On optimal orientations of cartesian products of graphs (I)

K.M. Koh*, E.G. Tay
Department of Mathematics, National University of Singapore, Lower Kent Ridge Road, Singapore 119260, Singapore

Received 19 May 1997; revised 22 December 1997; accepted 12 January 1998

Abstract

For a graph G, let $\mathscr{D}(G)$ be the family of strong orientations of G, and define $\vec{d}(G)=$ $\min \{d(D) \mid D \in \mathscr{D}(G)\}$, where $d(D)$ denotes the diameter of the digraph D. Let $G \times H$ denote the cartesian product of the graphs G and H. In this paper, we determine completely the values of $\vec{d}\left(K_{m} \times P_{n}\right), \vec{d}\left(K_{m} \times K_{n}\right)$ and $\vec{d}\left(K_{n} \times C_{2 k+1}\right)$, except $\vec{d}\left(K_{3} \times C_{2 k+1}\right), k \geqslant 2$, where K_{n}, P_{n} and C_{n} denote the complete graph, path and cycle of order n, respectively. (C) 1998 Elsevier Science B.V. All rights reserved

1. Introduction

Let G (resp., D) be a graph (resp., digraph) with vertex set $V(G)$ (resp., $V(D)$). For $v \in V(G)$, the eccentricity $e(v)$ of v is defined as $e(v)=\max \{d(v, x) \mid x \in V(G)\}$, where $d(v, x)$ denotes the distance from v to x. The notion $e(v)$ in D is similarly defined. The diameter of G (resp., D), denoted by $d(G)$ (resp., $d(D)$), is defined as $d(G)=\max \{e(v) \mid v \in V(G)\}$ (resp., $d(D)=\max \{e(v) \mid v \in V(D)\}$).

An orientation of a graph G is a digraph obtained from G by assigning to each edge in G a direction. An orientation D of G is strong if every two vertices in D are mutually reachable in D. An edge e in a connected graph G is a bridge if $G-e$ is disconnected. Robbins' celebrated one-way street theorem [16] states that a connected graph G has a strong orientation if and only if no edge of G is a bridge. Efficient algorithms for finding a strong orientation for a bridgeless connected graph can be found in Roberts [17], Boesch and Tindell [1] and Chung et al. [2]. Boesch and Tindell [1] extended Robbins' result to mixed graphs where edges could be directed or undirected. Chung et al. [2] provided a linear-time algorithm for testing whether a mixed graph has a strong orientation and finding one if it does. As another possible way of extending Robbins' theorem, Boesch and Tindell [1] (see also [3]) introduced further the notion

[^0]$\rho(G)$ given below. Given a connected graph G containing no bridges, let $\mathscr{D}(G)$ be the family of strong orientations of G. Define
$$
\rho(G)=\min \{d(D) \mid D \in \mathscr{D}(G)\}-d(G) .
$$

The first term on the right-hand side of the above equality is essential. Let us write

$$
\vec{d}(G)=\min \{d(D) \mid(D \in \mathscr{D}(G)\} .
$$

The problem of evaluating $\vec{d}(G)$ for an arbitrary connected graph G is very difficult. As a matter of fact, Chvatal and Thomassen [3] showed that the problem of deciding whether a graph admits an orientation of diameter two is NP-hard.
On the other hand, the parameter $\vec{d}(G)$ has been studied in various classes of graphs including complete graphs [$1,12,15$], complete bipartite graphs [$1,22,4$], complete k-partite graphs for $k \geqslant 3$ [5,7,8,14] and n-cubes [14,22,13]. Let $G \times H$ denote the cartesian product of two graphs G and H, and P_{k} the path of order k (i.e. of length $k-1$), C_{k} the cycle of order k (i.e. of length k) and K_{n} the complete graph of size n. Roberts and Xu [18-21], and independently Koh and Tan [6], evaluated the quantity $\vec{d}\left(P_{m} \times P_{n}\right)$. Very recently, Koh and Tay [9-11] evaluated the quantities $\vec{d}\left(C_{2 n} \times P_{k}\right)$, $\vec{d}\left(C_{2 m} \times C_{2 n}\right)$ and $\vec{d}\left(G_{1} \times G_{2} \times \cdots \times G_{m}\right)$, where $\left\{G_{i} \mid 1 \leqslant i \leqslant m\right\}$ is certain combination of paths and cycles.

In this paper, we shall focus on the products $K_{m} \times P_{n}, K_{m} \times K_{n}$ and $K_{p} \times C_{2 k+1}$, where $m \geqslant 2, n \geqslant 2, p \geqslant 4$ and $k \geqslant 1$ and establish the following results:

Theorem 1. For $m \geqslant 2$ and $n \geqslant 2$,
(i)

$$
\vec{d}\left(K_{m} \times P_{n}\right)= \begin{cases}n+2 & \text { if }(m, n) \in\{(2,3),(2,5),(3,2)\}, \\ n+1 & \text { otherwise }\end{cases}
$$

(ii)

$$
\rho\left(K_{m} \times P_{n}\right)= \begin{cases}2 & \text { if }(m, n) \in\{(2,3),(2,5),(3,2)\}, \\ 1 & \text { otherwise } .\end{cases}
$$

Theorem 2. For $m \geqslant 2$ and $n \geqslant 2$,
(i)

$$
\vec{d}\left(K_{m} \times K_{n}\right)= \begin{cases}4 & \text { if }(m, n)=(3,2), \\ 3 & \text { otherwise } ;\end{cases}
$$

(ii)

$$
\rho\left(K_{m} \times K_{n}\right)= \begin{cases}2 & \text { if }(m, n)=(3,2), \\ 1 & \text { otherwise }\end{cases}
$$

Theorem 3. For $m \geqslant 4$ and $k \geqslant 1$,
(i) $\vec{d}\left(K_{m} \times C_{2 k+1}\right)=k+2$;
(ii) $\rho\left(K_{m} \times C_{2 k+1}\right)=1$.

Note that the case when $m=3$ in Theorem 3 has not been settled yet. Let $H \in\left\{P_{n}, K_{n}, C_{2 k+1}\right\}$. In showing that $\rho\left(K_{m} \times H\right)=1$ for almost all the cases as shown above, K_{4} always poses difficulties due to the fact that $\rho\left(K_{4}\right)=2$ (while $\rho\left(K_{m}\right)=1$ for $m \geqslant 3, m \neq 4$). We have, however, managed to show that $\rho\left(K_{4} \times H\right)=1$.

2. Notation and terminology

The cartesian product $G=G_{1} \times G_{2}$ has $V(G)=V\left(G_{1}\right) \times V\left(G_{2}\right)$ and two vertices (u_{1}, u_{2}) and (v_{1}, v_{2}) of G are adjacent if and only if either ' $u_{1}=v_{1}$ and $u_{2} v_{2} \in E\left(G_{2}\right)$ ' or ' $u_{2}=v_{2}$ and $u_{1} v_{1} \in E\left(G_{1}\right)$ '.

We write $V\left(K_{m} \times P_{n}\right)=V\left(K_{m} \times K_{n}\right)=V\left(K_{m} \times C_{n}\right)=\{(i, j) \mid 1 \leqslant i \leqslant m, 1 \leqslant j \leqslant n\}$. Thus, two distinct vertices (i, j) and (i^{\prime}, j^{\prime}) are adjacent in $K_{m} \times P_{n}$ iff either ' $i=i^{\prime}$ and $\left|j-j^{\prime}\right|=1$ ' or ' $j=j^{\prime}$ '; adjacent in $K_{m} \times K_{n}$ iff either $i=i^{\prime}$ or $j=j^{\prime}$; and adjacent in $K_{m} \times C_{n}$ iff either ' $i=i^{\prime}$ and $j-j^{\prime} \equiv \pm 1(\bmod n)$ ' or ' $j=j^{\prime}$ '.

Let $H \in\left\{P_{n}, K_{n}, C_{n}\right\}$, and let $F \in \mathscr{D}\left(K_{m} \times H\right)$) and A a subdigraph of F. The eccentricity, outdegree and indegree of a vertex (i, j) in A are denoted, respectively, by $e_{A}(i, j), s_{A}(i, j)$ and $s_{A}^{-}(i, j)$. The subscript A is omitted if $A=F$.

Let D be a digraph. A dipath (resp., dicycle) in D is simply called a path (resp., cycle) in D. For $X \subseteq V(D)$, the subdigraph of D induced by X is denoted by $D[X]$. Given $F \in \mathscr{D}\left(K_{m} \times H\right)$ and $1 \leqslant j \leqslant n$, let

$$
F_{j}=F\left[V\left(K_{m}\right) \times\{j\}\right],
$$

and for $1 \leqslant i \leqslant m$, let

$$
F^{i}=F[\{i\} \times V(H)] .
$$

Let $A \in \mathscr{D}\left(K_{m}\right)$ and $B \in \mathscr{D}\left(K_{n}\right)$. We write $F_{j} \equiv A$ (resp., $F^{i} \equiv B$) if the mapping $\alpha: F_{j} \rightarrow A$ defined by $\alpha(i, j)=i$ (resp., $\beta: F^{i} \rightarrow B$ defined by $\beta(i, j)=j$) is an isomorphism of F_{j} onto A (resp., F^{i} onto B). We also write $F_{j} \equiv F_{s}$ if $F_{j} \equiv A$ and $F_{s} \equiv A$; and $F^{i} \equiv F^{r}$ if $F^{i} \equiv B$ and $F^{r} \equiv B$.

For $x, y \in V(D)$, we write ' $x \rightarrow y$ ' or ' $y \leftarrow x$ ' if x is adjacent to y in D. The converse of D, denoted by \tilde{D}, is the digraph obtained from D by reversing each arc in D.

3. The graphs $K_{m} \times P_{n}$ where $m \geqslant 4$

In this section, we shall show that $\vec{d}\left(K_{m} \times P_{n}\right)=n+1$ for all $m \geqslant 4$ and $n \geqslant 2$. First of all, we have the following observation for the general case.

Fig. 1.

Lemma 1. $\vec{d}\left(K_{m} \times P_{n}\right) \geqslant n+1$ for all $m \geqslant 2$ and $n \geqslant 2$.
Proof. Let $F \in \mathscr{D}\left(K_{m} \times P_{n}\right)$. Clearly, $(i, n-1) \rightarrow(i, n)$ in F for some $i, 1 \leqslant i \leqslant m$. But then $d((i, n),(i, 1)) \geqslant n+1$ in F.

Proposition 1. $\vec{d}\left(K_{m} \times P_{n}\right)=n+1$ for all $m \geqslant 4$ and $n \geqslant 2$.
Proof. By Lemma 1, it suffices to provide an orientation of $K_{m} \times P_{n}$ of diameter $n+1$. It is known (see [1,12]) that

$$
\vec{d}\left(K_{m}\right)= \begin{cases}2 & \text { if } m \neq 4 \\ 3 & \text { if } m=4\end{cases}
$$

We observe that $\left|\mathscr{D}\left(K_{4}\right)\right|=1$, up to isomorphism. Also, for $A \in \mathscr{D}\left(K_{4}\right)$, there exists a unique pair of vertices u, v in A such that $d(u, v)=3$ as shown in Fig. 1.

Let $A \in \mathscr{D}\left(K_{m-1}\right)$ such that

$$
d(A)= \begin{cases}2 & \text { if } m \neq 5 \\ 3 & \text { if } m=5\end{cases}
$$

and let $B \in \mathscr{D}\left(K_{m}\right)$ such that

$$
d(B)= \begin{cases}2 & \text { if } m \neq 4 \\ 3 & \text { if } m=4\end{cases}
$$

and if $d(u, v)=3$ in B, then $u \neq m$ and $v \neq m$. For convenience, let $V(A)=\{1,2, \ldots$, $m-1\}$.

Now, define an orientation F of $K_{m} \times P_{n}$ as follows:
(i) $F[V(A) \times\{1\}] \equiv A$ and for $1 \leqslant i \leqslant m-1,(m, 1) \rightarrow(i, 1)$.
(ii) For $2 \leqslant j \leqslant n-1, F_{j} \equiv B$.
(iii) $F[V(A) \times\{n\}] \equiv \tilde{A}$ and for $1 \leqslant i \leqslant m-1,(i, n) \rightarrow(m, n)$.

Fig. 2.
(iv) For $1 \leqslant i \leqslant m-1,(i, 1) \rightarrow(i, 2) \rightarrow \cdots \rightarrow(i, n)$.
(v) $(m, n) \rightarrow(m, n-1) \rightarrow \cdots \rightarrow(m, 1)$.

Such an orientation F of $K_{4} \times P_{4}$ is shown in Fig. 2.
We shall now prove that $d(F)=n+1$ by showing that $e(x) \leqslant n+1$ for each vertex x in F. There are six cases to consider.

Case 1(a): $x=(m, 1)$.

1. Clearly, $d(x, y) \leqslant 1$ for all $y \in V\left(F_{1}\right)$.
2. For $2 \leqslant a \leqslant n-1$, the existence of the paths: $(m, 1)(j, 1)(j, 2) \ldots(j, a)$, where $j=1,2, \ldots, m-1$ in F and the fact that $d((j, a),(m, a)) \leqslant 2$ in B show that $d(x, y) \leqslant$ $n+1$ for all $y \in V\left(F_{a}\right)$.
3. The existence of the paths $(m, 1)(j, 1)(j, 2) \ldots(j, n)(m, n), j=1,2, \ldots, m-1$ in F shows that $d(x, y) \leqslant n+1$ for all $y \in V\left(F_{n}\right)$.
Case 1(b): $x=(i, 1)$ where $1 \leqslant i \leqslant m-1$.
4. The fact that $d(A) \leqslant 3$ and that $d(x,(m, 1)) \leqslant d(x,(i, 2))+d((i, 2),(m, 2))+d((m, 2)$, $(m, 1)) \leqslant 1+2+1$ if $n \geqslant 3$ and the existence of the path $(i, 1)(i, 2)(m, 2)(m, 1)$ if $n=2$ show that $d(x, y) \leqslant n+1$ for all $y \in V\left(F_{1}\right)$.
5. For $2 \leqslant a \leqslant n-1$ and $1 \leqslant j \leqslant m, d(x,(j, a)) \leqslant d(x,(i, a))+d((i, a),(j, a)) \leqslant n-2+$ $3=n+1$. Thus, $d(x, y) \leqslant n+1$ for all $y \in V\left(F_{a}\right)$.
6. Let $y=(j, n) \in V\left(F_{n}\right)$. If $d(x,(j, 1)) \leqslant 1$ in F_{1}, then $(i, 1)(j, 1)(j, 2) \ldots(j, n)(m, n)$ is a path of length $n+1$ in F. If $(j, 1) \rightarrow x$ in F_{1}, then as $F[V(A) \times\{n\}] \equiv \tilde{A}$,
$(i, 1)(i, 2) \ldots(i, n)(j, n)(m, n)$ is a path of length $n+1$ in F. Thus, $d(x, y) \leqslant n+1$ for all $y \in V\left(F_{n}\right)$.
Case 2(a): $x=(m, a)$ where $2 \leqslant a \leqslant n-1$.
7. For $1 \leqslant j \leqslant m, d(x,(j, 1)) \leqslant d(x,(m, 1))+d((m, 1),(j, 1)) \leqslant n-2+1=n-1$. Thus, $d(x, y) \leqslant n+1$ for all $y \in V\left(F_{1}\right)$.
8. For $1 \leqslant j \leqslant m$ and $2 \leqslant b<a, d(x,(j, b)) \leqslant d(x,(m, b))+d((m, b),(j, b)) \leqslant n-3+2=$ $n-1$. Thus, $d(x, y) \leqslant n+1$ for all $y \in V\left(F_{b}\right)$.
9. Clearly, $d(x, y) \leqslant 2$ for all y in $V\left(F_{a}\right)$.
10. For $1 \leqslant j \leqslant m-1$ and $a<b \leqslant n-1, d(x,(j, b)) \leqslant d(x,(j, a))+d((j, a),(j, b)) \leqslant$ $2+n-3=n-1$ and $d(x,(m, b)) \leqslant d(x,(p, a))+d((p, a),(p, b))+d((p, b),(m, b)) \leqslant$ $1+n-3+2=n$ for some $1 \leqslant p \leqslant m-1$ such that $x \rightarrow(p, a)$. Thus, $d(x, y) \leqslant n+1$ for all $y \in V\left(F_{b}\right)$.
11. For $1 \leqslant j \leqslant m-1, d(x,(j, n)) \leqslant d(x,(j, a))+d((j, a),(j, n)) \leqslant 2+n-2=n$. Also, $d(x,(m, n)) \leqslant d(x,(p, a))+d((p, a),(p, n))+d((p, n),(m, n)) \leqslant 1+n-2+1=n$ for some $1 \leqslant p \leqslant m-1$ such that $x \rightarrow(p, a)$. Thus, $d(x, y) \leqslant n+1$ for all $y \in V\left(F_{n}\right)$.
Case 2(b): $x=(i, a)$ where $1 \leqslant i \leqslant m-1$ and $2 \leqslant a \leqslant n-1$.
12. For $1 \leqslant j \leqslant m, d(x,(j, 1)) \leqslant d(x,(m, a))+d((m, a),(m, 1))+d((m, 1),(j, 1)) \leqslant 2+n-$ $2+1=n+1$. Thus, $d(x, y) \leqslant n+1$ for all $y \in V\left(F_{1}\right)$.
13. For $1 \leqslant j \leqslant m$ and $2 \leqslant b<a, d(x,(j, b)) \leqslant d(x,(m, a))+d((m, a),(m, b))+d((m, b)$, $(j, b)) \leqslant 2+n-3+2=n+1$. Thus, $d(x, y) \leqslant n+1$ for all $y \in V\left(F_{b}\right)$.
14. Clearly, $d(x, y) \leqslant 3$ for all y in $V\left(F_{a}\right)$.
15. For $1 \leqslant j \leqslant m$ and $a<b \leqslant n-1, d(x,(j, b)) \leqslant d(x,(i, b))+d((i, b),(j, b)) \leqslant n-3+3=n$. Thus, $d(x, y) \leqslant n+1$ for all $y \in V\left(F_{b}\right)$.
16. For $1 \leqslant j \leqslant m, d(x,(j, n)) \leqslant d(x,(i, n))+d((i, n),(j, n)) \leqslant n-2+3=n+1$. Thus, $d(x, y) \leqslant n+1$ for all $y \in V\left(F_{n}\right)$.
Case 3(a): $x=(m, n)$.
17. For $1 \leqslant j \leqslant m$ and $1 \leqslant a \leqslant n-1, d(x,(j, a)) \leqslant d(x,(m, a))+d((m, a),(j, a)) \leqslant$ $n-1+2=n+1$. Thus, $d(x, y) \leqslant n+1$ for all $y \in V\left(F_{a}\right)$.
18. For $1 \leqslant j \leqslant m-1, d(x,(j, n)) \leqslant d(x,(m, n-1))+d((m, n-1),(j, n-1))+$ $d((j, n-1),(j, n)) \leqslant 1+2+1$ if $n \geqslant 3$ and the existence of the path $(m, n)(m, 1)$ $(j, 1)(j, n)$ if $n=2$ show that $d(x, y) \leqslant n+1$ for all $y \in V\left(F_{n}\right)$.
Case 3(b): $x=(i, n)$ where $1 \leqslant i \leqslant m-1$.
19. For $1 \leqslant j \leqslant m$ and $2 \leqslant a \leqslant n-1, d(x,(j, a)) \leqslant d(x,(m, n))+d((m, n),(m, a))+$ $d((m, a),(j, a)) \leqslant 1+n-2+2=n+1$ and $d(x,(j, 1)) \leqslant d(x,(m, n))+d((m, n),(m, 1))+$ $d((m, 1),(j, 1)) \leqslant 1+n-1+1=n+1$. Thus, $d(x, y) \leqslant n+1$ for all $y \in V\left(F_{a}\right) \cup V\left(F_{1}\right)$.
20. Clearly, $d(x, y) \leqslant 3$ for all y in $V\left(F_{n}\right)$.

The proof is now complete.

4. The graphs $K_{3} \times P_{n}$

In this section, we shall show that $\vec{d}\left(K_{3} \times P_{2}\right)=4$ and $\vec{d}\left(K_{3} \times P_{n}\right)=n+1$ for all $n \geqslant 3$.

Fig. 3.

Fig. 4.
Proposition 2. $\vec{d}\left(K_{3} \times P_{2}\right)=4$.
Proof. It follows from Lemma 1 that $\vec{d}\left(K_{3} \times P_{2}\right) \geqslant 3$.
Claim. Let $F \in \mathscr{D}\left(K_{3} \times P_{2}\right)$. If $s_{F_{i}}^{-}(v)=2$ for some $i=1,2$ and some $v \in V\left(F_{i}\right)$, then $d(F) \geqslant 4$.

Suppose to the contrary that $d(F)=3$. We may assume that $i=1$ and $v=(1,1)$. This implies that $(1,1) \rightarrow(1,2)$ in F. As $d((1,1),(2,1)) \leqslant 3$ and $d((1,1),(3,1)) \leqslant 3$, we have $(1,2) \rightarrow(2,2) \rightarrow(2,1)$ and $(1,2) \rightarrow(3,2) \rightarrow(3,1)$ in F. As $d((2,1),(3,1)) \leqslant 3$, $(2,1) \rightarrow(3,1)$ in F. But then $d((3,1),(2,1)) \geqslant 4$, a contradiction.
Now suppose $\vec{d}\left(K_{3} \times P_{2}\right)=3$. By the above claim, we have only the two nonisomorphic orientations of $K_{3} \times P_{2}$ of Fig. 3 to consider. However, both orientations have diameter 5 . Hence $\vec{d}\left(K_{3} \times P_{2}\right) \geqslant 4$.
It remains to provide an orientation of $K_{3} \times P_{2}$ with diameter 4. Such an orientation is shown in Fig. 4.

The proof is thus complete.
Proposition 3. $\vec{d}\left(K_{3} \times P_{n}\right)=n+1$ for all $n \geqslant 3$.

Fig. 5.

Proof. By Lemma 1, it suffices to provide an orientation of $K_{3} x P_{n}$ of diameter n +1 . Define an orientation F of $K_{3} \times P_{n}$ as follows:
(i) $(1,1) \rightarrow(2,1) \rightarrow(3,1)$ and $(1,1) \rightarrow(3,1)$;
(ii) $(3, n) \rightarrow(1, n) \rightarrow(2, n)$ and $(3, n) \rightarrow(2, n)$;
(iii) For $2 \leqslant j \leqslant n-1,(1, j) \rightarrow(2, j) \rightarrow(3, j) \rightarrow(1, j)$;
(iv) $(1, n) \rightarrow(1, n-1) \rightarrow \cdots \rightarrow(1,1),(2, n) \rightarrow(2, n-1) \rightarrow \cdots \rightarrow(2,1),(3,1) \rightarrow$ $(3,2) \rightarrow \cdots \rightarrow(3, n)$.
Such an orientation of $K_{3} x P_{5}$ is shown in Fig. 5.
We shall now prove that $d(F)=n+1$ by showing that $\mathrm{e}(\mathrm{x}) \leqslant n+1$ for all $\mathrm{x} \in V(F)$.
We shall split our consideration into 9 cases.
Case 1(a): $x=(1,1)$. Consider the following paths in F :

1. $(1,1)(k, 1)$ for $k=2,3$;
2. $(1,1)(3,1)(3,2) \ldots(3, n)(k, n), k=1,2$;
3. For $2 \leqslant j \leqslant n-1,(1,1)(3,1)(3,2) \ldots(3, j)(1, j)(2, j)$.

It can be checked that each of these paths is of length not exceeding $n+1$ and the paths cover each vertex in F.

Case l(b): $x=(2,1)$. Consider the following paths in F :

1. $(2,1)(3,1)(3,2)(1,2)(1,1)$;
2. $(2,1)(3,1)(3,2) \ldots(3, n)(k, n), k=1,2$;

3 . For $2 \leqslant j \leqslant n-1,(2,1)(3,1)(3,2) \ldots(3, j)(1, j)(2, j)$.
It can be checked that each of these paths is of length not exceeding $n+1$ and the paths cover each vertex in F.

Case 1(c): $x=(3,1)$. Consider the following paths in F :

1. $(3,1)(3,2)(1,2)(1,1)(2,1)$;
2. $(3,1)(3,2) \ldots(3, n)(k, n), k=1,2$;
3. For $2 \leqslant j \leqslant n-1,(3,1)(3,2) \ldots(3, j)(1, j)(2, j)$.

It can be checked that each of these paths is of length not exceeding $n+1$ and the paths cover each vertex in F.

Case 2(a): $x=(1, n)$. Consider the following paths in F :

1. $(1, n)(2, n),(1, n)(1, n-1)(2, n-1)(3, n-1)(3, n)$;
2. For $1 \leqslant j \leqslant n-1,(1, n)(1, n-1) \ldots(1, j)(2, j)(3, j)$.

It can be checked that each of these paths is of length not exceeding $n+1$ and the paths cover each vertex in F.

Case 2(b): $x=(2, n)$. Consider the following paths in F :

1. $(2, n)(2, n-1)(3, n-1)(3, n)(1, n)$;
2. $(2, n)(2, n-1) \ldots(2,1)(3,1),(2, n)(2, n-1)(3, n-1)(1, n-1)(1, n-2) \ldots(1,1)$;
3. For $2 \leqslant j \leqslant n-1,(2, n)(2, n-1) \ldots(2, j)(3, j)(1, j)$.

It can be checked that each of these paths is of length not exceeding $n+1$ and the paths cover each vertex in F.

Case 2(c): $x=(3, n)$. Consider the following paths in F :

1. $(3, n)(k, n)$ for $k=1,2$;
2. $(3, n)(1, n)(1, n-1) \ldots(1,1)(k, 1), k=2,3$;
3. For $2 \leqslant j \leqslant n-1,(3, n)(1, n)(1, n-1) \ldots(1, j)(2, j)(3, j)$.

It can be checked that each of these paths is of length not exceeding $n+1$ and the paths cover each vertex in F.

Case 3(a): $x=(1, j)$, where $2 \leqslant j \leqslant n-1$. Consider the following paths in F :

1. $(1, j)(2, j)(3, j)$;
2. $(1, j)(1, j-1) \ldots(1,1)(k, 1), k=2,3$;
3. $(1, j)(2, j)(3, j)(3, j+1) \ldots(3, n)(k, n), k=1,2$;
4. For $j<a \leqslant n-1,(1, j)(2, j)(3, j)(3, j+1) \ldots(3, a)(1, a)(2, a)$; for $2 \leqslant a<j$, $(1, j)$ $(1, j-1) \ldots(1, a)(2, a)(3, a)$.
It can be checked that each of these paths is of length not exceeding $n+1$ and the paths cover each vertex in F.

Case 3(b): $x=(2, j)$, where $2 \leqslant j \leqslant n-1$. Consider the following paths in F :

1. $(2, j)(3, j)(1, j)$;
2. $(2, j)(2, j-1) \ldots(2,1)(3,1),(2, j)(3, j)(1, j)(1, j-1) \ldots(1,1)$;
3. $(2, j)(3, j)(3, j+1) \ldots(3, n)(k, n), k=1,2$;
4. For $j<a \leqslant n-1,(2, j)(3, j)(3, j+1) \ldots(3, a)(1, a)(2, a)$; for $2 \leqslant a<j$, $(2, j)$ $(2, j-1) \ldots(2, a)(3, a)(1, a)$.
It can be checked that each of these paths is of length not exceeding $n+1$ and the paths cover each vertex in F.

Case 3(c): $x=(3, j)$, where $2 \leqslant j \leqslant n-1$. Consider the following paths in F :

1. $(3, j)(1, j)(2, j)$;
2. $(3, j)(1, j)(1, j-1) \ldots(1,1)(k, 1), k=2,3$;
3. $(3, j)(3, j+1) \ldots(3, n)(k, n), k=1,2$;
4. For $j<a \leqslant n-1,(3, j)(3, j+1) \ldots(3, a)(1, a)(2, a)$; for $2 \leqslant a<j,(3, j)(1, j)$ $(1, j-1) \ldots(1, a)(2, a)(3, a)$.
It can be checked that each of these paths is of length not exceeding $n+1$ and the paths cover each vertex in F.
The proof is now complete.
Roberts and Xu [18] and, independently, Koh and Tan [6] have shown that

$$
\vec{d}\left(K_{2} \times P_{n}\right)= \begin{cases}n+2 & \text { if } n \in\{3,5\} \\ n+1 & \text { otherwise }\end{cases}
$$

Combining this with Propositions 1-3 and noting that $d\left(K_{m} \times P_{n}\right)=n$, we have Theorem 1.

5. The graphs $K_{m} \times K_{3}$

In this section, we shall show that $\vec{d}\left(K_{m} \times K_{3}\right)=3$ for all $m \geqslant 3$. But first of all, we have the following inequality for the general case.

Lemma 2. $\vec{d}\left(K_{m} \times K_{n}\right) \geqslant 3$ for all $m \geqslant 3$ and $n \geqslant 3$.
Proof. Suppose to the contrary that there exists $F \in \mathscr{D}\left(K_{m} \times K_{n}\right)$ such that $d(F)=2$. We may assume $(i, 2) \rightarrow(i, 1)$ for some $i=1,2, \ldots, m$ in F. Let $j=1,2, \ldots, m, j \neq i$. As $d((i, 1),(j, 2))=2$ in $K_{m} \times K_{n}$, we must have $(i, 1) \rightarrow(j, 1) \rightarrow(j, 2)$ in F. Let $k=1,2, \ldots, m, \quad k \neq i, j$. As $d((i, 1),(k, 2))=2$ in $K_{m} \times K_{n}$, we must have $(i, 1) \rightarrow$ $(k, 1) \rightarrow(k, 2)$ in F. But then $d((k, 2),(j, 1)) \geqslant 3$ in F, a contradiction. The result thus follows.

Proposition 4. $\vec{d}\left(K_{m} \times K_{3}\right)=3$ for all $m \geqslant 3$.
Proof. By Lemma 2, it suffices to provide an orientation of $K_{m} \times K_{3}$ of diameter 3.
For the case when $m=4$, the orientation of Fig. 6 is a desired one.
We now consider the case when $m \neq 4$. As $m \neq 4$, there exists $A \in \mathscr{D}\left(K_{m}\right)$ such that $d(A)=2$. Define an orientation F of $K_{m} \times K_{3}$ as follows:
(i) $F_{1} \equiv F_{2} \equiv A$ but $F_{3} \equiv \tilde{A}$;
(ii) For $i=1,2, \ldots, m,(i, 1) \rightarrow(i, 2) \rightarrow(i, 3) \rightarrow(i, 1)$.

We shall now prove that $d(F)=3$ by showing that $e(x) \leqslant 3$ for each vertex x in F. There are three cases to consider.

Case 1: $x=(i, 1)$, where $i=1,2, \ldots, m$.

1. As $d\left(F_{1}\right)=d(A)=2$, it is clear that $d(x, y) \leqslant 2$ in F for all $y \in V\left(F_{1}\right)$.
2. As $d\left(F_{1}\right)=2$ and $(j, 1) \rightarrow(j, 2)$ for all $j=1,2, \ldots, m$, it follows that $d(x, y) \leqslant 3$ for all $y \in V\left(F_{2}\right)$.

Fig. 6.
3. Let $y=(k, 3) \in V\left(F_{3}\right)$. If $d(x,(k, 1)) \leqslant 1$ in F_{1}, then $(i, 1)(k, 1)(k, 2)(k, 3)$ is a $x-y$ path of length at most 3 in F. If $d(x,(k, 1))=2$ in F_{1}, then as $F_{3} \equiv \tilde{F}_{1},(i, 1)(i, 2)$ $(i, 3)(k, 3)$ is a $x-y$ path of length 3 in F. Thus, $d(x, y) \leqslant 3$ for all $y \in V\left(F_{3}\right)$.
Case 2: $x=(i, 2)$, where $i=1,2, \ldots, m$.

1. As $d\left(F_{2}\right)=2, d(x, y) \leqslant 2$ in F for all $y \in V\left(F_{2}\right)$.
2. Let $y_{j}=(k, j) \in V\left(F_{j}\right)$, where $j=3,1$. If $d(x,(k, 2)) \leqslant 1$ in F_{2}, then $(i, 2)(k, 2)$ $(k, 3)(k, 1)$ is a $x-y_{1}$ path of length at most 3 in F which contains y_{3}. If $d(x$, $(k, 2))=2$ in F_{2}, then $(i, 2)(i, 3)(k, 3)(k, 1)$ is a $x-y_{1}$ path of length 3 in F which contains y_{3}. Thus, $d(x, y) \leqslant 3$ for all $y \in V\left(F_{3}\right) \cup V\left(F_{1}\right)$.
Case 3: $x=(i, 3)$, where $i=1,2, \ldots, m$.
3. As $d\left(F_{3}\right)=2, d(x, y) \leqslant 2$ for all $y \in V\left(F_{3}\right)$.
4. Let $y_{j}=(k, j) \in V\left(F_{j}\right)$, where $j=1,2$. If $d(x,(k, 3)) \leqslant 1$ in F_{3}, then $(i, 3)(k, 3)$ $(k, 1)(k, 2)$ is a $x-y_{2}$ path of length at most 3 in F which contains y_{1}. If $d(x,(k, 3))=2$ in F_{3}, then $(i, 3)(i, 1)(k, 1)(k, 2)$ is a $x-y_{2}$ path of length 3 in F which contains y_{1}. Thus, $d(x, y) \leqslant 3$ for all $y \in V\left(F_{1}\right) \cup V\left(F_{2}\right)$.
The proof that $\vec{d}\left(K_{m} \times K_{3}\right)=3$ is now complete.

6. The graphs $K_{m} \times K_{4}$

We shall proceed in this section to show that $\vec{d}\left(K_{m} \times K_{4}\right)=3$. As the result that $\vec{d}\left(K_{3} \times K_{4}\right)=3$ was established in Proposition 4, we shall assume in this section that $m \geqslant 4$.

Fig. 7.

Proposition 5. $\vec{d}\left(K_{m} \times K_{4}\right)=3$ for all $m \geqslant 4$.

Proof. Let $A \in \mathscr{D}\left(K_{m-1}\right)$ such that $d(A)=2$ if $m \neq 5$ and $d(A)=3$ if $m=5$. For convenience, let $V=V(A)=\{1,2, \ldots, m-1\}$. Define an orientation F of $K_{m} \times K_{4}$ as follows:
(i) $F[V \times\{1\}] \equiv F[V \times\{3\}] \equiv A$ but $F[V \times\{2\}] \equiv F[V \times\{4\}] \equiv \tilde{A}$.
(ii) For $i=1,2, \ldots, m-1,(m, 1) \rightarrow(i, 1)$ and $(i, 4) \rightarrow(m, 4)$. For $i=1,2, \ldots, m-2$, $(m-1,2) \rightarrow(m, 2) \rightarrow(i, 2)$ and $(i, 3) \rightarrow(m, 3) \rightarrow(m-1,3)$.
(iii) For $i=1,2, \ldots, m-1,(i, 1) \rightarrow(i, 3),(i, 2) \rightarrow(i, 4),(i, 1) \rightarrow(i, 4) \rightarrow(i, 3) \rightarrow(i, 2) \rightarrow$ $(i, 1) ;(m, 1) \rightarrow(m, 2) \rightarrow(m, 3) \rightarrow(m, 4) \rightarrow(m, 1),(m, 3) \rightarrow(m, 1),(m, 4) \rightarrow(m, 2)$.
Such an orientation F of $K_{4} \times K_{4}$ is shown in Fig. 7.
We shall now prove that $d(F)=3$ by showing that $e(x) \leqslant 3$ for all $x \in V(F)$. We shall split our consideration into 8 cases.

Case 1(a): $x=(m, 1)$.

1. Clearly, $d(x, y) \leqslant 1$ for all $y \in V\left(F_{1}\right)$.
2. The existence of the paths $(m, 1)(m, 2)(m, 3)$ and $(m, 1)(j, 1)(j, 3)(j, 2)$, $j=1,2, \ldots, m-1$ in F shows that $d(x, y) \leqslant 3$ for all $y \in V\left(F_{2}\right) \cup V\left(F_{3}\right)$.
3. The existence of the paths $(m, 1)(j, 1)(j, 4)(m, 4), j=1,2, \ldots, m-1$ in F shows that $d(x, y) \leqslant 3$ for all $y \in V\left(F_{4}\right)$.

Case 1(b): $x=(i, 1)$, where $1 \leqslant i \leqslant m-1$.

1. Clearly, $d(x, y) \leqslant 3$ for all y in $V\left(F_{1}\right) \backslash\{(m, 1)\}$. Observe that $(i, 1)(i, 4)(m, 4)(m, 1)$ is a path in F. Thus, $d(x,(m, 1)) \leqslant 3$.
2. Let $j=1,2, \ldots, m-1$. If $d((i, 1),(j, 1)) \leqslant 1$ in $F_{1}[V \times\{1\}]$, then $(i, 1)(j, 1)(j, 3)(j, 2)$ is a path in F; otherwise, $(i, 1)(i, 3)(i, 2)(j, 2)$ is a path in F. Thus, $d(x, y) \leqslant 3$ for all $y \in V\left(F_{2}\right) \backslash\{(m, 2)\}$. Note that $(i, 1)(i, 4)(m, 4)(m, 2)$ is a path in F. Thus, $d(x,(m, 2)) \leqslant 3$.
3. Let $j=1,2, \ldots, m-1$. If $d((i, 1),(j, 1)) \leqslant 1$ in $F_{1}[V \times\{1\}]$, then $(i, 1)(j, 1)(j, 3)$ is a path in F; otherwise, $(i, 1)(i, 4)(j, 4)(j, 3)$ is a path in F. Thus, $d(x, y) \leqslant 3$ for all $y \in V\left(F_{3}\right) \backslash\{(m, 3)\}$. For $1 \leqslant i \leqslant m-2,(i, 1)(i, 3)(m, 3)$ is a path in F. As $s_{F_{3}[V \times\{3\}]}(m-1,3)>0,(m-1,3) \rightarrow(p, 3)$ for some $p=1,2, \ldots, m-2$. Thus $(m-1,1)(m-1,3)(p, 3)(m, 3)$ is a path in F. Thus, $d(x,(m, 3)) \leqslant 3$.
4. Let $j=1,2, \ldots, m-1$. If $d((i, 1),(j, 1)) \leqslant 1$ in $F_{1}[V \times\{1\}]$, then $(i, 1)(j, 1)(j, 4)$ is a path in F; otherwise, $(i, 1)(i, 4)(j, 4)$ is a path in F. Thus, $d(x, y) \leqslant 2$ for all $y \in V\left(F_{4}\right) \backslash\{(m, 4)\}$. Note also that $(i, 1)(i, 4)(m, 4)$ is a path in F. Thus, $d(x,(m, 4)) \leqslant 2$.
Case 2(a): $x=(m, 2)$.
5. The existence of the paths $(m, 2)(m, 3)(m, 1)(j, 1), j=1,2, \ldots, m-1$ in F shows that $d(x, y) \leqslant 3$ for all $y \in V\left(F_{1}\right)$.
6. Clearly, $d(x,(j, 2))=1$ for all $j=1,2, \ldots, m-2$. As $s_{\left.F_{2} V \times\{2\}\right]}(m-1,2)>0,(p, 2) \rightarrow$ $(m-1,2)$ for some $p=1,2, \ldots, m-2$. Thus, $(m, 2)(p, 2)(m-1,2)$ is a path in F, and so $d(x,(m-1,2))=2$.
7. The existence of the paths $(m, 2)(j, 2)(j, 4)(j, 3), j=1,2, \ldots, m-2$ and $(m, 2)(m, 3)$ ($m-1,3$) in F shows that $d(x, y) \leqslant 3$ for all $y \in V\left(F_{3}\right)$.
8. As $s_{F_{1}[V \times\{4\}]}^{-}(m-1,4)>0,(p, 4) \rightarrow(m-1,4)$ for some $p=1,2, \ldots, m-2$. Thus $(m, 2)(p, 2)(p, 4)(m-1,4)$ is a path in F. The existence of this path together with the paths $(m, 2)(j, 2)(j, 4)(m, 4), 1 \leqslant j \leqslant m-2$, in F shows that $d(x, y) \leqslant 3$ for all $y \in V\left(F_{4}\right)$.
Case 2(b): $x=(i, 2)$, where $1 \leqslant i \leqslant m-1$.
9. Let $j=1,2, \ldots, m-1$. If $d((i, 2),(j, 2)) \leqslant 1$ in $F_{2}[V \times\{2\}]$, then $(i, 2)(j, 2)(j, 1)$ is a path in F; otherwise, $(i, 2)(i, 1)(j, 1)$ is a path in F. The existence of these paths together with the path $(i, 2)(i, 4)(m, 4)(m, 1)$ shows that $d(x, y) \leqslant 3$ for all $y \in V\left(F_{1}\right)$.
10. The fact that $d\left(F_{2}[V \times\{2\}]\right) \leqslant 3$ and the existence of the path $(i, 2)(i, 4)(m, 4)(m, 2)$ show that $d(x, y) \leqslant 3$ for all $y \in V\left(F_{2}\right)$.
11. Let $j=1,2, \ldots, m-1$. If $d((i, 2),(j, 2)) \leqslant 1$ in $F_{2}[V \times\{2\}]$, then $(i, 2)(j, 2)(j, 4)(j, 3)$ is a path in F; otherwise, $(i, 2)(i, 4)(i, 3)(j, 3)$ is a path in F. Thus, $d(x, y) \leqslant 3$ for all $y \in V\left(F_{3}\right) \backslash\{(m, 3)\}$. For $1 \leqslant i \leqslant m-2,(i, 2)(i, 4)(i, 3)(m, 3)$ is a path in F; and for $i=m-1,(m-1,2)(m, 2)(m, 3)$ is a path in F. Thus, $d(x,(m, 3)) \leqslant 3$.
12. Let $j=1,2, \ldots, m-1$. If $d((i, 2),(j, 2)) \leqslant 1$ in $F_{2}[V \times\{2\}]$, then $(i, 2)(j, 2)(j, 4)$ is a path in F; otherwise, $(i, 2)(i, 1)(j, 1)(j, 4)$ is a path in F. The existence of these paths together with the path $(i, 2)(i, 4)(m, 4)$ shows that $d(x, y) \leqslant 3$ for all $y \in V\left(F_{4}\right)$.

Case 3(a): $x=(m, 3)$.

1. The existence of the paths $(m, 3)(m, 1)(j, 1), 1 \leqslant j \leqslant m-1$, in F shows that $d(x, y) \leqslant 2$ for all $y \in V\left(F_{1}\right)$.
2. The existence of the paths $(m, 3)(m, 4)(m, 2)(j, 2), 1 \leqslant j \leqslant m-2$, and $(m, 3)$ $(m-1,3)(m-1,2)$ in F shows that $d(x, y) \leqslant 3$ for all $y \in V\left(F_{2}\right)$.
3. The existence of the paths $(m, 3)(m, 1)(j, 1)(j, 3), 1 \leqslant j \leqslant m-1$, in F shows that $d(x, y) \leqslant 3$ for all $y \in V\left(F_{3}\right)$.
4. The existence of the paths $(m, 3)(m, 1)(j, 1)(j, 4), 1 \leqslant j \leqslant m-1$, and $(m, 3)(m, 4)$ in F shows that $d(x, y) \leqslant 3$ for all $y \in V\left(F_{4}\right)$.
Case 3(b): $x=(i, 3)$, where $1 \leqslant i \leqslant m-1$.
5. Let $j=1,2, \ldots, m-1$. If $d((i, 3),(j, 3)) \leqslant 1$ in $F_{3}[V \times\{3\}]$, then $(i, 3)(j, 3)(j, 2)(j, 1)$ is a path in F; otherwise, $(i, 3)(i, 2)(j, 2)(j, 1)$ is a path in F. Thus, $d(x, y) \leqslant 3$ for all $y \in V\left(F_{1}\right) \backslash\{(m, 1)\}$. For $1 \leqslant i \leqslant m-2,(i, 3)(m, 3)(m, 1)$ is a path in F; and for $i=m-1$, there exists $p=1,2, \ldots, m-2$ such that $(m-1,3)(p, 3)(m, 3)(m, 1)$ is a path in F. Thus, $d(x,(m, 1)) \leqslant 3$.
6. Let $j=1,2, \ldots, m-1$. If $d((i, 3),(j, 3)) \leqslant 1$ in $F_{3}[V \times\{3\}]$, then $(i, 3)(j, 3)(j, 2)$ is a path in F; otherwise, $(i, 3)(i, 2)(j, 2)$ is a path in F. Thus, $d(x, y) \leqslant 2$ for all $y \in V\left(F_{2}\right) \backslash\{(m, 2)\}$. For $1 \leqslant i \leqslant m-2,(i, 3)(m, 3)(m, 1)(m, 2)$ is a path in F; and for $i=m-1,(m-1,3)(m-1,2)(m, 2)$ is a path in F. Thus, $d(x,(m, 2)) \leqslant 3$.
7. Clearly, $d(x, y) \leqslant 3$ for all y in $V\left(F_{3}\right) \backslash\{(m, 3)\}$. For $1 \leqslant i \leqslant m-2,(i, 3)(m, 3)$ is a path in F; and for $i=m-1$, there exists $p=1,2, \ldots, m-2$ such that $(m-1,3)(p, 3)(m, 3)$ is a path in F. Thus, $d(x,(m, 3)) \leqslant 2$.
8. Let $j=1,2, \ldots, m-1$. If $d((i, 3),(j, 3)) \leqslant 1$ in $F_{3}[V \times\{3\}]$, then $(i, 3)(j, 3)(j, 2)(j, 4)$ is a path in F; otherwise, $(i, 3)(i, 2)(i, 4)(j, 4)$ is a path in F. Thus, $d(x, y) \leq 3$ for all $y \in V\left(F_{4}\right) \backslash\{(m, 4)\}$. For $1 \leqslant i \leqslant m-2,(i, 3)(m, 3)(m, 4)$ is a path in F; and for $i=m-1$, there exists $p=1,2, \ldots, m-2$ such that $(m-1,3)(p, 3)(m, 3)(m, 4)$ is a path in F. Thus, $d(x,(m, 4)) \leqslant 3$.
Case 4(a): $x=(m, 4)$.
9. The existence of the paths $(m, 4)(m, 1)(j, 1), 1 \leqslant j \leqslant m-1$, shows that $d(x, y) \leqslant 2$ for all y in $V\left(F_{1}\right)$.
10. The existence of the paths $(m, 4)(m, 2)(j, 2), 1 \leqslant j \leqslant m-2$, and $(m, 4)(m, 2)(p, 2)$ $(m-1,2)$ for some $p=1,2, \ldots, m-2$ in F shows that $d(x, y) \leqslant 3$ for all $y \in V\left(F_{2}\right)$.
11. The existence of the paths $(m, 4)(m, 1)(j, 1)(j, 3), 1 \leqslant j \leq m-1$, and $(m, 4)(m, 2)$ $(m, 3)$ in F shows that $d(x, y) \leqslant 3$ for all $y \in V\left(F_{3}\right)$.
12. The existence of the paths $(m, 4)(m, 1)(j, 1)(j, 4), 1 \leqslant j \leqslant m-1$, in F shows that $d(x, y) \leqslant 3$ for all $y \in V\left(F_{4}\right)$.
Case 4(b): $x=(i, 4)$, where $1 \leqslant i \leqslant m-1$.
13. The existence of the paths $(i, 4)(m, 4)(m, 1)(j, 1), 1 \leqslant j \leqslant m-1$, in F shows that $d(x, y) \leqslant 3$ for all $y \in V\left(F_{1}\right)$.
14. Let $j=1,2, \ldots, m-1$. If $d((i, 4),(j, 4)) \leqslant 1$ in $F_{4}[V \times\{4\}]$, then $(i, 4)(j, 4)(j, 3)$ $(j, 2)$ is a path in F; otherwise, $(i, 4)(i, 3)(i, 2)(j, 2)$ is a path in F. Also $(i, 4)(m, 4)$ $(m, 2)$ is a path in F. It follows that $d(x, y) \leqslant 3$ for all y in $V\left(F_{2}\right)$.

Fig. 8.
3. Let $j=1,2, \ldots, m-1$. If $d((i, 4),(j, 4)) \leqslant 1$ in $F_{4}[V \times\{4\}]$, then $(i, 4)(j, 4)(j, 3)$ is a path in F; otherwise, $(i, 4)(i, 3)(j, 3)$ is a path in F. Also $(i, 4)(m, 4)(m, 2)(m, 3)$ is a path in F. It follows that $d(x, y) \leqslant 3$ for all y in $V\left(F_{3}\right)$.
4. The fact that $d(x, y) \leqslant 3$ for all y in $V\left(F_{4}\right)$ is obvious.

The proof is now complete.

7. The graphs $K_{m} \times K_{n}$ where $m, n \geqslant 5$

In this section we shall prove that $\vec{d}\left(K_{m} \times K_{n}\right)=3$ for all $m \geqslant 5$ and $n \geqslant 5$.
A 2-colouring of $K_{m}, m \geqslant 3$, is a mapping $\theta: V\left(K_{m}\right) \rightarrow\{$ black(b), white(w) $\}$. Let $F \in \mathscr{D}\left(K_{m}\right)$ and θ a 2 -colouring of K_{m}. A 3-cycle C in F is said to be bichromatic if $\theta(u) \neq \theta(v)$ for some u, v in $V(C)$. We begin with the following observation.

Lemma 3. For $m \geqslant 5$, there exist $F \in \mathscr{D}\left(K_{m}\right)$ with $d(F)=2$ and a 2 -colouring θ of K_{m} such that
(i) every 3-cycle in F is bichromatic;
(ii) if $u \rightarrow v$ and $\theta(u)=\theta(v)$, then there exists $a u-v$ path of length not exceeding 3 such that $\theta(x) \neq \theta(u)$ for some internal vertex x of the $u-v$ path.

Proof. The statement is true for $m=5$ and $m=6$ as shown in Fig. 8 .
Assume the statement is true for $m=p \geqslant 5$. Consider $m=p+2$. Let $F \in \mathscr{D}\left(K_{p}\right)$ and θ be a 2 -colouring of K_{p} satisfying the hypothesis. Extend F on K_{p} to K_{p+2} by assigning $p+2 \rightarrow p+1, p+1 \rightarrow i$ and $i \rightarrow p+2$ for all $i=1,2, \ldots, p$. Extend θ on K_{p} to K_{p+2} by defining $\theta(p+1)=b$ and $\theta(p+2)=w$ (see Fig. 9). Let F^{\prime} and θ^{\prime} be the resulting extensions of F and θ, respectively.

It is straightforward to check that $d\left(F^{\prime}\right)=2$ and that both of F^{\prime} and θ^{\prime} satisfy condition (i).

Fig. 9.

We shall now show that (ii) holds. Assume that $u \rightarrow v$ and $\theta^{\prime}(u)=\theta^{\prime}(v)=b$ (the case that $\theta^{\prime}(u)=\theta^{\prime}(v)=w$ can be handled dually). If $u \in V(F)$, then $v \in V(F)$, and thus the result follows by induction. Thus, suppose that $u=p+1$, and so $v \in V(F)$. Trivially, there exists $x \in V(F)$ such that $\theta^{\prime}(x)=w$. As $d(F)=2$, there exists a $x-v$ path Q of length at most 2 . Thus $u x$ followed by Q is a required $u-v$ path.

Remark. Part (i) of Lemma 3 will be used to prove Proposition 6 below, and both (i) and (ii) of Lemma 3 will be applied to establish Proposition 8 in the next section.

We are now in a position to establish the following result.
Proposition 6. $\vec{d}\left(K_{m} \times K_{n}\right)=3$ for all $m \geqslant 5$ and $n \geqslant 5$.
Proof. Let $A \in \mathscr{D}\left(K_{n}\right)$ with $d(A)=2$. Let $B \in \mathscr{D}\left(K_{m}\right)$ and θ be a 2 -colouring of K_{m} satisfying the conditions stated in Lemma 3. Define an orientation H of $K_{m} \times K_{n}$ as follows:
(i) $H_{j} \equiv B$ for all $j=1,2, \ldots, n$;
(ii) For $i=1,2, \ldots, m$,

$$
H^{i} \equiv \begin{cases}A & \text { if } \theta(i)=b \\ \tilde{A} & \text { if } \theta(i)=w\end{cases}
$$

We shall now prove that $d(H)=3$ by showing that $d(x, y) \leqslant 3$ for all x, y in $V(H)$.
Let $x=(i, j)$ and $y=\left(i^{\prime}, j^{\prime}\right)$, where $i, i^{\prime} \in\{1,2, \ldots, m\}$ and $j, j^{\prime} \in\{1,2, \ldots, n\}$. If $i=i^{\prime}$, then $d(x, y) \leqslant 2$ as $d(A)=2$. Thus assume that $i \neq i^{\prime}$. As $d(B)=2, i$ and i^{\prime} are contained in a 3 -cycle C. By Lemma 3(i), C is bichromatic. By the definition of H given above, $H\left[V(C) \times V\left(K_{n}\right)\right] \cong F$, where $F \in \mathscr{D}\left(K_{3} \times K_{n}\right)$ as introduced in the proof of Proposition 4. Since $d(F)=3, d(x, y) \leqslant 3$ in H. The proof is thus complete.

Now, combining Propositions 4-6 with Theorem 1 (for $n=2$) and noting that $d\left(K_{m} \times K_{n}\right)=2$, we arrive at Theorem 2.

Fig. 10.

8. The graphs $K_{m} \times C_{2 k+1}$ where $m \geqslant 4$ and $k \geqslant 1$

Our aim in this section is to show that $\vec{d}\left(K_{m} \times C_{2 k+1}\right)=k+2$ for all $m \geqslant 4$ and $k \geqslant 1$. First of all, we have the following result for the general case.

Lemma 4. $\vec{d}\left(K_{m} \times C_{2 k+1}\right) \geqslant k+2$ for all $m \geqslant 2$ and $k \geqslant 1$.

Proof. Suppose to the contrary that there exists $F \in \mathscr{D}\left(K_{m} \times C_{2 k+1}\right)$ such that $d(F)=$ $k+1$. We may assume $(2,1) \rightarrow(1,1)$.

As $d((1,1),(2, k+1))=k+1$ in $K_{m} \times C_{2 k+1}$, we must have $(1,1) \rightarrow(1,2)$ in F. As $d((2, k+1),(1,1))=k+1,(2, k+1) \rightarrow(2, k) \rightarrow(2, k-1) \rightarrow \cdots \rightarrow(2,1)$. Hence, to ensure that $d((1,1),(2, k+1))=k+1$, we must have further $(1,2) \rightarrow(1,3) \rightarrow \cdots$ $\rightarrow(1, k+1) \rightarrow(2, k+1)$. As $d((2, k+2),(1,2)) \leqslant k+1,(2, k+2) \rightarrow(2, k+1)$. But then $d((2, k+1),(1,2 k+1)) \geqslant k+2$, a contradiction.

The result thus follows.

The fact that $\rho\left(K_{4}\right)=2$ requires an ad hoc approach to proving the first result in this section.

Proposition 7. $\vec{d}\left(K_{4} \times C_{2 k+1}\right)=k+2$ for all $k \geqslant 1$.

Proof. As the result that $\vec{d}\left(K_{4} \times K_{3}\right)=3$ was established in Proposition 4, we shall assume that $k \geqslant 2$.

By Lemma 4, it suffices to provide an orientation of $K_{4} \times C_{2 k+1}$ of diameter $k+2$. First, define $A \in \mathscr{D}\left(K_{4}\right)$ as follows (see Fig. 10):
(i) $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1$;
(ii) $1 \rightarrow 3$ and $2 \rightarrow 4$.

Note that

(i) $d_{A}(3,2)=d_{A}(2,3)=3$;

Fig. 11.
(ii) the mapping $f: V(A) \rightarrow V(\tilde{A})$ defined by $f(1)=4, f(2)=3, f(3)=2$ and $f(4)=1$ is an isomorphism from A onto \tilde{A}.
Now define $F \in \mathscr{D}\left(K_{4} \times C_{2 k+1}\right)$ as follows:
(i) For $i=1,3,(i, 1) \rightarrow(i, 2) \rightarrow \cdots \rightarrow(i, 2 k+1) \rightarrow(i, 1)$;
(ii) For $i=2,4,(i, 2 k+1) \rightarrow(i, 2 k) \rightarrow \cdots \rightarrow(i, 1) \rightarrow(i, 2 k+1)$;
(iii) For $j \equiv 1(\bmod 2), 1 \leqslant j \leqslant 2 k+1, F_{j} \equiv A$;
(iv) For $j \equiv 0(\bmod 2), 2 \leqslant j \leqslant 2 k, F_{j} \equiv \tilde{A}$.

Such an orientation F of $K_{4} \times C_{7}$ is shown in Fig. 11.
We shall now prove that $d(F)=k+2$ by showing that $d(x, y) \leqslant k+2$ for all x, y in $V(F)$.

Let $x=(i, j)$ and $y=\left(i^{\prime}, j^{\prime}\right)$, where $i, i^{\prime} \in\{1,2,3,4\}, j, j^{\prime} \in\{1,2, \ldots, 2 k+1\}$ and j, j^{\prime} are taken modulo $2 k+1$.
Case 1: $i=1$.
1_{1}. For $j=j^{\prime}$ and $i^{\prime}=2,3,4, d\left((1, j),\left(i^{\prime}, j^{\prime}\right)\right) \leqslant 2$.
1_{2}. For $j+1 \leqslant j^{\prime} \leqslant j+k+2,(1, j)(1, j+1) \ldots\left(1, j^{\prime}\right)$ is a path of length not exceeding $k+2$.
1_{3}. For $j+k+3 \leqslant j^{\prime} \leqslant j-1$,

- if $F_{j} \equiv A \equiv F_{j^{\prime}},(1, j)(2, j)(4, j)(4, j-1) \ldots\left(4, j^{\prime}\right)\left(1, j^{\prime}\right)$ is a path of length not exceeding $k+1$;
- if $F_{j} \equiv A$ and $F_{j^{\prime}} \equiv \tilde{A},(1, j)(2, j)(2, j-1) \ldots\left(2, j^{\prime}\right)\left(1, j^{\prime}\right)$ is a path of length not exceeding k;
- if $F_{j} \equiv \tilde{A}$ and $F_{j^{\prime}} \equiv A,(1, j)(4, j)(4, j-1) \ldots\left(4, j^{\prime}\right)\left(1, j^{\prime}\right)$ is a path of length not exceeding k; and
- if $F_{j} \equiv \tilde{A} \equiv F_{j^{\prime}},(1, j)(4, j)(4, j-1) \ldots\left(4, j^{\prime}\right)\left(3, j^{\prime}\right)\left(1, j^{\prime}\right)$ is a path of length not exceeding $k+1$.

14. For $j+1 \leqslant j^{\prime} \leqslant j+k$ and $i^{\prime}=2,3,4, d\left((1, j),\left(i^{\prime}, j^{\prime}\right)\right) \leqslant d\left((1, j),\left(1, j^{\prime}\right)\right)+d\left(\left(1, j^{\prime}\right)\right.$, $\left.\left(i^{\prime}, j^{\prime}\right)\right) \leqslant k+2$.
15. For $j+k+1 \leqslant j^{\prime} \leqslant j-1$,

- if $F_{j} \equiv A \equiv F_{j^{\prime}},(1, j)(2, j)(2, j-1) \ldots\left(2, j^{\prime}\right)\left(i^{\prime}, j^{\prime}\right)$, where $i^{\prime}=3,4$, is a path of length not exceeding $k+2$;
- if $F_{j} \equiv A$ and $F_{j^{\prime}} \equiv \tilde{A},(1, j)(2, j)(2, j-1) \ldots\left(2, j^{\prime}\right),(1, j)(3, j)(4, j)(4, j-1) \ldots$ $\left(4, j^{\prime}\right),(1, j)(3, j)(4, j)(4, j-1) \ldots\left(4, j^{\prime}\right)\left(3, j^{\prime}\right)$, for $j^{\prime} \neq j+k+1$, and $(1, j) \times$ $(3, j)(3, j+1) \ldots(3, j+k+1)$ are paths of length not exceeding $k+2$;
- if $F_{j} \equiv \tilde{A}$ and $F_{j^{\prime}} \equiv A,(1, j)(4, j)(4, j-1) \ldots\left(4, j^{\prime}\right),(1, j)(4, j)(4, j-1) \ldots$ $\left(4, j^{\prime}\right)\left(1, j^{\prime}\right)\left(i^{\prime}, j^{\prime}\right)$, where $i^{\prime}=2,3, j^{\prime} \neq j+k+1$, and $(1, j)(1, j+1) \ldots$ $(1, j+k+1)\left(i^{\prime}, j+k+1\right)$, where $i^{\prime}=2,3$, are paths of length not exceeding $k+2$; and
- if $F_{j} \equiv \tilde{A} \equiv F_{j^{\prime}},(1, j)(4, j)(4, j-1) \ldots\left(4, j^{\prime}\right)\left(i^{\prime}, j^{\prime}\right)$, where $i^{\prime}=2,3$, are paths of length not exceeding $k+2$.
Case 2: $i=2$.
2_{1}. For $j=j^{\prime}$ and $i^{\prime}=1,3,4, d\left((2, j),\left(i^{\prime}, j^{\prime}\right)\right) \leqslant 3$.
2_{2}. For $j+k-1 \leqslant j^{\prime} \leqslant j-1,(2, j)(2, j-1) \ldots\left(2, j^{\prime}\right)$ is a path of length not exceeding $k+2$.
2_{3}. For $j+1 \leqslant j^{\prime} \leqslant j+k-2$,
- if $F_{j} \equiv A \equiv F_{j^{\prime}},(2, j)(4, j)(1, j)(1, j+1) \ldots\left(1, j^{\prime}\right)\left(2, j^{\prime}\right)$ is a path of length not exceeding $k+1$;
- if $F_{j} \equiv A$ and $F_{j^{\prime}} \equiv \tilde{A},(2, j)(3, j)(3, j+1) \ldots\left(3, j^{\prime}\right)\left(2, j^{\prime}\right)$ is a path of length not exceeding k;
- if $F_{j} \equiv \tilde{A}$ and $F_{j^{\prime}} \equiv A,(2, j)(1, j)(1, j+1) \ldots\left(1, j^{\prime}\right)\left(2, j^{\prime}\right)$ is a path of length not exceeding k; and
- if $F_{j} \equiv \tilde{A} \equiv F_{j^{\prime}},(2, j)(1, j)(1, j+1) \ldots\left(1, j^{\prime}\right)\left(4, j^{\prime}\right)\left(2, j^{\prime}\right)$ is a path of length not exceeding $k+1$.

24. For $j+k+1 \leqslant j^{\prime} \leqslant j-1$,

- if $F_{j^{\prime}} \equiv A$, then $d\left((2, j)\left(i^{\prime}, j^{\prime}\right)\right) \leqslant d\left((2, j),\left(2, j^{\prime}\right)\right)+d\left(\left(2, j^{\prime}\right),\left(i^{\prime}, j^{\prime}\right)\right) \leqslant k+2$ for $i^{\prime}=1,3,4$;
- if $F_{j^{\prime}} \equiv \tilde{A}$, then $d\left((2, j)\left(i^{\prime}, j^{\prime}\right)\right) \leqslant d\left((2, j),\left(2, j^{\prime}\right)\right)+d\left(\left(2, j^{\prime}\right),\left(i^{\prime}, j^{\prime}\right)\right) \leqslant k+2$ for $i^{\prime}=1,4$.

25. For $j+k+2 \leqslant j^{\prime} \leqslant j-1$,

- if $F_{j^{\prime}} \equiv \tilde{A}$, then $d\left((2, j)\left(3, j^{\prime}\right)\right) \leqslant d\left((2, j),\left(2, j^{\prime}\right)\right)+d\left(\left(2, j^{\prime}\right),\left(3, j^{\prime}\right)\right) \leqslant k-1+3=$ $k+2$.

26. If $F_{j+k+1} \equiv \tilde{A}$ and $F_{p} \equiv A$, where $j+k+2 \leqslant p \leqslant j$, then $d((2, j),(3, j+k+1)) \leqslant$ $d((2, j),(2, p))+d((2, p),(4, p))+d((4, p),(4, j+k+1))+d((4, j+k+1),(3, j+$
$k+1))$. Observe that $d((2, p),(4, p))=d((4, j+k+1),(3, j+k+1))=1$ and $d((2, j),(2, p))+d((4, p),(4, j+k+1))$ is equal to the distance from $(2, j)$ to $(2, j+k+1)$ in F^{2}, which is k. Thus, $d((2, j),(3, j+k+1)) \leqslant k+2$.
27. For $j+1 \leqslant j^{\prime} \leqslant j+k$ and $F_{j} \equiv A \equiv F_{j^{\prime}},(2, j)(3, j)(3, j+1) \ldots\left(3, j^{\prime}\right)\left(4, j^{\prime}\right)$ and $(2, j)(3, j)(3, j+1) \ldots(3, p)(1, p)(1, p+1) \ldots\left(1, j^{\prime}\right)$, where $j+1 \leqslant p \leqslant j+k-1$ and $F_{p} \equiv \tilde{A}$, are paths of length not exceeding $k+2$.
$2{ }_{8}$. If $F_{j} \equiv A$ and $F_{j^{\prime}} \equiv \tilde{A}$, then $(2, j)(3, j)(3, j+1) \ldots\left(3, j^{\prime}\right)\left(1, j^{\prime}\right)$ for $j+1 \leqslant j^{\prime} \leqslant j+k$, $(2, j)(3, j)(3, j+1) \ldots\left(3, j^{\prime}\right)\left(1, j^{\prime}\right)\left(4, j^{\prime}\right)$ for $j+1 \leqslant j^{\prime} \leqslant j+k-1$, and $(2, j)(4, j)$ $(4, j-1) \ldots(4, j+k+1)(4, j+k)$ are paths of length not exceeding $k+2$.
28. If $F_{j} \equiv \tilde{A}$ and $F_{j^{\prime}} \equiv A$, then $(2, j)(1, j)(1, j+1) \ldots\left(1, j^{\prime}\right)\left(3, j^{\prime}\right)$ for $j+1 \leqslant j^{\prime} \leqslant j+$ $k,(2, j)(1, j)(1, j+1) \ldots\left(1, j^{\prime}\right)\left(3, j^{\prime}\right)\left(4, j^{\prime}\right)$ for $j+1 \leqslant j^{\prime} \leqslant j+k-1$, and $(2, j)$ $(2, j-1) \ldots(2, j+k)(4, j+k)$ are paths of length not exceeding $k+2$.
2_{10}. For $j+1 \leqslant j^{\prime} \leqslant j+k$ and $F_{j} \equiv \tilde{A} \equiv F_{j^{\prime}},(2, j)(1, j)(1, j+1) \ldots\left(1, j^{\prime}\right)\left(4, j^{\prime}\right)$ and $(2, j)(1, j)(1, j+1) \ldots(1, p)(3, p)(3, p+1) \ldots\left(3, j^{\prime}\right)$, where $j+1 \leqslant p \leqslant j+k-1$ and $F_{p} \equiv A$, are paths of length not exceeding $k+2$.
Case 3: $i=3$. The argument is similar to that of $i=2$ since 2 and 3 in \tilde{A} are the isomorphic images of 3 and 2 in A under f, respectively (see Fig. 10).

Case 4: $i=4$. The argument is similar to that of $i=1$ since 1 and 4 in \tilde{A} are the isomorphic images of 4 and 1 in A under f respectively (see Fig. 10).
The proof is now complete.
Finally, we shall now apply Lemma 3 to determine $\vec{d}\left(K_{m} \times C_{2 k+1}\right)$, where $m \geqslant 5$.
Proposition 8. $\vec{d}\left(K_{m} \times C_{2 k+1}\right)=k+2$ for $m \geqslant 5$ and $k \geqslant 1$.
Proof. Let $B \in \mathscr{D}\left(K_{m}\right)$ and θ be a 2 -colouring of K_{m} satisfying the conditions stated in Lemma 3. Define an orientation H of $K_{m} \times C_{2 k+1}$ as follows:
(i) $H_{j} \equiv B$ for all $j=1,2, \ldots, 2 k+1$;
(ii) For $i=1,2, \ldots, m$ and $\theta(i)=b,(i, 1) \rightarrow(i, 2) \rightarrow \cdots \rightarrow(i, 2 k+1) \rightarrow(i, 1)$;
(iii) For $i=1,2, \ldots, m$ and $\theta(i)=w,(i, 2 k+1) \rightarrow(i, 2 k) \rightarrow \cdots \rightarrow(i, 1) \rightarrow(i, 2 k+1)$.

We shall now prove that $d(H)=k+2$ by showing that $d(x, y) \leqslant k+2$ for all x, y in $V(H)$.

Let $x=(i, j)$ and $y=\left(i^{\prime}, j^{\prime}\right)$ where $i, i^{\prime} \in\{1,2, \ldots, m\}$ and $j, j^{\prime} \in\{1,2, \ldots, 2 k+1\}$. Note that j and j^{\prime} are taken modulo $2 k+1$. Let $\theta(i)=b$. (The case that $\theta(i)=w$ can be handled similarly.) Suppose $i=i^{\prime}$. Then $d(x, y) \leqslant k+2$ for $j+1 \leqslant j^{\prime} \leqslant j+k+2$. So we consider $j+k+3 \leqslant j^{\prime} \leqslant j-1$. As $d(B)=2, i$ is contained in a 3 -cycle C. By Lemma 3, C is bichromatic. Hence, C contains a p such that $\theta(p)=w$. Now $d(x, y) \leqslant d(x,(p, j))+d\left((p, j),\left(p, j^{\prime}\right)\right)+d\left(\left(p, j^{\prime}\right), y\right)=d\left((p, j),\left(p, j^{\prime}\right)\right)+d(x,(p, j))+$ $d\left(\left(p, j^{\prime}\right), y\right) \leqslant k-2+3=k+1$.

Assume now that $i \neq i^{\prime}$. Suppose we have
(*) $(i, j) \rightarrow\left(i^{\prime}, j\right)$ and $\theta\left(i^{\prime}\right)=b$.
By Lemma 3, there exists a $(i, j)-\left(i^{\prime}, j\right)$ path of length not exceeding 3 such that $\theta(p)=w$ for some internal vertex (p, j) of the $(i, j)-\left(i^{\prime}, j\right)$ path. Then for $j+k$
$+2 \leqslant j^{\prime} \leqslant j-1, d(x, y) \leqslant d(x,(p, j))+d\left((p, j),\left(p, j^{\prime}\right)\right)+d\left(\left(p, j^{\prime}\right), y\right) \leqslant d\left((p, j),\left(p, j^{\prime}\right)\right)$
$+d(x,(p, j))+d\left(\left(p, j^{\prime}\right), y\right) \leqslant k-1+3=k+2$. For $j \leqslant j^{\prime} \leqslant j+k+1, d(x, y) \leqslant d\left(x,\left(i, j^{\prime}\right)\right)+$ $d\left(\left(i, j^{\prime}\right), y\right) \leqslant k+1+1=k+2$.

Suppose ($*$) does not hold. As $d(B)=2, i$ and i^{\prime} are contained in a 3-cycle C. By Lemma 3, C is bichromatic. Hence, C contains a p such that $\theta(p)=w$ and either $p=i^{\prime}$ or $p \rightarrow i^{\prime}$. Then for $j+k+1 \leqslant j^{\prime} \leqslant j-1, d(x, y) \leqslant d(x,(p, j))+d\left((p, j),\left(p, j^{\prime}\right)\right)+$ $d\left(\left(p, j^{\prime}\right), y\right) \leqslant d\left((p, j),\left(p, j^{\prime}\right)\right)+d(x,(p, j))+d\left(\left(p, j^{\prime}\right), y\right) \leqslant k+2$. For $j \leqslant j^{\prime} \leqslant j+k$, $\left.d(x, y) \leqslant d\left(x,\left(i, j^{\prime}\right)\right)+d\left(\left(i, j^{\prime}\right), y\right)\right) \leqslant k+2$.

The proof is thus complete.

Now combining Propositions 7 and 8 , and noting that $d\left(K_{m} \times C_{2 k+1}\right)=k+1$, we arrive at Theorem 3.

Finally, we would like to point out that the problem of determining $\vec{d}\left(K_{3} \times C_{2 k+1}\right)$ is not as easy as we may believe and has not been settled yet.

References

[1] F. Boesch, R. Tindell, Robbin's theorem for mixed multigraphs, Amer. Math. Monthly 87 (1980) 716-719.
[2] F.R.K. Chung, M.R. Garey, R.E. Tarjan, Strongly connected orientations of mixed multigraphs, Networks 15 (1985) 477-484.
[3] V. Chyátal, C. Thomassen, Distances in orientations of graphs, J. Combin. Theory B 24 (1978) 61-75.
[4] G. Gutin, m-sources in complete multipartite digraphs. Vestsi Acad. Navuk BSSR, Ser. Fiz.-Mat. Navuk. 5 (1989) 101-106 (in Russian).
[5] G. Gutin, Minimizing and maximizing the diameter in orientations of graphs, Graphs Combin. 10 (1994) 225-230.
[6] K.M. Koh, B.P. Tan, The diameters of a graph and its orientations, Research Report, Department of Mathematics, National University of Singapore, 1992.
[7] K.M. Koh, B.P. Tan, The diameter of an orientation of a complete multipartite graph, Discrete Math. 149 (1996) 131-139.
[8] K.M. Koh, B.P. Tan, The minimum diameter of orientations of complete multipartite graphs, Graphs Combin. 12 (1996) 333-339.
[9] K.M. Koh, E.G. Tay, On optimal orientations of cartesian products of even cycles and paths, Networks 30 (1997) 1-7.
[10] K.M. Koh, E.G. Tay, On optimal orientations of products of paths and cycles, Discrete Appl. Math. 78 (1997) 163-174
[11] K.M. Koh, E.G. Tay, On optimal orientations of cartesian products of even cycles, preprint.
[12] S.B. Maurer, The king chicken theorems, Math. Mag. 53 (1980) 67-80.
[13] J.E. McCanna, Orientations of the n-cube with minimum diameter, Discrete Math. 68 (1988) 309-310.
[14] J. Plesnik, Remarks on diameters of orientations of graphs. Universitas Comeniana, Acta Mathematica Universitatis Comenianae. 46-47 (1985) 225-236.
[15] K.B. Reid, Every vertex a king. Discrete Math. 38 (1982) 93-98.
[16] H.E. Robbins, A theorem on graphs with an application to a problem of traffic control, Amer. Math. Monthly 46 (1939) 281-283.
[17] F.S. Roberts, Discrete Mathematical Models, with Applications to Social, Biological, and Enviromental Problems, Prentice-Hall, Englewood Cliffs, NJ, 1976.
[18] F.S. Roberts, Y. Xu, On the optimal strongly connected orientations of city street graphs I: Large grids, SIAM, J. Discrete Math. 1 (1988) 199-222.
[19] F.S. Roberts, Y. Xu, On the optimal strongly connected orientations of city street graphs II: two eastwest avenues or north-south streets, Networks 19 (1989) 221-233.
[20] F.S. Roberts, Y. Xu, On the optimal strongly connected orientations of city street graphs III: three east-west avenues or north-south streets, Networks 22 (1992) 109-143.
[21] F.S. Roberts, Y. Xu, On the optimal strongly connected orientations of city street graphs IV: four east-west avenues or north-south streets, Discrete Appl. Math. 49 (1994) 331-356.
[22] Ľ. Šoltés, Orientations of graphs minimizing the radius or the diameter, Math. Slovaca 36 (1986) 289-296.

[^0]: * Corresponding author. E-mail: matkohkm@leonis.nus.sg.

