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1. Introduction

The ring D(G) of monomial representations of a finite group G has been investigated by Andreas
Dress and Robert Boltje (the letter D is paying tribute to Dress who studied similar rings in [8]).
A motivation to consider this ring arised from the Brauer induction theorem which says that there is
a canonical way of writing complex characters as an integral linear combination of induced linear
characters (cf. [1,17]). Detailed information about construction, species and idempotent formulae of
D(G) can be found in [3].

We are mainly interested in finding properties of G by analyzing the structure of D(G). Since the
Burnside ring B(G) can be embedded in D(G), there is a connection to the similar problem concerning
the ring B(G). This problem has been studied in [6,14,16], among others. Considering results for the
isomorphism problem for Burnside rings it seems to be useful to work with primitive idempotents of
R ®7 D(G), where R is a subring of C, with conductors of such idempotents and with torsion units
of D(G).
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In the second section we give a survey over the construction of D(G), the species and the prim-
itive idempotents of Q(¢) ®z D(G) (¢ € C primitive |G|-th root of unity). The third section contains
the determination of the conductors of the primitive idempotents of Q(¢) ®z D(G) (i.e. the minimal
natural number n, € N for a primitive idempotent e € Q(¢) ®z D(G) such that n, - e € Z[{] ®7 D(G))
and a first application concerning the order of the center of the group G. Next we prove a structure
theorem for the torsion units of D(G). In Section 5 we show that an abelian group G is uniquely
determined by the ring D(G). In the sixth section we state an explicit formula for the primitive idem-
potents of Z[¢], ®z D(G), where p is a maximal ideal of Z[¢] and Z[{], is the localization of Z[{]
at p. Using this result we obtain properties of the Sylow subgroups of G from D(G). Among others
we show that the case D(G) = D(G), where G has an abelian Sylow p-subgroup, implies the com-
mutativity of the Sylow p-subgroups of G. In the last section we consider nilpotent and p-nilpotent
groups. Among others we show that the ring D(G) detects nilpotency of G.

Notation. For a group element g € G we write ord(g) for the order of g. Let G, be the set of all
p-elements and G, be the set of all p-regular elements of G (p prime). For g € G let g, € Gp and
gp € Gp be the uniquely determined elements with g = gpg,’ = g, &p. For a group G we denote by
G’ the commutator subgroup of G and by Z(G) the center of G. For a subgroup H of G we use the
notation H < G. We sometimes write H < G in case H is a proper subgroup and H <{ G in case H is
a normal subgroup of G. For H < G let C¢(H) be the centralizer and Ng(H) be the normalizer of H
in G. For g € G we set 8H :=gHg~! and H8 := g~'Hg. Moreover we set G:= Hom(G, C*).

2. The ring of monomial representations

Let G be a finite group. The monomial category of G is denoted by monc¢. The objects of moncg
are pairs (V, £) consisting of a finitely generated CG-module V and a set £ of one-dimensional
subspaces of V with @, L=V and gL € L for g€ G and L € £. A morphism f: (V, L) - (W, M)
of mongc¢ is a homomorphism f:V — W of CG-modules such that for all L € £ there exists M €
M with f(L) € M. In [4] a morphisms between monomial objects is defined in a different way,
but this will not affect the results below. Two objects (V, £) and (W, M) are isomorphic if there
exists a morphism f : (V, L) — (W, M) such that the according CG-module homomorphism is an
isomorphism. There is a direct sum and a tensor product on moncg defined by

V,L)eW, M):=VOW,LUM)
and
(V,L)® (W, M):=(V®cW,{L&c M: Le L, M e M})
for objects (V, L), (W, M) € moncg. An object (V, £) of moncg with V # 0 is indecomposable if
(V,L)=(V1,L1) ® (Vy, L) with objects (V1, L1), (Va, L3) € mongg implies V; =0 or V, =0.
We denote by [V, £] the isomorphism class of the object (V, £) of moncg. The ring of monomial

representations D(G) is the Z-module generated by the isomorphism classes of the objects of moncg
relative to the relations

[V, L]+ [W, M]=[(V,L) & (W, M)]
and
[V.L]- W, M]=[(V,L)® (W, M)],
(V, L), (W, M) e moncg. Then D(G) is a unitary ring with identity [C, {C}] (we consider C as the

trivial CG-module). Moreover D(G) is a free Z-module, and the isomorphism classes of the indecom-
posable objects of mong¢ form a Z-basis of D(G) (cf. [4,9]).
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Let H< G and ¢ € A. The CG-module Cy is the C-vectorspace C with the underlying G-action
defined by g*c:=¢(g)-c, g €G, c e C. Moreover for g € G we define a linear character ¢ € ¢H by

8p(8h):=¢(h), heH.
We can describe the indecomposable objects of monc¢ in the following way (cf. [4,9]):
Proposition 2.1.
(i) Let H< Gand ¢ € . Then (indg Cy,{g®Cy: g e G})) is an indecomposable object in moncg.
(ii) Let H,U < G, p € f and v e U. The objects (indg Cyp.{g®Cy: geG})and (indg Cy,{g®Cy:
g € G}) are isomorphic if and only if there exists g € G with8H = U and 8¢ = .
(iii) Every indecomposable object in moncg is isomorphic to an object (indg Cy,{g®Cy: g e G}) with

H<Gand¢el:l.

From now on we identify the object (indg Cyp.{g ® Cy: g € G}) with the monomial pair (H, ).
We denote by

M(G):={(H,p): HLG, ¢ € i}

the set of all monomial pairs of G and define by é(H, ¢) := (6H, &¢) an action of G on M(G). We
write [H, ¢]¢ for the G-orbit of (H, ¢) € M(G) and we set

M(G)/G :={[H, plc: (H,p) € M(G)}.

Moreover for (H, @), (U, ¥) € M(G) we write (H, @) < (U,v) if H<U and ¥y = ¢. Therefore we
get a partial order on M(G). By

NG(H.p):={geG: 8(H,p) = (H, )}
we denote the stabilizer of (H, ¢) € M(G) in G. In particular we get the inclusion
H < Ng(H, ¢) < Ng(H).
By Proposition 2.1 we can identify the isomorphism classes of indecomposable objects with the

elements of M(G)/G. Thus the ring D(G) is the free abelian group generated by the G-orbits
[H, ¢lc € M(G)/G together with the multiplication

[H.@lc-[U.¥lc= Y [HNEU.@uneu - Enneu];
HgUeH\G/U

for [H, ¢]c, [U, ¥1¢c € M(G)/G. In particular D(G) is finitely generated.
For a commutative unitary ring R and H < G we set

Dr(H) :=R®z D(H).
Let K < H <G and g € G. The conjugation map cg y is defined by

Cg.H : Dr(H) — Dg(8H),

(U, ¢l +— [8U.%¢], .
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the restriction map res? is defined by

resk : Dr(H) — Dr(K),

W.oln> Y [Kn"U. gy
KhUeK\H/U

and the induction map ind,"(' is defined by
indf : Dr(K) — Dr(H),
(U, @lk — [U, @]H.
The conjugation and the restriction maps are R-algebra homomorphisms. The induction maps are
morphisms of the additive groups. Together with these operations the functor Dg becomes an R-
Green functor on G (cf. [4]).
A species of D(G) is a ring homomorphism s: D(G) — C. In the following we give a short survey

on the construction of the species of D(G) according to [3].
Let R(G) be the ordinary character ring of G. For g € G we define the ring homomorphism

tg : R(G) = C,
=98
For H < G we define the ring homomorphism
7y : D(H) — R(H/H),

y ifU=H
U, Yo )
U, ¥l = { 0 otherwise,

where € H/H' is defined by ¥ (hH’) := v (h). We set
D(G):={(H.hH'): H<G, he H}

and define an action of G on D(G) by &(H,hH’) := (8H,&h8H’) for g € G. We write [H, hH']¢ for the
G-orbit of (H,hH") € D(G) and we set

D(G)/G :={[H.hH'].: (H,hH') € D(G)}.
The stabilizer of (H, hH’) € D(G) in G is denoted by
Ng(H,hH') :={g € G: 8(H,hH') = (H,hH')}.
Moreover we obtain the inclusion
H < HCg(H) < Ng(H, hH/) < Ng(H).
For every element (H,hH') € D(G) we get a ring homomorphism

SZ.;(;I)H/) =Llpy o TTH oresf, :D(G) - D(H) — R(H/H/) .
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In particular the images of the elements [U, ¥]¢c € M(G)/G are given by

sohy (U ¥1e) = Y Ey(h.
gUeG/U
H<EU

We get the set of all species of D(G) by this construction. Moreover S(DP;,G,BH,) S?U(Guu’ if and only

if [H,hH']g = [U,uU’]g. Thus there is a 1-1-correspondence between the species of D(G) and the
elements of D(G)/G. Moreover for H < G, (U,uU’) €e D(H) and g € G it holds

DCH

D(H) D(G)
(gu gugu) 0CgH= S(U uu’)

D(H)
and s U U

W) © resH =s

Let ¢ € C be a primitive |G|-th root of unity and m := |D(G)/G|. The map

PO= ] st DG —>ZIgI"

[H,hH'lceD(G)/G

is a ring monomorphism. Thus we can identify the ring D(G) with a subring of Z[¢]™. The image of
M(G)/G under the map sP© is called species table of D(G).

If we extend D(G) with the coefficient ring Q(¢), we get a ring isomorphism Dg)(G) = Q()™. If
we extend the species linearly to Dg)(G), the primitive idempotents of Dg()(G) are the elements

(H( hHy € Dq()(G), (H,hH’) € D(G), determined by the property

D(G) (eD(G) )_{1 if [U,uU’]¢ =[H,hH ],

Swauvn €)= 1o otherwise.

An explicit formula for the primitive idempotents of Dg()(G) is given by

D(G) [H'| ,

N Lim(L, H L , (H,hH D(G 1

el ) |NG(H7hH,)”H|L;| @ H) Y @Il gule. (H.hH)eDG) (1)
<H peh

(cf. [3]). The map u : V(G) x V(G) — Z is called Mobius function which is recursively defined by
ZHgKguM(H’K) =0 for H<U, w(H,H)=1 and w(H,U) =0 for H L U (H,U € V(G)) where
V(G) is the subgroup lattice of G.

Considering isomorphism problems, the following fact will be very useful. Let Q be another finite
group. For an isomorphism « : D(G) — D(G) and (H, hH’) € D(G) there exists (H, hH') € D(H) with
D(G)

b S .. oW.

St =S ki

Another important role plays the embedding of the Burnside ring into the ring of monomial repre-
sentations. We will introduce the Burnside ring as a subring of D(G) because for further results it is
not necessary to work with the theory of G-sets (cf. [3]).

The free abelian subgroup generated by the elements [H, 1]¢c € M(G)/G, H < G, form a subring
of D(G), the Burnside ring B(G) of G. The multiplication in B(G) is given by

[H. -0, 1= )  [HNEU,1].
HgUeH\G/U

For a commutative unitary ring R and H < G we set

Br(H) := R ®z B(H).
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Since the conjugation maps, restriction maps and induction maps on Dg(H) yield corresponding maps
on Br(H), the functor Bg becomes a R-Green functor on G.

We get the species of B(G) by restricting the species of D(G). Therefore, the species of B(G) are
given by

sii®:B(G) - Z,

W.le—> Y 1

gUeG/U
H<8U

B(G)

for H < G. Moreover s, = sK(G) for H, K < G if and only if H =#K for some g € G. The primitive

idempotents of Bg(G) are exactly the elements ef,(c) € Bg(G) (H <G) with

BG)( ,BG) _ [1 ifU=¢H,
sy (en )_[0 else.

An explicit formula for the primitive idempotents ef,(c) is given by

B(G) _

= UlpU, HIU,1 2
" = Ne(] 2 'UIHU MU, 1 (2)

U<SH
(cf. [10]).
3. The conductors of the primitive idempotents

In the following let G always be a finite group and ¢ € C be a |G|-th root of unity. In this section
we determine the conductors of the primitive idempotents of Dg)(G). The conductor of a primitive
idempotent e € Dg(;)(G) is the minimal natural number n, € N with n, - e € Dz¢](G). First we state
a result about restricted and induced primitive idempotents.

Lemma3.1.Let H< Gandh € H.

G D) D(H)
(i) resg ey hpry) = 22 (HuH eDH)/H €. ur):
[H.uH lo=[H.hH ¢

(ii) ind§; (e i i) = (NG (H.hH') - H)e S

(ifi) indf (res (e i ) = (NG (H) : H)ef,ﬁ)H,

Proof. (i) It holds

D(H DG DG) (.D(G
s(K,k;(’) (resﬁ(e(;’h)H,))) = S(K.kK") (e(H,h)H’)) =1

for (K,kK’) € D(H) if and only if (K,kK’) and (H, hH’) are conjugate in G.
(iii) Let [K, ¥]c € M(G)/G. Then

indf (resi (K, ¥1c)) = Y [HNEK, SYpunex]g = [H, 116IK, Y.

HgKeH\G/K
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Thus

.G (oG (,D(G) _ DG) _ D) pG) _ INc(H)I pe
de(resH(e(H,hH’))) =[H.1]cey hyy = S(H,hH’)([H’ ]]G)e(H,hH’) =~ H| €(H,hH')"

. . _ . D(H) _ D
t(11) Let (H,vH') e D(G) and g € G with §(H, vH") = (H,hH’). Since s’ © Cg.H =Sy ypyr) We
ge

D(H) _ ,D(H)
CgsH(e(H,vH’)) = €U hHy

. - 4G s 4G s G .
and since indy; = ¢g ¢ oindy; = ind} ocg y, we obtain

ind$ (e ) =ind% (eDi' ).

(H,vH") (H,hH")
Thus
. G { G (.DG) e D(H) _ INc(H)| . ¢/ D)
de(resH(e(H,hH,))) = indj Z ety ) = oo o de(e(H,hH,)).
ING(H, hH")|
[H,uH'lyeD(H)/H
[H,uH'lc=[H,hH']c
Together with part (iii) we get indg(egﬂ)w)) = (Ng(H,hH'): H)e(DFﬁ)H,). m]

For using some important results of Boltje we have to introduce the ghost ring of the representa-
tion ring D(G) (cf. [5]). Let

X = (XH)ch € l—[ ZI:I
H<LG

with xy = Z(pEgZH,wﬁﬂ (zHp€Z, HLG, @ € I:I). For H< G and ¢ € H we define

X(H, @) =2y ¢.

Note that this is well defined since the set of linear characters of H is a basis of ZH. The subring

G
D(G) := ( [ ZH) = {xe [ [ ZA: x(H.¢) =x(3(H.9)) ¥(H. ) € M(G) Vg € G}

H<G H<G

of ]_[ch ZH is called the ghost ring of D(G). Identifying R(H/H’) with ZH for H <G, we get a ring
monomorphism

p = (mn oresi)y ¢ : D(G) = D(G).

Moreover we set

py :=myoresy : D(G) — ZH
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for H < G. Note that the image of a basis element [U, A]¢ € M(G)/G under this map is given by

pu(U.Mg)= D SapeZH.
gUeG/U
H<8U

By linear extension we get an isomorphism p : Q ®z D(G) —> Q ®z D(G) (cf. [2]). We will use the
following integrality criteria for elements of the ghost ring:

Proposition 3.2. Let x € D(G). Then x € p(D(G)) if and only if the congruence

> pw(H, D -x(I,y)=0 (mod(N¢(H,¢): H))
(H.@)<(.)eM(NG(H.9))

holds for all (H, ¢) € M(G).
Proof. See [5], Cor. 2.8. O
We also make use of the following two lemmata:
Lemma 3.3. Let H < G and I:Io ={QH: Q€ C}. Foryr e I:Io weset Ay :={p € G: QH =Y}

(i) Ho is a subgroup of i with Ho = HG'/G’. Moreover |Ay|=(G:HG".

(ii) Let g € G. Then Y- ycp, q)(g)z{(()GIHG W (g) Lfl;gec € HG'/G',

Part (i) is a well known consequence of the theory of irreducible characters of abelian groups (cf.
[13]) and part (ii) can be easily proved by the second orthogonality relation.

Lemma 3.4. Let H < G and m be the squarefree part of (G : G'H). Then (Ng(H) : H) divides mu(H, G).
Proof. See [11], Thm. 45. O
We can now state the main result of this section.

Theorem 3.5. Let (H, hH’) € D(G). Then (N (H, hH') : H') is the conductor of e .

Proof. We first prove that m := (G : G’) is the conductor of e(G c/ for g € G. By the explicit formula
for the primitive idempotents (1) we obtain

G
€t noh = |G|2 Z ILIpL, G)pr DL ¢l
L<G

_ 16

Tl 9(gIG, 9lo + |G|2 ZlLIM(L G)Z(p YL ¢iulc.

(peG L<G

D(G)

(G.2G") is m~!. Therefore m divides the conductor of

We conclude that the coefficient of [G, 1]¢ in e

D(G)

€(c.60") for all g € G.
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Let f € Bg(G) be the primitive idempotent with sg(c)(f) =1 and SZ(G)(f) =0 for H <G.
Let C(G) be a system of representatives for the conjugacy classes of subgroups of G. Then f =
ZUeC(G) ay[U, 1]¢ with uniquely determined coefficients ay € Q. Let 1 = Aq,..., Ay be the linear
characters of G. Fori=1, ..., m we define

xie= Y aylU, Ayl € Do(G).
Uec(6)

Note that x; = f. We now show that py(x;) =0 in the case H < G and pg(xj) =A; fori=1,...,m
It holds

0= si(c) (x1) = (thur o H 0 resf,)(xﬂ
for H < G and all h € H. Therefore
pH(x1) = (7T o Tes) (x1) =0

Moreover 8A; = A; for g€ G and i =1, ..., m. Thus we get

pu([U. Aijulc) = Z Exijg = Z Mijn = A en (U, 1¢)

gUeG/U gUeG/U
H<EU H<EU
for HU<Gand i=1,...,m and we obtain

PH (i) = Z ay pu (LU, Aiule) = Aijn Z aypu (U, 11¢) = AijpH(x1) =0
UeC(G) UeC(G)

for H<Gandi=1,...,m. It holds

PG (Xi) = A Z ay e ([U, 1]6) = Aiag
UeC(G)

fori=1,...,m, and by the explicit formula (2) for the primitive idempotents of Bg(G) we get ac = 1.
Thus p¢(x;) = X; and

§D(©) )(Xz) {Ai(h) if H=G,

S(H.hH’ 0 else.
Moreover p(x;) € f)(G) for i=1,...,m. By the second orthogonality relation we obtain
P© 71 1 if (H,hH') = (G, gG"),
0 2ot e = {3

and therefore
D(G) _ —1
€G.g6) = Z*

for geG.
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We now show that the conductor of e(c 1)0’ is equal to m. Fori=1,...,m we set y; := p(x;) €
D(G). Then
1 if (U, jiu) =(G, 1)
TURY :{ Jjlu i)s 3
yi( i) 0 else (3)

for U< G and i, je{1,...,m}. By Proposition 3.2, Z, 1Yi € p(D(G)) holds if and only if the congru-
ence

> 1(H.U)Y yi(U.)=0 (mod (NG(H.9):H)) (4)

(H.)<(U,¥)eM(Ng(H.9)) i=1

holds for all (H, ¢) € M(G). Since py(x;) =0for U <G andi=1,...,m we get

> yiU,y)=0
i=1

for U < G. In the case (H, ¢) € M(G) with (H,¢) € (G, ;) for i=1,...,m and the case H ;ﬂ G
congruence (4) is fulfilled. Let (H, ¢) € M(G) with H < G and (H, ¢) < (G, 1) for some X € G. In this

case we get exactly k := (G : HG') extensions of ¢ on G by Lemma 3.3(i). Let A;,,...,%; (i1,...,ik €
{1,...,m}) be these extensions. By equality (3) we obtain
m k
> ((H,U) Y " yi(U, ¥) = u(H,6) Y yi;(G, Aiy)
(H,)<(U,y)eM(Ng(H,9)) i=1 j=1

=u(H,G)(G: HG).

By Lemma 3.4 (Ng(H, ¢) : H) divides (G : HG")u(H, G). Thus congruence (4) holds for all (H, ¢) €
M(G). Moreover

p((G: G/)e?éﬁ)c,)) = p(i&) = iy,- € p(D(G)).

i=1

Since p is injective we obtain (G : G/)e(DG(G])G, € D(G). Therefore (G : G') is the conductor of e(G m,)
For U <G let ty1,...,Ty,sy (Su= (UG :G’)) be the distinct restrictions Ayjy, ..., Amy. For j=

1,...,sy we set My, ;:={p € G: @u = Ty, j}. By Lemma 3.3(ii) we get

> (g i, AI\U]G—Z[U wile Y. ¢(g™)
i=1

QDGM:UJ
_ = (G:UG) Zj”=1 1y,j(g DU, jlc ifgG' e UG /G,
0 else

for U < G and g € G. Therefore

Zki(g_l)xiz Z auz)» YU, rile
i—1

UeC(G) i=1
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= Z G UG Z‘L’U] [U Tu,jlc

UeC(G)
gG'eUG' /G

for g € G. Note that this equation does not depend on the choice of C(G). Since

SU
il =3n= 3 (06 M0l €D0O

UeC(G) j=1

and [U, tyrlec #[U, Tyl for r,t € {1,...,sy} with r #t we get ay (G : UG’) € Z for U € C(G). Thus
D(G
me g g6, = Z)‘ ")xi € Dzje) (G).

Therefore m = (G : G’) is the conductor of e(DG(fg)G/), gegG.
Let (H, hH’) € D(G). By Lemma 3.1(ii) we obtain

(NG(H.hH') - H')e iy, = indfy (H : H')egiy,) € Dze) (G).

€H.hH) =
Moreover the coefficient of [H, l]c in e(DF;Gh)H,) is equal to |H'|/|Ng(H,hH’)|. Therefore
(Ng(H,hH") : H') is the conductor of el O

(HhH)

We can now state the first consequences.
Theorem 3.6. The group order |G| is uniquely determined by D (G).

Proof. Let W C C be the set of all roots of unity and let O be the ring of the algebraic in-
tegers of Q(W). Every eZ_ﬁ)H,) is a primitive idempotent of Dgw)(G) for (H,hH’) € D(G) and

(Ng(H,hH’) : H') is the minimal natural number n € N with ne?,_ﬁ)H,) € Do (G). Moreover |G| is the
conductor of eg(ﬁ; and therefore

. D(G
|G| = min{n € N: ne(H"h’H,) € Do(G) forall (H,hH') e D(G)}.
Thus the theorem is proved. O
The following proposition is an immediate consequence of Theorem 3.5.
Proposition 3.7. Let (H, hH') € D(G). Then the conductor ofe(H hHy € Dq()(G) is equal to |G| if and only
if H is a normal abelian subgroup and h € Z(G). Moreover G is abelian if and only if the conductors of the

primitive idempotents of Dg()(G) are equal to |G]|.

Therefore the ring D(G) detects commutativity of a finite group. We now state an interesting
proposition concerning the orders of elements of the center of G.

Proposition 3.8. Let G and G be finite groups and o : D(G) — D(G) be an isomorphism. Let h € Z(G),

H :=(h), n:= |H| and a(e?l_ﬁ))) =@ with (H,hH') € D(G). Then H is a normal abelian subgroup

T : N (LR
of G, h € Z(G) and |(h)| € {n, 2n, §}.
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Proof. The subgroup H is abelian and normal since h € Z(G). Moreover the conductor of eﬁ&% is
equal to |G|. We set

D(G)

M :={x € Dg(G): S

(x) € C is root of unity}.
It holds s?,ﬁ)) (x) € Q(¢) for all x € M, and the set {ord(§): S?H(% (x) =&, x € M} is bounded since +¢!
(i € N) are the only roots of unity in Q(¢). We set

D(G)

m := max{ord(&): SH.0)

(x)=¢, xe M}.
Let A € H with A(h) = where w € C is a primitive n-th root of unity. Then

sm(H.Al)= Y fa(h)=(G: Ho.
gHeG/H

Thus y := (—=1)"(G : H)~![H, A]¢ € M. We obtain

D(G) __[2n ifnodd,
Ord(s(H«h)(y)) - {n if n even. ®)

We now show the equality m = ord(sg_ﬁ) ()). Let

X .= Z G[U,lp][U,lﬁ‘]G eM
[U,¥lceM(G)/G
with apy g1 € Q for [U, ¥]c € M(G)/G. In case U < G with H £¢ U we get sffh’)([u, ¥lg) =0. In
case [U, ¥]c € M(G)/G with H <¢ U we get H<U and ¢ (h) € Q(w). Thus

D(G D(G
sm@= " > auyspip(U¥Ie)= Y auy Y. ¥(h)eQu).
U, ¥lceM(G)/G lU.I/fJ%€<J\L/Il(G)/G gueG/U

X

Since w' (i € N) are the only roots of unity in Q(w) we get m < 2n in case n is odd and m < n in case
n is even. Together with Eq. (5) we obtain

m— {2n if n odd,
n ifneven.

By Proposition 3.7, H is abelian and normal and h € Z(G) since the conductor of eDf? is equal to

(H,h)
|G| =|G|. We set

YRty ~. D0 = . :
M :={x € Dg(G): s(gﬁ)(x) € C is root of unity}

and

D(G)

m := max{ord(&): s(ﬁﬁ)(i) =£, xeM}.
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Letn:= \(ﬁ>| and @ € C a primitive 7i-th root of unity. Since H is abelian there exists a linear character
A of H with A(h) = @. Analogous to the above descriptions we set y := (—1)"(G : H)*][H,A]a eEM
and we obtain

d D(©G) _[2n iffiodd,
or (S(Hh)(y)) {ﬁ if n even.

With the same argumentation as above we get

= {Zﬁ if n odd,
n ifneven.

D(G) D(G)
It holds (M) = M since S(I:l B o= Sy
cases that could arise. Therefore f € {n, 2n, %}. a

Thus m=m and n=n, n=2n and 2n = are the only

A direct consequence of this proposition is the following theorem:

Theorem 3.9. Let G and ~(~? be finite groups with D(G) = D(G). If 2  p is a prime number which divides
|Z(G)| then p divides |Z(G)|. If there exists an element of order 4 in Z(G) then 2 divides |Z(G)|.

4. The group of torsion units of D(G)

We develop some results on the group of torsion units of D(G) following results for the Burnside
ring in [15]. For a commutative unitary ring R let Ur(R) be the group of torsion units of R.

Lemma 4.1. Let R be a commutative unitary ring and let A and B be additive subgroups of R with the following
properties:

R=A9®B, A% C A, B2CB, ABCA, 1¢B.

Therefore A is an ideal in R and B is a unitary subring of R. Moreover we require the existence of a natural
number n € Nwith u" =1 for all u € Ut (R). Then:

(i) Every torsion unit u € Ut (R) is of the form u = b(1 + a) with uniquely determined elements b € Ur(B)
andaec A:={acA: > hen ( )a = 0}. Moreover every element b(1 +a) withb e Ur(R) anda € A isa
torsion unit of R.

(i) Itis [UT(R)| = |UT(B)||A| in case Ut (R) is finite.

Proof. A is not empty since 0 € A.Llet be Ur(B) and a € A. Then

n

ba+) =1+a"=Y" (Z)a" =1.

k=0

Thus b(1 +a) € UT(R).
Let u € Ur(R). Then there exist uniquely determined elements a € A and b € B with u =a + b.
Therefore

n—1
1=u"=@+b)"= Z (Z)a”_kbk +b".

k=0
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Note that Zﬁ;(]) ()a" bk € A and b™ — 1 € B. We obtain b" — 1 =0 since R =A@ B. Thus b € Ur(B).
Let c:=ab"™ ! € A. Then b(1 +¢) =b+a=u, and since

n n

ISR A
k=1

k=1 k=1

we get ¢ € A.

Let b1,by e UT(B) and cq,cy € A with b1(1+4c1) =b(1+c3). Then by — by +bic1 —bycy =0, and
since by,by € B, bic1,baca € A and R = A @ B it follows that by = by and ¢; = ¢ and the proof of
part (i) is complete. Part (ii) is a direct consequence of part (i). O

A partially ordered set (I, <) is called rigid if
(i) I contains a greatest element e and a smallest element 0.

(ii) Every subset M; j:={kel: k<i,k<j}, i,j e, contains a greatest element m(i, j). (Therefore
every two elements i, j € I have an infimum in I.)

Proposition 4.2. Let R be a commutative unitary ring and (I, <) be a finite, partially ordered, rigid set. We
assume the existence of a family {R(i): i € I} of additive subgroups of R with the following properties:

(1) R =@, R(i) (direct sum of additive groups),
(2) R(e) =7ZH with a finite subgroup H < Ut (R),
(3) ROR(J) S R(m(, j)) foralli, jel

Furthermore there exists n € N with u™ =1 for allu € Ut (R). For i € I\{e} we set

Ri:= {a € R(): Z (Z)ak - OI.
k=1

Then:

(i) Every torsion unit u € Ut (R) is of the form

u=g l—[ 1+a)

iel\{e}

with uniquely determined elements a; € R; and g € =H. Moreover every element of this form is a torsion
unit in R.

(ii) Itis [UT(R)| = 2|H| l_[ie,\(e} |Ri| in case Ut (R) is finite.

Proof. We show the first part of (i) by induction on |I|. In case |I| =1 we get R = R(e) = ZH. Since
H is an abelian group, Ur(ZH) = £H (cf. [12]).
Let |I| = 2. Then R = R(0) & R(e). Since m(i,i) =i and m(i, 0) =0 for i € I we obtain

R(0O)R(0) € R(0), R(e)R(e) S R(e), and R(O)R(e) < R(0).

Moreover 1 € R(e). By Lemma 4.1 (with A := R(0) and B := R(e)) every torsion unit u € Ur(R) is of
the form u = g(1 4+ a) with uniquely determined elements a € Ry and g € Ur(R(e)) =Ur(ZH) = +H.
Moreover every element u = g(1 4 a) with g€ +H and a € Ry is a torsion unit of R by Lemma 4.1.
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Let |I| >3 and k be a maximal element of {i € I: i <e}. We set

J=N\{k}, A= D R( and B:=R(e)®R(K).
jel\e)

Then
R=A®B, A’CA, B®cCB, ABCA and 1eR(e)CB.

Let u € Ur(R). By Lemma 4.1 we can write u = b(1 + a) with uniquely determined b € Ur(B) =
Ur(R(e) ®R(k)) and ac A:=f{ac A: Y )_, (i )ak = 0}. Since

R(e)>*CR(e), R(k?CRk), R(e)R(k)<R(k and 1€R(e)

we can use Lemma 4.1 for the unitary subring B = R(e) @ R(k). Thus b is of the form b = g(1 + ay)
with uniquely determined elements g € Ur(R(e)) = +H and ay € Ry. Therefore u = g(1 + a,)(1 + a).

The ring P jej R(j) is commutative and unitary and J is a finite, partial ordered, rigid set. There-
fore the conditions of the propositions are fulfilled and we can use induction. Since

n

1+a)" :Z(Z)akzl,

k=0

itholds 14+ae UT(@]-EJ R(j)), and by induction follows that 1+a=nh ]_[]-E]\{e}(l +a;) with uniquely
determined h € +H and a; € Rj. Therefore u = gh ]_[l-E,\{e}(] +aj).
letu=g’ ]_[,»E,\{e}(l +a}) with g’ € +H and qa; € R;. Then

1=gh(g)™" J] a+ap(1+a)~"

iel\{e}

Since (1+aj) € Ur(R) there exists s; € N with (1 +ap)% = (1 —|—a1’.)‘l for i € I\{e}. Since R(i)® € R(i)
there exists ¢; € R(i) with (1 +a;)(1 —i—ag)*l =(14a)(1+a))* =1+ for i € I\{e}. Therefore

1=gh(g ]_[ (14cp). (6)

iel\{e}

Since R(e)R(i) € R(i) for i € I we get 1= gh(g’)~! +r{ with r; ¢ R(e) by expanding Eq. (6). The
decomposition R = ;. R(i) implies gh(g’)~' =1 and therefore gh = g’. Assume c; # 0 for some
i € I\{e}. We choose i € I\{e} maximal with the property c; # 0. In case j € I\{e, i} with cj # 0 we get
m(i, j) #1 by the maximality of i. Thus cic; ¢ R(i). By expanding Eq. (6) we get 1 =1 +¢; + 1, with
r2 ¢ R(i) The decomposition R = @p;; R(i) implies ¢; = 0 contradicting our assumption. Therefore
ci =0 for all i e I\{e}. Thus 1+a; =1+ q; for all i € I\{e}.

Conversely g]_[,e,\{e}(l +a;) € Ur(R) since g e Ur(R) for ge £H and 1 +a; € Ur(R) for a; € R;.
Thus assertion (i) is proved.

Part (ii) follows immediately from part (i). O

Let G be a finite group and A (G) be the set of normal subgroups of G. We say that a subset
S € N(G) has property (x) in cases

1. 1,GeS,
2. M,N € S implies MN € S and MNN € S.
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Let S € N(G) with property (x). For N € S let S(N) be the set of all elements [K, ¥ ]c € M(G)/G
with the following properties:

1. N<K,
2. N<XM < K with M € S implies N = M.

Remark 4.3. We should remark the following facts: For a nonempty subset S € A/ (G) we get S(N) #
since [N, 1] € S(N) for N € S. The set {S(N): N € S} is a partially ordered rigid set with S(L) < S(M)
in case L < M. Moreover S(G) is the greatest and S(1) is the smallest element of {S(N): N € S}. The
infimum of two elements S(L), S(N) € {S(N): N € S} is given by S(L N N). The group (S(G),-) is a
subgroup of Ur(D(G)) with S(G) = G. We should also remark that [K, ¥lc € S(N) implies N < 8K
for all g € G. Thus the above definition of S(N) does not depend on the choice of the representative
subgroup K.

Let T € M(G)/G. The additive subgroup of D(G) which is generated by the elements [H,¢]c € T
will be denoted by D(G)t. We set D(G)7 = {0} in case T = .

Lemma 4.4. Let S € N'(G) with property (x). Then:

(i) D(G) = Ppes D(G)s(ny (direct sum of additive subgroups),
(ii) D(G)semyD(G)svy € D(G)smnny for M, N € S,
(iii) D(G)s(c) = ZS(G) = ZG.

Proof. Let [K,¢¥]c € S(M)NS(N) with M, N € S. Then M < MN < K and N < NM < K. Since MN € S
we get M = MN = N. Thus S(M) N S(N) =0 for M, N € S with M # N.

Let [K, ¥]c € M(G)/G and set Xk :={N € S: N<K}.Itis Xg # ¢ since 1 € S. Let Ng := HNeXK N.
Since S has property (x) we get Ng € S and therefore Ng € Xg. Thus [K, ¥]c € S(Ng) and we get

M(G)/G =4 stN).
NeS

Part (i) follows immediately.
Let [H, ¥]c € S(M) and [K, ¥]c € S(N) with M, N € S. Since

[H@lclK, ¥lc= Y, [HNEK, ¢ -8y]

HgKeH\G/K

we have to show [HNEK, ¢ -8y ]c € S(IMNN) for all g € G. It holds M < H and N < 8K for all g € G.
Therefore MNN<HN8K forallgeG.Let MNN<L<HNSK for Le S and g € G. Then

M<MLSM(HNEK)<H
and
N<NL<N(HENK)<K.

Since [H, ¢]c € S(M) and [K, ¥]c € S(N) we get M = ML and N = NL. Thus L < M N N, and this
implies L = M N N. Therefore [H N &K, T]c € S(IM N N) for all g € G and all linear characters t of
HNE&K and part (ii) is proved.

Part (jii) is a direct consequence of S(G) = G and the definition of D(G)s@. O
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Remark 4.5. Let ¢ € C be a primitive |G|-th root of unity. Every torsion unit u € Ur(D(G)) is of the
form

D(G)
u= Z UH,hH€ (Y h)
[H.hH'lceD(G)/G

with uy pp € {£¢': i e N} for all [H,hH]g € D(G)/G. Thus Ur(D(G)) is a finite group. Moreover
the exponent exp(Ur(D(G))) of Ur(D(G)) divides 2|G|.

We can now state the main theorem of this section which is a direct consequence of Proposi-
tion 4.2, Lemma 4.4 and Remark 4.5.

Theorem 4.6. Let G be a finite group and S be a subset of N'(G) with property (x). Let n € N be a multiple of
exp(Ut(D(G))). For H € S we set

H* .= [a € D(G)S(H)I Z (Z)ak — }

k=1
Then every torsion unit u € Ut (D(G)) is of the form

u==+[G.ylc [[ (+un

HeS\{G}

with uniquely determined uy € H* and ¢ € G. Moreover

|UT(D(G>)|=2|€:|<

T I#]).

HeS\(G)
5. Abelian groups

In Proposition 3.7 we proved that the ring D(G) detects commutativity of the group G. With the
help of Theorem 4.6 we will show that D(G) = D(G) with an abelian group G implies G = G. In the
following we will use the notation C for the group with 2 elements.

Proposition 5.1. Let G be an abelian group. Then
Ur(D(G)) =G x C+1,
where m is the number of subgroups of G with index 2.

Proof. For G =1 the assumption is clear. Let G # 1. We use the notations of Theorem 4.6 and set S :=
{H: H <G} and n:=2|G|. Then S has property (x), and for H € S, S(H) ={[H, ¥]¢: ¥ € 1:I} holds.
Let U < G be a proper subgroup and a € U*. Then a+1 is a torsion unit in D(G). Let p: D(G) — D(G)
be the embedding of D(G) in the ghost ring D(G) and pu the projection in ZU Then py(@+1) € Z0
is a torsion unit in ZU. Since U is abelian, the set of all torsion units of ZU is £0 (cf. [12]). Thus
there exists 7 € U with pu(a+ 1) = £t. The element a is of the form a = ZAeU ay,nlU, Alg with
ay,x) € Z. Since G is abelian, we obtain

+7T—1=pya) = ZG[U,,\] Z Er=(G:U) ZG[U,)\])‘-

rel gUeG/U rel
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Note that in the above equation we use py([U,Alg) = ZgUEG/U E)L. In case 2 < (G :U) we get

ay,, =0 for all A U and therefore a = 0. Let (G : U) = 2. We obtain pu(a) € {0, -2}, and in case
pu(a) =0 we get aiy ;=0 for all A U and therefore a = 0. Let pu(a) =—2. Then qpy,1; = —1 and
apy.x; =0 for all A € U\{1}. Moreover

(1-[U, 1]G)2 =1-2[U, 1l +[U, 112 =1-2[U, 1]+ Z (U, 1]g=1. (7)
gUeG/U

Then (1 — [U, 11¢)?¢! =1 and therefore —[U, 1]¢ € U*. Thus U* = {0, —[U, 1]¢}. All in all we get

|U*|={2 if(G:U)=2,
1 else.

(8)
Since every torsion unit u € Ut (D(G)) is of the form

u=+[G yle [[ (+un)

HeS\{G}
with uniquely determined uy € H* and ¢ € G we get the desired isomorphism by Eq. (7) and (8). O
Theorem 5.2. Let G be a finite abelian group and let G be a finite group with D(G) = D(G). Then G = G.

Proof. By Proposition 3.7 the group G is abelian. Moreover Ut (D(G)) = Ur(D(G)). By Proposition 5.1
we get G X C;’“'l =G x Cg’“ where m and m are the numbers of subgroups of G and G with index 2.
Then |G x C5""'| =|G x CJ'*!|, and since |G| = |G| we obtain m =i and therefore G =G. O

6. The primitive idempotents of Z[{], ®z D(G)
Let p be a maximal ideal in Z[¢], p := char(Z[¢]/p) and R :=Z[¢], the localization of Z[{] at p.

In this section we will state a formula for the primitive idempotents of Dg(G).
We write

(H,hH) =, (U, uU")

for (H,hH"), (U,uU’) € D(G) in case

D(G D(G
s(;h),_,,)(x) = S(U(,u)U’)(x) (mod p)

for all x € D(G). Then =, is an equivalence relation on D(G). The equivalence classes of this relation
are called p-equivalence classes of D(G). We define

Dp(G) :={(K,kK") € D(G): |(k}| # 0% (N¢(K,kK') : K) (mod p)}.
The following proposition summarizes some results of [9].
Proposition 6.1.
(i) It holds (H,hH') =, (H, hy H') for all (H,hH’) € D(G).
(ii) Let (H,hH’) € D(G) and K /H be a p-subgroup of Ng(H,hH')/H. Then (H, hH’) =p (K, hK").

(iii) Let (H,hH’), (K,kK’) € Dy(G). Then (H,hH’) = (K, kK") if and only if (H,hH') and (K,kK') are
conjugate in G.
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Proof. See [9], Lem. 1, Lem. 2, Prop. 3. O

Let (H,hH") € D(G). By Proposition 6.1(i) we get (H,hH') =, (H,hyH’), and for a Sylow p-
subgroup Hi{/H of Ng(H,hH’)/H we conclude (H,hy,H’) =, (Hy,hyH}) by Proposition 6.1(ii).
With the same argument we get (Hj,hp H)) =, (Hq,hyH}) for a Sylow p-subgroup Hy/Hp of
Ng(Hq,hyHY)/H1. If we go on like this we obtain (Hp, hyHy) € Dyp(G) for some n € N. We call
(Hn, hy Hy) a p-regularization of (H,hH’). Moreover (Hp, hy Hy) is uniquely determined up to con-
jugation in G (cf.[9]). By Proposition 6.1 we conclude that every p-equivalence class of D(G) is
represented by exactly one orbit [H, hH']¢ € D(G)/G with (H,hH’) € Dp(G).

We use the notation OP(G) for the smallest normal subgroup of G such that G/OP(G) is a p-
group. The group G is called p-perfect in case OP(G) = G. The subgroup OP(G) is p-perfect and char-
acteristic in G. For a p-regularization (Hp, hy Hy) of (H,hH’) € D(G) it holds 0P (H,) = OP(H) < H.

We also use the following well-known lemmata.

Lemma 6.2. Let G be a finite group, A a normal abelian Hall-subgroup of G and [A, G] the commutator of A
with G. Then A =Ca(G) & [A, G].

Proof. See [13], Kapitel III, Satz 134. O
Lemma 6.3. Let G be a finite group and H be an abelian Hall-subgroup of G. Then HNG' N Z(G) = 1.
Proof. See [13], Kapitel IV, Satz 2.2. O
Let H be a p-perfect subgroup of G and h € G. We define
SP(H,hH') :={U < G: 0P(U)=H, U < Ng(H,hH')}.

For U € SP(H,hH’) and u € U we get u, € H. Since p does not divide (H : H'), the group H/H’ is a
normal abelian Hall-subgroup of U/H’. It follows that

H/H'=Cyyn(U/H') @ [H/H', U/H']

by Lemma 6.2. In the following we write u, -H’ for the Cy/p(U/H’)-part of up H' in H/H'. We can
now state the main theorem of this section.

Theorem 6.4. There is a 1-1-correspondence between the primitive idempotents of Dg(G) and the elements
of the set

I:={[H,hH']. € D(G)/G: H=0P(H)}.

An explicit formula for the primitive idempotents is given by

DG).p _ D(G) ’
€(H hH) = Z ey [HHH]G el
[U,uU’]GeD(G)/G
UeSP(H,hH")
up/'CH/=hH/

Proof. There is a 1-1-correspondence between the primitive idempotents of Dg(G) and the p-
equivalence classes of D(G) (cf. [7], Satz 1.12). We will show that every p-equivalence class of D(G)
contains exactly one G-orbit [H, hH']¢ with a p-perfect subgroup H.
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Let (U,uU’) € D(G). We set H:= OP(U), H:=H/H' and U :=U/H’. Then H is p-perfect and H
is a normal abelian Hall-subgroup of U. By Lemma 6.2 we get

H=CnU)®[H, U],
where [H, U] is the commutator of H and U. It holds uy H’ € H since (U : H) is a p-power. Thus
there exist hH' € Cj(U) and vH' € [H, U] with u, H' = hvH'. Therefore u, U’ =hvU’ € U/U’ holds.
Moreover v € U’ since vH' € [H, U] < U’ =U’/H’. Thus

(U,upU’) = (U,hU").

Itis H QU and since hH' € C(U) we get whw—'H' = hH' for all w € U. Thus U < Ng(H, hH’) and
U/H is a p-subgroup of Ng(H, hH’)/H. By Proposition 6.1(i) and (ii) it holds

(H,hH')=p (U, hU") = (U, upU’) =, (U, ul’).
All in all we can say at this point that for (U, uU’) € D(G) it holds
(U,uU") =, (0P (U), up 0P (UY). (9)
Let K be a p-perfect subgroup of G and k € K with (H,hH’) =p (K, kK’). We will show [H,hH']¢ =
[K,kK']g. Since OP(K) = K, the group K/K’ is a p’-group. Thus k, € K’, and it follows that
kK" =k, K’. Therefore we can assume k = k. With the same argumentation we assume h = h,.
Let (H,hH’) and (K,kK') be p-regularizations of (H, hH’) and (K, kK’). Then
(H,hH') =p (H,hH') =p (K, kK') =p (K, kK').
By Lemma 6.1(iii) (H, hH’) and (K, kK’) are conjugate in G. Thus
H = 0P(H)=¢ 0P (K) =K.

In the following we assume H = K. We will show that hH’ and kH’ are conjugate in Ng(H). Let
V/H be a Sylow p-subgroup of N¢(H, hH’ )/H and set V:=V/H' It holds H = CH(V) ®[H, V] by
Lemma 6.2. Obviously it holds [H,V]< V' N H. Conversely we assume x € V' N H. Then x = cd with
ce CH(V) and d € [H, V]. We get

c=xd ' eCp(V)NV' =Z(V)NHNV' =1
by Lemma 6.3. Thus x € [H, V] and
V'NH=[H,V]. (10)

The group H is normal in Ng(V) since H = 0P (V) is characteristic in V. Since H’ is characteristic in
H we get H' < Ng(V). It holds C,(vy/u(V) < Ng(V)/H', and since H <INg(V)/H' we get

Cu(V) = Cngvymw(V)NH I NG(V)/H'. (11)

We now show that (V,hV’) is a p-regularization of (H,hH’). Let t € Ng(V,hV’) < Ng(H). It is hH' €
Ci(V) since V < Ng(H, hH’). Moreover it is tht—1H' € Ci(V) since C(V) < Ng(V)/H' (by Eq. (11)).
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Thus h~'tht=1H’ € Cz(V). It holds h~'tht=! € V', therefore we get h~'tht~'H’ € V//H' = V'. By
Eq. (10) we obtain

CaHNV' =Cg(V)NV' NH=Cr(V)N[H,V]=1.
It follows that tht"'H’ = hH’. Thus t € N¢(H, hH’) and we get N¢(V,hV’) < Ng(H, hH’). Then
(Ne(V,hV'):V)=(Ng(V.hV')/H:V/H)#0 (mod p).
Therefore (V,hV’) is a p-regularization of (H, hH’). We can now assume
(H,hH') = (V,hV').
In particular hH' € CF,(I:I/H/), and with the same argumentation we get kH' € C;,(I?/H’). Since
(V,hV') = (H,hH') =p (K, kK')
we obtain by Proposition 6.1(iii) the existence of g € G with (K, kK’) = (V,hV’). Since OP(K) =H =
OP(V) it holds g € Ng(H). Thus gkg~'H’ € C;(8(K/H")) = C(V). Since hH' € C5(V) it follows that
h~'gkg='H' € Cz(V). Since h~'gkg~' € V’ we get h~'gkg~"H’ € V' and therefore
hlgkg'H e Cx(V)NV' =Z(V)NHNV' =1

by Lemma 6.3. Thus hH' = gkg~'H’ with g € Ng(H) and therefore every p-equivalence class is rep-
resented by exactly one orbit [H, hH']¢ with a p-perfect subgroup H.
Let H be any p-perfect subgroup of G, h € H and let X be the equivalence class represented by
[H,hH']g. We set
T:={[U,uU’]. € D(G)/G: (U.uU’) € X}
and
Y :={[U.uU']. € D(G)/G: U e SP(H,hH'), up H =hH'}.
Let [U,uU’lg € T with OP(U) = H. We get [H,u, H'l¢c =[H,hH']c by the above argumentations.
Thus there exists g € Ng(H) with g~'hgH' = up cH'. Since U < Ng(H, up H') it follows that U <
Ng(H,hH’"). Moreover uyH =uy vH" with vH' € [H,U/H’]. Thus
(Bu), H =*#(p)H = E(up o) vH’
with &(u, )H € Cz(8U/H’) and 8vH' € [H,8U/H']. It holds
g I (8 ’
( u)p,H =( u)p,’CwH
with (8u) . € C;(6U/H’) and wH’ € [H,8U/H']. Since H=Cy(6U/H’) & [H,8U/H’] we get
Eup oH = (g”)p’,cH/'

Thus (5u), (H'=hH’" and we get [U,uU’]c =[8U,%usU’]g €Y.
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Let conversely be [U,uU’]¢ € Y. We can assume OP(U)=H and u, (H' =hH’. We get
(U,uU")=p (H,upy H')=(H,hH')

by Eq. (9). Thus we get [U,uU’]lc €T and so Y =T.
Every primitive idempotent of Dg(G) corresponding to X is of the form

D(G)
> SURTILE

[U,uU’lgeT
Since Y = T we obtain the idempotent formula stated in the theorem. O

7. Sylow subgroups

In this section we present some results about Sylow subgroups of two finite groups G and G with
D(G) = D(G).

Proposition 7.1. Let G and G be finite groups, o : D(G) — D(G) an isomorphism, p a prime divisor of |G|
and P a Sylow p-subgroup of G. Let a(egff))) = eﬁfi]u,). Then the group H := OP(U) is a normal abelian

p’-subgroup of G and h :=up € Z(G). We set

I:={[K.kK'] . € D(G)/G: K=HV, V<P, k=hv, veV}.

Then

D(G).py _ D(G)
aleqy”) = Z € (K kK')*
[K,kK')gel

Proof. We get |G| = |G| by Theorem 3.6. Moreover by Proposition 3.8 U is a normal abelian subgroup
of G and u € Z(G) with |{(u)| € {1, 2}. Thus H is a normal abelian p’-subgroup of G and h € {1,u} C
Z(G). It holds

UeSP(H,h):={K<G: 0P(K)=H, K<Ng(H,h)}={K <G: 0P(K) =H},

D(G)

W) is included in the sum

and since uy € Z(G) we get Uy  =u,. Thus the idempotent e

PGP _ 3 D)

(H,h) (K.kK")"
[K.kK'lceD(G)/G
KeSP(H,h)
kyr o=h

Therefore a(ez(’%)'p) = egﬁ))’p. Let

J:=={[K.kK']. € D(G)/G: OP(K) =H, ky =h}.
We show I = J. Let [K,kK']g € I. Then OP(K) = H. Moreover we can assume k =hv with v € V for
some subgroup V < P. Since h € Z(G) it holds h =k, =kp . Thus [K,kK']g € J.

Let conversely be [K,kK’]c € J. We can assume kj = h. It holds H = 0P(K) and by Lemma 6.2
we get H=Cy(K) @ [H, K]. Since k,» € H it holds k, =k .y =hy with some y € [H, K] < K’. Thus

[K.kK']. =[K.kpkpyK']. =[K.kphyK'] . =K. hkpK'] ..
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By the Schur-Zassenhaus theorem there exists a p-subgroup V < G with K = HV. Moreover there
exists g € G with &V < P. Then €K = H(8V). Since 8V is a Sylow p-subgroup of €K there exists
w € 8K with W&k, € V. Thus

[K.kK']. =[8K.h(®kp)® K] . = [EK.h("8kp)EK ] €1
and the proposition is proved. 0O
We can now state the first result.

Theorem 7.2. Let G and G be finite groups with D(G) = D(G) and let p be a prime divisor of |G|. If G has a
non-trivial normal p-subgroup then G has a non-trivial normal p-subgroup.

Proof. Let P be a Sylow p-subgroup of G. By Theorem 6.4 we get

D(G).p _ D(G)
eq = ) Z e(k”}k,). (12)

[K.kK'lceD(G)/G
Kk<p

By the assumption there exists a normal p-subgroup 1 # U of G with U < P. Then K := Z(U) # 1

is an abelian p-subgroup of G which is characteristic in U. Thus K is normal in G and therefore

Z((G])) has conductor |G|. Thus the sum in Eq. (12) includes at least two primitive idempotents with

conductor |G| (consider e(l(c) and e .

subgroup of G and let oz(e?l(?;) =e

Proposition 7.1,

D(G) )
K.
D(G)

(U,uU’)

Let o : D(G) — D(G) be an isomorphism, P a Sylow p-

with a normal abelian subgroup U < G and u € Z(G). By

D(G) p D(G)
afe 1,1) )= Z €K kK')
K, kK'gel

holds with

I={[K.kK']. € D(G)/G: K=0P(U)V, k=upv, veV, V<P}.

There exists at least one element [K,kK']¢ € I with [K,kK']g # [0P(U),u,]c such that e(K kK) has

conductor |G| = |G|. Thus K is an abelian normal subgroup of G. Since K/OP(U) is a non-trivial
p-group, the Sylow p-subgroup of K is non-trivial and normal in G. O

Theorem 7.3. Let G and G be finite groups with D(G) = D(G). Let p be a prime divisor of |G| and let P and P
be Sylow p-subgroups of G and G. If P is abelian then P is abelian.

Proof. Let « : D(G) — D(G) be an isomorphism, a(eﬁ(%)) = e?[;fl)u,) with a normal abelian subgroup

U<Gand ueZ(G). Let H:=0?(U) and h :=u, . By Proposition 7.1 we obtain
D(G) p D(G)
afe 1,1) )= Z €K kK')
[K,kK'\cel
with

I:'={[K.kK']. €D(G)/G: K=HV, V<P, k=hv,veV}
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DO | R<F

Let P be abelian. Then the conductors of all primitive idempotents e(K ik’ P, k e K, are divisible

by |P|. Since

|P| = |P| divides the conductor of ey ., for all [K.kK'lg € I. We set K := HP. Then [K.hK']G €I
and p does not divide (Ng(K, hK’) : K). Thus |P| divides (K : K’) and therefore P N K’ = 1. It follows

that P’ < K'N P =1 and therefore P is abelian. O

The next theorem is concerned with Sylow 2-subgroups of groups G and G with D(G) = D(G). We
first need the following lemma.

Lemma 7.4. Let G be a finite group and (H, hH') € D(G). We assume the existence of x € Dg(G) andn € N
such that S?J?H,) (x) is a primitive n-th root of unity.

(i) If2tn or 4 | n then n divides |(h)|.
(ii) Ifn =2m withm € N and 2 tm then m divides |(h)|.

Proof. Let w € C be a primitive [{h)|-th root of unity. For every subgroup U < G with H < U and
every linear character v € U it holds ¢ (h) = o' for some i € N. For [U, ¥]c € M(G)/G we get

st (U ¥le)= Y Ey(h) € Q).
gUeG/U
H<EU

Therefore SZ;Gh)H,)(X) € Q(w). Since +w' (i € N) are the only roots of unity in Q(w) we get

?I,(i)H,) (x) € {£w': i € N}. Therefore

n | max{ord(+w'): i € N} € {ord(w), ord(—w)}.

In case ord(w) > ord(—w) we obtain that n divides |(h)| and (i) and (ii) is proved. Let 2 - ord(w) =
ord(—w). Then 2 { ord(w) and since n | ord(—w) we get 4{n. If 2 tn we get n | ord(w) and therefore (i).
Let 2 | n. Since n | ord(—w) = 2 - ord(w) we obtain that % divides ord(w) and we proved (ii). O

Theorem 7.5. Let G and ? be finite groups with D(G) = D(G) and let P and P be Sylow 2-subgroups of G
and G. If P is cyclic then P is cyclic.

Proof. Let P = (h) and |P| = 2" with n € N. We assume n > 2. Note that (NG(P) Cg(P)) divides
| Aut(P)| = 2", Since 2{ (Ng(P) : Cg(P)) we get Ng(P) = Cg(P). Let A € P such that A(h) is a
primitive 2"-th root of unity. Then

D(G)7PA> _ 8x(h) = r(h).
S(th)<(NG(P):P)[ le )= Nepy- )gpegp)“) (h) = (h)
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Let « : D(G) — D(G) be an isomorphism. Then s(DP((;;)) = S?H((;)H/) o with (H, hH’") € D(G). We set

=

1 -
= — [P, A Do(G).
“((Nc(m:m[ ]G>€ e

Then stGl (x) = A(h) is a primitive 2"-th root of unity. Moreover 2" divides [(h)]| by Lemma 7.4.

Thus G contams an element of order 2". Therefore P is cyclic. O

8. Nilpotent and p-nilpotent groups

In the first theorem of this section we prove that the ring of monomial representations of a finite
group detects nilpotency.

Theorem 8.1. Let G be a finite nilpotent group and G a finite group with D(G) = D(G). Then G is nilpotent.
Proof. Let o : D(G) — D(G) be an isomorphism and let

D) D(G)
(e(1 1)) €W uun:

By Proposition 3.7 U is a normal abelian subgroup of G and u € Z(G). Let p be a prime divisor of G,

P the Sylow p-subgroup of G and H := OP(U). Then H is a normal abelian subgroup of G with
p{|H|. Since u € Z(G) we get h:=uy € Z(G) N H. Since G is nilpotent we obtain

D(G).p D(G)
aled )= D e (13)
[K,kK']gel
with
={[K.kK']. € D(G)/G: K=HxV, V<P, k=hv, veV}

by Proposition 7.1. Let K := H x V with V < P and k :=hv with v € V. Since G is nilpotent it holds
Gp <Cg(V), and since H is normal in G we get Gy < Ng(K). Since h € Z(G) we get

gkK'g ' = ghvg 'K’ = hvK' = kK’

for all g € Gp. Thus G, < Ng(K, kK’). Moreover K’ = (H x V)" =V’ is a p-subgroup of G. Thus |G|

divides (N¢(K,kK') : K). Therefore |G /| divides the conductor of the primitive idempotents e(K(Gk)K,
with [K,kK']¢ € I. Let P be a Sylow p-subgroup of G. By
PGP _ D(G)
eany = ) € 0.a01
[0.a0'1eD(G)/G
Ugp
and Eq. (13) we obtain that |Gy | = IG| p divides the conductor of the primitive idempotents e(DU(G”)U/

D(G)
N o 5 3 (P,1P7)"
Py = (Ng(P) : P) and therefore P is normal in G and the theorem is proved. O

with U < P. In particular |G|, divides the conductor of e " . Therefore |G|, divides (Ng(P) :
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Next we will show that the isomorphy D(G) = D(G) with nilpotent groups G and G implies the
isomorphy D(P) = D(P) where P and P are Sylow p-subgroups of G and G. We need the following
two propositions.

Proposition 8.2. Let G and H be finite groups with gcd(|G|, |H|) = 1. Then
D(G x H)= D(G) ®z D(H).

Proof. Since gcd(|G|, |[H|) =1, every subgroup of G x H is of the form U x V with subgroups U < G
and V < H. Moreover every linear character of a subgroup U x V < G x H is of the form ¢ x y with
(¢, ¥) € U x V. Therefore the map

D(G x H) — D(G) ®z D(H),

[UxV,ox¥lexn > [U,0lc @[V, ¥1n
is well defined and an isomorphism. O

Proposition 8.3. Let A1, Ay, B1, By be commutative rings with unit element which are finitely generated and
free as a Z-module. Moreover, assume that the rings A1 and A, have Z-bases which contain the respective unit
element. Further, assume that there exists a unitary subring R C C such that the only idempotents in R ®z A;
(i=1,2)are0and 1 and such that the R-algebra R ®z B; (i = 1, 2) is isomorphic to a direct product of copies
of R.If A1 ®7 B1 = Ay ®7 B, then B; = B).

Proof. Let {ai,...,a5) € A, {G1,...,d;} € Az, {b1,...,bn} € By and {b1, ..., bm} C By the respective
Z-bases with the unit elements a; =14, and a; =14,. Then {a; ® b;: i=1,...,s, j=1,...,n}isa
Z-basis of A1 ®z By and {G; ®bj: i=1,...,t, j=1,...,m} is a Z-basis of Ay ®z B,. Consider the
canonical embeddings

¢:B1 - R®z By,
bi— 1gr ® bj,

§:B1 — A1 ®z Bq,
bi— 14, ® b;

¥:=1Q®8:R®z B1 — R®z A1 ®z B1,
1R ®bi—> 1r ® 14, ®bi,
n:A1®zB1— R®z A1 ®z B1,
a;®bj— 1 ®a; ®b;
(i=1,...,n, j=1,...,s). Then ¥ o ¢ = 1t 0 5. We define the canonical embeddings ¢ : By — R ®z B>,

S:Bz—)Az@ZBz, &:R®232—> R®z A2 ®z By and i : A, ®7 B» — R®yz Az ®7z B in an analogous
way. Let

a:A1®zB1— A2 ®z B
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be an isomorphism. We extend « linearly to the isomorphism

d:R®7 A1 ®7B1— R®z Ay ®7 B).

Then & o = fi o cx. Let eq,...,e, be the primitive idempotents of R ®z B1 and éy,..., e, be the
primitive idempotents of R ®z B;. Then

n m
R ®7 B1:@Rei and R®gy Bzz@Réi.
i=1 i=1

Moreover 0 and 1 are the only idempotents in R ®z A and R @z Az. Then 1gg,a, e, i=1,...,n,
are the primitive idempotents of (R ®7 A1) ®r (R ®z B1). Since

R®z A1 ®zB1=(R®z A1) ®r (R®z B1)

the elements ¥ (e;), i =1,...,n, are the primitive idempotents of R ®z A1 ®z B1. Similarly ¥ (&;),
i=1,...,m, are the primitive idempotents of R ®7, A2 ®z B;. Thus

a({yen,....vEn))={FEn,....vEm}.

In particular n = m. We assume &((e;)) = ¥ (&) for i =1,...,n. Let ¢ € By. Then there exist
I,...,m € R with ¢(c) = Y1, rie; and we get

n n
@ovyop)c)=(& odx)(Znei) = v @).
i=1 i=1
Thus there exist t1,...,t; € R with (& o ¥ 0 @)(c) = 2?21 ti(1g @ 14, ®l3i). It holds
(Goyop)c)=(@opnod)(c)=(fLoaod)(c),

and there exist z; j € Z (i=1,...,t, j=1,...,n) with

t n
(@ 08)(c) = Zzzi,j(ai ®b)).

i=1 j=1
Therefore
n 5 t n 5
Y (R @14, ®b) =(Loaod)©)=Y > z j(1rg®a®b)).
i=1 i=1 j=1
Since d1 = 14, the set {1g @14, ®Ej: j=1,...,n}is a subset of the canonical basis {1 ®ﬁi®5j: i=

1,...,t, j=1,...,n} of R®z A ®z B2. Thus tj =2z jeZ forall j=1,...,nand z; j=0 for i #1,
j=1,...,n. It follows that (& o ¥ o @)(c) € W o @)(By) and therefore

B:=¢ oy lodoyop:B— By

1 1

is a ring monomorphism. Considering ¥ op = o8 and § 1o i ' =@ 1oy ! we get

B=5"Toaos. (14)
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With the same argumentation we get a ring monomorphism
525_] ool 05132—) B1.
Moreover 8o = idp, and BopB= idg,. Therefore 8 is an isomorphism. O

Theorem 8.4. Let p be a prime number. Let G = P x H and G = P x H be finite groups with p-groups P, P
and p’-groups H, H. If D(G) = D(G) then D(H) = D(H).

Proof. Let & € C be a primitive |H|-th root of unity, p be a prime ideal in Z[£] with char(Z[£]/p) =p
and R :=Z[£], be the localization at p. By Theorem 6.4 the rings Dr(H) and D) (H) have the same
primitive idempotents. Similarly the primitive idempotents of Dg(H) and D@(g)(l:l) are corresponding.
Therefore Dg(H) and Dg(H) are completely reducible. Moreover by Theorem 6.4 we obtain that 0 and
1 are the only idempotents in Dg(P) and Dg(P). By Proposition 8.2 we get the isomorphy

D(P) ®z D(H) = D(G) = D(G) = D(P) ®7 D(H).

We set A; :=D(P), Ay :=D(P), By := D(H) and B3 := D(H). Then all conditions in Theorem 8.3 are
valid and we get the isomorphy D(H) = D(H). O

Corollary 8.5. Let G and G be finite nilpotent groups with D(G) = D(G).Let p1, ..., Pn be the different prime
divisors of |G|, and fori =1, ...,n let G; and G; be the Sylow p;-subgroups of G and G. Let

o :D(G1) ®z...®7 D(Gn) — D(G1) ®z ... ®z D(Gn)

be an isomorphism. Then there exist isomorphisms «; : D(G;) — D(Gy) fori=1,....nwithae =1 ®
. ® an.
Proof. Fori=2,...,n let

H;i:=Gj; x--- X Gp, Hi:=G; x--- x Gy
and
8 :D(H) — D(Hi—1), & : D(H;) — D(H;_1)
be the canonical embeddings. Applying Theorem 8.4 under consideration of Eq. (14) we get the iso-
morphism 8, := 62’1 oo o8y : D(Hy) — D(H3). Applying Theorem 8.4 again we get the isomorphism
B3 = 53‘1 of0683:D(H3) — D(FI3). If we go on like this we obtain the isomorphism
Bri=387" 008, oa 08008 :D(Gn) — D(Gp)
where 83 0---08;: D(Gp) — D(G) and §; o e0 80 : D(Gy) — D(G) are the canonical embeddings. In
this way we get isomorphisms D(G;) — D(G;) for all i =1,...,n. If we let 7; : D(G;) — D(G) and
7; : D(G;) — D(G) be the canonical embeddings, the maps

ai:=7% 'oaot;: D(G)— DGy, i=1,...,n,

are these isomorphisms. Let x=x1 ® --- ® X, € D(G1) ®z ... ®7 D(Gy). Then
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aX) =a(x1 ®1pcy @ R 1p@cy) --- (IpG) @+ @ 1p(Gu_y) ®Xn))
=(@ot)X1) ... (@oTy)(Xp) =(Troa)(X1) - ... (Ty o an) (Xn)

=a1(X1) @ - - @ an(xn).
Therefore d =1 ® --- Q. O

The next result is concerned with the group of torsion units of D(G) where G is a nilpotent group
of odd order.

Theorem 8.6. Let G be a nilpotent group of odd order. Then Ut (D(G)) = G x Cs.

Proof. We assume U7 (D(G)) 2 G x Cs. By Theorem 4.6 with S =1, G, there exists

0£u= Z Zin,p1lH, ¢lc € D(G),  Z[H,p) € Z,
[H,@lceM(G)/G

with ZZIGI (Z'G')u =0and zjg e =0 forall g e G. Thus 1+ u € Ur(D(G)). Choose U < G such that
|U]| is maximal with the property 2w,y # 0 for some ¢ € 0. Then U < G. Since £0 is the set of all
torsion units in ZU there exists T € U with

puu) = > qug Y. fp=Hr-1.

[U,plceM(G)/G gUeNg(U)/U

In case T # 1 we get zjy,11=—1 and (Ng(U) : U) = 1. Since G is nilpotent, (Ng(U) : U) # 1 holds in
contradiction to the above case. Therefore 7 = 1. Since (Ng(U) : U) # OA(mod 2) the case py(u) =—2
is not possible. Therefore py (u) = 0. This implies zjy 4 =0 for all ¢ € U contradicting the assumption

zy.y1 # 0. Therefore Ur(D(G)) =G x C2. O

Corollary 8.7. Let G and G be finite nilpotent groups with D(G) = D(G). Then the 2'-Hall subgroups of G /G’
and G /G’ are isomorphic.

Proof. Let H and H be the 2’-Hallgroups of G and G. By Theorem 8.4 we obtain the isomorphy
D(H) = D(H). Moreover we get H/H' x C; = H/H' x C; by Theorem 8.6. Therefore we get H/H' =
H/H'. O

For p-nilpotent groups we get the following result.

Theorem 8.8. Let G and G be finite groups with D(G) = D(G). Assume that for a prime divisor p of |G| the
Sylow p-subgroups of G and G are cyclic. If G is p-nilpotent then G is p-nilpotent.

Proof. Let P be a Sylow p-subgroup of G and let « : D(G) — D(G) be an isomorphism. By Propo-

sition 3.7, a(e(l(%)) = eﬁﬁ}) holds with a normal abelian subgroup U of G and u € Z(G). Let

H:=0P(U) and h:=uy, € Z(G). By Proposition 7.1 we obtain

D(G).py _ D(G)
O‘(e(m) )= Z € (K kK" (15)
[K.kK'lgel
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with
I={[K.kK']. € D(G)/G: K=HV, V<P, k=hv, veV}

Let V<P, v,weV and K := HV. Assume [K,hvK']c = [K,hwK']c. We first prove v = w.

There exists gK' € Ng(K)/K' with 8(hv)K' = hwK’. Since h € Z(G) we get 8vK' = wK'.
Since P is cyclic K/H =V is cyclic. Thus K’ < H and VK'/K’ = V. In particular VK'/K’' is a
cyclic p-subgroup of N¢(K)/K'. It holds vK’, wK’ € VK’/K’, and since [(wK')| = [(68vK')| we get
(WK') = (vK’) =: T. Thus gK’ € Ny (k) k' (T). Since G is p-nilpotent the subgroup N¢(K) is p-
nilpotent and therefore Ng(K)/K’ is p-nilpotent. By the p-nilpotency-criteria of Frobenius follows
that N¢ )k (T)/Cne (k) k' (T) is a p-group. Since P is abelian every Sylow p-subgroup of N¢(K)/K’
is abelian. Therefore a Sylow p-subgroup of N¢(K)/K’ is included in Cn, )/’ (T). Thus [N (K)/K'|p
divides |CNg(K)/K’(T)|- It follows that NN@(K)/K’(T) = CN@(K)/K’(T) and therefore wK’ = vK’. We get
viweK' NV =1.Thus v=w.

Let |P| = p™ with n € N. For every divisor p™, m € N, of |P| there exists exactly one sub-
group V < P with |V| = p™. By the above part of the proof there exist exactly p™ different orbits
[HV,hv(HV)]g, v € V, for every subgroup V < P with |V|= p™. Therefore

11+1 -1
= Zp = 7_
Let P be a Sylow p-subgroup of G. Since P is cyclic we get

D(G)p D(G)
ay = Z €k

with

J={lV.V]z €eD(G)/G: V<P, veV}

by Theorem 6.4. Since |P| = p" it holds |J| < YI_,p’, and by Eq. (15) we get |I| = |]| Hence
[V,V]e = [W, W]z with V,W <P, VeV, we W if and only if V = W and ¥ = W. Therefore
Nz (V)= Cz(V) for all V < P. In particular Nz (P) = Cz(P). Thus G is p-nilpotent by the p-mlpotency
criterion of Burnside. O
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