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Abstract 

For a graph G, let ~(G) be the family of strong orientations of G, and define d ( G ) =  
min{d(D) I D E ~(G)}, where d(D) denotes the diameter of the digraph D. Let G x H denote 
the cartesian product of the graphs G and H. In this paper, we determine completely the values 
of d(K= xPn), d(Km xKn) and d(Kn x C2t+1), except d(K3 x C2k+l), k>_-2, where Kn, Pn and 
Cn denote the complete graph, path and cycle of order n, respectively. @ 1998 Elsevier Science 
B.V. All rights reserved 

1. Introduction 

Let G (resp., D) be a graph (resp., digraph) with vertex set V(G) (resp., V(D)). 
For v E V(G), the eccentricity e(v) of v is defined as e ( v ) =  max{d(v ,x) [xE V(G)}, 
where d(v,x) denotes the distance from v to x. The notion e(v) in D is similarly 

defined. The diameter of G (resp., D), denoted by d(G) (resp., d(D)), is defined as 

d(G) = max{e(v) Jv E V(G)} (resp., d(D) = max{e(v) Jv E V(D)}). 
An orientation of a graph G is a digraph obtained from G by assigning to each edge 

in G a direction. An orientation D of G is strong if  every two vertices in D are mutually 

reachable in D. An edge e in a connected graph G is a bridge if  G - e is disconnected. 

Robbins' celebrated one-way street theorem [16] states that a connected graph G has 
a strong orientation if  and only if no edge of  G is a bridge. Efficient algorithms for 
finding a strong orientation for a bridgeless connected graph can be found in Roberts 

[17], Boesch and Tindell [1] and Chung et al. [2]. Boesch and Tindell [1] extended 
Robbins' result to mixed graphs where edges could be directed or undirected. Chung 
et al. [2] provided a linear-time algorithm for testing whether a mixed graph has a 

strong orientation and finding one if it does. As another possible way of extending 
Robbins' theorem, Boesch and Tindell [1] (see also [3]) introduced further the notion 
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p(G) given below. Given a connected graph G containing no bridges, let ~(G) be the 
family of strong orientations of G. Define 

p(G) = min{a(D) lD C ,~(G)} - d(G). 

The first term on the right-hand side of the above equality is essential. Let us write 

d ( G )  = min{d(D) l(D ~ ~(G)}. 

The problem of evaluating d(G) for an arbitrary connected graph G is very difficult. 
As a matter of fact, Chvfital and Thomassen [3] showed that the problem of deciding 
whether a graph admits an orientation of diameter two is NP-hard. 

On the other hand, the parameter-d(G) has been studied in various classes of 
graphs including complete graphs [1,12, 15], complete bipartite graphs [1,22,4], com- 
plete k-partite graphs for k~>3 [5,7,8,14] and n-cubes [14,22,13]. Let G × H denote 
the cartesian product of two graphs G and H, and Pk the path of order k (i.e. of length 
k - 1), Ck the cycle of order k (i.e. of length k) and K, the complete graph of size n. 
Roberts and Xu [18-21], and independently Koh and Tan [6], evaluated the quantity 
~(P,n x P~). Very recently, Koh and Tay [9-11] evaluated the quantities d(C2~ x Pk), 
d ( C2m x C2n ) and d ( G~ x G2 x . . .  x Gin), where { Gi l 1 <~ i <~ m } is certain combination 
of paths and cycles. 

In this paper, we shall focus on the products K,, x P,, Km x Kn and Kp x C2k+1, 
where m~>2, n~>2, p~>4 and k>~ 1 and establish the following results: 

Theorem 1. For m >>. 2 and n >>. 2, 
(i) 

(ii) 

d ( K'n × Pn ) = {n+2n+l 

p(Km x P.)= { 21 

Theorem 2. For m >>. 2 and n >1 2, 
(i) 

d ( K r n x K n ) =  { ~ 

(ii) 

f 2 
p(K.. x K.) = 4 

I L 

i f  (m,n) E {(2,3), (2,5),(3,2)}, 
otherwise; 

i f  (m,n) E {(2, 3),(2, 5),(3,2)}, 
otherwise. 

if (m,n) = (3,2), 
otherwise; 

/f (m,n)---- (3,2), 
otherwise. 
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Theorem 3. For m >~ 4 and k ~ 1, 
(i) d(K,, × C2k+1 ) = k + 2; 

(ii) p(K,, × C2k+l )= 1. 

Note that the case when m = 3  in Theorem 3 has not been settled yet. Let 
H E {Pn,Kn, C2k+l}. In showing that p(Km × H ) =  1 for almost all the cases as shown 
above, /£4 always poses difficulties due to the fact that p(K4)= 2 (while p(Km)= 1 
for m~>3, m ¢ 4 ) .  We have, however, managed to show that p(K4 x H ) =  1. 

2. Notation and terminology 

The cartesian product G = G1 x G2 has V(G) = V(G1 ) x V(G2) and two vertices 

(uj,u2) and (vl,v2) of G are adjacent if and only if either 'ul =v l  and u2v2 E E(G2)' 

or 'u2 = v2 and UlVl EE(G1)' .  
We write V(KmxP~)=V(Km×K,)=V(KmxC,)={(i,j)II<~i<<.m,I<~j<~n }. 

Thus, two distinct vertices (i,j) and (i',j') are adjacent in Km × P, iff either 'i = i' 
and I j - j ' ]  = 1' or ' j  = j " ;  adjacent in Km x K, iff either i=i '  or j = j ' ;  and adjacent 
in Km× Cn iff either ' i=i '  and j - j ' =  d:l (modn) '  or ' j= j " .  

Let HE{P, ,K, ,C,} ,  and let F E ~ ( K m x H ) )  and A a subdigraph of F. The 
eccentricity, outdegree and indegree of a vertex (i,j) in A are denoted, respectively, 
by eA(i,j),sA(i,j) and s~(i,j). The subscript A is omitted if A = F .  

Let D be a digraph. A dipath (resp., dicycle) in D is simply called a path (resp., 
cycle) in D. For X C_ V(D), the subdigraph of D induced by X is denoted by D[X]. 
Given FE~(Km x H )  and l<~j<~n, let 

Fj =F[V(Km) x {j}], 

and for 1 ~< i ~< m, let 

F i = F [ { i }  × V(H)]. 

Let AE~(Km) and BE~(Kn) .  We write F j ~ A  (resp., Fi=-B) if the mapping 
:~---~A defined by ~(i,j):-i  (resp., fl :F i ---~B defined by [3(i,j)=j) is an isomor- 

phism of ~ onto A (resp., F i onto B). We also write Fj ~F~ if Fj--A and F~ _----_A; and 
F i =- F r if F i -- B and F r -= B. 

For x, y E V(D), we write 'x ~ y '  or 'y  ,-- x' i fx  is adjacent to y in D. The converse 
of D, denoted by/3 ,  is the digraph obtained from D by reversing each arc in D. 

3. The graphs K m ×  Pn where m ~ 4 

In this section, we shall show that d(Krn × Pn)=n + 1 for all m~>4 and n~>2. First 
of all, we have the following observation for the general case. 
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Fig. 1. 

Lemma 1. d(Km x Pn)>>.n + 1 for all m >12 and n>~2. 

Proof. Let F E ~ ( K m  xPn). Clearly, ( i , n -  1)---~(i,n) in F for some i, l<~i<<.m. But 
then d((i,n),(i,  1))>.n+ 1 in F. [] 

Proposition 1. d(Km x Pn)=n + 1 for all m>~4 and n>>.2. 

Proof. By Lemma 1, it suffices to provide an orientation of Km x P, of diameter n + 1. 
It is known (see [1, 12]) that 

_ { 2  if m ¢ 4 ,  
d(Km) = 

3 if m=4.  

We observe that I~(K4)] = 1, up to isomorphism. Also, for A E ~(K4), there exists a 
unique pair of vertices u, v in ,4 such that d(u, v) = 3 as shown in Fig. 1. 

Let A E ~(Km-I ) such that 

d (A)=  { 2  if m # 5 ,  

3 if m = 5 .  

and let B E N(K=) such that 

/ 2 if m 7 ~4, 
d(B) 

1 3 if m = 4 ,  

and if d(u , v )=3  in B, then uT~m and vT~m. For convenience, let V(A)---{1,2 . . . . .  
m - l } .  

Now, define an orientation F of Km x Pn as follows: 
(i) F[V(A) x {1}]--A and for 1 <~i<~m - 1, (m, 1)---~ (i, 1). 

(ii) For 2<~j<<.n - 1, F:=B.  
(iii) F[V(A) x {n}]--.4 and for l <~i<m - 1, (i,n)--*(m,n). 
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Fig. 2. 

(iv) For l<~i<<.m- 1, (i, 1)--*(i,2)--~ . . .  --~(i,n). 
(v) (m,n)--+(m,n- 1)--+ . . .  --~(m, 1). 

Such an orientation F of  K4 x P4 is shown in Fig. 2. 

We shall now prove that d(F)=n + 1 by showing that e(x)<~n + 1 for each vertex 
x in F.  There are six cases to consider. 

Case l(a): x = (m, 1). 
1. Clearly, d(x, y)  ~< 1 for all y E V(F1 ). 

2. For 2<<.a<~n- 1, the existence of  the paths: (m, 1)(j, 1)(j ,2). . . ( j ,a),  where 

j =  1,2 . . . . .  m -  1 in F and the fact that d((j,a),(m,a))<~2 in B show that d(x,y)<~ 
n + 1 for all y E V(Fa). 

3. The existence of  the paths (m, 1)(j, 1)(j,2).. .(j ,n)(m,n), j = l , 2  . . . . .  m -  1 in F 
shows that d(x,y)<~n + 1 for all y E  V(F,). 

Case l(b):  x = ( i ,  1) where l <~i<~m- 1. 
1. The fact that d(A)~<3 and that d(x,(m, 1))<.d(x,(i,2))+d((i,2),(m,2))+d((m,2), 

(m, 1))~<1 + 2 + 1 if n~>3 and the existence of  the path (i, 1)(i,2)(m,2)(m, 1) if 
n = 2  show that d(x,y)<~n+ 1 for all y E  V(F1). 

2. For 2<<.a<~n - 1 and 1 <~j<<.m, d(x,(j,a))<~d(x,(i,a)) + d((i,a),(j,a))<<.n - 2 + 
3 = n +  1. Thus, d(x,y)<~n+ 1 for all y E  V(F~). 

3. Let y = ( j , n ) E  V(F,). If  d(x,(j, 1))~<1 in F1, then (i, l ) ( j ,  1)(j,2). . .(j ,n)(m,n) 
is a path of  length n +  1 in F.  If ( j ,  1)--*x in F1, then as F[V(A) x {n}] - .4 ,  
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(i, 1)(i,2)...(i,n)(j,n)(m,n) is a path of  length n + 1 in F.  Thus, d(x,y)<<.n + 1 
for all y E V(F~). 

Case 2(a): x=(m,a)  where 2<<.a<n- 1. 
1. For 1 <~j<~m, d(x,(j, 1))<d(x,(m, 1)) + d((m, 1),( j ,  l))~<n - 2 + 1 - -n  - 1. Thus, 

d(x,y)<~n+ 1 for all y E  V(Fa). 

2. For 1 <<.j<<.m and 2<~b<a, d(x,(j,b))<~d(x,(m,b)) +d((m,b),(j,b))<~n - 3 + 2  -- 
n -  1. Thus, d(x,y)<~n+ 1 for all y E  V(Fb). 

3. Clearly, d(x,y)<~2 for all y in V(F~). 

4. For l<~j<m - 1 and a<b<<.n - 1, d(x,(j,b))<~d(x,(j,a))+ d((j,a),(j,b))<~ 
2 + n - 3  = n -  1 and d(x,(m,b))<~d(x,(p,a))+d((p,a),(p,b))+d((p,b),(m,b))<~ 
l + n - 3 + 2 = n  for some l < ~ p < m -  1 such thatx---~(p,a). Thus, d(x,y)<~n+l 
for all y E V(Fb). 

5. For 1 <~j<m - l, d(x,(j,n))<~d(x,(j,a)) + d(( j ,a) , ( j ,n))<2 + n - 2---n. Also, 

d(x,(m,n))<d(x,(p,a))+d((p,a),(p,n))+d((p,n),(m,n))<~l + n - 2 +  1 = n  for 
some l < p < ~ m -  1 such that x--,(p,a).  Thus, d(x,y)<<.n+ I for all y E  V(F~). 

Case 2(b): x=(i ,a)  where 1 <<.i<~m- 1 and 2<<.a<n- 1. 
1. For 1 <<.j<~m, d(x,(j, 1))<~d(x,(m,a))+d((m,a),(m, 1) )+d ( (m,  1) , ( j ,  1 ) ) ~ < 2 + n -  

2 +  l = n +  1. Thus, d(x,y)<.<n+ 1 for all y E  V(Fj). 

2. For 1 < j ~ m  and 2<~b<a, d(x,(j ,b))~d(x,(m,a)) + d((m,a),(m,b)) + d((m,b), 
( j , b ) ) < ~ 2 + n - 3 + 2 = n +  1. Thus, d(x , y )<n+ 1 for all y E  V(~) .  

3. Clearly, d(x,y)<~3 for all y in V(F~). 

4. For 1 <<.j<~m and a<b<~n-1, d(x,(j,b))<d(x,(i,b))+d((i,b),(j,b))<.%n-3+3 =n. 
Thus, d(x,y)<<.n+ 1 for all y E  V(Fb). 

5. For l<~j<~m, d(x,(j,n))<~d(x,(i,n)) + d((i,n),(j,n))<.n - 2 + 3 = n  + 1. Thus, 
d(x , y )<n+ 1 for all y E  V(F~). 
Case 3(a): x=(m,n).  

1. For l<~j<<.m and l<~a~n - 1, d(x,(j,a))<~d(x,(m,a)) + d((m,a),(j,a))<~ 
n -  1 + 2 = n +  1. Thus, d(x,y)<<.n+ 1 for all y E  V(Fa). 

2. For l<~j~m - 1, d(x,(j,n))<~d(x,(m,n - 1)) + d((m,n - 1) , ( j ,n  - 1) )+ 

d((j,n - 1 ) , ( j , n ) ) < l  + 2 + 1 i f  n~>3 and the existence of  the path (m,n)(m, 1) 
(j, 1)(j,n) i f  n = 2  show that d(x,y)<~n+ 1 for all y E  V(F,). 

Case 3(b): x=(i ,n)  where l <~i<<.m- 1. 
1. For l<.%j~m and 2<~a<~n - l, d(x,(j,a))<~d(x,(m,n)) + d((m,n),(m,a)) + 

d((m, a), (j, a)) <~ 1 +n-2+2 = n +  1 and d(x, (j, 1 )) <~ d(x, (m, n))+d((m, n), (m, 1 ) )+  
d((m, 1),( j ,  1))~< l + n - 1 + 1  - - n + l .  Thus, d(x,y)<~n+l for all y E  V(F~) U V(F1). 

2. Clearly, d(x,y)<~3 for all y in V(F~). 
The proof  is now complete. [] 

4. The graphs K3 × P~ 

In this section, we shall show that d(K3 x P 2 ) = 4  and d(K3 xPn)=n + 1 for all 
n~>3. 
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I 
Proposition 2. d(K3 x P2)= 4. 

Proof. It follows from Lemma 1 that d(K3 x P2)~>3. 

Claim. Let F E ~(K3 xP2). I f  s~,(v)=2 Jbr some i = 1 , 2  and some vE V(Fi), then 

d(F)>~4. 

Suppose to the contrary that d ( F ) = 3 .  We may assume that i =  1 and v=( l , 1 ) .  
This implies that (1,1)---+(1,2) in F. As d((1,1),(2,1))~<3 and d((1,1),(3,1))~<3, 
we have (1 ,2)--*(2,2)4(2,  1) and ( 1 , 2 ) ~  ( 3 , 2 ) ~  (3, 1) in F. As d((2, 1),(3, 1))~<3, 
(2, 1)4-*(3, 1) in F. But then d((3, 1),(2, 1))~>4, a contradiction. 

Now suppose d(K3 × P2)=3. By the above claim, we have only the two non- 
isomorphic orientations of K3 x P2 of Fig. 3 to consider. However, both orientations 
have diameter 5. Hence d(K3 x P2) ~> 4. 

It remains to provide an orientation of K3 x P2 with diameter 4. Such an orientation 
is shown in Fig. 4. 

The proof is thus complete. [] 

Proposition 3. d(K3 x Pn)=n + 1 for  all n>~3. 
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Fig. 5.

Proof. By Lemma 1, it suffices to provide an orientation of K3 x P,, of diameter n + 1.
Define an orientation F of KJ x P, as follows:

(9
(ii)
(iii)

(iv)

(1,1)+(2,1)+(3,1)  and (1,1)+(3,1X
(3,n)+(l,n)+(2,n)  and (3,n)+(2,n);
For 2Gj<n-- 1, (l,j)--+(2,j)-+(3,j)-+(l,j);
(l,n)-)(l,n  - l)-+ ... -+(l,l), (2,n)-+(2,n  - l)+ ... -(2,1), (3,1)-+
(3,2)--,  ... -(3,n).

Such an orientation of K3 x PS is shown in Fig. 5.
We shall now prove that d(F) = n + 1 by showing that e(x) <n + 1 for all x E V(F).

We shall split our consideration into 9 cases.
Case l(a): x = (l,l). Consider the following paths in F:

1. (l,l)(k,  1) for k=2,3;
2. (1,1)(3,1)(3,2)...(3,n)(k,n), k=1,2;
3. For 2<jdn-  1, (1,1)(3,1)(3,2)...(3,j)(l,j)(2,j).
It can be checked that each of these paths is of length not exceeding n + 1 and the
paths cover each vertex in F.

Case l(b): x = (2,l).  Consider the following paths in F:

1. (2,1)(3,1)(3,2)(1,2)(1,1);
2. (2,1)(3,1)(3,2)...(3,n)(k,n), k=1,2;
3. For 2<j<n- 1, (2,1)(3,1)(3,2)...(3,j)(l,j)(2,j).
It can be checked that each of these paths is of length not exceeding n + 1 and the
paths cover each vertex in F.
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Case l(c): x =(3 ,  1). Consider the following paths in F: 

1. (3, 1)(3,2)(1,2)(1, 1)(2, 1); 
2. (3,1)(3,2)...(3,n)(k,n), k=  1,2; 
3. For 2<~j<~n - 1, (3, 1) (3 ,2) . . . (3 , j ) (1 , j ) (2 , j ) .  
It can be checked that each of these paths is of length not exceeding n + 1 and the 

paths cover each vertex in F. 
Case 2(a): x = ( 1 , n ) .  Consider the following paths in F: 

1. (1,n)(2,n), (1,n)(1,n - 1)(2,n - 1 ) ( 3 , n -  1)(3,n); 

2. For l<~j<~n- 1, ( 1 , n ) ( 1 , n -  1).. .(l , j)(2,j)(3,j).  
It can be checked that each of these paths is of length not exceeding n + 1 and the 

paths cover each vertex in F. 
Case 2(b): x = (2, n). Consider the following paths in F: 

1. ( 2 , n ) ( 2 , n -  1)(3,n - 1)(3,n)(1,n); 
2. ( 2 , n ) ( 2 , n -  1) . . . (2,  1)(3, 1), ( 2 , n ) ( 2 , n -  1 ) ( 3 , n -  1 ) ( 1 , n -  1 ) ( 1 , n -  2) . . . (1 ,  1); 

3. For 2<~j<~n - 1, (2,n)(2,n - 1)...(2,j)(3,j)(1,j). 
It can be checked that each of these paths is of length not exceeding n ÷ 1 and the 

paths cover each vertex in F. 
Case 2(c): x = ( 3 , n ) .  Consider the following paths in F: 

1. (3,n)(k,n) for k- -  1,2; 
2. (3,n)(1,n)(1,n- 1) .. . (1,1)(k, 1), k = 2 , 3 ;  
3. For 2<~j<<.n- 1, (3,n)(l ,n)(1,n-  1)...(1,j)(2,j)(3,j). 
It can be checked that each of these paths is of length not exceeding n + 1 and the 
paths cover each vertex in F. 

Case 3(a): x = (1,j),  where 2 ~<j ~<n-  1. Consider the following paths in F: 
1. (1,j)(2,j)(3,j); 
2. ( 1 , j ) ( 1 , j -  1) . . . (1 ,1) (k , l ) ,  k = 2 , 3 ;  
3. (1,j)(2,j)(3,j)(3,j ÷ 1). . . (3,n)(k,n),  k = 1,2; 
4. For j<a<<.n-1, (1,j)(2,j)(3,j)(3,j+l)...(3,a)(1,a)(2,a); for 2<<.a<j, (1 , j )  

( 1 , j -  1)...(1,a)(2,a)(3,a). 
It can be checked that each of these paths is of length not exceeding n ÷ 1 and the 
paths cover each vertex in F. 

Case 3(b): x = (2,j),  where 2 ~<j ~<n - 1. Consider the following paths in F: 
1. (2,j)(3,j)(1,j); 
2. (2 , j ) (2 , j  - 1) . . . (2,  1)(3, 1), (2,j)(3,j)(1,j)(1,j - 1). . . (1,  1); 
3. (2,j)(3,j)(3,j ÷ 1) . . . (3 ,n)(k,n) ,k  --- 1,2; 
4. For j<a<<.n-  1, (2,j)(3,j)(3,j + 1)...(3,a)(1,a)(2,a); for 2<<.a<j, (2, j )  

( 2 , j -  1)...(2,a)(3,a)(1,a). 
It can be checked that each of these paths is of length not exceeding n + 1 and the 
paths cover each vertex in F. 

Case 3(c): x = ( 3 , j ) ,  where 2<~j<~n- 1. Consider the following paths in F: 
1. (3,j)(1,j)(2,j); 
2. (3 , j ) (1 , j ) (1 , j -  1). . .(1,1)(k,  1), k = 2 , 3 ;  
3. (3 , j ) (3 , j  + l ) . . . (3 ,n)(k ,n) ,  k = 1,2; 
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4. For j<a<~n - 1, (3 , j ) (3 , j  + 1).. .(3,a)(1,a)(2,a); for 2<~a<j, (3 , j ) (1 , j )  
( 1 , j -  1).. .(1,a)(2,a)(3,a). 

It can be checked that each of these paths is of length not exceeding n + 1 and the 
paths cover each vertex in F. 

The proof is now complete. [] 

Roberts and Xu [18] and, independently, Koh and Tan [6] have shown that 

d ( K 2 × P ~ ) =  { n + 2  i f n E { 3 , 5 } ,  

n + 1 otherwise. 

Combining this with Propositions 1-3 and noting that d(Km ×P~)=n, we have 
Theorem 1. 

5. The graphs Km× K3 

In this section, we shall show that d(Km ×/£3) = 3 for all m/> 3. But first of all, we 
have the following inequality for the general case. 

Lemma 2. d(Km x Kn)~>3 for all m>~3 and n>.3. 

Proof. Suppose to the contrary that there exists F E ~(Km x Kn) such that d ( F ) = 2 .  
We may assume (i,2)---~ (i, 1) for some i =  1,2 . . . . .  m in F. Let j =  1,2 . . . . .  m , j ¢ i .  As 
d((i, 1 ) , ( j ,2 ) )=2  in KmxKn, we must have (i, 1 ) ~ ( j ,  1 ) ~ ( j , 2 )  in F. Let 
k = l , 2  . . . . .  m, k ¢ i , j .  As d((i, 1) , (k ,2))=2 in KmxKn, we must have (i, 1)---~ 
(k, 1 ) ~ ( k , 2 )  in F. But then d((k,2),(j ,  1))t>3 in F, a contradiction. The result thus 
follows. [] 

Proposition 4. -d(Km ×/£3)= 3 for all m>>.3. 

Proof. By Lemma 2, it suffices to provide an orientation of Km× K3 of diameter 3. 
For the case when m = 4, the orientation of Fig. 6 is a desired one. 
We now consider the case when m 5 4 .  As m ~ 4, there exists A E ~(Km) such that 

d (A)=2 .  Define an orientation F of Kin ×/£3 as follows: 
(i) Fi - F 2  - d  but F3 -,'1; 

(ii) For i =  1,2 . . . .  ,m, (i, 1)---~(i,2)---~(i,3)--~(i, 1). 
We shall now prove that d(F)=  3 by showing that e(x)~<3 for each vertex x in F. 

There are three cases to consider. 
Case 1: x = (i, 1 ), where i =- 1,2 . . . . .  m. 

1. As d(Fi ) = d(A) = 2, it is clear that d(x, y)  ~< 2 in F for all y E V(FI ). 
2. As d ( F t ) = 2  and (j,  1)--~(j,2) for all j =  1,2 . . . . .  m, it follows that d(x,y)<~3 for 

all y E V(F2). 
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Fig. 6. 

3. Let y = ( k , 3 ) E  V(F3). If d(x,(k, 1))<.l in Fl, then (i, 1)(k, 1)(k,2)(k,3) is a x-y 
path of length at most 3 in F. If d(x,(k, 1) )=2  in Fl, then as F3 =P l ,  (i, 1)(i,2) 
(i,3)(k,3) is a x-y path of length 3 in F. Thus, d(x,y)<<.3 for all y E  V(F3). 

Case 2: x=( i ,2 ) ,  where i= 1,2 . . . . .  m. 
1. As d(F2)=2, d(x,y)<.2 in F for all y E  V(F2). 
2. Let yj=(k , j )EV(Fj) ,  where j = 3 , 1 .  If d(x,(k,2))<.l in F2, then (i,2)(k,2) 

(k,3)(k, 1) is a x-y1 path of length at most 3 in F which contains Y3. If d(x, 
(k,2)) = 2  in Fz, then (i,2)(i,3)(k,3)(k, 1) is a x-yl path of length 3 in F which 
contains Y3. Thus, d(x,y)<<.3 for all y E  V(F3)U V(F1). 

Case 3: x=( i ,3 ) ,  where i= 1,2 . . . . .  m. 
1. As d(F3)=2,d(x,y)<.2 for all y E  V(F3). 
2. Let yj=(k , j )EV(Fj) ,  where j = l , 2 .  If d(x,(k,3))<.l in F3, then (i,3)(k,3) 

(k, 1)(k,2) is a x-y2 path of length at most 3 in F which contains Yl. If 
d(x,(k,3))=2 in F3, then (i,3)(i, 1)(k, 1)(k,2) is a x-y2 path of length 3 in F 
which contains Yl. Thus, d(x ,y)~3 for all y E  V(F1)U V(F2). 

The proof that-d(Km × K3)= 3 is now complete. [] 

6. The graphs K,n × K4 

We shall proceed in this section to show that d(K,, × K4)=  3. As the result that 
d(K3 × K4)= 3 was established in Proposition 4, we shall assume in this section that 
m>~4. 
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(3, 1) 

(1, 4) 

Fig. 7. 

Proposition 5. -d(Km × K4)= 3 for all m>~4. 

Proof. Let A E ~(Km_l) such that d (A)=2  if m ¢ 5  and d (A)=3  if m = 5 .  For con- 
venience, let V= V(A)= {1,2 ..... m -  1}. Define an orientation F of KmxK4 as 
follows: 

(i) F[V x { I } ] - F [ V  × {3}]---A but F[V x {2}]=F[V x {4}]-=.4. 
(ii) For i = 1 , 2  . . . . .  m -  1, (m, 1)--~(i, 1) and (i,4)---~(m,4). For i = 1 , 2  . . . . .  m -  2, 

( m -  1,2)---* (re, Z)--, (i,2) and (i,3)---*(m,3)---,(m- 1,3). 
(iii) For i =  1,2 . . . . .  m -  1, (i, 1)---~ (i,3), (i,2)--~(i,4), (i, 1)---,(i,4)---,(i,3)--~(i,2)---~ 

(i, 1); (m, 1)--~(m,Z)--,(m,3)-*(m,4)---,(m, 1), (m,3)---~ (m, 1), (m,4)---~ (m,2). 
Such an orientation F of K4 x K4 is shown in Fig. 7. 
We shall now prove that d ( F ) = 3  by showing that e(x)~<3 for all xE V(F). We 

shall split our consideration into 8 cases. 
Case l(a): x = ( m ,  1). 

1. Clearly, d(x, y) ~< 1 for all y E V(F1 ). 
2. The existence of the paths (m, 1)(m,2)(m,3) and (m, 1)(j, 1)(j,3)(.L2), 

j =  1,2 . . . . .  m - 1 in F shows that d(x,y)<~3 for all y E  V(F2) U V(F3). 
3. The existence of the paths (m, 1)( L 1)(j,4)(m,4), j =  1,2 . . . . .  m - 1 in F shows 

that d(x,y)<.3 for all y E  V(F4). 
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Case l(b): x = ( i ,  1), where l <~i<~m- 1. 
1. Clearly, d(x,y)<.3 for all y in V(Fl)\{(m, 1)}. Observe that (i, 1)(i,4) (m,4)(m, l) 

is a path in F. Thus, d(x,(m, 1))<~3. 
2. Let j =  1,2 . . . . .  m-1.  If d((i, 1),(j, 1))~< 1 in Fl[V × {1}], then (i, 1)(j, 1)( j ,3)( j ,2)  

is a path in F; otherwise, (i, 1)(i,3)(i,2)(j,2) is a path in F. Thus, d(x,y)<~3 
for all y E  V(Fz)\{(m,2)}. Note that (i, 1)(i,4)(m,4)(m,2) is a path in F. Thus, 
d(x,(m,2))<~3. 

3. Let j = l , 2  . . . . .  m -  1. If d((i, 1),(j, 1))<~l in FI[V× {1}], then (i, 1)(j, 1)(j,3) 
is a path in F; otherwise, (i, 1)(i,4)(j,4)(j,3) is a path in F. Thus, d(x,y)<.3 
for all y E  V(F3)\{(m,3)}. For l<~i<~m- 2, (i, 1)(i,3)(m,3) is a path in F. As 
SF3[V×(3}I(m- 1,3)>0, ( m -  1,3)---~(p,3) for some p = l , 2  . . . . .  m --2. Thus 
(m -- 1, 1 ) ( m -  1,3)(p, 3)(m, 3) is a path in F. Thus, d(x,(m,3))<<.3. 

4. Let j =  1,2 . . . . .  m - 1. If d((i, l ) , ( j ,  1))~< 1 in FI[V × {1}], then (i, 1)(j, 1)(j,4) 
is a path in F; otherwise, (i, 1)(i,4)(j,4) is a path in F. Thus, d(x,y)<~2 for all 
yEV(F4)\{(m,4)}. Note also that (i, 1)(i,4)(m,4) is a path in F. Thus, 
d(x,(m,4))<~2. 

Case 2(a): x--(m,2).  

1. The existence of the paths (m,2)(m,3)(m, 1)(j, 1), j =  1,2 . . . .  ,m - 1 in F shows 
that d(x,y)<~3 for all y E  V(F~). 

2. Clearly, d(x,(j ,2))= 1 for all j =  1,2 . . . . .  m-2 .  As s~iv×{2}l(m-l,2)>O , (p,2)--* 
( m -  1,2) for some p =  1,2 . . . . .  m - 2 .  Thus, (m,2)(p ,2)(m-  1,2) is a path in F, 
and so d(x,(m - 1,2))=2.  

3. The existence of the paths (m,2)(j,2)(j,4)(j,3), j = 1,2 . . . .  , m - 2  and (m,2)(m, 3) 
(m - 1,3) in F shows that d(x,y)<.3 for all y E  V(F3). 

4. As S~[v×{4}](m- 1,4)>0, ( p , 4 ) ~ ( m -  1,4) for some p = l , 2  . . . .  , m - 2 .  Thus 
(m,2)(p,2)(p,4)(m- 1,4) is a path in F. The existence of this path together with 
the paths (m,2)(j,2)(j,4)(m,4), 1 <~j<~m - 2 ,  in F shows that d(x,y)<~3 for all 
y ¢ V(F4). 

Case 2(b): x=( i ,2 ) ,  where l <<.i<~m- 1. 
1. Let j =  1,2, . . . ,m - 1. If d((i,2),(j,2))<~l in F2[V × {2}], then (i,2)(j,Z)(j, 1) 

is a path in F; otherwise, (i, 2)(i, 1)(j, 1) is a path in F.  The existence of these 
paths together with the path (i,2)(i,4)(m,4)(m, 1) shows that d(x,y)<~3 for all 
y ~ V(F~). 

2. The fact that d(F2[V × {2}])-..<3 and the existence of the path (i,2)(i,4)(m,4)(m,2) 
show that d(x,y)<~3 for all y E V(F2). 

3. Let j -  1,2 . . . . .  m-1. Ifd((i,2),(j,2))<. 1 in F2[V x {2}], then (i ,2)(j ,2)(j ,4)(j ,3) 
is a path in F; otherwise, (i,2)(i,4)(i,3)(j,3) is a path in F. Thus, d(x,y)<~3 for 
all y E  V(F3)\{(m,3)}. For l<~i<~m- 2, (i,2)(i,4)(i,3)(m, 3) is a path in F; and 
for i=m - 1, ( m -  1,2)(m,2)(m, 3) is a path in F. Thus, d(x,(m,3))<~3. 

4. Let j = l , 2  . . . .  ,m - 1. If  d((i,2),(j,2))<~I in F2[Vx {2}], then (i,2)(j,2)(j,4) 
is a path in F; otherwise, (i,2)(i, 1)(j, 1)(j,4) is a path in F. The existence of 
these paths together with the path (i,2)(i,4)(m,4) shows that d(x,y)<~3 for all 
y E V(F4). 
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Case 3(a): x=(m,3) .  

l. The existence of the paths (m,3)(m, l)( j ,  1), l<~j<~m - 1, in F shows that 
d(x,y)<~2 for all y E  V(F~). 

2. The existence of the paths (m,3)(m,4)(m,2)(j,2), l<~j<~m - 2 ,  and (m,3) 
(m - 1,3)(m - 1,2) in F shows that d(x,y)<~3 for all y E  V(F2). 

3. The existence of the paths (m,3)(m, 1)(j, 1)(j,3), 1 <~j<~m- 1, in F shows that 
d(x,y)<<.3 for all y E  V(F3). 

4. The existence of the paths (m,3)(m, 1)(j, 1)(j,4), 1 <~j<~m- 1, and (m,3)(m,4) 
in F shows that d(x,y)<~3 for all y E  V(F4). 

Case 3(b): x - ( i , 3 ) ,  where l <~i<~m- 1. 
1. L e t j  = 1,2 . . . .  ,m-1 .  lfd((i,3),(j,3))<~ 1 in F3[V × {3)], then (i,3)(j,3)(j,2)(j, 1) 

is a path in F; otherwise, (i,3)(i,2)(j,2)(j, 1) is a path in F. Thus, d(x,y)<~3 for 
all y E  V(F1)\{(m, 1)}. For l<~i<<.m- 2, (i,3)(m,3)(m, 1) is a path in F; and for 
i = m -  1, there exists p =  1 , 2 , . . . , m - 2  such that ( m -  1,3)(p, 3)(m,3)(m, 1) is a 
path in F. Thus, d(x,(m, 1))~<3. 

2. Let j=-1,2 . . . . .  m - 1. If  d((i,3),(j,3))<~l in F3[V× {3}], then (i,3)(j,3)(j,2) 
is a path in F; otherwise, (i,3)(i,2)(j,2) is a path in F. Thus, d(x,y)<~2 for 
all y ~  V(FE)\{(m,2)}. For l<<.i<<.m- 2, (i,3)(m,3)(m, 1)(m,2) is a path in F; 
and for i = m -  1, ( m -  1 , 3 ) ( m -  1,2)(m,2) is a path in F. Thus, 
d(x,(m,2))<~3. 

3. Clearly, d(x,y)<~3 for all y in V(F3)\{(m,3)}. For l<~i<~m- 2, (i,3)(m,3) 
is a path in F; and for i = m -  1, there exists p = 1 , 2  . . . . .  m - 2  such that 
(m - 1,3)(p,3)(m, 3) is a path in F. Thus, d(x,(m,3))<~2. 

4. Let j =  1,2 . . . . .  m-1. Ifd((i,3),(j,3))<~ 1 in F3[V × {3}], then (i,3)(j,3)(j,2)(j,4) 
is a path in F; otherwise, (i,3)(i,2)(i,4)(j,4) is a path in F. Thus, d(x,y) _< 3 for 
all yE  V(F4)\{(m,4)}. For l ~ i ~ m - 2 ,  (i,3)(m,3)(m,4) is a path in F; and for 
i = m -  1, there exists p =  1,2 . . . . .  m - 2  such that ( m -  1,3)(p,3)(m,3)(m,4) is a 
path in F. Thus, d(x,(m,4))<~3. 

Case 4(a): x=(m,4) .  

1. The existence of the paths (m,4)(m, 1)(j, 1), l<~j<<.m- 1, shows that d(x,y)<.2 
for all y in V(F1). 

2. The existence of the paths (m,4)(m,2)(j,2), 1 <~j<~m- 2, and (m,4)(m,2)(p,2) 
( m -  1,2) for some p =  1,2 . . . . .  m - 2  in F shows that d(x,y)<~3 for all y E  V(Fz). 

3. The existence of the paths (m,4)(m, 1)(j, 1)(j,3), l ~ j  _< m -  1, and (m,4)(m,2) 
(m,3) in F shows that d(x,y)<~3 for all y E  V(F3). 

4. The existence of the paths (m,4)(m, 1)(j, 1)(j,4), 1 <~j<~m- 1, in F shows that 
d(x,y)<~3 for all y E  V(F4). 

Case 4(b): x=( i ,4 ) ,  where 1 <~i<~m - 1. 
1. The existence of the paths (i,4)(m,4)(m, 1)(j, 1), 1 <~j<<,m- 1, in F shows that 

d(x,y)<~3 for all y E  V(FI). 

2. Let j =  1,2,...,m - 1. If d((i,4),(j,4))<~l in F4[V x {4}], then (i,4)(j,4)(j,3) 
( j ,2)  is a path in F; otherwise, (i,4)(i,3)(i,2)(j,2) is a path in F. Also (i,4)(m,4) 
(m,2) is a path in F. It follows that d(x,y)<~3 for all y in V(F2). 
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3. Let j = 1,2 . . . . .  m - 1. I f  d((i,4),(j,4))<~ 1 in Fa[V x {4}], then ( i ,4) ( j ,4) ( j ,3)  is 

a path in F;  otherwise, ( i ,4)( i ,3)( j ,3)  is a path in F.  Also (i ,4)(m,4)(m,2)(m,3) 
is a path in F.  It follows that d(x ,y )<3  for all y in V(F3). 

4. The fact that d(x,y)<~3 for all y in V(F4) is obvious. 

The proof  is now complete. [] 

7. The graphs Km× Kn where m, n/> 5 

In this section we shall prove that d(Km x K~)--- 3 for all m~>5 and n~>5. 

A 2-colouring of  Kin, m~>3, is a mapping O:V(K,n)~ {black(b),white(w)}.  Let 

F E ~(Km) and 0 a 2-colouring of  Kin. A 3-cycle C in F is said to be bichromatic if  
O(u) # O(v) for some u, v in V(C). We begin with the following observation. 

L e m m a  3. For m>~5, there exist F E ~ ( K , n )  with d ( F ) = 2  and a 2-colouring 0 of 
Km such that 

(i) every 3-cycle in F is bichromatic; 
(ii) i f  u ~ v and O(u) = O(v), then there exists a u - v path of  length not exceeding 

3 such that O(x) # O(u) for some internal vertex x of the u - v path. 

Proof.  The statement is true for m = 5 and m = 6 as shown in Fig. 8. 

Assume the statement is true for m = p >~5. Consider m = p + 2. Let F E ~(Kp) 
and 0 be a 2-colouring of  Kp satisfying the hypothesis. Extend F on Kp to Kp+2 by 
assigning p + 2 ~ p + l ,  p + l ~ i a n d i ~ p + 2  for a l l i - - 1 , 2  . . . . .  p. Extend 0 on 
Kp to Kp+2 by defining O(p + 1 )---b and O(p + 2 ) =  w (see Fig. 9). Let F ~ and O' be 
the resulting extensions of  F and 0, respectively. 

It is straightforward to check that d ( F ) = 2  and that both of  F ~ and 0 ~ satisfy 

condition (i). 
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Fig. 9. 

We shall now show that (ii) holds. Assume that u ~  v and 0 ' ( u ) =  0~(v)=b (the 

case that O'(u)= 01(v)= w can be handled dually). I f  u E V(F), then v E V(F), and 
thus the result follows by induction. Thus, suppose that u = p + 1, and so v E V(F). 
Trivially, there exists x E V(F) such that O~(x) = w. As d(F) = 2, there exists a x - v 
path Q of length at most 2. Thus ux followed by Q is a required u - v path. [] 

Remark. Part (i) of  Lemma 3 will be used to prove Proposition 6 below, and 

both (i) and (ii) of  Lemma 3 will be applied to establish Proposition 8 in the next 

section. 

We are now in a position to establish the following result. 

Proposition 6. d(Km x K ~ ) = 3  for all m>>. 5 and n >>. 5. 

Proof. Let A E ~(Kn) with d(A)= 2. Let B E ~(K,n) and 0 be a 2-colouring of Km 

satisfying the conditions stated in Lemma 3. Define an orientation H of K,n × Kn as 

follows: 
(i) Hj = B  for all j =  1,2 . . . . .  n; 

(ii) For i =  1,2 . . . . .  m, 

H i = { ~  ~ i fO(i)=b, 

if  O(i) = w. 

We shall now prove that d ( H ) = 3  by showing that d(x,y)<~3 for all x,y in V(H). 
Let x = (i,j) and y = ( i ' , f ) ,  where i, i ' E { 1, 2 . . . . .  m} and j , j '  E { I, 2 . . . . .  n}. I f  i = i', 

then d(x, y)~< 2 as d(A)= 2. Thus assume that i ~ i'. As d(B)= 2, i and i' are contained 
in a 3-cycle C. By Lemma 3(i), C is bichromatic. By the definition of  H given 

above, H[V(C)× V(Kn)] ~ F, where F E ~ ( K 3  xKn) as introduced in the proof of  
Proposition 4. Since d ( F ) = 3 ,  d(x,y)<~3 in H.  The proof is thus complete. [] 

Now, combining Propositions 4 - 6  with Theorem 1 (for n = 2 )  and noting that 
d(Km x Kn)-=-2, we arrive at Theorem 2. 
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8. The graphs Km X C2k÷ 1 where m ~>4 and k >/1 

Our aim in this section is to show that d(Km x C2k+l):k + 2 for all m>~4 and 
k >~ 1. First of all, we have the following result for the general case. 

Lenuna 4. -d(Km x C2k+l)>.k + 2 for all m>~2 and k >~l. 

Proof. Suppose to the contrary that there exists F E ~(Km × C2k+l)  such that d (F) - -  
k + 1. We may assume (2, 1 ) ~ (1, 1 ). 

As d((1,1), (2, k + 1 ) ) = k  + 1 in Km× C2k+l, we must have (1,1)--~(1,2) in F. 
As d((2,k + 1),(1, 1 ) ) = k +  1, (2 ,k+  1)---~ (2,k)--* (2,k - 1)---~...---~ (2, 1). Hence, to 
ensure that d((1,1),(2,k + l ) ) = k  + l, we must have further ( 1 , 2 ) ~ ( 1 , 3 ) ~ . . .  
--~(1,k+ 1) ~ (2 ,k+ 1). As d( (2 , k+2) , (1 ,2 ) )~k+ 1, ( 2 ,k+2) -~  (2 ,k+ 1). But then 
d((2, k + 1 ), ( 1,2k + 1 )) >t k + 2, a contradiction. 

The result thus follows. [] 

The fact that p(K4)= 2 requires an ad hoc approach to proving the first result in 
this section. 

Proposition 7. d(K4 x C2k+l ) = k + 2 for all k >1 1. 

Proof. As the result that d(K4 × K3)=3  was established in Proposition 4, we shall 
assume that k >~2. 

By Lemma 4, it suffices to provide an orientation of K4 x C2k+l of diameter k + 2. 
First, define A E ~(K4) as follows (see Fig. 10): 

(i) 1 --~2--. 3 --. 4--~ 1; 
(ii) 1 ---~3 and 2--*4. 

Note that 
(i) dA3,2)=d~(2,3)= 3; 
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(1, 7) 

Fig. I 1. 

(ii) the mapping f:V(A)---+V(A) defined by f ( 1 ) = 4 ,  f ( 2 ) = 3 ,  f ( 3 ) = 2  and 
f ( 4 )  = 1 is an isomorphism from A onto A. 

Now define F E ~(K4 x C2k+l ) as follows: 
(i) For i =  1,3, (i, 1)--+(i,2)--+...--~(i,2k+ 1)--+(i, 1); 

(ii) For i=2 ,4 ,  (i,2k + 1)---+ (i,2k)--+...--+(i, 1)---+(i,2k+ 1); 
(iii) For j -  1 (mod 2), l~<j~<2k+ 1, Fj.=A; 
(iv) For j = 0  (mod 2), 2<~j<~2k, Fj=A. 

Such an orientation F of K4 × C7 is shown in Fig. 11. 
We shall now prove that d(F)=k + 2 by showing that d(x,y)<~k + 2 for all x,y 

in V(F). 
Let x = (i,j) and y = (i',j'), where i, i' E { 1,2, 3, 4}, j , j '  E { 1, 2 . . . . .  2k + 1 } and j , j '  

are taken modulo 2k + 1. 
Case 1: i =  1. 
11. For j = j '  and i' =2,3,4,  d((1,j),(i',j'))<<,2. 
12. For j +  1 <<,j'~j+k+2, (1 , j ) (1 , j+  1)... ( 1 , f )  is a path of length not exceeding 

k + 2 .  
13. F o r j + k + 3 ~ f < ~ j -  1, 

• if Fj=A ==-Ff, (1, j )(2, j )(4, j )(4, j -  1) . . . (4 , j ' ) (1 , j ' )  is a path of length not 
exceeding k + 1; 
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• if Fj ~A and Fj, =-A, ( 1 , j ) ( 2 , j ) ( 2 , j -  l ) . . . ( 2 , j ' ) ( 1 , f )  is a path of length not 
exceeding k; 

• i f ~  ~ A  and Fj, - A ,  (1, j ) (4, j ) (4, j  - 1) . . . ( 4 , j ' ) ( l , j ' )  is a path of length not 
exceeding k; and 

• if ~ = A - F j , ,  ( 1 , j ) ( 4 , j ) ( 4 , j -  1 ) . . . (4 , f ) (3 , j ' ) (1 , j ' )  is a path of length not 
exceeding k + 1. 

14. For j + 1 <.j'<,j + k and i' =2 ,3 ,4 ,  d((l , j) ,( i ' , j ' ))<~d((1,j) ,(1,j ' ))  + d((1,j ') ,  
(i',j'))<~k + 2. 

ls. F o r j + k + l < , j ' < ~ j - 1 ,  

• if Fj=_A =_Fj,, ( 1 , j ) ( 2 , j ) ( 2 , j -  l ) . . . (2 , j ' ) ( i ' , f ) ,  where i ' =3 ,4 ,  is a path of 
length not exceeding k + 2; 

• if Fj ~ A  and F), - A ,  (1, j ) (2, j ) (2, j  - 1)...  (2 , f ) ,  (X, j ) (3 , j ) (4 , j ) (4 , j  - 1)...  
(4,j '),  ( l , j ) ( 3 , j ) ( 4 , j ) ( 4 , j -  1).. .  (4 , j ' ) (3 , f ) ,  for f C j  + k + 1, and (1,j)  x 
(3 , j ) (3 , j  + 1) . . . (3 , j  + k + 1) are paths of length not exceeding k + 2; 

• if ~ - - A  and Fj,=_A, ( 1 , j ) ( 4 , j ) ( 4 , j -  1 ) . . . ( 4 , f ) ,  ( 1 , j ) ( 4 , j ) ( 4 , j -  1).. .  
(4, j ' ) (1 , j ' ) ( i ' , f ) ,  where i ' =2 ,3 ,  f C j  + k + 1, and (1 , j ) (1 , j  + 1).. .  
( 1 , j +  k + 1)(i ' , j  + k + I), where i t=2 ,3 ,  are paths of length not exceeding 
k + 2; and 

• if Fj--=A~Fy, ( 1 , j ) ( 4 , j ) ( 4 , j -  1) . . . (4 , j ' ) ( i ' , f ) ,  where i' =2 ,3 ,  are paths of 
length not exceeding k + 2. 

Case 2: i = 2. 
21. For j = j '  and i ' =  1,3,4, d((2,j),(i ' , j '))<,3. 

22. For j + k  - 1 ~<j' ~<j -  1, (2 , j ) (2 , j  - 1 ) . . . (2 , j ' )  is a path of length not exceeding 
k + 2 .  

23. F o r j + l < ~ f < ~ j + k - 2 ,  

• if Fj =A --z Fj.,, ( 2 , j ) (4 , j ) ( l , j ) ( 1 , j  + 1 ) . . .  ( 1 , j ' ) ( 2 , f )  is a path of length not 
exceeding k ÷ 1; 

• if Fj =-A and F / - -A ,  (2, j )(3, j )(3, j  + 1) . . . (3 , j ' ) (2 , j ' )  is a path of length not 
exceeding k; 

• if Fj _--A and Fj, =_A, (2, j ) (1, j ) (1, j  + 1)...  (1 , j ' ) (2 , j ' )  is a path of length not 
exceeding k; and 

• if ~ =.,~_--Fj,, (2, j ) (1, j ) (1, j  + 1 ) . . . ( 1 , j ' ) ( 4 , j ' ) ( 2 , f )  is a path of length not 
exceeding k + 1. 

24. For j + k + 1 ~ j '  ~<j - 1, 

• if Fj,--A, then d((2,j)(i ' , j '))<~d((2,j),(2,j ')) + d((2,j'),(i ' ,j '))<~k + 2 for 
i l =  1,3,4; 

• if Fj, =-.~, then d((2,j)(i ' , j '))<~d((2,j),(2,j ')) + d((2,j'),(i' ,j '))<~k + 2 for 
i / = 1,4. 

25. F o r j + k + 2 ~ < f ~ < j - 1 ,  

• if Fj, _--A, then d((2 , j ) (3 , f ) )<.d( (2 , j ) , (2 , f ) )  + d((2,j ') ,(3,f))<~k - 1 + 3 = 
k + 2 .  

26. If Fj+k+l ------A and Fp ~A ,  where j ÷ k + 2 <~ p<~j, then d((2, j) , (3, j  + k + 1 ))<~ 
d((2,j) ,  (2, p))  ÷ d((2, p), (4, p))  + d((4, p), (4,j  + k + 1 )) ÷ d((4, j  + k + 1 ), (3,j  ÷ 
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k + 1)). Observe that d((2,p),(4, p ) ) = d ( ( 4 , j  + k + 1),(3,j + k + 1))= 1 and 
d((2,j),(2, p ) ) +  d((4, p) , (4 , j  + k + 1)) is equal to the distance from (2,j) to 
( 2 , j ÷ k +  1) in F 2, which is k. Thus, d ( ( 2 , j ) , ( 3 , j ÷ k ÷  1))~<k÷2. 

27. For j ÷ l<~f <<.j + k and Fj_--A~Fj,, (2, j ) (3, j ) (3, j  ÷ 1 ) . . . (3 , j ' ) (4 , f )  and 
(2, j ) (3, j ) (3, j  ÷ 1 ) . . .  (3, p)(1, p)(1, p ÷ 1 ) . . .  (1,j '),  where j + 1 ~< p ~<j ÷ k - 1 
and Fp =_.4, are paths of length not exceeding k + 2. 

2s. I fFj  - A  and Fj, - A ,  then (2 , j ) (3 , j ) (3 , j÷  1 ) . . . ( 3 , f ) ( 1 , f )  for j ÷  1 <~j'<~j÷k, 
(2, j ) (3, j ) (3, j  + 1) . . . (3 , j ' ) (1 , j ' ) (4 , j ' )  for j ÷ 1 <~j'<~j ÷ k - 1, and (2, j)(4, j)  
(4,j  - 1) . . . (4 , j  + k + 1)(4,j + k) are paths of length not exceeding k + 2. 

29. If Fj - 2 and Fj, - A, then (2, j ) (1 , j ) (1 , j  + 1)... (1 , j ' ) (3, j ' )  for j + 1 ~<j' ~<j + 
k, (2, j ) (1, j ) (1, j  ÷ 1 ) . . . ( 1 , f ) ( 3 , j ' ) ( 4 , f )  for j ÷ l <~j' <~j ÷ k - 1, and (2,j) 
(2,j  - 1)...  (2,j  + k)(4, j  + k) are paths of length not exceeding k + 2. 

210. For j ÷ l <~f <~j ÷ k and Fj--A_--Fj,, (2 , j ) (1 , j ) ( l , j  ÷ 1 ) . . . (1 , j ' ) (4 , f )  and 
(2, j ) (1, j ) (1, j  ÷ 1) . . . (1,p)(3,  p)(3, p ÷  1) . . . (3 , f ) ,  where j +  l<~p<.j + k -  1 
and Fp =_ A, are paths of length not exceeding k + 2. 

Case 3: i--3.  The argument is similar to that of i - -2  since 2 and 3 in A are the 
isomorphic images of 3 and 2 in A under f ,  respectively (see Fig. 10). 

Case 4: i--4.  The argument is similar to that of i = 1 since 1 and 4 in A are the 
isomorphic images of 4 and 1 in A under f respectively (see Fig. 10). 

The proof is now complete. [] 

Finally, we shall now apply Lemma 3 to determine d(Km × C2k+l ), where m ~> 5. 

Proposition 8. d(Km x Czk+l ) = k + 2 for m >>. 5 and k >>. 1. 

Proof. Let B E ~(Km) and 0 be a 2-colouring of Km satisfying the conditions stated 
in Lernma 3. Define an orientation H of Km x CEk+l as follows: 

(i) Hj-=B for all j =  1,2 . . . . .  2k + 1; 
(ii) For i =  1,2 . . . . .  m and O(i)=b, (i, 1)--*(i,2)-*...---~(i,2k + 1)---~ (i, 1); 

(iii) For i =  1,2 . . . . .  m and O(i)=w, (i,2k + 1)---~ (i,2k)--*-..---~ (i, 1)--~(i,2k + 1). 
We shall now prove that d ( H ) = k  + 2 by showing that d(x,y)<~k + 2 for all x ,y  

in V(H). 
Let x = ( i , j )  and y = ( i ' , j ' )  where i , i 'E {1,2 . . . . .  m} and j, f E {1,2 . . . . .  2k + 1}. 

Note that j and j '  are taken modulo 2k + 1. Let O(i) = b. (The case that O(i) = w can 
be handled similarly.) Suppose i = i  ~. Then d(x,y)<~k + 2 for j + 1 ~ f ~ j  + k + 2. 
So we consider j + k + 3 ~<jt ~<j - 1. As d(B) = 2, i is contained in a 3-cycle C. 
By Lemma 3, C is bichromatic. Hence, C contains a p such that O(p)=w. Now 
d(x, y)  <~d(x, (p , j )  ) + d((p, j) ,  (p , j ' )  ) + d ( ( p , f  ), y)  = d((p, j) ,  (p , j ' )  ) + d(x, (p , j )  ) + 
d ( ( p , f ) , y ) < ~ k - 2  + 3 : k  + 1. 

Assume now that i S i/. Suppose we have 

( , )  (i,j)---~(i',j) and O(i')=b. 

By Lemma 3, there exists a (i,j) - (i ' , j) path of length not exceeding 3 such that 
O(p)=w for some internal vertex (p , j )  of the ( i , j ) -  (i ' ,j) path. Then for j + k 
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+ 2 <~j' <~j- 1, d(x, y)  <~d(x,(p,j) ) + d ( (p , j ) , (p , j ' )  ) + d((p, j ' ) ,  y) <.d((p , j ) , (p , j ' )  ) 
+ d(x, (p , j ) )+d( (p , j ' ) ,  y )  <~ k -  1 + 3  = k + 2 .  For  j ~<j' < ~ j + k +  1, d(x, y)  <<. d(x, (i , j ' ))+ 
d(( i , f ) ,y )<~k + 1 + 1 = k  + 2. 

Suppose ( , )  does not  hold. As d ( B ) = 2 ,  i and i ~ are contained in a 3-cycle C. 

By L e m m a  3, C is bichromatic.  Hence,  C contains  a p such that O(p)= w and either 

p = i ' or p ~ i ' .  Then  for j + k +  1 <~j' <~j- 1, d(x, y) <~d(x, ( p , j ) ) ÷ d ( ( p , j ) ,  ( p , j ' ) ) ÷  
d((p, j ' ) ,  y)<~d((p, j ) , (p , j ' ) )  ÷ d(x , (p , j ) )  ÷ d((p, j ' ) ,  y)<~k ÷ 2. For j<~j' <<.j ÷ k, 
d(x,y)<~d(x,(i,j ')) + d((i , j ' ) ,y))<.k ÷ 2. 

The proof  is thus complete. [] 

Now combin ing  Proposit ions 7 and 8, and not ing that d(Km x C 2 k + l ) = k  + 1, we 

arrive at Theorem 3. 

Final ly,  we would  like to point  out that the problem of  determining d(K3 × C2~+l ) 
is not as easy as we may  bel ieve and has not  been  settled yet. 
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