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Abstract

For a graph G, let 2(G) be the family of strong orientations of G, and define d (G)=
min{d(D)|D € 2(G)}, where d(D) denotes the diameter of the digraph D. Let G x H denote
the cartesian product of the graphs G and H. In this paper, we determine completely the values
of d (Km X P,), d(Km X K,) and d (K, X Cye+1), except d (K3 x Ca41), k=2, where K, P, and
C, denote the complete graph, path and cycle of order n, respectively. (© 1998 Elsevier Science
B.V. All rights reserved

1. Introduction

Let G (resp., D) be a graph (resp., digraph) with vertex set V(G) (resp., V(D)).
For v € V(G), the eccentricity e(v) of v is defined as e(v) = max{d(v,x)|x € V(G)},
where d(v,x) denotes the distance from v to x. The notion e(r) in D is similarly
defined. The diameter of G (resp., D), denoted by d(G) (resp., d(D)), is defined as
d(G)= max{e(v)|v€ V(G)} (resp., d(D)= max{e(v)|ve V(D)}).

An orientation of a graph G is a digraph obtained from G by assigning to each edge
in G a direction. An orientation D of G is strong if every two vertices in D are mutually
reachable in D. An edge e in a connected graph G is a bridge if G —e is disconnected.
Robbins’ celebrated one-way street theorem [16] states that a connected graph G has
a strong orientation if and only if no edge of G is a bridge. Efficient algorithms for
finding a strong orientation for a bridgeless connected graph can be found in Roberts
[17], Boesch and Tindell [1] and Chung et al. [2]. Boesch and Tindell [1] extended
Robbins’ result to mixed graphs where edges could be directed or undirected. Chung
et al. [2] provided a linear-time algorithm for testing whether a mixed graph has a
strong orientation and finding one if it does. As another possible way of extending
Robbins’ theorem, Boesch and Tindell [1] (see also [3]) introduced further the notion
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p(G) given below. Given a connected graph G containing no bridges, let Z(G) be the
family of strong orientations of G. Define

p(G) = min{d(D)| D € D(G)} — d(G).
The first term on the right-hand side of the above equality is essential. Let us write
d(G)= min{d(D) | (D € 2(G)}.

The problem of evaluating ?1(G) for an arbitrary connected graph G is very difficult.
As a matter of fact, Chvatal and Thomassen [3] showed that the problem of deciding
whether a graph admits an orientation of diameter two is NP-hard.

On the other hand, the parameter Q(G) has been studied in various classes of
graphs including complete graphs [1,12,15], complete bipartite graphs [1,22,4], com-
plete k-partite graphs for k>3 [5,7,8,14] and n-cubes [14,22,13]. Let G x H denote
the cartesian product of two graphs G and H, and Py the path of order & (i.e. of length

—1), Cy the cycle of order £ (i.e. of length k) and K, the complete graph of size n.
Roberts and Xu [18-21], and independently Koh and Tan [6], evaluated the quantity
d(P X B,). Very recently, Koh and Tay [9-11] evaluated the quantities d (Cap X Py),
d(sz x Can) and d(Gy X Gy x -+ x G,), where {G;|1<i<m} is certain combination
of paths and cycles.

In this paper, we shall focus on the products K, x P, K, x K, and K, x Cyy1,
where m>2, n>2, p>4 and k>1 and establish the following results:

Theorem 1. For m>=2 and n>=2,
(1)

Ak, x Py={ " T2 ¥ mme{2.3),2,5).6.2)},
mOTVT  n+ 1 otherwise
(i)

. 2 if(m,n)E {(2; 3)’(255)3(372)}’
Ky x Br)= { 1 otherwise.

Theorem 2. For m=2 and n>2,
(1)
4 if (m,n)=(3,2),

d(Kn x Kn) = { 3 otherwise;
(ii)

B 2 !'f‘(m,n):(3,2);
P(Km x Ky) = { 1 otherwise.
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Thegrem 3. For mz4 and k=1,
(1) d(Km X Cop) =k + 2;
(i1) p(Km X Co1)=1.

Note that the case when m=3 in Theorem 3 has not been settled yet. Let
H € {P,,Kp, Co+1 }. In showing that p(K,, x H)=1 for almost all the cases as shown
above, K4 always poses difficulties due to the fact that p(Ks)=2 (while p(K,)=1
for m>=3, m+#4). We have, however, managed to show that p(Ky x H)=1.

2. Notation and terminology

The cartesian product G =Gy x G, has V(G)=V(G) x V(G2) and two vertices
(uy,uz) and (v1,v;) of G are adjacent if and only if either ‘u; =v, and w0, € E(G2)’
or ‘u=v, and uv; € E(Gy)’.

We write  V(Kp X P)=V(Kn X Kp)=V(Kpn x Cp)={(i,j) | 1 <i<m,1<j<n}.
Thus, two distinct vertices (i,7) and (7/,j') are adjacent in K, x P, iff either ‘i=1i
and |j—j'| =1 or ‘j=,"; adjacent in K,, x K,, iff either i =i’ or j=’; and adjacent
in K, x C, iff either ‘i=i and j — j’=+1(modn)” or ‘j=;".

Let He{P,,K,,C,}, and let FE€ P(Ky,x H)) and 4 a subdigraph of F. The
eccentricity, outdegree and indegree of a vertex (i,j) in A are denoted, respectively,
by e4(i,),s4(i,j) and s (i, /). The subscript A4 is omitted if A=F.

Let D be a digraph. A dipath (resp., dicycle) in D is simply called a path (resp.,
cycle) in D. For X C ¥V (D), the subdigraph of D induced by X is denoted by D[X].
Given Fe Y(K,, x H) and 1<j<n, let

F; =F[V(Kn) x {j}],
and for 1 <i<m, let
F'=F[{i} x V(H)].

Let A€ 2(K,,) and B 2(K,). We write F;=A4 (resp., F'=B) if the mapping
a:F; — A defined by ofi,j)=i (resp., f:F' — B defined by B(i,j) =) is an isomor-
phism of F; onto 4 (resp., F' onto B). We also write Fi=F if FF=4 and F; =4, and
F'=F" if FF=B and F' =B.

For x, y € V(D), we write ‘x — y” or ‘y « x’ if x is adjacent to y in D. The converse
of D, denoted by D, is the digraph obtained from D by reversing each arc in D.

3. The graphs K,, X P, where m>4

In this section, we shall show that ?J(K,,, X Py)=n+1 for all m>4 and n>=2. First
of all, we have the following observation for the general case.
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Fig. 1.

Lemma 1. E(Km xP)zn+1 for all m=2 and n>2.

Proof. Let F € 2(K,, X P,). Clearly, (i,n — 1)— (i,n) in F for some i, 1 <i<m. But
then d((i,n),(i,1))zn+1in F. O

Proposition 1. d(K,, x B,)=n+ 1 for all m>4 and n>2.

Proof. By Lemma 1, it suffices to provide an orientation of K, X F, of diameter n+ 1.
It is known (see [1,12]) that

2 if m#4,

d(Km) =
3 ifm=4.

We observe that |2(K,y)| =1, up to isomorphism. Also, for 4 € 2(K,), there exists a
unique pair of vertices u, v in A such that d(u,v)=3 as shown in Fig. 1.
Let A€ 2(Kn—1) such that

2 ifm#S,
d(4)=
3 ifm=35.

and let B € 9(K,,) such that

2 ifm#4,
d(B)=
3 ifm=4,

and if d(u,v)=3 in B, then u#m and v#m. For convenience, let V(4)={1,2,...,
m— 1}
Now, define an orientation F of K, x P, as follows:
() F[V(4)x {1})]=4 and for 1<i<m — 1, (m,1)— (i, 1).
(ii) For 2<j<n—1, F;=B.
(iii) F[¥(4) x {n}]=4 and for 1<i<m — 1, (i,n) — (m,n).
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G, D

@1 —1
/

1,1
{\‘] — j/‘ @2
— \Im

Fig. 2.

(iv) For I<ism—1, (,1)>(i,2)— --- = (@4,n).
) mn)—»(mn—-1)— --- —(m,1).
Such an orientation F of K4 x Py is shown in Fig. 2.

We shall now prove that d(F)=n-+ 1 by showing that e(x)<n+ 1 for each vertex

x in F. There are six cases to consider.

1.
2.

1.

Case 1(a): x=(m,1).

Clearly, d(x, y)<1 for all ye V(F).

For 2<a<n — 1, the existence of the paths: (m,1)(j,1)(/,2)...(j,a), where
J=1L12,...,m—1in F and the fact that d((j,a),(m,a))<2 in B show that d(x, y)<
n+1 for all ye V(F,).

. The existence of the paths (m,1)(j,1)(j,2)...(j,n)(m,n), j=1,2,....om —1 in F

shows that d(x, y)<n+ 1 for all y € V(F,).

Case 1(b). x=(i,1) where 1 <i<m -1,

The fact that d(4)<3 and that d(x,(m, 1)) <d(x,(i,2))+d((i,2),(m,2)) +d((m,2),
(m1))<1+2+1if n3 and the existence of the path (i, 1)(7,2)(m,2)(m, 1) if
n=2 show that d(x,y)<n+1 for all ye V(F).

. For 2€a<n—1 and 1<j<m, d(x,(j,a))<d(x,(i,2)) + d((i,a),(j,a))<n — 2 +

3=n+ 1. Thus, d(x,y)<n+1 for all ycV(F).

. Let y=(j,n)€V(F). If d(x,(j,1))<1 in F, then (i, 1), 1),2)...(j,n)(m,n)

is a path of length n+ 1 in F. If (j,1)—~x in F, then as F[V(4) x {n}]=4,
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2.

(5 1)(5,2)...(5,n)(j,n)(m,n) is a path of length n+ 1 in F. Thus, dix,y)<n+1
for all y e V(F,).
Case 2(a): x =(m,a) where 2<a<n ~ 1.

- For I1<j<m, d(x,(J, 1)) <d(x,(m, 1)) + d((m,1),(j,1))<n -2+ 1=n — 1. Thus,

dix,y)<n+1 for all ye V(R).

. For 1<j<m and 2<b<a, d(x,(j,b))<d(x,(m, b)) + d((m,b),(j,B)) <n—3+2 =

n—1. Thus, d(x, y)<n+1 for all y€ V().

. Clearly, d(x,y)<2 for all y in V(F,).
- For 1<j<m ~ 1 and a<b<n — 1, d(x,(j,b))<d(x,(j,a)) + d((j,a),(j,b))<

2+n—3 =n-1 and d(x’ (m, b))sd(xv(p’a))_"d((p,a),(p9 b))+d((p’ b)s (m9 b))g
l+n—-3+2=n for some 1< p<m—1 such that x — ( p,a). Thus, d(x, y)<n+1
for all y € V(F).

- For 1<jsm — 1, d(x,(j,n))<d(x,(j,a)) +d((j,a),(j,n))<2+n—2=n. Also,

d(x,(m,n))<d(x,(p,a))+d((p,a),(p,n)) +d(p,n),(m,n))<1+n—2+1=n for
some 1< p<m — 1 such that x— (p,a). Thus, d(x, y)<n+ 1 for all yEeV(F).
Case 2(b): x=(i,a) where 1<i<m—1 and 2<a<n~ 1.

. For 1<j<m, d(x,(j,1))<d(x,(m,a)) +d((m,a),(m, ))+d((m,1),(j,1)<2+n-

2+ 1=n+1. Thus, d(x,y)<n+1 for all ye V(F).

. For I1<j<m and 2<b<a, d(x,(j,b))<d(x,(m,a)) + d((m,a),(m,b)) + d((m,b),

(/,0))<2+n~—-3+2=n+1. Thus, d(x,y)<n+ 1 for all yEV(F).

. Clearly, d(x, y)<3 for all y in V(F,).
- For 1<j<m and a<b<n—1, d(x,(j, b)) <d(x, (i, b))+d((i, b), (j, b)) <n—3+3 =n.

Thus, d(x, y)<n+1 for all y € V(F,).

. For 1<j<m, d(x,(j,n))<d(x,(i,n)) + d((i,n),(j,n))<n — 2+ 3=n+ 1. Thus,

d(x,y)<n+1 for all yc V(F,).
Case 3(a): x=(m,n).

. For 1<j<m and 1<a<n — 1, d(x,(j,a))<d(x,(m,a)) + d((m,a),(j,a))<

n—1+2=n+1. Thus, d(x,y)<n+1 for all ye V(F).

- For 1<j<m — 1, d(x,(j,n))<d(x,(mn — 1)) + d((mn ~ 1),(j,n — 1)+

d((j,n—1),(j,n))<1+2+1 if n>3 and the existence of the path (m,n)(m, 1)
(J,D(,n) if n=2 show that d(x, y)<n+ 1 for all y € V(E,).
Case 3(b). x=(i,n) where 1 <i<m ~ 1.

. For 1<j<m and 2<a<n — 1, d(x,(j,a))<d(x,(m,n)) + d((m,n),(m,a)) +

d((m,a),(j,a))<1+n-2+2=n+1 and d(x,(j,1))<d(x,(m,n))+d((m,n),(m, )+
d((m,1),(j,1))<1+n—1+1=n+1. Thus, d(x,y)<n+1 for all ye V(F,)UV(F).
Clearly, d(x, y)<3 for all y in V(F,).

The proof is now complete. [

4.

The graphs K5 x P,

In this section, we shall show that 2(K3 x P,)=4 and 2(K3 xP)=n+1 for all

nz=3.
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Fig. 3.

Fig. 4.
Proposition 2. 2(K3 x Py)=4
Proof. It follows from Lemma 1 that 2(K3 x Py)=3.

Claim. Let F € 9(K3 x P,). If sp(v)=2 for some i=1,2 and some v € V(F;), then
d(F)=4.

Suppose to the contrary that d(F)=3. We may assume that i=1 and v=(1,1).
This implies that (1,1)—(1,2) in F. As d((1,1),(2,1))<3 and d((1,1),(3,1))<3,
we have (1,2) - (2,2) > (2,1) and (1,2) = (3,2) = (3. 1) in F. As d((2,1),(3,1))<3,
(2,1)—(3,1) in F. But then d((3,1),(2,1)) >4, a contradiction.

Now suppose 3(K3 x P)=3. By the above claim, we have only the two non-
isomorphic orientations of K3 x P, of Fig. 3 to consider. However, both orientations
have diameter 5. Hence 2(K3 x Py)=4.

It remains to provide an orientation of K3 x P, with diameter 4. Such an orientation
is shown in Fig. 4.

The proof is thus complete. [

Proposition 3. ﬁ(Kg x P)=n+1 for all n=3.
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Fig. 5.

Proof. By Lemma 1, it suffices to provide an orientation of K3 x P, of diameter n + 1.
Define an orientation F of K3 x P, as follows:
(i) 3,m)—(1,m)—(2,n) and (3,1) = (2,n);
(ili) For2<j<n—1,(L,j)—@2,/))—G,/)—~ (1))
(iv) (Lm)—=1,n - 1)—> - —=(L1), Zn)—2n - D> -+ =(2,1), 3, 1)—
(3,2)— -+ = (3,n).
Such an orientation of K3x Psisshownin Fig. 5.
We shall now provethat d(F) = n+ 1 by showing that e(x) <»+ tfor al x € V(F).
We shall split our consideration into 9 cases.
Case I(@): x = (l,1). Consider the following pathsin F:
1. (1, 1)(k, 1) for k=2,3;
2. (1,DG,DGB,2)...3,n)kn), k=1,2;
3. For2<j<n—1,(1, 13, 1)3,2)...(3,)(1,/)2,)).
It can be checked that each of these paths is of length not exceeding n + 1 and the
paths cover each vertex in F.
Case l(b): x =(2,1). Consider the following pathsin F:
1. (2,1)(3,1X3,2)(1,2)(1,1);
2. (2, 13,1)3,2)...3,n)(k,n), k=1,2;
3. For2<j<n—1,(2,1)3,1)3,2)...(3,/)(1, /)2, /).
It can be checked that each of these paths is of length not exceeding n + t and the
paths cover each vertex in F.
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Case 1(c): x=(3,1). Consider the following paths in F:
1. (3,1)(3,2)(1,2)(1,1(2,1);
2. (3,1)3,2)...(3,n)k,n), k=1,2;
3. For 2<j<n—1, (3,1)(3,2)...(3,j)(1,/)(2, ).
It can be checked that each of these paths is of length not exceeding n + 1 and the
paths cover each vertex in F.
Case 2(a): x =(1,n). Consider the following paths in F:
L. (1,n)(2,n), (L,n)(1,n— 1)2,n— 1)(3,n — 1)(3,n);
2. For 1<j<n—1, (Ln)(1,n— 1)...(L,j )2, /)3, /).
It can be checked that each of these paths is of length not exceeding n + 1 and the
paths cover each vertex in F.
Case 2(b): x=(2,n). Consider the following paths in F:
1. (2,n)(2,n—1)3,n - 1)3,n)(1,n);
2. 2,m)2,n—1)...2, D)3, 1), 2,n)2,n—DB,n—1)1,n—1)1,n-2)...(L, 1)
3. For 2<j<n—1, (2,n)(2,n - 1)...(2, )3, /)1, ))-
It can be checked that each of these paths is of length not exceeding n + 1 and the
paths cover each vertex in F.
Case 2(c): x=(3,n). Consider the following paths in F:
1. (3,n)(k,n) for k=1,2,;
2. 3,n)X(L,n)X1,n—1)...(1, 1)k 1), k=2,3;
3. For 2<j<n—1, 3,n)(L,n)L,n — 1)...(L,j)2,/))(3,/).
It can be checked that each of these paths is of length not exceeding n 4 1 and the
paths cover each vertex in F.
Case 3(a): x=(1,)), where 2<j<n — 1. Consider the following paths in F:

L (LiX2,/)3,));

2. (Lj)Lj—=1)...(L, 1)k 1), £=2,3;

3 (L2 )G )30+ 1)...GB,n)kn), k=1,2;

4. For j<a<n—1, (L,j)(2,/)3,/)3,j+1)...(3,a)(1,a)2,a), for 2<a<j, (1,j)
(L,j—1)...(1,a)2,a)(3,a).

It can be checked that each of these paths is of length not exceeding n + 1 and the

paths cover each vertex in F.
Case 3(b): x=(2,)), where 2<j<n — 1. Consider the following paths in F:
A2, DG,5)L,5);
(22,5 = D). (2, DG, 1), (2,7)3, )L )L = 1) (L 1)
(2, DG NG+ D). Bon) k), k=1,2;
. For j<a<n — 1, (2,/)3.)3,/j + 1)...(3,a)(1,a)(2,a); for 2<a<j, (2,))
2,5 —1)...(2,a)3,a)(1,a).
It can be checked that each of these paths is of length not exceeding n + 1 and the
paths cover each vertex in F.
Case 3(c): x=(3,j), where 2<j<n — 1. Consider the following paths in F:
L G, )(LjX2.j);
2. G LHA, =D (L IXk D), k=2,3;
3. 3. )3E,j+1)...(3,n)kn), k=1,2;

W N e
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4. For j<a<n — 1, (3,/)3,7j + 1)...(3,a)L,a)2,a); for 2<a<j, (3,5)1,))
(L,j—1)...(1,a)(2,a)(3,a).
It can be checked that each of these paths is of length not exceeding n + 1 and the
paths cover each vertex in F.
The proof is now complete. O

Roberts and Xu [18] and, independently, Koh and Tan [6] have shown that

n+2 ifne{3,5},

n+1 otherwise.

d(Ky x Py) = {

Combining this with Propositions 1-3 and noting that d(X, x P,)=n, we have
Theorem 1.

5. The graphs K, X K3

In this section, we shall show that E(K,n x K3)=3 for all m>=3. But first of all, we
have the following inequality for the general case.

Lemma 2. d(K,, x K,)>3 for all m>3 and n>3.

Proof. Suppose to the contrary that there exists F € (K, x K,;) such that d(F)=2.
We may assume (i,2) — (i,1) for some i=1,2,...,min F. Let j=1,2,...,m,j #i. As
d((i,1),(j,2))=2 in K, xK,, we must have (i,1)—(j,1)—(j,2) in F. Let
k=1,2,....,m, k#i,j. As d((i,1),(k,2))=2 in K, xK,, we must have (i,1)—
(k,1)—(k,2) in F. But then d((k,2),(j,1))=3 in F, a contradiction. The result thus
follows. [

Proposition 4. Q(K,,, x K3)=3 for all m=3.

Proof. By Lemma 2, it suffices to provide an orientation of K, x K3 of diameter 3.
For the case when m =4, the orientation of Fig. 6 is a desired one.
We now consider the case when m#4. As m# 4, there exists 4 € 2(K,,) such that
d(A4)=2. Define an orientation F of K,, x K3 as follows:
(i) F=FK=4but 5 =4;
(i) Fori=1,2,....m, (i,1)— (i,2) > (i,3) — (i, 1).
We shall now prove that d(F)=3 by showing that e(x)<3 for each vertex x in F.
There are three cases to consider.
Case 1: x=(i,1), where i=1,2,...,m.
1. As d(F)=d(4)=2, it is clear that d(x, y)<2 in F for all y € V().
2. As d(F)=2 and (j,1)—(j,2) for all j=1,2,...,m, it follows that d(x, y)<3 for
all ye V(F).



K. M. Koh, E.G. Tay/ Discrete Mathematics 190 (1998) 115-136 125

Fig. 6.

3. Let y=(k,3)€V(F). If d(x,(k1))<1 in F, then (i, 1}k, 1)(k,2)(k,3) is a x-y
path of length at most 3 in F. If d(x,(k,1))=2 in F, then as B =F,, (i, 1)(i,2)
(i,3)(k,3) is a x-y path of length 3 in F. Thus, d(x, y)<3 for all y € V(5).
Case 2: x=(i,2), where i=1,2,...,m.

l. As d(F)=2, d(x,y)<2 in F for all ye V(F).

2. Let y;=(kj)eV(F), where j=3,1. If d(x,(k2))<1 in B, then (i,2)k2)
(k,3)(k, 1) is a x-y; path of length at most 3 in F which contains y;. If d(x,
(k,2))=2 in B, then (i,2)(i,3)(k,3)}(k,1) is a x-y; path of length 3 in F which
contains y3. Thus, d(x, y)<3 for all yec V(F3)UV(FR).

Case 3: x=(i,3), where i=1,2,...,m.

1. As d(F3)=2,d(x,y)<2 for all ye V(F;).

2. Let y;=(kj)eV(F;), where j=1,2. If d(x,(k,3))<1 in B, then (i,3)(k,3)
(k,1)(k,2) is a x-y, path of length at most 3 in F which contains y,. If
d(x,(k,3))=2 in F3, then (i,3)(i,1)(k, 1)(k,2) is a x-y, path of length 3 in F
which contains y;. Thus, d(x, y)<3 for all y € ¥(F)U V(R).

The proof that Ti(K,,, x K3)=3 is now complete. []

6. The graphs K, X K,
We shall proceed in this section to show that E(K,,, x K4)=3. As the result that

?j(K3 x K4)=3 was established in Proposition 4, we shall assume in this section that
m=>=4.
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Proposition 5. E(Km x K4)=3 for all m>4.

Proof. Let 4 € 2(K,,—1) such that d(4)=2 if m#5 and d(4)=3 if m=3S5. For con-
venience, let ¥ =V(4)={1,2,...,m — 1}. Define an orientation F of K, x K, as
follows:
(i) FIV x {1}]=F[V x {3}]=4 but F[V x {2}]=F[V x {4}]=4.
(ii) For i=1,2,....m—~ 1, (m,1)—(i,1) and (i,4)— (m,4). For i=1,2,....m — 2,
(m-12)>(m2)—(,2) and (,3) > (m,3)— (m — 1,3).
(iii) Fori=1,2,....,m—1, (i,1)—(i,3), (,2) — (i,4), (;,1)—((,4)—(,3)—(,2)—
(1), (m,1)—>(m,2)—> (m,3)— (m,4)—> (m,1), (m,3)—(m,1), (m4)— (m,2).
Such an orientation F of K4 x K4 is shown in Fig. 7.
We shall now prove that d(F)=3 by showing that e(x)<3 for all x€ V(F). We
shall split our consideration into 8 cases.
Case 1(a): x=(m,1).
1. Clearly, d(x, y)<1 for all ye V(F).
2. The existence of the paths (m,1)(m,2)(m,3) and (m,1)(J, 1)(,3)(},2),
j=12,...,m—1 in F shows that d(x, y)<3 for all ye V() U V().
3. The existence of the paths (m,1)(Jj,1)(/,4)(m,4), j=1,2,...,m — 1 in F shows
that d(x, y)<3 for all ye V(F,).
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Case 1(b): x=(i,1), where 1 <i<m — 1.

. Clearly, d(x, y)<3 for all y in ¥ (F)\{(m, 1)}. Observe that (;, D, 4) (m,4)(m, 1)
is a path in F. Thus, d(x,(m,1))<3.

cLetj=12,...,m=1.1fd((i,1),(j, 1)< 1 in {[V x {1}], then (4, 1)(j, 1)(/,3)(},2)
is a path in F; otherwise, (i,1)(i,3)(1,2)(j,2) is a path in F. Thus, d(x, y)<3
for all y € V(F)\{(m,2)}. Note that (5, 1)(i,4)(m,4)(m,2) is a path in F. Thus,
d(x,(m,2))<3.

cLet j=12,..,m— L If d((i,1),(j,1))<1 in B[V x {1}], then (i, 1)(J,1)(},3)
is a path in F; otherwise, (5, 1)(3,4)(7,4)(j,3) is a path in F. Thus, d(x,y)<3
for all y e V(F3)\{(m,3)}. For 1<i<m —2, (L, 1)(i,3)(m,3) is a path in F. As
Sriv x 3)(m — 1,3)>0, (m — 1,3)—(p,3) for some p=L2,...,m — 2. Thus
(m—1,1)(m —1,3)(p,3)(m,3) is a path in F. Thus, d(x,(m,3))<3.

cLet j=12,...,m — 1. If d((i,1),(j,1))<1 in RV x {1}1, then (i, 1)(j, 1)(},4)
is a path in F; otherwise, (i,1)(i,4)(},4) is a path in F. Thus, d(x, y)<2 for all
yeV(F)\{(m,4)}. Note also that (i,1)(i,4)(m,4) is a path in F. Thus,
d(x,(m,4))<2.

Case 2(a). x=(m,2).

. The existence of the paths (m,2)(m,3)}(m,1)(j,1), j=1,2,....om — 1 in F shows
that d(x, y)<3 for all y € V(F).

. Clearly, d(x,(j,2))=1forall j=1,2,...,m—2. As s;,;[VX{2}](m—1,2)>O, (p.2)—
(m—1,2) for some p=1,2,...,m — 2. Thus, (m,2)(p,2)(m — 1,2) is a path in F,
and so d(x,(m — 1,2))=2.

. The existence of the paths (m,2)(/,2)(j,4)(},3), J=12,...,m—2 and (m,2)(m,3)
(m—1,3) in F shows that d(x, y)<3 for all ye V(F3).

. As sF:[Vx{4}](m - 1,4)>0, (p,4)—(m ~ 1,4) for some p=1,2,...,m — 2. Thus
(m,2)(p,2)(p,4)(m —1,4) is a path in F. The existence of this path together with
the paths (m,2)(/,2)(j,4)(m,4), 1<j<m -2, in F shows that d(x, y)<3 for all
yEV(F).

Case 2(b): x=(i,2), where 1<i<m — 1.

cLet j=12,...,m — 1. If d((3,2),(j,2))<1 in B[V x {2}], then (3,2)(j,2)(j,1)
is a path in F; otherwise, (,2)(;,1)(j,1) is a path in F. The existence of these
paths together with the path (i,2)(#,4)(m,4)(m, 1) shows that d(x, y)<3 for all
YEeV(R).

. The fact that d(F [V x {2}])<3 and the existence of the path (i,2)(i,4)(m,4)(m,2)
show that d(x, y)<3 for all y € V(F).

cLetj=1,2,...,m—1.1£d((;2),(j,2))<1 in B[V x {2}], then ,2)(/,2)(,9)(j,3)
1s a path in F; otherwise, (i,2)(i,4)(i,3)(j,3) is a path in F. Thus, d(x, y)<3 for
all ye V(F)\{(m,3)}. For 1<i<m -2, (4,2)(i,4)(i,3)(m,3) is a path in F; and
for i=m —1, (m —1,2)(m,2)(m,3) is a path in F. Thus, d(x,(m,3))<3.

- Let j=1,2,....m — 1. If d((3,2),(j,2))<1 in B[V x {2}], then (,2)(j,2)(7,4)
is a path in F; otherwise, (4,2)(,1)(/,1)(j,4) is a path in F. The existence of
these paths together with the path (1,2)(i,4)(m,4) shows that d(x, y)<3 for all
yEV(F).
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Case 3(a): x=(m,3).
The existence of the paths (m,3)(m, 1)(j,1), 1<j<m — 1, in F shows that
d(x,y)<2 for all ye V(R).

. The existence of the paths (m,3)(m,4)(m,2)(j,2), 1<j<m — 2, and (m,3)

{(m—1,3)(m - 1,2) in F shows that d(x,y)<3 for all ye V(F).

. The existence of the paths (m,3)(m, D, 1)(3), 1<j<m— 1, in F shows that

d(x,y)<3 for all y e V(F).

. The existence of the paths (m,3)(m, 1)(/,1)(j,4), 1<j<m — 1, and (m,3)}(m,4)

in F shows that d(x, y)<3 for all y e V(F,).

Case 3(b): x=(i,3), where 1<i<m — 1.

Let j=1,2,...,m=1.1fd((i,3),(/,3))<1 in B[V x {3}), then (i,3)(,3)(J,2)(j, 1)
is a path in F; otherwise, (1,3)(1,2)(4,2)(j, 1) is a path in F. Thus, d(x, y)<3 for
all ye V(F)\{(m, 1)}. For 1<i<m — 2, (i,3)(m,3)(m,1) is a path in F; and for
i=m—1, there exists p==1,2,...,m — 2 such that (m—1,3)(p,3)(m,3)(m,1) is a
path in F. Thus, d(x,(m, 1))<3.

< Let j=12,...,m— 1. If d((3,3),(},3))<! in AB[V x {3}1, then (3,3)(/,3)(},2)

is a path in F; otherwise, (i,3)(;,2)(j,2) is a path in F. Thus, d(x, y)<2 for
all ye V(F)\{(m,2)}. For 1<i<m - 2, (i,3)(m,3)(m, 1)(m,2) is a path in F;
and for i=m — 1, (m ~ 1,3)(m — 1,2)(m,2) is a path in F. Thus,
d(x,(m,2))<3.

Clearly, d(x,y)<3 for all y in VFs)\{(m,3)}. For 1<i<m —~ 2, (i,3)(m,3)
is a path in F; and for i=m — 1, there exists p=L12,...,m — 2 such that
(m—1,3)(p,3)(m,3) is a path in F. Thus, d(x,(m,3))<2.

- Letj=12,....,m=1.1fd((i,3),(,3))< 1 in B[V x {3}, then (5,3)(/,3)(/,2)(/, 4)

is a path in F; otherwise, (i,3)(i,2)(;,4)(j,4) is a path in F. Thus, d(x, y) < 3 for
all ye V(F)\{(m,4)}. For 1<i<m -2, (i,3)(m,3)(m,4) is a path in F; and for
i=m—1, there exists p=1,2,...,m —2 such that (m — L,3)(p,3)(m,3)m,4) is a
path in F. Thus, d(x,(m,4))<3.

Case 4(a): x =(m,4).

The existence of the paths (m,4)(m,1)(j, 1), 1<j<m — 1, shows that d(x, y)<2
for all y in V(F).

. The existence of the paths (m,4)(m,2)(j,2), 1<j<m —~2, and (m,4)(m,2)(p,2)

(m—1,2) for some p=1,2,...,m—2 in F shows that d(x,y)<3 for all y e V(F).

. The existence of the paths (m,4)(m, 1)(}, 1)(J,3), 1<j <m—1, and (m,4)(m,2)

(m,3) in F shows that d(x, y)<3 for all ye V(F).

The existence of the paths (m,4)(m,1)(}, 1)(/,4), 1<j<m~— 1, in F shows that
d(x,y)<3 for all ye V(F,).

Case 4(b): x =(i,4), where 1<i<m — 1.

The existence of the paths (i,4)(m,4)(m,1)(J, 1), 1<j<m 1, in F shows that
d(x,y)<3 for all y € V(F).

2. Let j=12,...,m — 1. If d((i,4),(;,4))<1 in F[V x {4}], then (i,4)(J,4)(J,3)

(/,2) is a path in F; otherwise, (4,4)(i,3)(4,2)(J,2) is a path in F. Also (i, 4)(m,4)
(m,2) is a path in F. It follows that d(x, y)<3 for all y in V(F).
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3. Let j=1,2,...,m— 1. If d((3,4),(j,4))<1 in F[V x {4}], then (i,4)(/,4)(j,3) is
a path in F; otherwise, (i,4)(i,3)(j,3) is a path in F. Also (i,4)(m,4)(m,2)(m,3)
is a path in F. It follows that d(x, y)<3 for all y in V(F).

4, The fact that d(x, y)<3 for all y in V(Fy) is obvious.

The proof is now complete. [

7. The graphs K, X K, where m,n>=5

In this section we shall prove that g(K,,, x K,)=3 for all m>=5 and n>35.

A 2-colouring of K,,, m=3, is a mapping 6:V(K,)— {black(b), white(w)}. Let
F € 9(K,) and 0 a 2-colouring of K,,. A 3-cycle C in F is said to be bichromatic if
B(u) # B(v) for some u, v in V(C). We begin with the following observation.

Lemma 3. For m>5, there exist F € D(K,,) with d(FY=2 and a 2-colouring 8 of
K, such that
(i) every 3-cycle in F is bichromatic;
(i) if u— v and 6(u) = 0(v), then there exists a u — v path of length not exceeding
3 such that O(x)# 0(u) for some internal vertex x of the u — v path.

Proof. The statement is true for m =35 and m =6 as shown in Fig. 8.

Assume the statement is true for m= p>35. Consider m= p + 2. Let F € 2(K,)
and 0 be a 2-colouring of K|, satisfying the hypothesis. Extend F on K, to K,, by
assigning p+2—p+ 1, p+l—iandi— p+2forali=1,2,..., p. Extend § on
K, to Ky, by defining 8(p + 1)=»b and 6(p+2)=w (see Fig. 9). Let F/ and ' be
the resulting extensions of F and 8, respectively.

It is straightforward to check that d(F’)=2 and that both of F’ and ¢ satisfy
condition (i).
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We shall now show that (ii) holds. Assume that ¥ — v and 6'(u)=6'(v)=5b (the
case that 6'(u)=6(v)=w can be handled dually). If u€ V(F), then v€ V(F), and
thus the result follows by induction. Thus, suppose that u= p + 1, and so v€ V(F).
Trivially, there exists x € V' (F) such that #'(x)=w. As d(F)=2, there exists a x — v
path Q of length at most 2. Thus ux followed by Q is a required ¥ — v path. [

Remark. Part (i) of Lemma 3 will be used to prove Proposition 6 below, and
both (i) and (ii) of Lemma 3 will be applied to establish Proposition 8 in the next
section.

We are now in a position to establish the following resuit.
Proposition 6. d(Ky, x K,)=3 for all m>5 and n>5.

Proof. Let 4 ¢ 2(K,) with d(4)=2. Let B€ 9(K,,) and 0 be a 2-colouring of K,,
satisfying the conditions stated in Lemma 3. Define an orientation H of K, x K, as
follows:

(i) Hj=B forall j=1,2,...,n;

(ii) Fori=1,2,...,m,

(4 if6()=b,
H=<
A if () =w.

We shall now prove that d(H)=3 by showing that d(x, y)<3 for all x, y in V' (H).

Let x=(i,j) and y=(i’, /'), where i,i’ € {1,2,...,m} and j,j’ € {1,2,...,n}. If i=¥,
then d(x, y) <2 as d(4)=2. Thus assume that i . As d(B)=2, i and i’ are contained
in a 3-cycle C. By Lemma 3(i), C is bichromatic. By the definition of H given
above, H[V(C) x V(K,)] = F, where F € (K3 x K,,) as introduced in the proof of
Proposition 4. Since d(F)=3, d(x,y)<3 in H. The proof is thus complete. O

Now, combining Propositions 4—-6 with Theorem 1 (for n=2) and noting that
d(K,, x K,)=2, we arrive at Theorem 2.
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8. The graphs K,, X Cy;+; Where m>4 and k>1

Our aim in this section is to show that E(Km X Cop+1)=k + 2 for all m=4 and
k=1. First of all, we have the following result for the general case.

Lemma 4. d(Ky, x Cox1) 2k +2 for all m>2 and k> 1.

Proof. Suppose to the contrary that there exists F € (K, X Cy41) such that d(F)=
k + 1. We may assume (2,1)—(1,1).

As d((1,1),(2,k+ 1)Y=k + 1 in K, X Coxy1, we must have (1,1)—(1,2) in F.
As d((2,k+ 1), (L1)=k+1, (2,k+1)—(2,k) = (2,k—1)—---—(2,1). Hence, to
ensure that d((1,1),(2,k + 1))=k + 1, we must have further (1,2)—(1,3)—---
- (Lk+1)—=(2,k+1). As d((2,k+2),(1,2))<k+1, (2,k+2)— (2,k+1). But then
d((2,k+1),(1,2k + 1)) =k + 2, a contradiction.

The result thus follows. [

The fact that p(K4)=2 requires an ad hoc approach to proving the first result in
this section.

Proposition 7. d(Ks x Cax1) =k + 2 for all k> 1.

Proof. As the result that Ti(K4 x K3)=3 was established in Proposition 4, we shall
assume that £ >2.
By Lemma 4, it suffices to provide an orientation of Ky x Cy;yy of diameter k + 2.

First, define 4 € 2(K,) as follows (see Fig. 10):

(i) 12223241,

(ii) 1 -3 and 2 — 4.

Note that

(1) d4(3,2)=d;(2,3)=3;
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(ii) the mapping f:V(4)— V(4A) defined by f(1)y=4, f(2)=3, f(3)=2 and
f(4)=1 is an isomorphism from 4 onto A
Now define F € (K4 x Cyr41) as follows:
() Fori=1,3, (i,1) > (i,2) = - — (5,2k + 1) = (i, 1);
(ii) For i=2,4, (i,2k + 1) > (i,2k) — - - — (i, 1) — (i, 2k + 1);
(iii) For j=1 (mod 2), 1<j<2k+ 1, Fj=4;
(iv) For j=0 (mod 2), 2<,/ <2k, Fj=A.
Such an orientation F of K4 x C7 is shown in Fig. 11.
We shall now prove that d(F)=#k + 2 by showing that d(x, y)<k + 2 for all x, y
in V(F).
Let x=(i,j) and y=(i',j'), where i,i’ € {1,2,3,4}, j,j €{1,2,...,2k + 1} and j,’
are taken modulo 2k + 1.
Case 1. i=1.
1;. For j=;" and i =2,3,4, d((1,/),(i',j'))<2.
l,. For j+ 1</ <j+k+2, (1,/)(1,j+1)...(1,;) is a path of length not exceeding
k+2.
15. For j+k+3<j/<j—1,
o if E=A=Fp, (L)) (2,))4,/)4,j—1)...(4,7)(1,)) is a path of length not
exceeding & + 1;
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o if F=Aand Fy =4, (1,j}(2,/)(2,j — 1)...(2,7/)(1,/) is a path of length not
exceeding k;

o if F =4 and Fpr =4, (1,/)(4,/)4,j—1)...(4,j/)(1,j') is a path of length not
exceeding &; and

o if F=A=Fy, (1,)(4 )4,/ = 1)...(4,7)(3,7)(1,//) is a path of length not
exceeding k + 1.

Lo For j+1</'<j+k and ' =2,3,4, d((1,)), (7', /) <d((1,),(1,/')) + d((1, "),

(i N<k+2.

Is. For j+k+1<j/<j -1,

o if FE=A=Fpr, (1,j)2,j)(2,j ~ 1)...(2,/)i",j"), where i’ =3,4, is a path of
length not exceeding k + 2;

o if =4 and £ =4, (1)), /)@2J — 1) (27, (LHG )b ) — 1)
(4.7, (LG ) = 1) (4,73, ), for j# ) +k + 1, and (1)) x
(3,)3,j+1)...(3,j + k + 1) are paths of length not exceeding k + 2;

o if F=A4 and Fr=4, (1j)(4.)@4) — 1)...(4,7), (1,j)4)4) — 1)...
4L )Y, where i =2,3, /1 #j + k + 1, and (LH(,;+ ...
(Lj+A+ 1), j+k+ 1), where i/ =2,3, are paths of length not exceeding
k+2; and

o if F=A=Fy, (1,j)(4,/)(4,j — 1)...(4,7 )i, /"), where i =2,3, are paths of
length not exceeding k + 2.

Case 2: i =2.
2. For j=j" and i"=1,3,4, d((2,/).(i',j"))<3.
2. For j+k~1<j'<j—1,(2,j)(2,j—1)...(2,/") is a path of length not exceeding
k+2.
23 For j+1<j/<j+k -2,

o if F=A=F/, (2,/))@4 )L+ ). .(1,7)2,)) is a path of length not
exceeding k + 1;

o if ;=4 and F} =4, (2, )3, )3B, 7+ 1)...(3,/)2,/') is a path of length not
exceeding k;

. ifF}E/i and Fpr =4, (2, /)L, )17+ 1)...(1,7/ )2,/ ) is a path of length not
exceeding &; and

° ifF}-EA~EFj/, 2 DN+ 1) (1,7 )4, /)2,5') is a path of length not
exceeding &k + 1.

2. For j+k+1<j<j-1,

o if Fyr=4, then d((2,/)(7, /")) <d((2,/).(2,j)) + d((2, ), (", J')) <k + 2 for
i'=1,3.4;

e if Fj =4, then A2, NN <A2,).(2,7)) + d(2. 7)), (i, j)) <k + 2 for
i'=1,4.

25. For j+k+2<j'<j~1,

o if £ =4, then d((2./)(3,/))<d((2,)),(2,/°) + d((2,/), 3,/ N<k-1+3=
k+2.

2. f Fjippy =4 and F, =4, where j+k +2< p<j, then d((2,7),3,j+k+ 1)<

d((2,)).(2, P))+4d(2, p). (4, p))+d(4, p), (4, +k+ 1) +d((4, j+k+1),(3,j +
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k + 1)). Observe that d((2, p),(4, p))=d((4,j +k +1),(3,j+k+1))=1 and
d((2,/),(2, p)) +d((4, p),(4,j + k + 1)) is equal to the distance from (2,;) to
(2,j +k+ 1) in F?, which is k. Thus, d((2,/),(3,j +k+ 1))<k +2.

27. For j+ 1<j'<j +k and FF=A=F, (2,/)3,/))3,j + 1)...(3,j'X4,)') and
2, NG NG6,7+ D). .G, p)Lp)XL,p+1)...(1,j), where j+ 1< p<j+k—1
and F, =4, are paths of length not exceeding k + 2.

2g. If F;=4 and Fy =4, then (2,/)(3,/)3,j+1)...(3,/)(1,;) for j+ 1</ <j+k,
(2,)GB. NG 7+1)...3,))1,j)4)) for j+1<j'<j+k—1, and (2,/)(4,/)
4,j—1)...(4,j + k+ 1)(4,j + k) are paths of length not exceeding & + 2.

2. If F=4 and Fy =4, then (2,/)(Lj)(1,j +1)...(1,/)3,/") for j+ 1</'<j +
k, 2,000,007+ D). .(1,)3,)4,j) for j+1<j<j+k—1, and (2,))
(2, —1)...(2,j + k)(4,j + k) are paths of length not exceeding &k + 2.

250. For j+ 1<//<j +k and F=A=Fy, (2,j)(L)(1,j + 1)...(1,/)4,j") and
CHMLHLj+ D ... (L, p)3, 3B, p+1)...(3,)), where j+ 1< p<j+k—1
and F, = A4, are paths of length not exceeding & + 2.

Case 3: i=3. The argument is similar to that of i=2 since 2 and 3 in 4 are the

isomorphic images of 3 and 2 in A4 under f, respectively (see Fig. 10).

Case 4: i=4. The argument is similar to that of i=1 since 1 and 4 in 4 are the

isomorphic images of 4 and 1 in 4 under f respectively (see Fig. 10).

The proof is now complete. [

Finally, we shall now apply Lemma 3 to determine Q(Km X Cat+1), where m=5.
Proposition 8. E(K,,, x Coyp1)=k+2 for m=5 and k>=1.

Proof. Let B€ 9(K,,) and 6 be a 2-colouring of K, satisfying the conditions stated
in Lemma 3. Define an orientation H of K,, x Cy;y1 as follows:
(1) Hi=Bforall j=1,2,...,2k + 1;
(ii) For i=1,2,...,m and 6(i)=5b, (i, 1) = (i,2)— - = G2k + 1) - (i, 1);
(iii) For i=1,2,...,m and 68(i)=w, (i,2k + 1) > (§,2k)— - - = (i, 1) = (i,2k + 1).

We shall now prove that d(H)=k + 2 by showing that d(x, y)<k +2 for all x, y
in V(H).

Let x=(i,j) and y=(i,;') where i,i’ € {1,2,...,m} and j,j €{1,2,...,2k + 1}.
Note that j and ;' are taken modulo 2k + 1. Let 6(i)=b. (The case that 8(i)=w can
be handled similarly.) Suppose i=i'. Then d(x, y)<k +2 for j + 1<j'<j+k+2.
So we consider j + &k + 3<j/<j — 1. As d(B)=2, i is contained in a 3-cycle C.
By Lemma 3, C is bichromatic. Hence, C contains a p such that 6(p)=w. Now
d(x, y)<d(x,(p, ) +d((p, i) (p,J ) +d((p.j), y)=d((p.j).(P,J)) +d(x(p. /) +
d((p,j' ) y)<k—2+3=k+1.

Assume now that i #i’. Suppose we have

(*) G)—(@,j) and 6()=b.

By Lemma 3, there exists a (i,7) — (i’,j) path of length not exceeding 3 such that
6(p)=w for some internal vertex (p,;) of the (i,j) — (i,j) path. Then for j + k
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+2<j'<j—1, d(x, y)<d(x,(p, ) +d((p, /). (p. ) N +d(p.j") ) <d((p. /). (P, J'))
+d(x,(p, ))+d((p, '), ¥) <k—1+3 =k+2. For j <j' <j+k+1, d(x, y)<d(x, (i, j' )+
a7 ), )<k +1+1=k+2.

Suppose (*) does not hold. As d(B)=2, i and i’ are contained in a 3-cycle C.
By Lemma 3, C is bichromatic. Hence, C contains a p such that 6( p)=w and either
p=i"or p—i Then for j+k+1<j<j—1, d(x, y)<d(x,(p,j)+d((p,j). (P, N+
d((p,j" ) y)<d((p,)),(p,J')) + d(x,(p, ) + d(p.j'), y) <k + 2. For j<j'<j+k,
d(x, y)<d(x,(i,j')) + d((i. /), y)) <k + 2.

The proof is thus complete.

Now combining Propositions 7 and 8, and noting that d(K,, X Cy+1)=k + 1, we
arrive at Theorem 3.

Finally, we would like to point out that the problem of determining d(K3 X Cops1)
is not as easy as we may believe and has not been settled yet.
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