in D1 and D2, we found 1.95 times

greater sulfilimine-containing peptides in D2 relative to D1 (Fig-

ures 1B and 1C and Figure S1 available online), indicating that

D2 has two crosslinks and D1 has one. We thus used the relative

abundance of D1 and D2 on SDS-PAGE analysis of NC1 hexam-

ers to assess sulfilimine-crosslink content (Figure 1D).

Bromide Is Required for Sulfilimine Formation
We next examined the effect of halides (F�, Cl�, Br�, I�) and the

pseudohalide thiocyanate (SCN�) on sulfilimine crosslinking in

cell culture. SCN� and I� inhibited the reaction, whereas Br�

enhanced crosslink formation (Figures 2A and S2). Because F�

proved cytotoxic, and background levels in media precluded

testing of Cl�, we moved to isolated PFHR-9 BM as an in vitro

model for crosslink formation. In this model, KI inhibits peroxida-

sin to generate an uncrosslinked scaffold, and subsequent KI

removal with addition of H2O2 drives crosslink formation by per-

oxidasin. (Bhave et al., 2012). F�was inert to crosslink formation,

soweused100mMKFasan ionic controlwhile titrating eitherCl�

or Br� (Figure 2B). Br� robustly catalyzed crosslink formation at

10 mM, whereas Cl� remained inactive until 100 mM (Figure 2B).

Although these data pointed to a strong preference for Br�

over Cl� in crosslink formation, we considered whether contam-

inating Br� in our Cl� solutions might confound the results.

Indeed, we measured Br� content at 5.91 mM/100 mM KCl

(inductively coupled plasma-mass spectrometry [ICP-MS]) (Ta-

ble S1), making the apparent Cl� activity difficult to distinguish

from that of contaminating Br�. To address this, we produced

Br-free NaCl and KCl (<11.4 nM Br�) (Figures 2C and S3A; Table

S1). Intriguingly, Br-free Cl� did not support crosslink formation

(Figures 2D and S3B), whereas addition of 5 mM Br� rescued

crosslink formation.
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Figure 3. Peroxidasin Uses Physiologic Br� Levels to Form Sulfili-

mine Crosslinks

(A–D) Mammalian peroxidases are compared for ability to crosslink collagen IV

NC1 domains in Br-free 13 PBS, recombinant human peroxidasin (hPXDN),

myeloperoxidase (MPO), and eosinophilperoxidase (EPO). UncrosslinkedNC1

domains were isolated from PHG-treated PFHR-9 cultures. All peroxidase

activity enzymes were nominalized by TMB assay prior to assay (Bozeman

et al., 1990). Reactions proceeded for 10 min at 37�C after initiation by the

addition of H2O2 and quenched with 5 mM PHG, 0.2 mg/ml bovine catalase,

and 10 mM methionine. Gel is representative of three experiments.

(A) Coomassie-stained gel of enzymatic crosslink formation under reagent-

grade and Br-free conditions.

(B) Quantitative analysis of crosslinks formed per NC1 hexamer by MPO and

hPXDN under Br-free and Br-added (100 mM) conditions. Data shown as

mean ± 1 SD, n = 2. Student’s t test was performed (n = 2) due to equal

variance between groups.

(C) Effect of bromide titration on the proportion of D1 (one crosslink) and D2

(two crosslinks) NC1 populations following reaction withMPO and hPXDN. For

reference, the proportions of D2 found in PBM and GBM are denoted on the

graph. Data shown as mean ± 1 SD (n = 2).

(D) Crosslinking efficacy of peroxidasin measured as crosslink formed per

hexamer upon Br� titration. EC50 value ± 95% CI (n = 2).
For validation, we tested the efficiency of crosslink formation

in PFHR-9 cells grown in Br-free media (<2.5 mM Br�, as

measured by neutron activation analysis [NAA]; Tables S2–S4).
In Br-free and Br-added culture conditions, there was no appre-

ciable difference in cell proliferation, cell viability, or collagen IV

production. Importantly, Br�-free media did not support forma-

tion of crosslinks in the collagen IV matrix, yet the addition of

100 mM Br� to the same media rescued normal crosslink forma-

tion (Figure 2E), establishing a requirement for Br� in sulfilimine

formation.

Peroxidasin Catalyzes Sulfilimine-Crosslink Formation
via Bromide
Continuing our studies with purified Cl�, we examined the sulfi-

limine formation capability of peroxidasin, myeloperoxidase

(MPO), and EPO in Br-free conditions. Generally, peroxidases

use peroxide to oxidize a halide ion to the corresponding hypoh-

alous acid (HOX, X = Cl or Br) with MPO preferentially oxidizing

Cl� to HOCl and peroxidasin and EPO forming HOBr via oxida-

tion of Br�. After normalization of peroxidase activity of all

enzyme preparations (Bozeman et al., 1990), we found peroxida-

sin to be much more effective in forming sulfilimine crosslinks

within NC1 hexamers than MPO or EPO under identical condi-

tions, especially regarding D2 (two crosslinks) formation (Fig-

ure 3A). Crosslinking by peroxidasin exceeded EPO despite

normalized enzyme activity.

We sought to characterize the responsiveness of peroxidasin

and MPO to Br� levels. In Br-free saline, where HOCl is the only

hypohalous product of either enzyme, only minor amounts of

crosslink were produced by the enzymes. The addition of

100 mMBr� significantly enhanced crosslink formation by perox-

idasin, as did increased H2O2 levels (Figure 3B), suggesting that

the in vivo enzymatic mechanism is responsive to both Br� and

oxidant concentrations. Upon Br� titration, D1 formed prior to D2,

indicating a sequential crosslinking mechanism (Figure 3C),

complementing our LC-MS studies that revealed one and two

sulfilimine crosslinks in D1 and D2, respectively (Figures 1B and

1C). Thus, the relative amount of D2 represents a key index of

crosslinks within the overall NC1 hexamer and is a notable

feature of tissue-isolated collagen IV (Figure S4) (Langeveld

et al., 1988). In vitro, we found that crosslink formation by either

a Br-H2O2-peroxidasin system or the direct HOBr application

produces D2 to a similar degree as observed in tissues

(Figure S4).

Considering the trace levels of Br� in physiology, we calcu-

lated the EC50 for Br� in this system to be 4.5 mM (95%

confidence interval [CI] 3.8–5.2 mM) in the presence of 140 mM

Cl� (Figure 3D). Using MPO as a baseline for the efficacy of

Cl�-based oxidants, these data indicate a > 50,000-fold efficacy

difference for Br� over Cl� as a cofactor in the peroxidasin-cata-

lyzed formation of crosslinks, demonstrating selectivity for Br�.
Within the normal serum range of 10–100 mM Br� (van Leeuwen

and Sangster, 1987), peroxidasin formed crosslinks at more than

90% of the available sites but was markedly less effective below

this range, indicating an optimal Br� level for in vivo crosslink

formation.

The Chemical Basis for Selection of Br� over Cl� as the
Cofactor in Crosslink Formation
To investigate the chemical basis for the selectivity of Br� over

Cl� in this reaction, we used the halogen-based synthesis of
Cell 157, 1380–1392, June 5, 2014 ª2014 Elsevier Inc. 1383



Figure 4. Chemical Mechanism of Sulfilimine Formation within the NC1 Hexamer

(A) Working model of the oxidative formation of either sulfilimine crosslinks or methionine sulfoxide. kS = O and kS = N refer to rate constants in the formation of

sulfoxides and sulfilimines, respectively.

(B) Uncrosslinked NC1 hexamers (5 mM) were reacted with hypohalous acids for 5 min at 37�C, and the products analyzed by SDS-PAGE. Values represent

mean ± 95% CI (n = 3).

(legend continued on next page)
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dehydromethionine, a cyclic sulfilimine product, as a mecha-

nistic framework wherein a methionine halosulfonium intermedi-

ate (HSI) reacts with either an amine or water to form a sulfilimine

bond or sulfoxide, respectively (Figure 4A) (Armesto et al., 2000;

Peskin et al., 2009; Young and Hsieh, 1978). We hypothesized

that (1) collagen IV sulfilimine bond formation proceeds via an

HSI at Met93, and (2) selectivity resides with a bromosulfonium

intermediate that predominately reacts with the ε-NH2 of Hyl
211

to form the crosslink, whereas the chlorosulfonium intermediate

predominantly reacts with water to form methionine sulfoxide,

precluding crosslink formation.

In vitro, HOBr effectively promoted crosslink formation in a

dose-dependent manner, whereas HOCl poorly formed NC1

crosslinks (Figure 4B). We usedmass spectrometry to determine

the oxidation state of Met93 within HOCl-reacted monomers and

found increased amounts of methionine sulfoxide (Figure S5). To

test whether methionine sulfoxide is indeed a ‘‘dead end’’ with

respect to crosslink formation, we treated uncrosslinked NC1

hexamers with HOCl prior to HOBr treatment and found a

dose-dependent inhibition of crosslink formation until it resem-

bled treatment with HOCl alone (Figure 4C). Thus, both HOBr

and HOCl target Met93, yet the latter oxidant creates an uncros-

slinkable product, namely methionine sulfoxide. As further vali-

dation, similar results were obtained when sulfoxide was gener-

ated using prolonged treatment with high concentrations of

H2O2 (Figure S5G).

Probing deeper into the mechanism, we sought to charac-

terize the reactivity and energetics of Met93 after oxidation with

HOBr or HOCl. We modeled distinct HSI reaction pathways

yielding sulfoxide or sulfilimine and two potential crosslinking

events between opposing NC1 subunits (Figures 4D and S6).

Using densitometric analysis of SDS-PAGE gels, we measured

the relative proportion of uncrosslinked, singly crosslinked, and

doubly crosslinked NC1 subunits following complete oxidation

with either HOBr or HOCl to calculate the sulfilimine and sulf-

oxide product ratios for both oxidative events (Figures S6C

and S6D). The data indicated that the two oxidation events are

not independent (Table S5), but rather, formation of the first

sulfilimine enhances the probability of a second crosslinking

event. Possible physical interpretations of these data are that

the first crosslink imposes steric constraints on the orientation

of Met93 and Hyl211 at the second site or simply increases their

spatial proximity such that the apparent local amine concentra-

tion increases 3- to 7-fold (see Extended Experimental Pro-

cedures). We examined the relative free-energy difference in

the transition states for the competing sulfilimine and sulfoxide

reaction pathways (Figures 4E and S6B–S6D; Extended Experi-

mental Procedures) (Seeman, 1983) and found that the bromo-

sulfonium (S-Br) intermediate encountered a lower energetic

barrier to sulfilimine formation for both oxidative events, whereas
(C) Uncrosslinked NC1 hexamer (1.3 mM)was reactedwith indicated amounts of H

of 8 mol eq. HOBr (or HOCl as a control) and reacted for an additional minute at 37

two experiments.

(D) The sequential model for D1 and D2 formation within the NC1 hexamer followi

probabilities of forming the observed products. Calculations are presented in Ex

(E) Free energy landscape for S = N formation within the NC1 hexamer based on

(F) Outline of overall chemical pathway governing the intrinsic chemical reactivity
the chlorosulfonium (S-Cl) intermediate faced an unfavorable

barrier to sulfilimine formation relative to methionine sulfoxide

(Figures 4E and S6D).

Further explanation for the difference in products between Br�

and Cl� in collagen IV may be found in the distinct chemical

behaviors of S-Br and S-Cl. Experimental and in silico studies

indicate that S-Cl species have highly polar transition states

and therefore participate in charge-controlled reactions that pre-

fer ‘‘harder’’ nucleophiles such as H2O relative to amine and

thereby favor sulfoxide formation. Conversely, S-Br species

generate transition states with smaller partial charge, which

favor orbital-controlled reactions that select for ‘‘softer’’ nucleo-

philes (here understood as NH2-R relative to H2O) and thus pre-

fer sulfilimine formation (Chmutova et al., 1999; Klopman, 1968;

Pearson, 1968). Taken together, sulfilimine formation is thermo-

dynamically favorable via the selectivity of an S-Br intermediate

at Met93, providing chemical basis for the Br� requirement.

Bromide Is Essential for Drosophila Development
Based on the chemical requirement for Br� in collagen IV sulfili-

mine bond formation and the conservation of the crosslink in

multicellular tissues (Fidler et al., 2014), we hypothesized that

Br� is essential for stabilizing tissues. We tested this hypothesis

in Drosophila. Because standard Drosophila media contains

�15 mMBr�, we prepared a custom diet (Table S7) in which final

dietary Br� was undetectable by NAA (Table S2). To address the

impact of Br� deficiency over multiple generations, we raised

flies on Br-free media and compared their development to co-

horts raised on either similar media with Br� supplementation

or standard media (Figure 5A). Initial maternal Br� contribution

in embryos was 24.3 mM (Table S2) on the standard diet. After

moving embryos to the indicated media, Generation 1 larvae

grown on Br-free conditions exhibited developmental delay (Fig-

ure 5B), yet development rates were similar between Br-added

and standard media. Adult Generation 1 flies that survived

were maintained on the same diet for 14 days to continue Br�

depletion, and progeny Generation 2 larvae showed significantly

reduced survival in Br-free versus standard; the phenotype was

rescued in Br-added diet (Figure 5C). Thus, Br� is essential for

development in Drosophila.

Seeking to accelerate Br� depletion, we fed flies a Br-free diet

containing elevated NaCl levels to reduce Br� half-life in vivo via

halide flux seen in mammals (Pavelka et al., 2005). Female

Drosophila were placed on a Br�-depleting (Br-freeDEP) diet

with or without supplemental 100 mMBr� prior to egg deposition,

and the dietary conditions were maintained throughout progeny

development. Initially, the Br-freeDEP egg cohort had a signifi-

cantly reduced hatching percentage relative to Br-freeDEP +

100 mM Br� (Figure 5D), suggesting that Br� is required for

successful embryogenesis. Nearly all hatched larvae died prior
OCl for 1min at 37�C in Br-free 13PBS, followed by subsequent treatment with
�C. Reactions were quenched with 20 mMmethionine. Gel is representative of

ng complete stoichiometric oxidation of Met93. P1–P4 indicate the proportional

tended Experimental Procedures.

the model outlined in (D) and Figures S5 and S6.

of S-Br and S-Cl at Met93.

Cell 157, 1380–1392, June 5, 2014 ª2014 Elsevier Inc. 1385
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to eclosion under Br-freeDEP conditions, whereas 100 mM Br�

rescued development to adulthood (Figure 5E). NAA analysis

confirmed lower Br� levels in third instar larvae (3.4 versus

23.6 mM for controls) in Br-freeDEP conditions (Figure 5F).

In Br-freeDEP conditions, we assessed the impact of Br defi-

ciency on crosslink formation in vivo. We used vkg454-GFP flies

in which the single collagen IV a2 gene locus contains a GFP

insertion near the 7S domain. We grew these vkg454-GFP flies

on Br-freeDEP, Br-freeDEP + 100 mM Br�, and standard diets

and biochemically assayed sulfilamine-bond content via immu-

noblot (Extended Experimental Procedures). We found grossly

reduced sulfilimine-bond content in the Br-freeDEP cohort, which

was rescued with Br� supplementation (Figures 5F and S7A).

Thus, Br� promotes sulfilimine formation in vivo.

Peroxidasin (Pxn) mutants have reduced amounts of collagen

IV sulfilimine crosslinks and consequent perturbation of midgut

BM, as shown previously (Pxnf07229, Bhave et al., 2012). Predict-

ing that Br depletion would phenocopy the Pxn mutant, we

compared the midgut from Br-freeDEP larvae to two independent

mutants of Pxn (PxnMI01492 and Pxnf07229). Although normal scaf-

fold architecture was seen on standard diet (Figure 5G), Br-free-
DEP conditions displayed gross disruptions (Figure 5H, red ar-

rows) and splitting in the overall collagen IV scaffold

(Figure 5H, asterisk). Both phenotypes were rescued in Br-free-
DEP + 100 mM Br� media (Figure 5I). Significantly, similar disrup-

tions were seen in Pxnmutants using an anti-NC1 antibody (Fig-

ures 5J–5M). The Pxnf07229 phenotype appeared more severe
Figure 5. Bromide Is Essential for Development and BM Architecture i

(A) Generational Br-depletion scheme.

(B) Generation 1 survival and time-to-development curves for w1118 flies on the s

diet were placed on the indicated diet, and progenywere scored every 24 hr. There

panel). The Br-free + 100 mM Br� diet supported the same timing of developmen

0.001 compared to both standard diet and Br-free + 100 mM Br�) prior to pupa

median ± interquartile range. n = 30 for each group. Two-way ANOVA test showe

from standard, z = different from Br-free + 100 mM Br�.
(C) Generation 2 developmental survival on experimental diets. n > 40 for each c

(D) Percentage of eggs (mean ± 95% CI) completing embryogenesis from mothe

freeDEP experimental group, mothers were fed Br-free synthetic diet containing 80

100 mM Br� was treated in the same manner except that 100 mM NaBr was a

differences were observed for eggs collected 3–7 days after maternal diet imple

(E) Survival curve for w1118 flies under standard, Br-freeDEP, and Br-freeDEP + 100

significant (log-rank test, n > 40 for each group).

(F) Western blot of isolated NC1 domain from larvae treated as in (E), probed w

cedures). Associated larval Br content was measured by EINAA (additional data

(G–I) Representative images of vkg454-GFP homozygous larvae reared under the

arrows) in the distal posterior midgut of Br-freeDEP larvae. Optical sections of m

stained with phalloidin) surrounded by a collagen IV (Vkg454 -GFP) scaffold and

posterior axis is horizontal. * = BM defect. Whole-gut images, scale bar represen

(J–M) Representative images of posterior midgut of 4-day-old larvae with indica

nonpermeablized samples demonstrates BM staining similar to that of Vkg454-GF

(M) due tomuscle death, directly visualized by EM in (R). * = BM defect. Whole-gut

represents 10 m.

(N–R) EMs of circular sections through the posterior midgut, focusing on the BM

belly (LM). Trachioles (Tr) are occasionally visualized. Standard diet control (N) h

PxnMI01492(Q), and Pxnf07229(R); BM is similar to control in Br-freeDEP + 100 mM B

thickness, and the histograms plotted. Scale bar represents 0.5 m.

(S) Distribution curves and parameters from fitted distributions of each experimen

the transformed distributions were fitted. The curves to fit the data were significant

between standard and Br-freeDEP + 100 mM Br�, whereas both curves differed

performed to obtain the 95% CIs for the mean and SD for each group, revealin

substantially higher. (See also Figure S7.)
than PxnMI01492, and the PxnMI01492/Pxnf07229 transheterozygote

demonstrated an intermediate phenotype. These data indicate

similarities between Br deficiency and the loss of peroxidasin.

We used transmission electron microscopy (TEM) to compare

the BM ultrastructure in Br-depleted larvae with Pxn mutant

larvae. Larvae raised on standard diet exhibited normal entero-

cyte and BM structure (Shanbhag, and Tripathi, 2009) (Fig-

ure 5N). In Br-freeDEP larvae, the BM was irregular, thickened,

occasionally diffuse, and wavy in various sections (Figure 5O).

Strikingly, both Pxn mutants exhibited irregular and thickened

BM similar to the Br-freeDEP cohort (Figures 5Q and 5R). More-

over, Br-freeDEP conditions and Pxn mutants displayed circular

muscles protruding into and deforming the gut epithelium, (Fig-

ures S7C, S7E, and S7F), mirroring the actin staining in circular

muscles (Figures 5H, 5K, and 5M). All sections from the Br-free-
DEP + 100 mM Br� and standard-diet cohorts displayed normal

BM and circular muscle morphologies (Figures 5N, 5P, S7B,

and S7D). We quantified the BMmorphologic changes observed

by TEM, finding similar BM thickness in the standard and Br-

freeDEP + 100 mM Br� diets but significantly thicker BMs in Br-

freeDEP and both Pxn mutants (Figures 5S and S7G).

Br-freeDEP conditions phenocopy the genetic loss of Pxn, so

we hypothesized that Br� and Pxn interact in vivo to strengthen

collagen IV scaffolds. It has been reported that collagen IV acts

during Drosophila oogenesis as a ‘‘molecular corset’’ to control

egg shape, restricting circumferential expansion so that egg

growth promotes elongation along the anterior-posterior axis
n Drosophila

tandard diet versus experimental diets. Embryos from mothers fed a standard

was not a signifigant difference in survival between groups by log-rank test (left

t as the standard diet, whereas the Br-free diet caused a significant delay (p <

riation (8 days) and eclosion (14 days) (right panel). Data plotted as the group

d a significant difference for pupariation and eclosion (p < 0.001); x = different

ohort. Tested by log-rank test.

rs reared on Br-freeDEP or Br-freeDEP + 100 mM Br� diets for 5 days. In the Br-

mM total NaCl (Br-freeDEP) for 3 days prior to egg collection. The Br-freeDEP +

dded to all food components of the Br-freeDEP synthetic diet. Hatching rate

mentation. n = 300 eggs. Analyzed by the Mann-Whitney U test.

mM Br� dietary conditions. The survival difference between groups was highly

ith an anti-Drosophila NC1 polyclonal antibody (Extended Experimental Pro-

in Table S2). Bonds/hexamer were calculated from the western blot.

conditions tested in (E), demonstrating holes in the BM (indicated by orange

id-lateral gut plane visualizing the circular muscles in cross-section (F-actin

the gut epithelial BM. Gut lumen is oriented at the top of the image, anterior-

ts 20 m; mid-lateral plane optical sections, scale bar represents 10 m.

ted peroxidasin genotype on standard food. Collagen IV anti-NC1 staining on

P (J). F-actin was stained with phalliodin. No muscle actin staining is visible in

images, scale bar represents 20 m; mid-lateral plane optical sections, scale bar

(magenta psuedocolor) beneath the enterocyte (En) near a longitudinal muscle

as a compact, normal BM. BMs are thickened and irregular in Br-freeDEP (O),

r� (P). BMs from 15 independent sections for each group were evaluated for

tal group. Optimal Box-Cox transformations were performed for normality, and

ly different by the F test. Pairwise comparison revealed no significant difference

significantly from Br-freeDEP, PxnMI01492, and Pxnf07229. Bootstrapping was

g that the variance in BM thickness in Br-freeDEP, PxnMI01492, and Pxnf07229is
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Figure 6. Br� and Peroxidasin Interact In Vivo to Strengthen Collagen IV Scaffolds

(A) Schematic overview of polarized collagen IV scaffolds (molecular corset, green), which determine aspect ratio in Drosophila eggs.

(B) Br� concentration effect on egg aspect ratio, in single age-matched cohort of w1118 flies, over time. Vertical axis represents mean aspect ratio (± SEM). At

192 hr (inset), egg aspect ratio had increased proportionally to Br� concentration, with similar aspect ratios in 15 mM-added NaBr and standard diet (measured as

15 mM Br� by NAA). Inset plotted as mean ± 95% CI, and significance calculated with the Kruskall-Wallis test. Dotted line indicates egg aspect ratio reported by

Haigo and Bilder (2011).

(C) An irreversible peroxidasin inhibitor, PHG, causes a dose-dependent reduction in the exaggerated egg elongation caused by excess dietary (100 mM) Br�.
PHG was administered in the food. All wild-type (w1118) mothers were from the same cohort and reared identically, then divided into sub-cohorts for exposure to

the indicated experimental diet. Significance among the conditionswas calculated using the Kruskal-Wallis test. Data plotted asmean ± 95%CI (image; scale bar

represents 500 mm). Dotted line indicates reported value for egg aspect ratio (Haigo and Bilder, 2011). All groups also differed significantly when compared

individually using Dunn’s multiple comparison testing (p < 0.05).

(D and E) Pxn is required for Br-induced egg elongation. Two independent temperature-inducible RNAi constructs targeting Pxnwere expressed in adult females

fed 100 mM added Br�. Aspect ratios frommaternally expressed PxnRNAiwere significantly different than sibling-matched controls after induction for 72 hr (29�C)

(legend continued on next page)
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(Figure 6A) (Haigo and Bilder, 2011). In eggs from mothers fed

varying concentrations of Br�, we found a dose-dependent rela-

tionship between Br� and aspect ratio (Figure 6B) after approx-

imately 4 days, consistent with a long biologic half-life for Br�.
Interestingly, the aspect ratio of eggs on the Br-added diet

(100 mM Br�) exceeded the ratio for eggs on standard diet

(NAA measured 15 mM Br�; Table S2) (Figure 6B), suggesting

that elevated Br� promotes additional sulfilimine formation to

enhance tensile strength in the collagen IV molecular corset.

We used this elongated egg aspect ratio to probe whether Br�

and Pxn act via a commonmechanism in strengthening collagen

IV. We used two methods to assess whether Pxn is required

for the elongation phenotype. First, we used an irreversible inhib-

itor, phloroglucinol, to inhibit peroxidasin activity, and we

observed a dose-dependent suppression in egg aspect ratio in

the presence of elevated Br� (Figure 6C). Second, to confirm

the specificity of this interaction, we used two separate ubi-

quitously driven temperature-sensitive conditional RNAi con-

structs to knock down peroxidasin in adult females in the

presence of 100 mM Br�. In both RNAi experiments, aspect ratio

was significantly decreased relative to controls 3–4 days after the

onset of Pxn knockdown (Figures 6D, 6E, and S7), whereas con-

trols displayed normal augmentation of aspect ratio under iden-

tical conditions. Thus Pxn is required for the Br-induced elonga-

tion phenotype. To address the alternative hypothesis that Br�

levels modulate collagen IV deposition, we examined Vkg-GFP

immunofluorescence in eggs from mothers raised on Br-freeDEP

media. Like the Br-deficient diet, the Br-freeDEP media reduced

egg aspect ratio (Figure 6F), but collagen IV content appeared

similar to controls (Figure 6G) after 1 week of maternal exposure

to Br-freeDEP diet, suggesting that the egg aspect-ratio pheno-

types are caused by structural deficiencies within the scaffold.

DISCUSSION

Essentiality and Function of Bromide in Animals
We provide evidence that bromine is essential in animals, satis-

fying the principal requirements for elemental essentiality: (1)

demonstration that elemental deficiency leads to physiologic

dysfunction, (2) repletion of the element that reverses dysfunc-

tion, and (3) biochemical explanation of the physiologic function

(Mertz, 1981). Br-deficient Drosophila display altered BM and

tissue morphology, aberrant embryogenesis, larval mid-gut

defects, and lethality, whereas Br� repletion restored normal

development. Mechanistically, the assembly of crosslinked

collagen IV scaffolds requires Br�.
Sulfilimine-crosslinked collagen IV scaffolds are central to the

form and function of BMs in animals (Bhave et al., 2012; Fidler
byMann-Whitney U test. *p < 0.05, ***p < 0.001. Data plotted asmean asmean ± 9

value for egg aspect ratio (Haigo and Bilder, 2011).

(F) Egg aspect ratio on standard diet and synthetic Br-freeDEP and Br-freeDEP + 1

7 days. Differences in egg aspect ratio were observed in eggs collected after 5–7 d

represents 500 mm). Aspect ratio plotted as mean ± 95% CI (graph; Mann Whitn

aspect ratio (Haigo and Bilder, 2011).

(G) Collagen IV density appears normal in eggs from Br-depleted mothers. BM of s

diet are shown (confocal images). For quantitation, fluorescence intensities of z sta

been observed and normalized to the observational area. n = 9 for each group. Th

test. Data plotted as mean ± 95% CI (image; scale bar represents 20 mm). See a
et al., 2014). Our data indicate that the crosslink stabilizes

nascent collagen IV scaffolds, effectively modulating scaffold

assembly and BM thickness. Because sulfilimine formation

involves the concerted activity of collagen IV, Br�, peroxidasin,
and oxidant, we view each as critical for BM assembly and tissue

development (Figures 7A and 7B).

Mechanistic Role of Bromide in Sulfilimine Formation
The requirement for Br� during sulfilimine formation derives from

the selectivity of the bromosulfonium reaction intermediate. The

chemical character of bromine uniquely creates an energetically

favorable reaction between the S-Br intermediate and Hyl211.

The S-Br molecular orbital structure facilitates selective reac-

tivity with an amine nucleophile to form the crosslink, contrasting

with the highly polar S-Cl intermediate that preferentially forms a

sulfoxide via charge-controlled reaction with water (Figure 7C).

Peroxidasin harnesses this HOBr-based selectivity during cross-

linking while apparently avoiding oxidative damage to the BM.

Bromide Homeostasis
Br� is mainly located extracellularly and has been used in the

clinical measurement of extracellular volume (Barratt and

Walser, 1969; Brodie et al., 1939). Plasma Br� is 67 mM in healthy

people, congruent with Br� concentrations that support sulfili-

mine formation in flies, and are maintained within an order of

magnitude in many species (freshwater fish [Woods et al.,

1979], flies [Piedade-Guerreiro et al., 1987], rodents [van Logten

et al., 1974], and humans [Olszowy et al., 1998; van Leeuwen and

Sangster, 1987). In humans, plasma Br� is maintained via diet

and renal excretion (Trautner and Wieth, 1968; van Leeuwen

and Sangster, 1987; Walser and Rahill, 1966; Wolf and Eadie,

1950). Drosophila likely conserve Br�, possibly contributing to

the timeline of phenotype development in our generational

dietary Br-deficiency model (Figures 5A–5C). Dietary Br defi-

ciency has been suggested to suppress tissue growth and

increase lethality in goats (Anke et al., 1990), whereas high-

serum Br� (>12 mM) causes neurologic and dermatologic com-

plications (van Leeuwen and Sangster, 1987). Taken together,

this implies that an optimal Br� concentration might exist and

is regulated in vivo.

Clinical Implications of Bromide Deficiency
Bromide deficiency may have implications in human health and

disease. Patients receiving total parenteral nutrition (TPN) are

reported to have low plasma Br� levels due to lower dietary Br

consumption (Dahlstrom et al., 1986), and end-stage renal

disease patients have enhanced Br� losses as a consequence

of dialysis (Miura et al., 2002; Oe et al., 1981; Wallaeys et al.,
5%CI (inset image scale bar represents 500 mm). Dotted line indicates reported

00 mM Br� diets. Eggs were collected after mothers were fed indicated diet for

ays of experimental diets. Representative pictures of eggs are shown (scale bar

ey U test; **p < 0.01 ***p < 0.001). Dotted line indicates reported value for egg

tage 8 egg chambers frommothers expressing Vkg-GFP and fed the indicated

ck projections were summed in areas where thewhole thickness of the BM had

ere was no difference in the medians between the groups by the Kruskal-Wallis

lso Figure S7.
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Figure 7. Model of the Essentiality of

Bromine in Forming Collagen IV Sulfilimine

Crosslinks

(A) Diagrammatic relationship between collagen IV

sulfilimine formation and tissue phenotype.

(B) Schematic representation of role of bromide in

oxidative formation of sulfilimine crosslinks.

(C) Proposed chemical mechanism of sulfilimine

formation by HOBr.
1986). Because Br has not been considered an essential trace

element, systematic investigations on Br� replacement have

not been pursued in these disease states (Nielsen, 1998). Intrigu-

ingly, TPN alters intestinal mucosal architecture and function in a

manner reminiscent of themid-gut phenotypes ofDrosophila Pxn

mutants andBr-deficient larvae (Groos et al., 2003). Furthermore,

functional Br� deficiencymay occur in smokers in spite of normal

plasma Br� levels because of elevated levels of serum SCN�,
which inhibits sulfilimine bond formation. In our present study,

we found SCN� to be a potent inhibitor of peroxidasin-mediated

crosslink formation (Figures 2A and S2). Therefore, in some

smokers with elevated SCN� levels (130 mM, 1 pack per day)

(Tsuge et al., 2000), reinforcement of collagen IV scaffolds with

sulfilimine crosslinks may be substantially reduced (see

Extended Experimental Procedures). Indeed, smoking has

been associated with architectural changes within BMs (Asmus-
1390 Cell 157, 1380–1392, June 5, 2014 ª2014 Elsevier Inc.
sen, 1979; Soltani et al., 2012). Finally,

because BM assembly involves Br�, tis-
sue development or remodeling may be

vulnerable to Br deficiency. The findings

of our study provide rationale for investi-

gating the clinical implications of Br defi-

ciency and the physiologic conse-

quences of mechanically perturbing

collagen IV scaffolds.

EXPERIMENTAL PROCEDURES

Detailed Experimental Procedures for materials

and methods appear in the Extended Experi-

mental Procedures online.

High-Resolution Mass Spectrometry

NC1 domains were resolved by SDS-PAGE,

excised, and ‘‘in-gel’’ trypsin digested as

described (Vanacore et al., 2009). The resultant

sample was enriched for sulfilimine-crosslinked

peptides and analyzed using LC-MS. Data anal-

ysis using a combination of Thermo Xcalibur 2.1,

the Myrimatch algorithm with Bumbershoot suite,

Scaffold, (Proteome Software, Portland, OR,

USA), ScanRanker, and IonMatcher software,

where appropriate.

Br-free Salt Purification

Concentrated solutions of metal (Na, K) hydroxide

and reagent-grade HCl were placed in a sealed

chamber that prevented liquid mixing yet allowed

vapor diffusion (Figures 2C and S3). After 4 days,

sufficient HCl vapor had diffused and reacted
to neutralize the OH�, and the resultant metal Cl� salt was assayed for purity

via ICP-MS (Table S1).

PFHR-9 Cell Culture/Collagen Matrix Preparation

PFHR-9 cells (ATCC CRL-2423) were cultured in Dulbecco’s modified Eagle’s

medium (DMEM) with 5% FBS under 10% CO2. Collagen IV was deposited in

culture for 7–9 days with daily media changes. Uncrosslinked hexamer was

generated by culturing cells in either 50 mM phloroglucinol (PHG) or 1 mM

KI. Br-free DMEM for cell culture was prepared as per Tables S3 and S4.

Protein Purification

Recombinant human peroxidasin (hPXDN) was expressed in HEK293 cells and

purified as described previously (Bhave et al., 2012), with Br-free buffers used

as appropriate in chromatography, dialysis, and centrifugation steps. Purified

enzymewas reacted in vitro with uncrosslinked NC1 generated in PHG-treated

PHFR-9 culture. Uncrosslinked hexamers were isolated with collagenase

digestion and purified by subsequent chromatography in normal or Br-free

buffers (Extended Experimental Procedures).



Chemical Crosslinking of NC1 Domains by Hypohalous Acids

Uncrosslinked NC1 was reacted with hypohalous acid for 1 min at 37�C,
quenched with methionine, and analyzed by SDS-PAGE. HOBr was prepared

as previously described (Bhave et al., 2012). Detailed methods for densiomet-

ric analysis and thermodynamic calculations are in the Extended Experimental

Procedures.

Br-free Drosophila Food

S. cerevisiaewas cultured in adapted Br-free yeast nitrogen base (YNB) media

(Table S6). Phytagel-based fly media contained additional vitamins and min-

erals (Table S7) plus ampicillin and Tegocept. Br-free NaCl and KCl were the

only sources of chloride in the fly media. The combination of Br-free yeast

and phytagel was used for both larval and adult rearing. Final media Br� levels

were undetectable by NAA (Table S2).

Drosophila Genetics and Methods

see Extended Experimental Procedures for details.

Statistical Analysis

Analysis performed in this work was completed in GraphPad Prism v. 5.00 for

Windows (GraphPad Software, San Diego, CA, USA) and SPSS v. 22 (IBM). All

statistical tests between groupswere analyzed using nonparametricmeasures

indicated unless the data were found to be normal.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, seven

figures, seven tables, and supplemental references and can be found with this

article online at http://dx.doi.org/10.1016/j.cell.2014.05.009.
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