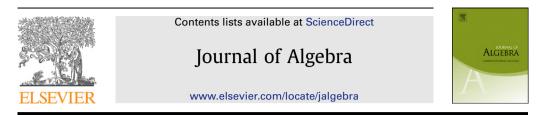
Journal of Algebra 333 (2011) 427-457



On the isomorphism problem for the ring of monomial representations of a finite group

Michael Müller

Mathematisches Institut, Friedrich-Schiller-Universität, 07737 Jena, Germany

ARTICLE INFO

Article history: Received 18 September 2010 Available online 23 February 2011 Communicated by Michel Broué

Keywords: Representation rings Isomorphism problem Primitive idempotents Torsion units

ABSTRACT

In this paper we are concerned with the problem of finding properties of a finite group *G* in the ring D(G) of monomial representations of *G*. We determine the conductors of the primitive idempotents of $\mathbb{Q}(\zeta) \otimes_{\mathbb{Z}} D(G)$, where $\zeta \in \mathbb{C}$ is a primitive |G|-th root of unity, and prove a structure theorem for the torsion units of D(G). Using these results we show that an abelian group *G* is uniquely determined by the ring D(G). We state an explicit formula for the primitive idempotents of $\mathbb{Z}[\zeta]_p \otimes_{\mathbb{Z}} D(G)$, where $\mathbb{Z}[\zeta]_p$ is a localization of $\mathbb{Z}[\zeta]$. We get further results for nilpotent and *p*-nilpotent groups and we obtain properties of Sylow subgroups of *G* from D(G).

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The ring D(G) of monomial representations of a finite group G has been investigated by Andreas Dress and Robert Boltje (the letter D is paying tribute to Dress who studied similar rings in [8]). A motivation to consider this ring arised from the *Brauer induction theorem* which says that there is a canonical way of writing complex characters as an integral linear combination of induced linear characters (cf. [1,17]). Detailed information about construction, species and idempotent formulae of D(G) can be found in [3].

We are mainly interested in finding properties of *G* by analyzing the structure of D(G). Since the Burnside ring B(G) can be embedded in D(G), there is a connection to the similar problem concerning the ring B(G). This problem has been studied in [6,14,16], among others. Considering results for the isomorphism problem for Burnside rings it seems to be useful to work with primitive idempotents of $R \otimes_{\mathbb{Z}} D(G)$, where *R* is a subring of \mathbb{C} , with conductors of such idempotents and with torsion units of D(G).

E-mail address: m_mueller76@gmx.net.

^{0021-8693/\$ –} see front matter $\,\,\odot$ 2011 Elsevier Inc. All rights reserved. doi:10.1016/j.jalgebra.2011.02.013

In the second section we give a survey over the construction of D(G), the species and the primitive idempotents of $\mathbb{Q}(\zeta) \otimes_{\mathbb{Z}} D(G)$ ($\zeta \in \mathbb{C}$ primitive |G|-th root of unity). The third section contains the determination of the conductors of the primitive idempotents of $\mathbb{Q}(\zeta) \otimes_{\mathbb{Z}} D(G)$ (i.e. the minimal natural number $n_e \in \mathbb{N}$ for a primitive idempotent $e \in \mathbb{Q}(\zeta) \otimes_{\mathbb{Z}} D(G)$ such that $n_e \cdot e \in \mathbb{Z}[\zeta] \otimes_{\mathbb{Z}} D(G)$) and a first application concerning the order of the center of the group *G*. Next we prove a structure theorem for the torsion units of D(G). In Section 5 we show that an abelian group *G* is uniquely determined by the ring D(G). In the sixth section we state an explicit formula for the primitive idempotents of $\mathbb{Z}[\zeta]_p \otimes_{\mathbb{Z}} D(G)$, where p is a maximal ideal of $\mathbb{Z}[\zeta]$ and $\mathbb{Z}[\zeta]_p$ is the localization of $\mathbb{Z}[\zeta]$ at p. Using this result we obtain properties of the Sylow subgroups of *G* from D(G). Among others we show that the case $D(G) \cong D(\tilde{G})$, where *G* has an abelian Sylow *p*-subgroup, implies the commutativity of the Sylow *p*-subgroups of \tilde{G} . In the last section we consider nilpotent and *p*-nilpotent groups. Among others we show that the ring D(G) detects nilpotency of *G*.

Notation. For a group element $g \in G$ we write $\operatorname{ord}(g)$ for the order of g. Let G_p be the set of all p-elements and $G_{p'}$ be the set of all p-regular elements of G (p prime). For $g \in G$ let $g_p \in G_p$ and $g_{p'} \in G_{p'}$ be the uniquely determined elements with $g = g_p g_{p'} = g_{p'} g_p$. For a group G we denote by G' the commutator subgroup of G and by Z(G) the center of G. For a subgroup H of G we use the notation $H \leq G$. We sometimes write H < G in case H is a proper subgroup and $H \leq G$ in case H is a normal subgroup of G. For $H \leq G$ let $C_G(H)$ be the centralizer and $N_G(H)$ be the normalizer of H in G. For $g \in G$ we set ${}^gH := gHg^{-1}$ and $H^g := g^{-1}Hg$. Moreover we set $\hat{G} := \operatorname{Hom}(G, \mathbb{C}^{\times})$.

2. The ring of monomial representations

Let *G* be a finite group. The *monomial category* of *G* is denoted by $\mathbf{mon}_{\mathbb{C}G}$. The objects of $\mathbf{mon}_{\mathbb{C}G}$ are pairs (V, \mathcal{L}) consisting of a finitely generated $\mathbb{C}G$ -module *V* and a set \mathcal{L} of one-dimensional subspaces of *V* with $\bigoplus_{L \in \mathcal{L}} L = V$ and $gL \in \mathcal{L}$ for $g \in G$ and $L \in \mathcal{L}$. A morphism $f : (V, \mathcal{L}) \to (W, \mathcal{M})$ of $\mathbf{mon}_{\mathbb{C}G}$ is a homomorphism $f : V \to W$ of $\mathbb{C}G$ -modules such that for all $L \in \mathcal{L}$ there exists $M \in \mathcal{M}$ with $f(L) \subseteq M$. In [4] a morphisms between monomial objects is defined in a different way, but this will not affect the results below. Two objects (V, \mathcal{L}) and (W, \mathcal{M}) are *isomorphic* if there exists a morphism $f : (V, \mathcal{L}) \to (W, \mathcal{M})$ such that the according $\mathbb{C}G$ -module homomorphism is an isomorphism. There is a direct sum and a tensor product on $\mathbf{mon}_{\mathbb{C}G}$ defined by

$$(V, \mathcal{L}) \oplus (W, \mathcal{M}) := (V \oplus W, \mathcal{L} \cup \mathcal{M})$$

and

$$(V, \mathcal{L}) \otimes (W, \mathcal{M}) := (V \otimes_{\mathbb{C}} W, \{L \otimes_{\mathbb{C}} M \colon L \in \mathcal{L}, M \in \mathcal{M}\})$$

for objects $(V, \mathcal{L}), (W, \mathcal{M}) \in \mathbf{mon}_{\mathbb{C}G}$. An object (V, \mathcal{L}) of $\mathbf{mon}_{\mathbb{C}G}$ with $V \neq 0$ is indecomposable if $(V, \mathcal{L}) = (V_1, \mathcal{L}_1) \oplus (V_2, \mathcal{L}_2)$ with objects $(V_1, \mathcal{L}_1), (V_2, \mathcal{L}_2) \in \mathbf{mon}_{\mathbb{C}G}$ implies $V_1 = 0$ or $V_2 = 0$.

We denote by $[V, \mathcal{L}]$ the isomorphism class of the object (V, \mathcal{L}) of **mon**_{$\mathbb{C}G$}. The *ring of monomial representations* D(G) is the \mathbb{Z} -module generated by the isomorphism classes of the objects of **mon**_{$\mathbb{C}G$} relative to the relations

$$[V, \mathcal{L}] + [W, \mathcal{M}] = [(V, \mathcal{L}) \oplus (W, \mathcal{M})]$$

and

$$[V, \mathcal{L}] \cdot [W, \mathcal{M}] = [(V, \mathcal{L}) \otimes (W, \mathcal{M})],$$

 $(V, \mathcal{L}), (W, \mathcal{M}) \in \mathbf{mon}_{\mathbb{C}G}$. Then D(G) is a unitary ring with identity $[\mathbb{C}, {\mathbb{C}}]$ (we consider \mathbb{C} as the trivial $\mathbb{C}G$ -module). Moreover D(G) is a free \mathbb{Z} -module, and the isomorphism classes of the indecomposable objects of $\mathbf{mon}_{\mathbb{C}G}$ form a \mathbb{Z} -basis of D(G) (cf. [4,9]).

Let $H \leq G$ and $\varphi \in \hat{H}$. The $\mathbb{C}G$ -module \mathbb{C}_{φ} is the \mathbb{C} -vectorspace \mathbb{C} with the underlying *G*-action defined by $g * c := \varphi(g) \cdot c$, $g \in G$, $c \in \mathbb{C}$. Moreover for $g \in G$ we define a linear character ${}^{g}\varphi \in \widehat{{}^{g}H}$ by

$${}^{g}\varphi({}^{g}h) := \varphi(h), \quad h \in H.$$

We can describe the indecomposable objects of $mon_{\mathbb{C}G}$ in the following way (cf. [4,9]):

Proposition 2.1.

- (i) Let $H \leq G$ and $\varphi \in \hat{H}$. Then $(\operatorname{ind}_{H}^{G} \mathbb{C}_{\varphi}, \{g \otimes \mathbb{C}_{\varphi} \colon g \in G\})$ is an indecomposable object in **mon**_{$\mathbb{C}G$}.
- (ii) Let $H, U \leq G$, $\varphi \in \hat{H}$ and $\psi \in \hat{U}$. The objects $(\operatorname{ind}_{H}^{G} \mathbb{C}_{\varphi}, \{g \otimes \mathbb{C}_{\varphi} \colon g \in G\})$ and $(\operatorname{ind}_{U}^{G} \mathbb{C}_{\psi}, \{g \otimes \mathbb{C}_{\psi} \colon g \in G\})$ are isomorphic if and only if there exists $g \in G$ with ${}^{g}H = U$ and ${}^{g}\varphi = \psi$.
- (iii) Every indecomposable object in $\mathbf{mon}_{\mathbb{C}G}$ is isomorphic to an object $(\operatorname{ind}_{H}^{G}\mathbb{C}_{\varphi}, \{g \otimes \mathbb{C}_{\varphi} \colon g \in G\})$ with $H \leq G$ and $\varphi \in \hat{H}$.

From now on we identify the object $(\operatorname{ind}_{H}^{G} \mathbb{C}_{\varphi}, \{g \otimes \mathbb{C}_{\varphi}: g \in G\})$ with the monomial pair (H, φ) . We denote by

$$\mathcal{M}(G) := \left\{ (H, \varphi) \colon H \leq G, \ \varphi \in \hat{H} \right\}$$

the set of all monomial pairs of *G* and define by ${}^{g}(H, \varphi) := ({}^{g}H, {}^{g}\varphi)$ an action of *G* on $\mathcal{M}(G)$. We write $[H, \varphi]_{G}$ for the *G*-orbit of $(H, \varphi) \in \mathcal{M}(G)$ and we set

$$\mathcal{M}(G)/G := \{ [H, \varphi]_G \colon (H, \varphi) \in \mathcal{M}(G) \}.$$

Moreover for $(H, \varphi), (U, \psi) \in \mathcal{M}(G)$ we write $(H, \varphi) \leq (U, \psi)$ if $H \leq U$ and $\psi_{|H} = \varphi$. Therefore we get a partial order on $\mathcal{M}(G)$. By

$$N_G(H,\varphi) := \left\{ g \in G \colon {}^g(H,\varphi) = (H,\varphi) \right\}$$

we denote the stabilizer of $(H, \varphi) \in \mathcal{M}(G)$ in *G*. In particular we get the inclusion

$$H \leq N_G(H, \varphi) \leq N_G(H).$$

By Proposition 2.1 we can identify the isomorphism classes of indecomposable objects with the elements of $\mathcal{M}(G)/G$. Thus the ring D(G) is the free abelian group generated by the *G*-orbits $[H, \varphi]_G \in \mathcal{M}(G)/G$ together with the multiplication

$$[H,\varphi]_G \cdot [U,\psi]_G = \sum_{HgU \in H \setminus G/U} \left[H \cap^g U, \varphi_{|H \cap^g U} \cdot^g \psi_{|H \cap^g U} \right]_G$$

for $[H, \varphi]_G, [U, \psi]_G \in \mathcal{M}(G)/G$. In particular D(G) is finitely generated.

For a commutative unitary ring *R* and $H \leq G$ we set

$$D_R(H) := R \otimes_{\mathbb{Z}} D(H).$$

Let $K \leq H \leq G$ and $g \in G$. The *conjugation map* $c_{g,H}$ is defined by

$$c_{g,H}: D_R(H) \to D_R({}^gH),$$

 $[U, \varphi]_H \mapsto [{}^gU, {}^g\varphi]_{g_H}$

the *restriction map* $\operatorname{res}_{K}^{H}$ is defined by

$$\operatorname{res}_{K}^{H}: D_{R}(H) \to D_{R}(K),$$
$$[U,\varphi]_{H} \mapsto \sum_{KhU \in K \setminus H/U} \left[K \cap {}^{h}U, {}^{h}\varphi_{|K \cap {}^{h}U} \right]_{K}$$

and the *induction map* ind_{K}^{H} is defined by

$$\operatorname{ind}_{K}^{H}: D_{R}(K) \to D_{R}(H),$$
$$[U, \varphi]_{K} \mapsto [U, \varphi]_{H}.$$

The conjugation and the restriction maps are *R*-algebra homomorphisms. The induction maps are morphisms of the additive groups. Together with these operations the functor D_R becomes an *R*-Green functor on *G* (cf. [4]).

A *species* of D(G) is a ring homomorphism $s: D(G) \to \mathbb{C}$. In the following we give a short survey on the construction of the species of D(G) according to [3].

Let R(G) be the ordinary character ring of G. For $g \in G$ we define the ring homomorphism

$$t_{g}: R(G) \to \mathbb{C},$$

 $\varphi \mapsto \varphi(g)$

For $H \leq G$ we define the ring homomorphism

$$\pi_{H} : D(H) \to R(H/H'),$$
$$[U, \psi]_{H} \mapsto \begin{cases} \bar{\psi} & \text{if } U = H, \\ 0 & \text{otherwise} \end{cases}$$

where $\overline{\psi} \in \widehat{H/H'}$ is defined by $\overline{\psi}(hH') := \psi(h)$. We set

$$\mathcal{D}(G) := \left\{ \left(H, hH'\right): H \leqslant G, h \in H \right\}$$

and define an action of *G* on $\mathcal{D}(G)$ by ${}^{g}(H, hH') := ({}^{g}H, {}^{g}h{}^{g}H')$ for $g \in G$. We write $[H, hH']_{G}$ for the *G*-orbit of $(H, hH') \in \mathcal{D}(G)$ and we set

$$\mathcal{D}(G)/G := \left\{ \left[H, hH' \right]_G : \left(H, hH' \right) \in \mathcal{D}(G) \right\}.$$

The stabilizer of $(H, hH') \in \mathcal{D}(G)$ in *G* is denoted by

$$N_G(H, hH') := \{g \in G: {}^{g}(H, hH') = (H, hH')\}.$$

Moreover we obtain the inclusion

$$H \leq HC_G(H) \leq N_G(H, hH') \leq N_G(H).$$

For every element $(H, hH') \in \mathcal{D}(G)$ we get a ring homomorphism

$$s_{(H,hH')}^{D(G)} := t_{hH'} \circ \pi_H \circ \operatorname{res}_H^G : D(G) \to D(H) \to R(H/H') \to \mathbb{C}.$$

In particular the images of the elements $[U, \psi]_G \in \mathcal{M}(G)/G$ are given by

$$s_{(H,hH')}^{D(G)}([U,\psi]_G) = \sum_{\substack{gU \in G/U \\ H \leqslant^g U}} {}^g \psi(h).$$

We get the set of all species of D(G) by this construction. Moreover $s_{(H,hH')}^{D(G)} = s_{(U,uU')}^{D(G)}$ if and only if $[H, hH']_G = [U, uU']_G$. Thus there is a 1-1-correspondence between the species of D(G) and the elements of $\mathcal{D}(G)/G$. Moreover for $H \leq G$, $(U, uU') \in \mathcal{D}(H)$ and $g \in G$ it holds

$$s_{(g_U, g_u g_{U'})}^{D(g_H)} \circ c_{g,H} = s_{(U, uU')}^{D(H)}$$
 and $s_{(U, uU')}^{D(H)} \circ \operatorname{res}_H^G = s_{(U, uU')}^{D(G)}$.

Let $\zeta \in \mathbb{C}$ be a primitive |G|-th root of unity and $m := |\mathcal{D}(G)/G|$. The map

$$s^{D(G)} := \prod_{[H,hH']_G \in \mathcal{D}(G)/G} s^{D(G)}_{(H,hH')} : D(G) \to \mathbb{Z}[\zeta]^m$$

is a ring monomorphism. Thus we can identify the ring D(G) with a subring of $\mathbb{Z}[\zeta]^m$. The image of $\mathcal{M}(G)/G$ under the map $s^{D(G)}$ is called *species table* of D(G).

If we extend D(G) with the coefficient ring $\mathbb{Q}(\zeta)$, we get a ring isomorphism $D_{\mathbb{Q}(\zeta)}(G) \cong \mathbb{Q}(\zeta)^m$. If we extend the species linearly to $D_{\mathbb{Q}(\zeta)}(G)$, the primitive idempotents of $D_{\mathbb{Q}(\zeta)}(G)$ are the elements $e_{(H,hH')}^{D(G)} \in D_{\mathbb{Q}(\zeta)}(G)$, $(H, hH') \in \mathcal{D}(G)$, determined by the property

$$s_{(U,uU')}^{D(G)}(e_{(H,hH')}^{D(G)}) = \begin{cases} 1 & \text{if } [U, uU']_G = [H, hH']_G, \\ 0 & \text{otherwise.} \end{cases}$$

An explicit formula for the primitive idempotents of $D_{\mathbb{Q}(\zeta)}(G)$ is given by

$$e_{(H,hH')}^{D(G)} = \frac{|H'|}{|N_G(H,hH')||H|} \sum_{L \leqslant H} |L|\mu(L,H) \sum_{\varphi \in \hat{H}} \varphi(h^{-1})[L,\varphi_{|L}]_G, \quad (H,hH') \in \mathcal{D}(G)$$
(1)

(cf. [3]). The map $\mu : \mathcal{V}(G) \times \mathcal{V}(G) \to \mathbb{Z}$ is called *Möbius function* which is recursively defined by $\sum_{H \leq K \leq U} \mu(H, K) = 0$ for H < U, $\mu(H, H) = 1$ and $\mu(H, U) = 0$ for $H \leq U$ $(H, U \in \mathcal{V}(G))$ where $\mathcal{V}(G)$ is the subgroup lattice of *G*.

Considering isomorphism problems, the following fact will be very useful. Let \tilde{G} be another finite group. For an isomorphism $\alpha : D(G) \to D(\tilde{G})$ and $(H, hH') \in \mathcal{D}(G)$ there exists $(\tilde{H}, \tilde{h}\tilde{H}') \in \mathcal{D}(\tilde{H})$ with

$$s_{(H,hH')}^{D(G)} = s_{(\tilde{H},\tilde{h}\tilde{H}')}^{D(\tilde{G})} \circ \alpha.$$

Another important role plays the embedding of the Burnside ring into the ring of monomial representations. We will introduce the Burnside ring as a subring of D(G) because for further results it is not necessary to work with the theory of *G*-sets (cf. [3]).

The free abelian subgroup generated by the elements $[H, 1]_G \in \mathcal{M}(G)/G$, $H \leq G$, form a subring of D(G), the *Burnside ring* B(G) of G. The multiplication in B(G) is given by

$$[H,1]_G \cdot [U,1]_G = \sum_{HgU \in H \setminus G/U} \left[H \cap {}^gU,1 \right]_G.$$

For a commutative unitary ring *R* and $H \leq G$ we set

$$B_R(H) := R \otimes_{\mathbb{Z}} B(H).$$

Since the conjugation maps, restriction maps and induction maps on $D_R(H)$ yield corresponding maps on $B_R(H)$, the functor B_R becomes a *R*-Green functor on *G*.

We get the species of B(G) by restricting the species of D(G). Therefore, the species of B(G) are given by

$${}^{B(G)}_{H}: B(G) \to \mathbb{Z},$$

$$[U,1]_{G} \mapsto \sum_{\substack{gU \in G/U \\ H \leqslant^{g}U}} 1$$

for $H \leq G$. Moreover $s_H^{B(G)} = s_K^{B(G)}$ for $H, K \leq G$ if and only if $H = {}^gK$ for some $g \in G$. The primitive idempotents of $B_{\mathbb{Q}}(G)$ are exactly the elements $e_H^{B(G)} \in B_{\mathbb{Q}}(G)$ ($H \leq G$) with

$$s_U^{B(G)}\left(e_H^{B(G)}\right) = \begin{cases} 1 & \text{if } U =_G H, \\ 0 & \text{else.} \end{cases}$$

An explicit formula for the primitive idempotents $e_H^{B(G)}$ is given by

$$e_{H}^{B(G)} = \frac{1}{|N_{G}(H)|} \sum_{U \leqslant H} |U| \mu(U, H) [U, 1]_{G}$$
⁽²⁾

(cf. [10]).

3. The conductors of the primitive idempotents

In the following let *G* always be a finite group and $\zeta \in \mathbb{C}$ be a |G|-th root of unity. In this section we determine the conductors of the primitive idempotents of $D_{\mathbb{Q}(\zeta)}(G)$. The *conductor* of a primitive idempotent $e \in D_{\mathbb{Q}(\zeta)}(G)$ is the minimal natural number $n_e \in \mathbb{N}$ with $n_e \cdot e \in D_{\mathbb{Z}[\zeta]}(G)$. First we state a result about restricted and induced primitive idempotents.

Lemma 3.1. Let $H \leq G$ and $h \in H$.

(i)
$$\operatorname{res}_{H}^{G}(e_{(H,hH')}^{D(G)}) = \sum_{\substack{[H,uH']_{H} \in \mathcal{D}(H)/H \\ [H,uH']_{G} = [H,hH']_{G}}} e_{(H,uH')}^{D(H)}.$$

(ii)
$$\operatorname{ind}_{H}^{G}(e_{(H,hH')}^{D(H)}) = (N_{G}(H,hH'):H)e_{(H,hH')}^{D(G)}.$$

(iii)
$$\operatorname{ind}_{H}^{G}(\operatorname{res}_{H}^{G}(e_{(H,hH')}^{D(G)})) = (N_{G}(H):H)e_{(H,hH')}^{D(G)}.$$

Proof. (i) It holds

$$s_{(K,kK')}^{D(H)}\left(\operatorname{res}_{H}^{G}\left(e_{(H,hH')}^{D(G)}\right)\right) = s_{(K,kK')}^{D(G)}\left(e_{(H,hH')}^{D(G)}\right) = 1$$

for $(K, kK') \in \mathcal{D}(H)$ if and only if (K, kK') and (H, hH') are conjugate in *G*. (iii) Let $[K, \psi]_G \in \mathcal{M}(G)/G$. Then

$$\operatorname{ind}_{H}^{G}\left(\operatorname{res}_{H}^{G}\left([K,\psi]_{G}\right)\right) = \sum_{HgK \in H \setminus G/K} \left[H \cap {}^{g}K, {}^{g}\psi_{|H \cap {}^{g}K}\right]_{G} = [H,1]_{G}[K,\psi]_{G}.$$

Thus

$$\operatorname{ind}_{H}^{G}\left(\operatorname{res}_{H}^{G}\left(e_{(H,hH')}^{D(G)}\right)\right) = [H, 1]_{G}e_{(H,hH')}^{D(G)} = s_{(H,hH')}^{D(G)}\left([H, 1]_{G}\right)e_{(H,hH')}^{D(G)} = \frac{|N_{G}(H)|}{|H|}e_{(H,hH')}^{D(G)}$$

(ii) Let $(H, \nu H') \in \mathcal{D}(G)$ and $g \in G$ with ${}^{g}(H, \nu H') = (H, hH')$. Since $s_{(H, hH')}^{D(H)} \circ c_{g,H} = s_{(H, \nu H')}^{D(H)}$, we get

$$c_{g,H}(e_{(H,\nu H')}^{D(H)}) = e_{(H,hH')}^{D(H)}$$

and since $\operatorname{ind}_{H}^{G} = c_{g,G} \circ \operatorname{ind}_{H}^{G} = \operatorname{ind}_{H}^{G} \circ c_{g,H}$, we obtain

$$\operatorname{ind}_{H}^{G}\left(e_{(H,\nu H')}^{D(H)}\right) = \operatorname{ind}_{H}^{G}\left(e_{(H,\hbar H')}^{D(H)}\right).$$

Thus

$$\operatorname{ind}_{H}^{G}\left(\operatorname{res}_{H}^{G}\left(e_{(H,hH')}^{D(G)}\right)\right) = \operatorname{ind}_{H}^{G}\left(\sum_{\substack{[H,uH']_{H} \in \mathcal{D}(H)/H\\[H,uH']_{G} = [H,hH']_{G}}} e_{(H,uH')}^{D(H)}\right) = \frac{|N_{G}(H)|}{|N_{G}(H,hH')|} \operatorname{ind}_{H}^{G}\left(e_{(H,hH')}^{D(H)}\right).$$

Together with part (iii) we get $\operatorname{ind}_{H}^{G}(e_{(H,hH')}^{D(H)}) = (N_{G}(H,hH'):H)e_{(H,hH')}^{D(G)}$. \Box

For using some important results of Boltje we have to introduce the ghost ring of the representation ring D(G) (cf. [5]). Let

$$\mathbf{x} = (\mathbf{x}_H)_{H \leqslant G} \in \prod_{H \leqslant G} \mathbb{Z}\hat{H}$$

with $x_H = \sum_{\varphi \in \hat{H}} z_{H,\varphi} \varphi$ $(z_{H,\varphi} \in \mathbb{Z}, H \leq G, \varphi \in \hat{H})$. For $H \leq G$ and $\varphi \in \hat{H}$ we define

$$\mathbf{x}(H,\varphi) := \mathbf{z}_{H,\varphi}.$$

Note that this is well defined since the set of linear characters of *H* is a basis of $\mathbb{Z}\hat{H}$. The subring

$$\hat{D}(G) := \left(\prod_{H \leqslant G} \mathbb{Z}\hat{H}\right)^G := \left\{ x \in \prod_{H \leqslant G} \mathbb{Z}\hat{H} \colon x(H,\varphi) = x({}^g(H,\varphi)) \ \forall (H,\varphi) \in \mathcal{M}(G) \ \forall g \in G \right\}$$

of $\prod_{H \leq G} \mathbb{Z}\hat{H}$ is called the *ghost ring* of D(G). Identifying R(H/H') with $\mathbb{Z}\hat{H}$ for $H \leq G$, we get a ring monomorphism

$$\rho := \left(\pi_H \circ \operatorname{res}_H^G\right)_{H \leqslant G} : D(G) \to \hat{D}(G).$$

Moreover we set

$$\rho_H := \pi_H \circ \operatorname{res}_H : D(G) \to \mathbb{Z}\hat{H}$$

for $H \leq G$. Note that the image of a basis element $[U, \lambda]_G \in \mathcal{M}(G)/G$ under this map is given by

$$\rho_H([U,\lambda]_G) = \sum_{\substack{gU \in G/U \\ H \leq ^{g}U}} {}^g_{\lambda|_H} \in \mathbb{Z}\hat{H}.$$

By linear extension we get an isomorphism $\rho : \mathbb{Q} \otimes_{\mathbb{Z}} D(G) \to \mathbb{Q} \otimes_{\mathbb{Z}} \hat{D}(G)$ (cf. [2]). We will use the following integrality criteria for elements of the ghost ring:

Proposition 3.2. Let $x \in \hat{D}(G)$. Then $x \in \rho(D(G))$ if and only if the congruence

$$\sum_{(H,\varphi) \leq (I,\psi) \in \mathcal{M}(N_G(H,\varphi))} \mu(H,I) \cdot x(I,\psi) \equiv 0 \quad \left(\operatorname{mod} \left(N_G(H,\varphi) : H \right) \right)$$

holds for all $(H, \varphi) \in \mathcal{M}(G)$.

Proof. See [5], Cor. 2.8. □

We also make use of the following two lemmata:

Lemma 3.3. Let $H \leq G$ and $\hat{H}_0 := \{\varphi_{|H}: \varphi \in \hat{G}\}$. For $\psi \in \hat{H}_0$ we set $A_{\psi} := \{\varphi \in \hat{G}: \varphi_{|H} = \psi\}$.

- (i) \hat{H}_0 is a subgroup of \hat{H} with $\hat{H}_0 \cong HG'/G'$. Moreover $|A_{\psi}| = (G : HG')$.
- (ii) Let $g \in G$. Then $\sum_{\varphi \in A_{\psi}} \varphi(g) = \begin{cases} (G : HG')\psi(g) & \text{if } gG' \in HG'/G', \\ 0 & \text{else.} \end{cases}$

Part (i) is a well known consequence of the theory of irreducible characters of abelian groups (cf. [13]) and part (ii) can be easily proved by the second orthogonality relation.

Lemma 3.4. Let $H \leq G$ and m be the squarefree part of (G : G'H). Then $(N_G(H) : H)$ divides $m\mu(H, G)$.

Proof. See [11], Thm. 4.5. □

We can now state the main result of this section.

Theorem 3.5. Let $(H, hH') \in \mathcal{D}(G)$. Then $(N_G(H, hH') : H')$ is the conductor of $e_{(H, hH')}^{D(G)}$.

Proof. We first prove that m := (G : G') is the conductor of $e_{(G,gG')}^{D(G)}$ for $g \in G$. By the explicit formula for the primitive idempotents (1) we obtain

$$e_{(G,gG')}^{D(G)} = \frac{|G'|}{|G|^2} \sum_{L \leq G} |L| \mu(L,G) \sum_{\varphi \in \hat{G}} \varphi(g^{-1}) [L,\varphi_{|L}]_G$$

= $\frac{|G'|}{|G|} \sum_{\varphi \in \hat{G}} \varphi(g^{-1}) [G,\varphi]_G + \frac{|G'|}{|G|^2} \sum_{L < G} |L| \mu(L,G) \sum_{\varphi \in \hat{G}} \varphi(g^{-1}) [L,\varphi_{|L}]_G.$

We conclude that the coefficient of $[G, 1]_G$ in $e_{(G, gG')}^{D(G)}$ is m^{-1} . Therefore *m* divides the conductor of $e_{(G, gG')}^{D(G)}$ for all $g \in G$.

Let $f \in B_{\mathbb{Q}}(G)$ be the primitive idempotent with $s_G^{B(G)}(f) = 1$ and $s_H^{B(G)}(f) = 0$ for H < G. Let $\mathcal{C}(G)$ be a system of representatives for the conjugacy classes of subgroups of G. Then $f = \sum_{U \in \mathcal{C}(G)} a_U[U, 1]_G$ with uniquely determined coefficients $a_U \in \mathbb{Q}$. Let $1 = \lambda_1, \ldots, \lambda_m$ be the linear characters of G. For $i = 1, \ldots, m$ we define

$$x_i := \sum_{U \in \mathcal{C}(G)} a_U[U, \lambda_{i|U}]_G \in D_{\mathbb{Q}}(G).$$

Note that $x_1 = f$. We now show that $\rho_H(x_i) = 0$ in the case H < G and $\rho_G(x_i) = \lambda_i$ for i = 1, ..., m. It holds

$$0 = s_H^{B(G)}(x_1) = \left(t_{hH'} \circ \pi_H \circ \operatorname{res}_H^G\right)(x_1)$$

for H < G and all $h \in H$. Therefore

$$\rho_H(x_1) = \left(\pi_H \circ \operatorname{res}_H^G\right)(x_1) = 0.$$

Moreover ${}^{g}\lambda_i = \lambda_i$ for $g \in G$ and i = 1, ..., m. Thus we get

$$\rho_H([U,\lambda_{i|U}]_G) = \sum_{\substack{gU \in G/U\\H \leqslant^{g}U}} {}^g\lambda_{i|H} = \sum_{\substack{gU \in G/U\\H \leqslant^{g}U}} {}^{\lambda_{i|H}} = \lambda_{i|H}\rho_H([U,1]_G)$$

for $H, U \leq G$ and i = 1, ..., m and we obtain

$$\rho_H(x_i) = \sum_{U \in \mathcal{C}(G)} a_U \rho_H([U, \lambda_{i|U}]_G) = \lambda_{i|H} \sum_{U \in \mathcal{C}(G)} a_U \rho_H([U, 1]_G) = \lambda_{i|H} \rho_H(x_1) = 0$$

for H < G and $i = 1, \ldots, m$. It holds

$$\rho_G(x_i) = \lambda_i \sum_{U \in \mathcal{C}(G)} a_U \rho_G([U, 1]_G) = \lambda_i a_G$$

for i = 1, ..., m, and by the explicit formula (2) for the primitive idempotents of $B_{\mathbb{Q}}(G)$ we get $a_G = 1$. Thus $\rho_G(x_i) = \lambda_i$ and

$$s_{(H,hH')}^{D(G)}(x_i) = \begin{cases} \lambda_i(h) & \text{if } H = G, \\ 0 & \text{else.} \end{cases}$$

Moreover $\rho(x_i) \in \hat{D}(G)$ for i = 1, ..., m. By the second orthogonality relation we obtain

$$s_{(H,hH')}^{D(G)}\left(\frac{1}{m}\sum_{i=1}^{m}\lambda_{i}(g^{-1})x_{i}\right) = \begin{cases} 1 & \text{if } (H,hH') = (G,gG'), \\ 0 & \text{else} \end{cases}$$

and therefore

$$e_{(G,gG')}^{D(G)} = \frac{1}{m} \sum_{i=1}^{m} \lambda_i (g^{-1}) x_i$$

for $g \in G$.

We now show that the conductor of $e_{(G,1G')}^{D(G)}$ is equal to *m*. For i = 1, ..., m we set $y_i := \rho(x_i) \in \hat{D}(G)$. Then

$$y_i(U, \lambda_{j|U}) = \begin{cases} 1 & \text{if } (U, \lambda_{j|U}) = (G, \lambda_i), \\ 0 & \text{else} \end{cases}$$
(3)

for $U \leq G$ and $i, j \in \{1, ..., m\}$. By Proposition 3.2, $\sum_{i=1}^{m} y_i \in \rho(D(G))$ holds if and only if the congruence

$$\sum_{(H,\varphi)\leqslant (U,\psi)\in\mathcal{M}(N_G(H,\varphi))}\mu(H,U)\sum_{i=1}^m y_i(U,\psi)\equiv 0 \pmod{\left(N_G(H,\varphi):H\right)}$$
(4)

holds for all $(H, \varphi) \in \mathcal{M}(G)$. Since $\rho_U(x_i) = 0$ for U < G and i = 1, ..., m we get

$$\sum_{i=1}^m y_i(U,\psi) = 0$$

for U < G. In the case $(H, \varphi) \in \mathcal{M}(G)$ with $(H, \varphi) \notin (G, \lambda_i)$ for i = 1, ..., m and the case $H \notin G$ congruence (4) is fulfilled. Let $(H, \varphi) \in \mathcal{M}(G)$ with $H \triangleleft G$ and $(H, \varphi) \in (G, \lambda)$ for some $\lambda \in \hat{G}$. In this case we get exactly k := (G : HG') extensions of φ on G by Lemma 3.3(i). Let $\lambda_{i_1}, ..., \lambda_{i_k}$ $(i_1, ..., i_k \in \{1, ..., m\})$ be these extensions. By equality (3) we obtain

$$\sum_{(H,\varphi) \leq (U,\psi) \in \mathcal{M}(N_G(H,\varphi))} \mu(H,U) \sum_{i=1}^m y_i(U,\psi) = \mu(H,G) \sum_{j=1}^k y_{i_j}(G,\lambda_{i_j})$$
$$= \mu(H,G) (G:HG').$$

By Lemma 3.4 $(N_G(H, \varphi) : H)$ divides $(G : HG')\mu(H, G)$. Thus congruence (4) holds for all $(H, \varphi) \in \mathcal{M}(G)$. Moreover

$$\rho((G:G')e_{(G,1G')}^{D(G)}) = \rho\left(\sum_{i=1}^{m} x_i\right) = \sum_{i=1}^{m} y_i \in \rho(D(G)).$$

Since ρ is injective we obtain $(G:G')e_{(G,1G')}^{D(G)} \in D(G)$. Therefore (G:G') is the conductor of $e_{(G,1G')}^{D(G)}$.

For $U \leq G$ let $\tau_{U,1}, \ldots, \tau_{U,s_U}$ $(s_U = (UG':G'))$ be the distinct restrictions $\lambda_{1|U}, \ldots, \lambda_{m|U}$. For $j = 1, \ldots, s_U$ we set $M_{\tau_{U,j}} := \{\varphi \in \hat{G}: \varphi_{|U} = \tau_{U,j}\}$. By Lemma 3.3(ii) we get

$$\begin{split} \sum_{i=1}^{m} \lambda_i \big(g^{-1} \big) [U, \lambda_{i|U}]_G &= \sum_{j=1}^{s_U} [U, \tau_{U,j}]_G \sum_{\varphi \in M_{\tau_{U,j}}} \varphi \big(g^{-1} \big) \\ &= \begin{cases} (G : UG') \sum_{j=1}^{s_U} \tau_{U,j} (g^{-1}) [U, \tau_{U,j}]_G & \text{if } gG' \in UG'/G', \\ 0 & \text{else} \end{cases} \end{split}$$

for $U \leq G$ and $g \in G$. Therefore

$$\sum_{i=1}^m \lambda_i (g^{-1}) x_i = \sum_{U \in \mathcal{C}(G)} a_U \sum_{i=1}^m \lambda_i (g^{-1}) [U, \lambda_{i|U}]_G$$

436

$$= \sum_{\substack{U \in \mathcal{C}(G) \\ gG' \in UG'/G'}} a_U(G : UG') \sum_{j=1}^{s_U} \tau_{U,j}(g^{-1})[U, \tau_{U,j}]_G$$

for $g \in G$. Note that this equation does not depend on the choice of C(G). Since

$$me_{(G,1G')}^{D(G)} = \sum_{i=1}^{m} x_i = \sum_{U \in \mathcal{C}(G)} a_U(G : UG') \sum_{j=1}^{s_U} [U, \tau_{U,j}]_G \in D(G)$$

and $[U, \tau_{U,r}]_G \neq [U, \tau_{U,t}]_G$ for $r, t \in \{1, \ldots, s_U\}$ with $r \neq t$ we get $a_U(G : UG') \in \mathbb{Z}$ for $U \in \mathcal{C}(G)$. Thus

$$me_{(G,gG')}^{D(G)} = \sum_{i=1}^m \lambda_i (g^{-1}) x_i \in D_{\mathbb{Z}[\zeta]}(G).$$

Therefore m = (G : G') is the conductor of $e_{(G, gG')}^{D(G)}$, $g \in G$.

Let $(H, hH') \in \mathcal{D}(G)$. By Lemma 3.1(ii) we obtain

$$\left(N_G\left(H,hH'\right):H'\right)e_{(H,hH')}^{D(G)} = \operatorname{ind}_H^G\left((H:H')e_{(H,hH')}^{D(H)}\right) \in D_{\mathbb{Z}[\zeta]}(G).$$

Moreover the coefficient of $[H, 1]_G$ in $e_{(H, hH')}^{D(G)}$ is equal to $|H'|/|N_G(H, hH')|$. Therefore $(N_G(H, hH') : H')$ is the conductor of $e_{(H, hH')}^{D(G)}$. \Box

We can now state the first consequences.

Theorem 3.6. The group order |G| is uniquely determined by D(G).

Proof. Let $W \subseteq \mathbb{C}$ be the set of all roots of unity and let \mathcal{O} be the ring of the algebraic integers of $\mathbb{Q}(W)$. Every $e_{(H,hH')}^{D(G)}$ is a primitive idempotent of $D_{\mathbb{Q}(W)}(G)$ for $(H,hH') \in \mathcal{D}(G)$ and $(N_G(H,hH'):H')$ is the minimal natural number $n \in \mathbb{N}$ with $ne_{(H,hH')}^{D(G)} \in D_{\mathcal{O}}(G)$. Moreover |G| is the conductor of $e_{(1,1)}^{D(G)}$ and therefore

$$|G| = \min\{n \in \mathbb{N}: ne_{(H hH')}^{D(G)} \in D_{\mathcal{O}}(G) \text{ for all } (H, hH') \in \mathcal{D}(G)\}.$$

Thus the theorem is proved. \Box

The following proposition is an immediate consequence of Theorem 3.5.

Proposition 3.7. Let $(H, hH') \in \mathcal{D}(G)$. Then the conductor of $e_{(H, hH')}^{D(G)} \in D_{\mathbb{Q}(\zeta)}(G)$ is equal to |G| if and only if H is a normal abelian subgroup and $h \in Z(G)$. Moreover G is abelian if and only if the conductors of the primitive idempotents of $D_{\mathbb{Q}(\zeta)}(G)$ are equal to |G|.

Therefore the ring D(G) detects commutativity of a finite group. We now state an interesting proposition concerning the orders of elements of the center of *G*.

Proposition 3.8. Let *G* and \tilde{G} be finite groups and $\alpha : D(G) \to D(\tilde{G})$ be an isomorphism. Let $h \in Z(G)$, $H := \langle h \rangle$, n := |H| and $\alpha(e_{(H,h)}^{D(G)}) = e_{(\tilde{H},\tilde{h}\tilde{H}')}^{D(\tilde{G})}$ with $(\tilde{H},\tilde{h}\tilde{H}') \in \mathcal{D}(\tilde{G})$. Then \tilde{H} is a normal abelian subgroup of \tilde{G} , $\tilde{h} \in Z(\tilde{G})$ and $|\langle \tilde{h} \rangle| \in \{n, 2n, \frac{n}{2}\}$. **Proof.** The subgroup *H* is abelian and normal since $h \in Z(G)$. Moreover the conductor of $e_{(H,h)}^{D(G)}$ is equal to |G|. We set

$$M := \left\{ x \in D_{\mathbb{Q}}(G) \colon s_{(H,h)}^{D(G)}(x) \in \mathbb{C} \text{ is root of unity} \right\}.$$

It holds $s_{(H,h)}^{D(G)}(x) \in \mathbb{Q}(\zeta)$ for all $x \in M$, and the set {ord(ξ): $s_{(H,h)}^{D(G)}(x) = \xi$, $x \in M$ } is bounded since $\pm \zeta^i$ $(i \in \mathbb{N})$ are the only roots of unity in $\mathbb{Q}(\zeta)$. We set

$$m := \max \{ \operatorname{ord}(\xi) \colon s_{(H,h)}^{D(G)}(x) = \xi, \ x \in M \}.$$

Let $\lambda \in \hat{H}$ with $\lambda(h) = \omega$ where $\omega \in \mathbb{C}$ is a primitive *n*-th root of unity. Then

$$s_{(H,h)}^{D(G)}([H,\lambda]_G) = \sum_{gH\in G/H} {}^g\lambda(h) = (G:H)\omega.$$

Thus $y := (-1)^n (G : H)^{-1} [H, \lambda]_G \in M$. We obtain

$$\operatorname{ord}\left(s_{(H,h)}^{D(G)}(y)\right) = \begin{cases} 2n & \text{if } n \text{ odd,} \\ n & \text{if } n \text{ even.} \end{cases}$$
(5)

We now show the equality $m = \operatorname{ord}(s_{(H,h)}^{D(G)}(y))$. Let

$$x := \sum_{[U,\psi]_G \in \mathcal{M}(G)/G} a_{[U,\psi]}[U,\psi]_G \in M$$

with $a_{[U,\psi]} \in \mathbb{Q}$ for $[U,\psi]_G \in \mathcal{M}(G)/G$. In case $U \leq G$ with $H \leq_G U$ we get $s_{(H,h)}^{D(G)}([U,\psi]_G) = 0$. In case $[U,\psi]_G \in \mathcal{M}(G)/G$ with $H \leq_G U$ we get $H \leq U$ and $\psi(h) \in \mathbb{Q}(\omega)$. Thus

$$s_{(H,h)}^{D(G)}(x) = \sum_{[U,\psi]_G \in \mathcal{M}(G)/G} a_{[U,\psi]} s_{(H,h)}^{D(G)} ([U,\psi]_G) = \sum_{\substack{[U,\psi]_G \in \mathcal{M}(G)/G \\ H \leqslant U}} a_{[U,\psi]} \sum_{gU \in G/U} \psi(h) \in \mathbb{Q}(\omega).$$

Since ω^i $(i \in \mathbb{N})$ are the only roots of unity in $\mathbb{Q}(\omega)$ we get $m \leq 2n$ in case n is odd and $m \leq n$ in case n is even. Together with Eq. (5) we obtain

$$m = \begin{cases} 2n & \text{if } n \text{ odd,} \\ n & \text{if } n \text{ even.} \end{cases}$$

By Proposition 3.7, \tilde{H} is abelian and normal and $\tilde{h} \in Z(\tilde{G})$ since the conductor of $e_{(\tilde{H},\tilde{h})}^{D(\tilde{G})}$ is equal to $|G| = |\tilde{G}|$. We set

$$\tilde{M} := \left\{ \tilde{x} \in D_{\mathbb{Q}}(\tilde{G}) \colon s^{D(\tilde{G})}_{(\tilde{H},\tilde{h})}(\tilde{x}) \in \mathbb{C} \text{ is root of unity} \right\}$$

and

$$\tilde{m} := \max\left\{ \operatorname{ord}(\xi) \colon s_{(\tilde{H},\tilde{h})}^{D(\tilde{G})}(\tilde{x}) = \xi, \ \tilde{x} \in \tilde{M} \right\}.$$

Let $\tilde{n} := |\langle \tilde{h} \rangle|$ and $\tilde{\omega} \in \mathbb{C}$ a primitive \tilde{n} -th root of unity. Since \tilde{H} is abelian there exists a linear character $\tilde{\lambda}$ of \tilde{H} with $\tilde{\lambda}(\tilde{h}) = \tilde{\omega}$. Analogous to the above descriptions we set $\tilde{y} := (-1)^{\tilde{n}} (\tilde{G} : \tilde{H})^{-1} [\tilde{H}, \tilde{\lambda}]_{\tilde{G}} \in \tilde{M}$ and we obtain

$$\operatorname{ord}\left(s_{(\tilde{H},\tilde{h})}^{D(\tilde{G})}(\tilde{y})\right) = \begin{cases} 2\tilde{n} & \text{if } \tilde{n} \text{ odd,} \\ \tilde{n} & \text{if } \tilde{n} \text{ even.} \end{cases}$$

With the same argumentation as above we get

$$\tilde{m} = \begin{cases} 2\tilde{n} & \text{if } \tilde{n} \text{ odd,} \\ \tilde{n} & \text{if } \tilde{n} \text{ even.} \end{cases}$$

It holds $\alpha(M) = \tilde{M}$ since $s_{(\tilde{H},\tilde{h})}^{D(\tilde{G})} \circ \alpha = s_{(H,h)}^{D(G)}$. Thus $m = \tilde{m}$ and $n = \tilde{n}$, $n = 2\tilde{n}$ and $2n = \tilde{n}$ are the only cases that could arise. Therefore $\tilde{n} \in \{n, 2n, \frac{n}{2}\}$. \Box

A direct consequence of this proposition is the following theorem:

Theorem 3.9. Let *G* and \tilde{G} be finite groups with $D(G) \cong D(\tilde{G})$. If $2 \neq p$ is a prime number which divides |Z(G)| then *p* divides $|Z(\tilde{G})|$. If there exists an element of order 4 in Z(G) then 2 divides $|Z(\tilde{G})|$.

4. The group of torsion units of D(G)

We develop some results on the group of torsion units of D(G) following results for the Burnside ring in [15]. For a commutative unitary ring R let $U_T(R)$ be the group of torsion units of R.

Lemma 4.1. Let *R* be a commutative unitary ring and let *A* and *B* be additive subgroups of *R* with the following properties:

$$R = A \oplus B$$
, $A^2 \subseteq A$, $B^2 \subseteq B$, $AB \subseteq A$, $1 \in B$.

Therefore A is an ideal in R and B is a unitary subring of R. Moreover we require the existence of a natural number $n \in \mathbb{N}$ with $u^n = 1$ for all $u \in U_T(R)$. Then:

- (i) Every torsion unit $u \in U_T(R)$ is of the form u = b(1 + a) with uniquely determined elements $b \in U_T(B)$ and $a \in \tilde{A} := \{a \in A : \sum_{k=1}^{n} {n \choose k} a^k = 0\}$. Moreover every element b(1 + a) with $b \in U_T(R)$ and $a \in \tilde{A}$ is a torsion unit of R.
- (ii) It is $|U_T(R)| = |U_T(B)||\tilde{A}|$ in case $U_T(R)$ is finite.

Proof. \tilde{A} is not empty since $0 \in \tilde{A}$. Let $b \in U_T(B)$ and $a \in \tilde{A}$. Then

$$(b(1+a))^n = (1+a)^n = \sum_{k=0}^n \binom{n}{k} a^k = 1.$$

Thus $b(1 + a) \in U_T(R)$.

Let $u \in U_T(R)$. Then there exist uniquely determined elements $a \in A$ and $b \in B$ with u = a + b. Therefore

$$1 = u^{n} = (a+b)^{n} = \sum_{k=0}^{n-1} \binom{n}{k} a^{n-k} b^{k} + b^{n}.$$

Note that $\sum_{k=0}^{n-1} {n \choose k} a^{n-k} b^k \in A$ and $b^n - 1 \in B$. We obtain $b^n - 1 = 0$ since $R = A \oplus B$. Thus $b \in U_T(B)$. Let $c := ab^{n-1} \in A$. Then b(1 + c) = b + a = u, and since

$$\sum_{k=1}^{n} \binom{n}{k} c^{k} = \sum_{k=1}^{n} \binom{n}{k} (ab^{n-1})^{k} = \sum_{k=1}^{n} \binom{n}{k} a^{k} b^{n-k} = (a+b)^{n} - b^{n} = 1 - b^{n} = 0$$

we get $c \in \tilde{A}$.

Let $b_1, b_2 \in U_T(B)$ and $c_1, c_2 \in \tilde{A}$ with $b_1(1 + c_1) = b_2(1 + c_2)$. Then $b_1 - b_2 + b_1c_1 - b_2c_2 = 0$, and since $b_1, b_2 \in B$, $b_1c_1, b_2c_2 \in A$ and $R = A \oplus B$ it follows that $b_1 = b_2$ and $c_1 = c_2$ and the proof of part (i) is complete. Part (ii) is a direct consequence of part (i). \Box

A partially ordered set (I, \leq) is called *rigid* if

- (i) I contains a greatest element e and a smallest element 0.
- (ii) Every subset $M_{i,j} := \{k \in I: k \leq i, k \leq j\}$, $i, j \in I$, contains a greatest element m(i, j). (Therefore every two elements $i, j \in I$ have an infimum in I.)

Proposition 4.2. Let *R* be a commutative unitary ring and (I, \leq) be a finite, partially ordered, rigid set. We assume the existence of a family $\{R(i): i \in I\}$ of additive subgroups of *R* with the following properties:

- (1) $R = \bigoplus_{i \in I} R(i)$ (direct sum of additive groups),
- (2) $R(e) = \mathbb{Z}H$ with a finite subgroup $H \leq U_T(R)$,
- (3) $R(i)R(j) \subseteq R(m(i, j))$ for all $i, j \in I$.

Furthermore there exists $n \in \mathbb{N}$ with $u^n = 1$ for all $u \in U_T(\mathbb{R})$. For $i \in I \setminus \{e\}$ we set

$$R_i := \left\{ a \in R(i) \colon \sum_{k=1}^n \binom{n}{k} a^k = 0 \right\}.$$

Then:

(i) Every torsion unit $u \in U_T(R)$ is of the form

$$u = g \prod_{i \in I \setminus \{e\}} (1 + a_i)$$

with uniquely determined elements $a_i \in R_i$ and $g \in \pm H$. Moreover every element of this form is a torsion unit in R.

(ii) It is $|U_T(R)| = 2|H| \prod_{i \in I \setminus \{e\}} |R_i|$ in case $U_T(R)$ is finite.

Proof. We show the first part of (i) by induction on |I|. In case |I| = 1 we get $R = R(e) = \mathbb{Z}H$. Since H is an abelian group, $U_T(\mathbb{Z}H) = \pm H$ (cf. [12]).

Let |I| = 2. Then $R = R(0) \oplus R(e)$. Since m(i, i) = i and m(i, 0) = 0 for $i \in I$ we obtain

 $R(0)R(0) \subseteq R(0),$ $R(e)R(e) \subseteq R(e),$ and $R(0)R(e) \subseteq R(0).$

Moreover $1 \in R(e)$. By Lemma 4.1 (with A := R(0) and B := R(e)) every torsion unit $u \in U_T(R)$ is of the form u = g(1 + a) with uniquely determined elements $a \in R_0$ and $g \in U_T(R(e)) = U_T(\mathbb{Z}H) = \pm H$. Moreover every element u = g(1 + a) with $g \in \pm H$ and $a \in R_0$ is a torsion unit of R by Lemma 4.1. Let $|I| \ge 3$ and k be a maximal element of $\{i \in I: i < e\}$. We set

$$J := I \setminus \{k\}, \quad A := \bigoplus_{j \in J \setminus \{e\}} R(j) \text{ and } B := R(e) \oplus R(k).$$

Then

 $R = A \oplus B$, $A^2 \subseteq A$, $B^2 \subseteq B$, $AB \subseteq A$ and $1 \in R(e) \subseteq B$.

Let $u \in U_T(R)$. By Lemma 4.1 we can write u = b(1 + a) with uniquely determined $b \in U_T(B) = U_T(R(e) \oplus R(k))$ and $a \in \tilde{A} := \{a \in A: \sum_{k=1}^n {n \choose k} a^k = 0\}$. Since

$$R(e)^2 \subseteq R(e), \quad R(k)^2 \subseteq R(k), \quad R(e)R(k) \subseteq R(k) \text{ and } 1 \in R(e)$$

we can use Lemma 4.1 for the unitary subring $B = R(e) \oplus R(k)$. Thus *b* is of the form $b = g(1 + a_k)$ with uniquely determined elements $g \in U_T(R(e)) = \pm H$ and $a_k \in R_k$. Therefore $u = g(1 + a_k)(1 + a)$.

The ring $\bigoplus_{j \in J} R(j)$ is commutative and unitary and *J* is a finite, partial ordered, rigid set. Therefore the conditions of the propositions are fulfilled and we can use induction. Since

$$(1+a)^n = \sum_{k=0}^n \binom{n}{k} a^k = 1,$$

it holds $1 + a \in U_T(\bigoplus_{j \in J} R(j))$, and by induction follows that $1 + a = h \prod_{j \in J \setminus \{e\}} (1 + a_j)$ with uniquely determined $h \in \pm H$ and $a_j \in R_j$. Therefore $u = gh \prod_{i \in I \setminus \{e\}} (1 + a_j)$.

Let $u = g' \prod_{i \in I \setminus \{e\}} (1 + a'_i)$ with $g' \in \pm H$ and $a'_i \in R_i$. Then

$$1 = gh(g')^{-1} \prod_{i \in I \setminus \{e\}} (1 + a_i) (1 + a'_i)^{-1}.$$

Since $(1 + a'_i) \in U_T(R)$ there exists $s_i \in \mathbb{N}$ with $(1 + a'_i)^{s_i} = (1 + a'_i)^{-1}$ for $i \in I \setminus \{e\}$. Since $R(i)^2 \subseteq R(i)$ there exists $c_i \in R(i)$ with $(1 + a_i)(1 + a'_i)^{-1} = (1 + a_i)(1 + a'_i)^{s_i} = 1 + c_i$ for $i \in I \setminus \{e\}$. Therefore

$$1 = gh(g')^{-1} \prod_{i \in I \setminus \{e\}} (1 + c_i).$$
(6)

Since $R(e)R(i) \subseteq R(i)$ for $i \in I$ we get $1 = gh(g')^{-1} + r_1$ with $r_1 \notin R(e)$ by expanding Eq. (6). The decomposition $R = \bigoplus_{i \in I} R(i)$ implies $gh(g')^{-1} = 1$ and therefore gh = g'. Assume $c_i \neq 0$ for some $i \in I \setminus \{e\}$. We choose $i \in I \setminus \{e\}$ maximal with the property $c_i \neq 0$. In case $j \in I \setminus \{e, i\}$ with $c_j \neq 0$ we get $m(i, j) \neq i$ by the maximality of i. Thus $c_i c_j \notin R(i)$. By expanding Eq. (6) we get $1 = 1 + c_i + r_2$ with $r_2 \notin R(i)$ The decomposition $R = \bigoplus_{i \in I} R(i)$ implies $c_i = 0$ contradicting our assumption. Therefore $c_i = 0$ for all $i \in I \setminus \{e\}$.

Conversely $g \prod_{i \in I \setminus \{e\}} (1 + a_i) \in U_T(R)$ since $g \in U_T(R)$ for $g \in \pm H$ and $1 + a_i \in U_T(R)$ for $a_i \in R_i$. Thus assertion (i) is proved.

Part (ii) follows immediately from part (i). \Box

Let *G* be a finite group and $\mathcal{N}(G)$ be the set of normal subgroups of *G*. We say that a subset $S \subseteq \mathcal{N}(G)$ has property (*) in cases

1. 1, $G \in S$,

2. $M, N \in S$ implies $MN \in S$ and $M \cap N \in S$.

Let $S \subseteq \mathcal{N}(G)$ with property (*). For $N \in S$ let S(N) be the set of all elements $[K, \psi]_G \in \mathcal{M}(G)/G$ with the following properties:

1. $N \leq K$, 2. $N \leq M \leq K$ with $M \in S$ implies N = M.

Remark 4.3. We should remark the following facts: For a nonempty subset $S \subseteq \mathcal{N}(G)$ we get $S(N) \neq \emptyset$ since $[N, 1]_G \in S(N)$ for $N \in S$. The set $\{S(N): N \in S\}$ is a partially ordered rigid set with $S(L) \leq S(M)$ in case $L \leq M$. Moreover S(G) is the greatest and S(1) is the smallest element of $\{S(N): N \in S\}$. The infimum of two elements $S(L), S(N) \in \{S(N): N \in S\}$ is given by $S(L \cap N)$. The group $(S(G), \cdot)$ is a subgroup of $U_T(D(G))$ with $S(G) \cong \hat{G}$. We should also remark that $[K, \psi]_G \in S(N)$ implies $N \leq {}^gK$ for all $g \in G$. Thus the above definition of S(N) does not depend on the choice of the representative subgroup K.

Let $T \subseteq \mathcal{M}(G)/G$. The additive subgroup of D(G) which is generated by the elements $[H, \varphi]_G \in T$ will be denoted by $D(G)_T$. We set $D(G)_T = \{0\}$ in case $T = \emptyset$.

Lemma 4.4. Let $S \subseteq \mathcal{N}(G)$ with property (*). Then:

- (i) $D(G) = \bigoplus_{N \in S} D(G)_{S(N)}$ (direct sum of additive subgroups),
- (ii) $D(G)_{S(M)}D(G)_{S(N)} \subseteq D(G)_{S(M\cap N)}$ for $M, N \in S$,
- (iii) $D(G)_{S(G)} = \mathbb{Z}S(G) \cong \mathbb{Z}\hat{G}$.

Proof. Let $[K, \psi]_G \in S(M) \cap S(N)$ with $M, N \in S$. Then $M \leq MN \leq K$ and $N \leq NM \leq K$. Since $MN \in S$ we get M = MN = N. Thus $S(M) \cap S(N) = \emptyset$ for $M, N \in S$ with $M \neq N$.

Let $[K, \psi]_G \in \mathcal{M}(G)/G$ and set $X_K := \{N \in S : N \leq K\}$. It is $X_K \neq \emptyset$ since $1 \in S$. Let $N_0 := \prod_{N \in X_K} N$. Since *S* has property (*) we get $N_0 \in S$ and therefore $N_0 \in X_K$. Thus $[K, \psi]_G \in S(N_0)$ and we get

$$\mathcal{M}(G)/G = \biguplus_{N \in S} S(N).$$

Part (i) follows immediately.

Let $[H, \psi]_G \in S(M)$ and $[K, \psi]_G \in S(N)$ with $M, N \in S$. Since

$$[H,\varphi]_G[K,\psi]_G = \sum_{HgK \in H \setminus G/K} \left[H \cap {}^gK, \varphi \cdot {}^g\psi \right]_G$$

we have to show $[H \cap {}^g K, \varphi \cdot {}^g \psi]_G \in S(M \cap N)$ for all $g \in G$. It holds $M \leq H$ and $N \leq {}^g K$ for all $g \in G$. Therefore $M \cap N \leq H \cap {}^g K$ for all $g \in G$. Let $M \cap N \leq L \leq H \cap {}^g K$ for $L \in S$ and $g \in G$. Then

$$M \leq ML \leq M(H \cap {}^{g}K) \leq H$$

and

$$N \leq NL \leq N(H^g \cap K) \leq K.$$

Since $[H, \varphi]_G \in S(M)$ and $[K, \psi]_G \in S(N)$ we get M = ML and N = NL. Thus $L \leq M \cap N$, and this implies $L = M \cap N$. Therefore $[H \cap {}^gK, \tau]_G \in S(M \cap N)$ for all $g \in G$ and all linear characters τ of $H \cap {}^gK$ and part (ii) is proved.

Part (iii) is a direct consequence of $S(G) \cong \hat{G}$ and the definition of $D(G)_{S(G)}$. \Box

Remark 4.5. Let $\zeta \in \mathbb{C}$ be a primitive |G|-th root of unity. Every torsion unit $u \in U_T(D(G))$ is of the form

$$u = \sum_{[H,hH']_G \in \mathcal{D}(G)/G} u_{[H,hH']} e_{(H,hH')}^{\mathcal{D}(G)}$$

with $u_{[H,hH']} \in \{\pm \zeta^i: i \in \mathbb{N}\}$ for all $[H,hH]_G \in \mathcal{D}(G)/G$. Thus $U_T(D(G))$ is a finite group. Moreover the exponent $\exp(U_T(D(G)))$ of $U_T(D(G))$ divides 2|G|.

We can now state the main theorem of this section which is a direct consequence of Proposition 4.2, Lemma 4.4 and Remark 4.5.

Theorem 4.6. Let *G* be a finite group and *S* be a subset of $\mathcal{N}(G)$ with property (*). Let $n \in \mathbb{N}$ be a multiple of $\exp(U_T(D(G)))$. For $H \in S$ we set

$$H^* := \left\{ a \in D(G)_{S(H)} \colon \sum_{k=1}^n \binom{n}{k} a^k = 0 \right\}.$$

Then every torsion unit $u \in U_T(D(G))$ is of the form

$$u = \pm [G, \psi]_G \prod_{H \in S \setminus \{G\}} (1 + u_H)$$

with uniquely determined $u_H \in H^*$ and $\psi \in \hat{G}$. Moreover

$$|U_T(D(G))| = 2|\hat{G}| \left(\prod_{H \in S \setminus \{G\}} |H^*|\right).$$

5. Abelian groups

In Proposition 3.7 we proved that the ring D(G) detects commutativity of the group G. With the help of Theorem 4.6 we will show that $D(G) \cong D(\tilde{G})$ with an abelian group G implies $G \cong \tilde{G}$. In the following we will use the notation C_2 for the group with 2 elements.

Proposition 5.1. Let G be an abelian group. Then

$$U_T(D(G)) \cong G \times C_2^{m+1},$$

where *m* is the number of subgroups of *G* with index 2.

Proof. For G = 1 the assumption is clear. Let $G \neq 1$. We use the notations of Theorem 4.6 and set $S := \{H: H \leq G\}$ and n := 2|G|. Then S has property (*), and for $H \in S$, $S(H) = \{[H, \psi]_G: \psi \in \hat{H}\}$ holds. Let U < G be a proper subgroup and $a \in U^*$. Then a+1 is a torsion unit in D(G). Let $\rho : D(G) \rightarrow \hat{D}(G)$ be the embedding of D(G) in the ghost ring $\hat{D}(G)$ and ρ_U the projection in $\mathbb{Z}\hat{U}$. Then $\rho_U(a+1) \in \mathbb{Z}\hat{U}$ is a torsion unit in $\mathbb{Z}\hat{U}$. Since \hat{U} is abelian, the set of all torsion units of $\mathbb{Z}\hat{U}$ is $\pm \hat{U}$ (cf. [12]). Thus there exists $\tau \in \hat{U}$ with $\rho_U(a+1) = \pm \tau$. The element a is of the form $a = \sum_{\lambda \in \hat{U}} a_{[U,\lambda]}[U, \lambda]_G$ with $a_{[U,\lambda]} \in \mathbb{Z}$. Since G is abelian, we obtain

$$\pm \tau - 1 = \rho_U(a) = \sum_{\lambda \in \hat{U}} a_{[U,\lambda]} \sum_{gU \in G/U} {}^g \lambda = (G:U) \sum_{\lambda \in \hat{U}} a_{[U,\lambda]} \lambda.$$

Note that in the above equation we use $\rho_U([U, \lambda]_G) = \sum_{gU \in G/U} {}^g \lambda$. In case 2 < (G : U) we get $a_{[U,\lambda]} = 0$ for all $\lambda \in \hat{U}$ and therefore a = 0. Let (G : U) = 2. We obtain $\rho_U(a) \in \{0, -2\}$, and in case $\rho_U(a) = 0$ we get $a_{[U,\lambda]} = 0$ for all $\lambda \in \hat{U}$ and therefore a = 0. Let $\rho_U(a) = -2$. Then $a_{[U,1]} = -1$ and $a_{[U,\lambda]} = 0$ for all $\lambda \in \hat{U} \setminus \{1\}$. Moreover

$$\left(1 - [U, 1]_G\right)^2 = 1 - 2[U, 1]_G + [U, 1]_G^2 = 1 - 2[U, 1] + \sum_{gU \in G/U} [U, 1]_G = 1.$$
(7)

Then $(1 - [U, 1]_G)^{2|G|} = 1$ and therefore $-[U, 1]_G \in U^*$. Thus $U^* = \{0, -[U, 1]_G\}$. All in all we get

$$|U^*| = \begin{cases} 2 & \text{if } (G:U) = 2, \\ 1 & \text{else.} \end{cases}$$
(8)

Since every torsion unit $u \in U_T(D(G))$ is of the form

$$u = \pm [G, \psi]_G \prod_{H \in S \setminus \{G\}} (1 + u_H)$$

with uniquely determined $u_H \in H^*$ and $\psi \in \hat{G}$ we get the desired isomorphism by Eq. (7) and (8). \Box

Theorem 5.2. Let G be a finite abelian group and let \tilde{G} be a finite group with $D(G) \cong D(\tilde{G})$. Then $G \cong \tilde{G}$.

Proof. By Proposition 3.7 the group \tilde{G} is abelian. Moreover $U_T(D(G)) \cong U_T(D(\tilde{G}))$. By Proposition 5.1 we get $G \times C_2^{m+1} \cong \tilde{G} \times C_2^{\tilde{m}+1}$ where *m* and \tilde{m} are the numbers of subgroups of *G* and \tilde{G} with index 2. Then $|G \times C_2^{m+1}| = |\tilde{G} \times C_2^{\tilde{m}+1}|$, and since $|G| = |\tilde{G}|$ we obtain $m = \tilde{m}$ and therefore $G \cong \tilde{G}$. \Box

6. The primitive idempotents of $\mathbb{Z}[\zeta]_{\mathfrak{p}} \otimes_{\mathbb{Z}} D(G)$

Let \mathfrak{p} be a maximal ideal in $\mathbb{Z}[\zeta]$, $p := \operatorname{char}(\mathbb{Z}[\zeta]/\mathfrak{p})$ and $R := \mathbb{Z}[\zeta]_{\mathfrak{p}}$ the localization of $\mathbb{Z}[\zeta]$ at \mathfrak{p} . In this section we will state a formula for the primitive idempotents of $D_R(G)$. We write

$$(H, hH') \equiv_p (U, uU')$$

for $(H, hH'), (U, uU') \in \mathcal{D}(G)$ in case

$$s_{(H,hH')}^{D(G)}(x) \equiv s_{(U,uU')}^{D(G)}(x) \pmod{\mathfrak{p}}$$

for all $x \in D(G)$. Then \equiv_p is an equivalence relation on $\mathcal{D}(G)$. The equivalence classes of this relation are called p-equivalence classes of $\mathcal{D}(G)$. We define

$$\mathcal{D}_p(G) := \left\{ \left(K, kK' \right) \in \mathcal{D}(G) \colon \left| \langle k \rangle \right| \neq 0 \neq \left(N_G \left(K, kK' \right) \colon K \right) \pmod{p} \right\}.$$

The following proposition summarizes some results of [9].

Proposition 6.1.

- (i) It holds $(H, hH') \equiv_p (H, h_{p'}H')$ for all $(H, hH') \in \mathcal{D}(G)$.
- (ii) Let $(H, hH') \in \mathcal{D}(G)$ and \dot{K}/H be a p-subgroup of $N_G(H, hH')/H$. Then $(H, hH') \equiv_p (K, hK')$.
- (iii) Let $(H, hH'), (K, kK') \in \mathcal{D}_p(G)$. Then $(H, hH') \equiv_p (K, kK')$ if and only if (H, hH') and (K, kK') are conjugate in G.

Proof. See [9], Lem. 1, Lem. 2, Prop. 3.

Let $(H, hH') \in \mathcal{D}(G)$. By Proposition 6.1(i) we get $(H, hH') \equiv_n (H, h_n'H')$, and for a Sylow psubgroup H_1/H of $N_G(H, hH')/H$ we conclude $(H, h_{p'}H') \equiv_p (H_1, h_{p'}H'_1)$ by Proposition 6.1(ii). With the same argument we get $(H_2, h_{p'}H'_2) \equiv_p (H_1, h_{p'}H'_1)$ for a Sylow *p*-subgroup H_2/H_1 of $N_G(H_1, h_{p'}H'_1)/H_1$. If we go on like this we obtain $(H_n, h_{p'}H'_n) \in \mathcal{D}_p(G)$ for some $n \in \mathbb{N}$. We call $(H_n, h_{p'}H'_n)$ a *p*-regularization of (H, hH'). Moreover $(H_n, h_{p'}H'_n)$ is uniquely determined up to conjugation in G (cf.[9]). By Proposition 6.1 we conclude that every p-equivalence class of $\mathcal{D}(G)$ is represented by exactly one orbit $[H, hH']_G \in \mathcal{D}(G)/G$ with $(H, hH') \in \mathcal{D}_p(G)$.

We use the notation $O^p(G)$ for the smallest normal subgroup of G such that $G/O^p(G)$ is a pgroup. The group G is called *p*-perfect in case $O^p(G) = G$. The subgroup $O^p(G)$ is *p*-perfect and characteristic in *G*. For a *p*-regularization $(H_n, h_{p'}H'_n)$ of $(H, hH') \in \mathcal{D}(G)$ it holds $O^p(H_n) = O^p(H) \leq H$.

We also use the following well-known lemmata.

Lemma 6.2. Let G be a finite group, A a normal abelian Hall-subgroup of G and [A, G] the commutator of A with G. Then $A = C_A(G) \oplus [A, G]$.

Proof. See [13], Kapitel III, Satz 13.4.

Lemma 6.3. Let G be a finite group and H be an abelian Hall-subgroup of G. Then $H \cap G' \cap Z(G) = 1$.

Proof. See [13], Kapitel IV, Satz 2.2.

Let *H* be a *p*-perfect subgroup of *G* and $h \in G$. We define

$$S^p(H, hH') := \{ U \leq G : O^p(U) = H, U \leq N_G(H, hH') \}.$$

For $U \in S^p(H, hH')$ and $u \in U$ we get $u_{p'} \in H$. Since p does not divide (H : H'), the group H/H' is a normal abelian Hall-subgroup of U/H'. It follows that

$$H/H' = C_{H/H'}(U/H') \oplus [H/H', U/H']$$

by Lemma 6.2. In the following we write $u_{p',c}H'$ for the $C_{H/H'}(U/H')$ -part of $u_{p'}H'$ in H/H'. We can now state the main theorem of this section.

Theorem 6.4. There is a 1-1-correspondence between the primitive idempotents of $D_R(G)$ and the elements of the set

$$I := \left\{ \left[H, hH' \right]_G \in \mathcal{D}(G)/G \colon H = O^p(H) \right\}.$$

An explicit formula for the primitive idempotents is given by

$$e_{(H,hH')}^{D(G),p} = \sum_{\substack{[U,uU']_G \in \mathcal{D}(G)/G \\ U \in S^p(H,hH') \\ u_{p',c}H' = hH'}} e_{(U,uU')}^{D(G)}, \quad \left[H,hH'\right]_G \in I.$$

Proof. There is a 1-1-correspondence between the primitive idempotents of $D_R(G)$ and the pequivalence classes of $\mathcal{D}(G)$ (cf. [7], Satz 1.12). We will show that every p-equivalence class of $\mathcal{D}(G)$ contains exactly one *G*-orbit $[H, hH']_G$ with a *p*-perfect subgroup *H*.

Let $(U, uU') \in \mathcal{D}(G)$. We set $H := O^p(U)$, $\overline{H} := H/H'$ and $\overline{U} := U/H'$. Then H is p-perfect and \overline{H} is a normal abelian Hall-subgroup of \overline{U} . By Lemma 6.2 we get

$$\bar{H} = C_{\bar{H}}(\bar{U}) \oplus [\bar{H}, \bar{U}],$$

where $[\bar{H}, \bar{U}]$ is the commutator of \bar{H} and \bar{U} . It holds $u_{p'}H' \in \bar{H}$ since $(\bar{U} : \bar{H})$ is a *p*-power. Thus there exist $hH' \in C_{\bar{H}}(\bar{U})$ and $vH' \in [\bar{H}, \bar{U}]$ with $u_{p'}H' = hvH'$. Therefore $u_{p'}U' = hvU' \in U/U'$ holds. Moreover $v \in U'$ since $vH' \in [\bar{H}, \bar{U}] \leq \bar{U}' = U'/H'$. Thus

$$(U, u_{p'}U') = (U, hU').$$

It is $H \leq U$ and since $hH' \in C_{\bar{H}}(\bar{U})$ we get $whw^{-1}H' = hH'$ for all $w \in U$. Thus $U \leq N_G(H, hH')$ and U/H is a *p*-subgroup of $N_G(H, hH')/H$. By Proposition 6.1(i) and (ii) it holds

$$(H, hH') \equiv_p (U, hU') = (U, u_{p'}U') \equiv_p (U, uU').$$

All in all we can say at this point that for $(U, uU') \in \mathcal{D}(G)$ it holds

$$(U, uU') \equiv_{p} (O^{p}(U), u_{p',c}O^{p}(U)').$$
(9)

Let *K* be a *p*-perfect subgroup of *G* and $k \in K$ with $(H, hH') \equiv_p (K, kK')$. We will show $[H, hH']_G = [K, kK']_G$. Since $O^p(K) = K$, the group K/K' is a *p'*-group. Thus $k_p \in K'$, and it follows that $kK' = k_{p'}K'$. Therefore we can assume $k = k_{p'}$. With the same argumentation we assume $h = h_{p'}$. Let $(\tilde{H}, h\tilde{H}')$ and $(\tilde{K}, k\tilde{K}')$ be *p*-regularizations of (H, hH') and (K, kK'). Then

$$(\tilde{H}, h\tilde{H}') \equiv_p (H, hH') \equiv_p (K, kK') \equiv_p (\tilde{K}, k\tilde{K}').$$

By Lemma 6.1(iii) $(\tilde{H}, h\tilde{H}')$ and $(\tilde{K}, k\tilde{K}')$ are conjugate in *G*. Thus

$$H = O^p(\tilde{H}) =_G O^p(\tilde{K}) = K.$$

In the following we assume H = K. We will show that hH' and kH' are conjugate in $N_G(H)$. Let V/H be a Sylow *p*-subgroup of $N_G(H, hH')/H$ and set $\overline{V} := V/H'$. It holds $\overline{H} = C_{\overline{H}}(\overline{V}) \oplus [\overline{H}, \overline{V}]$ by Lemma 6.2. Obviously it holds $[\overline{H}, \overline{V}] \subseteq \overline{V}' \cap \overline{H}$. Conversely we assume $x \in \overline{V}' \cap \overline{H}$. Then x = cd with $c \in C_{\overline{H}}(\overline{V})$ and $d \in [\overline{H}, \overline{V}]$. We get

$$c = xd^{-1} \in C_{\bar{H}}(\bar{V}) \cap \bar{V}' = Z(\bar{V}) \cap \bar{H} \cap \bar{V}' = 1$$

by Lemma 6.3. Thus $x \in [\bar{H}, \bar{V}]$ and

$$\bar{V}' \cap \bar{H} = [\bar{H}, \bar{V}]. \tag{10}$$

The group *H* is normal in $N_G(V)$ since $H = O^p(V)$ is characteristic in *V*. Since *H'* is characteristic in *H* we get $H' \leq N_G(V)$. It holds $C_{N_G(V)/H'}(\bar{V}) \leq N_G(V)/H'$, and since $\bar{H} \leq N_G(V)/H'$ we get

$$C_{\bar{H}}(V) = C_{N_G(V)/H'}(V) \cap H \leqslant N_G(V)/H'.$$
(11)

We now show that (V, hV') is a *p*-regularization of (H, hH'). Let $t \in N_G(V, hV') \leq N_G(H)$. It is $hH' \in C_{\bar{H}}(\bar{V})$ since $V \leq N_G(H, hH')$. Moreover it is $tht^{-1}H' \in C_{\bar{H}}(\bar{V})$ since $C_{\bar{H}}(\bar{V}) \leq N_G(V)/H'$ (by Eq. (11)).

Thus $h^{-1}tht^{-1}H' \in C_{\bar{H}}(\bar{V})$. It holds $h^{-1}tht^{-1} \in V'$, therefore we get $h^{-1}tht^{-1}H' \in V'/H' = \bar{V}'$. By Eq. (10) we obtain

$$C_{\bar{H}}(\bar{V}) \cap \bar{V}' = C_{\bar{H}}(\bar{V}) \cap \bar{V}' \cap \bar{H} = C_{\bar{H}}(\bar{V}) \cap [\bar{H}, \bar{V}] = 1.$$

It follows that $tht^{-1}H' = hH'$. Thus $t \in N_G(H, hH')$ and we get $N_G(V, hV') \leq N_G(H, hH')$. Then

$$(N_G(V,hV'):V) = (N_G(V,hV')/H:V/H) \neq 0 \pmod{p}.$$

Therefore (V, hV') is a *p*-regularization of (H, hH'). We can now assume

$$(\tilde{H}, h\tilde{H}') = (V, hV').$$

In particular $hH' \in C_{\tilde{H}}(\tilde{H}/H')$, and with the same argumentation we get $kH' \in C_{\tilde{H}}(\tilde{K}/H')$. Since

$$(V, hV') = (\tilde{H}, h\tilde{H}') \equiv_p (\tilde{K}, k\tilde{K}')$$

we obtain by Proposition 6.1(iii) the existence of $g \in G$ with ${}^g(\tilde{K}, k\tilde{K}') = (V, hV')$. Since $O^p(\tilde{K}) = H = O^p(V)$ it holds $g \in N_G(H)$. Thus $gkg^{-1}H' \in C_{\tilde{H}}(\bar{g}(\tilde{K}/H')) = C_{\tilde{H}}(\bar{V})$. Since $hH' \in C_{\tilde{H}}(\bar{V})$ it follows that $h^{-1}gkg^{-1}H' \in C_{\tilde{H}}(\bar{V})$. Since $h^{-1}gkg^{-1} \in V'$ we get $h^{-1}gkg^{-1}H' \in \bar{V}'$ and therefore

$$h^{-1}gkg^{-1}H' \in C_{\bar{H}}(\bar{V}) \cap \bar{V}' = Z(\bar{V}) \cap \bar{H} \cap \bar{V}' = 1$$

by Lemma 6.3. Thus $hH' = gkg^{-1}H'$ with $g \in N_G(H)$ and therefore every p-equivalence class is represented by exactly one orbit $[H, hH']_G$ with a p-perfect subgroup H.

Let *H* be any *p*-perfect subgroup of *G*, $h \in H$ and let *X* be the equivalence class represented by $[H, hH']_G$. We set

$$T := \left\{ \left[U, uU' \right]_G \in \mathcal{D}(G)/G \colon \left(U, uU' \right) \in X \right\}$$

and

$$Y := \{ [U, uU']_G \in \mathcal{D}(G)/G \colon U \in S^p(H, hH'), \ u_{p', c}H' = hH' \}.$$

Let $[U, uU']_G \in T$ with $O^p(U) = H$. We get $[H, u_{p',c}H']_G = [H, hH']_G$ by the above argumentations. Thus there exists $g \in N_G(H)$ with $g^{-1}hgH' = u_{p',c}H'$. Since $U \leq N_G(H, u_{p',c}H')$ it follows that ${}^gU \leq N_G(H, hH')$. Moreover $u_{p'}H' = u_{p',c}vH'$ with $vH' \in [\bar{H}, U/H']$. Thus

$$({}^{g}u)_{p'}H' = {}^{g}(u_{p'})H' = {}^{g}(u_{p',c}){}^{g}vH'$$

with ${}^{g}(u_{p',c})H' \in C_{\bar{H}}({}^{g}U/H')$ and ${}^{g}vH' \in [\bar{H}, {}^{g}U/H']$. It holds

$$({}^{g}u)_{p'}H' = ({}^{g}u)_{p',c}wH'$$

with $({}^{g}u)_{p',c} \in C_{\bar{H}}({}^{g}U/H')$ and $wH' \in [\bar{H}, {}^{g}U/H']$. Since $\bar{H} = C_{\bar{H}}({}^{g}U/H') \oplus [\bar{H}, {}^{g}U/H']$ we get

$${}^{g}(u_{p',c})H' = \left({}^{g}u\right)_{p',c}H'.$$

Thus $({}^g u)_{p',c}H' = hH'$ and we get $[U, uU']_G = [{}^g U, {}^g u^g U']_G \in Y$.

Let conversely be $[U, uU']_G \in Y$. We can assume $O^p(U) = H$ and $u_{p',c}H' = hH'$. We get

$$(U, uU') \equiv_p (H, u_{p',c}H') = (H, hH')$$

by Eq. (9). Thus we get $[U, uU']_G \in T$ and so Y = T.

Every primitive idempotent of $D_R(G)$ corresponding to X is of the form

$$\sum_{[U,uU']_G \in T} e^{D(G)}_{(U,uU')}$$

Since Y = T we obtain the idempotent formula stated in the theorem. \Box

7. Sylow subgroups

In this section we present some results about Sylow subgroups of two finite groups *G* and \tilde{G} with $D(G) \cong D(\tilde{G})$.

Proposition 7.1. Let *G* and \tilde{G} be finite groups, $\alpha : D(\tilde{G}) \to D(G)$ an isomorphism, *p* a prime divisor of |G| and *P* a Sylow *p*-subgroup of *G*. Let $\alpha(e_{(1,1)}^{D(\tilde{G})}) = e_{(U,uU')}^{D(G)}$. Then the group $H := O^p(U)$ is a normal abelian *p'*-subgroup of *G* and $h := u_{p'} \in Z(G)$. We set

$$I := \left\{ \left[K, kK' \right]_G \in \mathcal{D}(G) / G \colon K = HV, \ V \leq P, \ k = h\nu, \ \nu \in V \right\}.$$

Then

$$\alpha(e_{(1,1)}^{D(\tilde{G}),p}) = \sum_{[K,kK']_G \in I} e_{(K,kK')}^{D(G)}.$$

Proof. We get $|G| = |\tilde{G}|$ by Theorem 3.6. Moreover by Proposition 3.8 *U* is a normal abelian subgroup of *G* and $u \in Z(G)$ with $|\langle u \rangle| \in \{1, 2\}$. Thus *H* is a normal abelian *p*'-subgroup of *G* and $h \in \{1, u\} \subseteq Z(G)$. It holds

$$U \in S^{p}(H,h) := \{ K \leq G : O^{p}(K) = H, K \leq N_{G}(H,h) \} = \{ K \leq G : O^{p}(K) = H \},\$$

and since $u_{p'} \in Z(G)$ we get $u_{p',c} = u_{p'}$. Thus the idempotent $e_{(U,u)}^{D(G)}$ is included in the sum

$$e_{(H,h)}^{D(G),p} = \sum_{\substack{[K,kK']_G \in \mathcal{D}(G)/G \\ K \in S^p(H,h) \\ k_{n',e} = h}} e_{(K,kK')}^{D(G)}.$$

Therefore $\alpha(e_{(1,1)}^{D(\tilde{G}),p}) = e_{(H,h)}^{D(G),p}$. Let

$$J := \{ [K, kK']_G \in \mathcal{D}(G)/G: O^p(K) = H, k_{p',c} = h \}.$$

We show I = J. Let $[K, kK']_G \in I$. Then $O^p(K) = H$. Moreover we can assume k = hv with $v \in V$ for some subgroup $V \leq P$. Since $h \in Z(G)$ it holds $h = k_{p'} = k_{p',c}$. Thus $[K, kK']_G \in J$.

Let conversely be $[K, kK']_G \in J$. We can assume $k_{p',c} = h$. It holds $H = O^p(K)$ and by Lemma 6.2 we get $H = C_H(K) \oplus [H, K]$. Since $k_{p'} \in H$ it holds $k_{p'} = k_{p',c}y = hy$ with some $y \in [H, K] \leq K'$. Thus

$$\begin{bmatrix} K, kK' \end{bmatrix}_G = \begin{bmatrix} K, k_p k_{p'} K' \end{bmatrix}_G = \begin{bmatrix} K, k_p hy K' \end{bmatrix}_G = \begin{bmatrix} K, hk_p K' \end{bmatrix}_G.$$

448

By the Schur–Zassenhaus theorem there exists a *p*-subgroup $V \leq G$ with K = HV. Moreover there exists $g \in G$ with ${}^{g}V \leq P$. Then ${}^{g}K = H({}^{g}V)$. Since ${}^{g}V$ is a Sylow *p*-subgroup of ${}^{g}K$ there exists $w \in {}^{g}K$ with ${}^{wg}k_p \in {}^{g}V$. Thus

$$\left[K, kK'\right]_G = \left[{}^gK, h\left({}^gk_p\right){}^gK'\right]_G = \left[{}^gK, h\left({}^{wg}k_p\right){}^gK'\right]_G \in I$$

and the proposition is proved. $\hfill\square$

We can now state the first result.

Theorem 7.2. Let G and \tilde{G} be finite groups with $D(G) \cong D(\tilde{G})$ and let p be a prime divisor of |G|. If \tilde{G} has a non-trivial normal p-subgroup then G has a non-trivial normal p-subgroup.

Proof. Let \tilde{P} be a Sylow *p*-subgroup of \tilde{G} . By Theorem 6.4 we get

$$e_{(1,1)}^{D(\tilde{G}),p} = \sum_{\substack{[\tilde{K},\tilde{k}\tilde{K}']_G \in \mathcal{D}(\tilde{G})/\tilde{G}\\\tilde{K} \leqslant \tilde{P}}} e_{(\tilde{K},\tilde{k}\tilde{K}')}^{D(\tilde{G})}.$$
(12)

By the assumption there exists a normal *p*-subgroup $1 \neq \tilde{U}$ of \tilde{G} with $\tilde{U} \leq \tilde{P}$. Then $\tilde{K} := Z(\tilde{U}) \neq 1$ is an abelian *p*-subgroup of \tilde{G} which is characteristic in \tilde{U} . Thus \tilde{K} is normal in \tilde{G} and therefore $e_{(\tilde{K},1)}^{D(\tilde{G})}$ has conductor $|\tilde{G}|$. Thus the sum in Eq. (12) includes at least two primitive idempotents with conductor $|\tilde{G}|$ (consider $e_{(1,1)}^{D(\tilde{G})}$ and $e_{(\tilde{K},1)}^{D(\tilde{G})}$). Let $\alpha : D(\tilde{G}) \to D(G)$ be an isomorphism, *P* a Sylow *p*subgroup of *G* and let $\alpha(e_{(1,1)}^{D(\tilde{G})}) = e_{(U,uU')}^{D(G)}$ with a normal abelian subgroup $U \leq G$ and $u \in Z(G)$. By Proposition 7.1,

$$\alpha(e_{(1,1)}^{D(\tilde{G}),p}) = \sum_{[K,kK']_G \in I} e_{(K,kK')}^{D(G)}$$

holds with

$$I = \left\{ \left[K, kK' \right]_{C} \in \mathcal{D}(G) / G \colon K = O^{p}(U)V, \ k = u_{p'}v, \ v \in V, \ V \leq P \right\}.$$

There exists at least one element $[K, kK']_G \in I$ with $[K, kK']_G \neq [O^p(U), u_{p'}]_G$ such that $e_{(K, kK')}^{D(G)}$ has conductor $|G| = |\tilde{G}|$. Thus K is an abelian normal subgroup of G. Since $K/O^p(U)$ is a non-trivial p-group, the Sylow p-subgroup of K is non-trivial and normal in G. \Box

Theorem 7.3. Let G and \tilde{G} be finite groups with $D(G) \cong D(\tilde{G})$. Let p be a prime divisor of |G| and let P and \tilde{P} be Sylow p-subgroups of G and \tilde{G} . If \tilde{P} is abelian then P is abelian.

Proof. Let $\alpha : D(\tilde{G}) \to D(G)$ be an isomorphism, $\alpha(e_{(1,1)}^{D(\tilde{G})}) = e_{(U,uU')}^{D(G)}$ with a normal abelian subgroup $U \leq G$ and $u \in Z(G)$. Let $H := O^p(U)$ and $h := u_{p'}$. By Proposition 7.1 we obtain

$$\alpha(e_{(1,1)}^{D(\tilde{G}),p}) = \sum_{[K,kK']_G \in I} e_{(K,kK')}^{D(G)}$$

with

$$I := \left\{ \left[K, kK' \right]_G \in \mathcal{D}(G) / G \colon K = HV, \ V \leq P, \ k = h\nu, \ \nu \in V \right\}.$$

Let \tilde{P} be abelian. Then the conductors of all primitive idempotents $e_{(\tilde{K},\tilde{k}\tilde{K}')}^{D(\tilde{G})}$, $\tilde{K} \leq \tilde{P}$, $\tilde{k} \in \tilde{K}$, are divisible by $|\tilde{P}|$. Since

$$e_{(1,1)}^{D(\tilde{G}),p} = \sum_{\substack{[\tilde{K},\tilde{k}\tilde{K}']_{\tilde{G}} \in \mathcal{D}(\tilde{G})/\tilde{G}\\\tilde{K} \leqslant \tilde{P}}} e_{(\tilde{K},\tilde{k}\tilde{K}')}^{D(\tilde{G})}$$

 $|P| = |\tilde{P}|$ divides the conductor of $e_{(K,kK')}^{D(G)}$ for all $[K, kK']_G \in I$. We set K := HP. Then $[K, hK']_G \in I$ and p does not divide $(N_G(K, hK') : K)$. Thus |P| divides (K : K') and therefore $P \cap K' = 1$. It follows that $P' \leq K' \cap P = 1$ and therefore P is abelian. \Box

The next theorem is concerned with Sylow 2-subgroups of groups G and \tilde{G} with $D(G) \cong D(\tilde{G})$. We first need the following lemma.

Lemma 7.4. Let *G* be a finite group and $(H, hH') \in \mathcal{D}(G)$. We assume the existence of $x \in D_{\mathbb{Q}}(G)$ and $n \in \mathbb{N}$ such that $s_{(H, hH')}^{D(G)}(x)$ is a primitive n-th root of unity.

(i) If $2 \nmid n$ or $4 \mid n$ then n divides $|\langle h \rangle|$.

(ii) If n = 2m with $m \in \mathbb{N}$ and $2 \nmid m$ then m divides $|\langle h \rangle|$.

Proof. Let $\omega \in \mathbb{C}$ be a primitive $|\langle h \rangle|$ -th root of unity. For every subgroup $U \leq G$ with $H \leq U$ and every linear character $\psi \in \hat{U}$ it holds $\psi(h) = \omega^i$ for some $i \in \mathbb{N}$. For $[U, \psi]_G \in \mathcal{M}(G)/G$ we get

$$s_{(H,hH')}^{D(G)}([U,\psi]_G) = \sum_{\substack{gU \in G/U \\ H \leq^g U}} {}^g \psi(h) \in \mathbb{Q}(\omega).$$

Therefore $s_{(H,hH')}^{D(G)}(x) \in \mathbb{Q}(\omega)$. Since $\pm \omega^i$ $(i \in \mathbb{N})$ are the only roots of unity in $\mathbb{Q}(\omega)$ we get $s_{(H,hH')}^{D(G)}(x) \in \{\pm \omega^i: i \in \mathbb{N}\}$. Therefore

 $n \mid \max\{\operatorname{ord}(\pm \omega^i): i \in \mathbb{N}\} \in \{\operatorname{ord}(\omega), \operatorname{ord}(-\omega)\}.$

In case $\operatorname{ord}(\omega) \ge \operatorname{ord}(-\omega)$ we obtain that *n* divides $|\langle h \rangle|$ and (i) and (ii) is proved. Let $2 \cdot \operatorname{ord}(\omega) = \operatorname{ord}(-\omega)$. Then $2 \nmid \operatorname{ord}(\omega)$ and since $n \mid \operatorname{ord}(-\omega)$ we get $4 \nmid n$. If $2 \nmid n$ we get $n \mid \operatorname{ord}(\omega)$ and therefore (i). Let $2 \mid n$. Since $n \mid \operatorname{ord}(-\omega) = 2 \cdot \operatorname{ord}(\omega)$ we obtain that $\frac{n}{2}$ divides $\operatorname{ord}(\omega)$ and we proved (ii). \Box

Theorem 7.5. Let G and \tilde{G} be finite groups with $D(G) \cong D(\tilde{G})$ and let P and \tilde{P} be Sylow 2-subgroups of G and \tilde{G} . If P is cyclic then \tilde{P} is cyclic.

Proof. Let $P = \langle h \rangle$ and $|P| = 2^n$ with $n \in \mathbb{N}$. We assume $n \ge 2$. Note that $(N_G(P) : C_G(P))$ divides $|\operatorname{Aut}(P)| = 2^{n-1}$. Since $2 \nmid (N_G(P) : C_G(P))$ we get $N_G(P) = C_G(P)$. Let $\lambda \in \hat{P}$ such that $\lambda(h)$ is a primitive 2^n -th root of unity. Then

$$s_{(P,h)}^{D(G)}\left(\frac{1}{(N_G(P):P)}[P,\lambda]_G\right) = \frac{1}{(N_G(P):P)} \sum_{gP \in N_G(P)/P} {}^g \lambda(h) = \lambda(h).$$

Let $\alpha: D(G) \to D(\tilde{G})$ be an isomorphism. Then $s^{D(G)}_{(P,h)} = s^{D(\tilde{G})}_{(\tilde{H},\tilde{h}\tilde{H}')} \circ \alpha$ with $(\tilde{H}, \tilde{h}\tilde{H}') \in \mathcal{D}(\tilde{G})$. We set

$$\tilde{x} := \alpha \left(\frac{1}{(N_G(P):P)} [P,\lambda]_G \right) \in D_{\mathbb{Q}}(\tilde{G}).$$

Then $s_{(\tilde{H},\tilde{h}\tilde{H}')}^{D(\tilde{G})}(\tilde{X}) = \lambda(h)$ is a primitive 2^n -th root of unity. Moreover 2^n divides $|\langle \tilde{h} \rangle|$ by Lemma 7.4. Thus \tilde{G} contains an element of order 2^n . Therefore \tilde{P} is cyclic. \Box

8. Nilpotent and *p*-nilpotent groups

In the first theorem of this section we prove that the ring of monomial representations of a finite group detects nilpotency.

Theorem 8.1. Let G be a finite nilpotent group and \tilde{G} a finite group with $D(G) \cong D(\tilde{G})$. Then \tilde{G} is nilpotent.

Proof. Let $\alpha : D(\tilde{G}) \to D(G)$ be an isomorphism and let

$$\alpha\left(e_{(1,1)}^{D(\tilde{G})}\right) = e_{(U,uU')}^{D(G)}$$

By Proposition 3.7 *U* is a normal abelian subgroup of *G* and $u \in Z(G)$. Let *p* be a prime divisor of *G*, *P* the Sylow *p*-subgroup of *G* and $H := O^p(U)$. Then *H* is a normal abelian subgroup of *G* with $p \nmid |H|$. Since $u \in Z(G)$ we get $h := u_{p'} \in Z(G) \cap H$. Since *G* is nilpotent we obtain

$$\alpha(e_{(1,1)}^{D(\tilde{G}),p}) = \sum_{[K,kK']_G \in I} e_{(K,kK')}^{D(G)}$$
(13)

with

$$I = \left\{ \left[K, kK' \right]_G \in \mathcal{D}(G)/G \colon K = H \times V, \ V \leq P, \ k = h\nu, \ \nu \in V \right\}$$

by Proposition 7.1. Let $K := H \times V$ with $V \leq P$ and k := hv with $v \in V$. Since *G* is nilpotent it holds $G_{p'} \leq C_G(V)$, and since *H* is normal in *G* we get $G_{p'} \leq N_G(K)$. Since $h \in Z(G)$ we get

$$gkK'g^{-1} = ghvg^{-1}K' = hvK' = kK'$$

for all $g \in G_{p'}$. Thus $G_{p'} \leq N_G(K, kK')$. Moreover $K' = (H \times V)' = V'$ is a *p*-subgroup of *G*. Thus $|G_{p'}|$ divides $(N_G(K, kK') : K')$. Therefore $|G_{p'}|$ divides the conductor of the primitive idempotents $e_{(K, kK')}^{D(G)}$ with $[K, kK']_G \in I$. Let \tilde{P} be a Sylow *p*-subgroup of \tilde{G} . By

$$e_{(1,1)}^{D(\tilde{G}),p} = \sum_{\substack{[\tilde{U},\tilde{u}\tilde{U}']\in\mathcal{D}(\tilde{G})/\tilde{G}\\\tilde{U}\leqslant\tilde{P}}} e_{(\tilde{U},\tilde{u}\tilde{U}')}^{D(\tilde{G})}$$

and Eq. (13) we obtain that $|G_{p'}| = |\tilde{G}|_{p'}$ divides the conductor of the primitive idempotents $e_{(\tilde{U},\tilde{u}\tilde{U}')}^{D(\tilde{G})}$ with $\tilde{U} \leq \tilde{P}$. In particular $|\tilde{G}|_{p'}$ divides the conductor of $e_{(\tilde{P},1\tilde{P}')}^{D(\tilde{G})}$. Therefore $|\tilde{G}|_{p'}$ divides $(N_{\tilde{G}}(\tilde{P}) : \tilde{P}')_{p'} = (N_{\tilde{G}}(\tilde{P}) : \tilde{P})$ and therefore \tilde{P} is normal in \tilde{G} and the theorem is proved. \Box Next we will show that the isomorphy $D(G) \cong D(\tilde{G})$ with nilpotent groups G and \tilde{G} implies the isomorphy $D(P) \cong D(\tilde{P})$ where P and \tilde{P} are Sylow p-subgroups of G and \tilde{G} . We need the following two propositions.

Proposition 8.2. Let *G* and *H* be finite groups with gcd(|G|, |H|) = 1. Then

$$D(G \times H) \cong D(G) \otimes_{\mathbb{Z}} D(H).$$

Proof. Since gcd(|G|, |H|) = 1, every subgroup of $G \times H$ is of the form $U \times V$ with subgroups $U \leq G$ and $V \leq H$. Moreover every linear character of a subgroup $U \times V \leq G \times H$ is of the form $\varphi \times \psi$ with $(\varphi, \psi) \in \hat{U} \times \hat{V}$. Therefore the map

 $D(G \times H) \to D(G) \otimes_{\mathbb{Z}} D(H),$ $[U \times V, \varphi \times \psi]_{G \times H} \mapsto [U, \varphi]_G \otimes [V, \psi]_H$

is well defined and an isomorphism.

Proposition 8.3. Let A_1, A_2, B_1, B_2 be commutative rings with unit element which are finitely generated and free as a \mathbb{Z} -module. Moreover, assume that the rings A_1 and A_2 have \mathbb{Z} -bases which contain the respective unit element. Further, assume that there exists a unitary subring $R \subseteq \mathbb{C}$ such that the only idempotents in $R \otimes_{\mathbb{Z}} A_i$ (i = 1, 2) are 0 and 1 and such that the R-algebra $R \otimes_{\mathbb{Z}} B_i$ (i = 1, 2) is isomorphic to a direct product of copies of R. If $A_1 \otimes_{\mathbb{Z}} B_1 \cong A_2 \otimes_{\mathbb{Z}} B_2$ then $B_1 \cong B_2$.

Proof. Let $\{a_1, \ldots, a_s\} \subseteq A_1$, $\{\tilde{a}_1, \ldots, \tilde{a}_t\} \subseteq A_2$, $\{b_1, \ldots, b_n\} \subseteq B_1$ and $\{\tilde{b}_1, \ldots, \tilde{b}_m\} \subseteq B_2$ the respective \mathbb{Z} -bases with the unit elements $a_1 = 1_{A_1}$ and $\tilde{a}_1 = 1_{A_2}$. Then $\{a_i \otimes b_j: i = 1, \ldots, s, j = 1, \ldots, n\}$ is a \mathbb{Z} -basis of $A_1 \otimes_{\mathbb{Z}} B_1$ and $\{\tilde{a}_i \otimes \tilde{b}_j: i = 1, \ldots, t, j = 1, \ldots, m\}$ is a \mathbb{Z} -basis of $A_2 \otimes_{\mathbb{Z}} B_2$. Consider the canonical embeddings

$$\varphi: B_1 \to R \otimes_{\mathbb{Z}} B_1,$$

$$b_i \mapsto 1_R \otimes b_i,$$

$$\delta: B_1 \to A_1 \otimes_{\mathbb{Z}} B_1,$$

$$b_i \mapsto 1_{A_1} \otimes b_i$$

$$:= 1 \otimes \delta: R \otimes_{\mathbb{Z}} B_1 \to R \otimes_{\mathbb{Z}} A_1 \otimes_{\mathbb{Z}} B_1,$$

$$1_R \otimes b_i \mapsto 1_R \otimes 1_{A_1} \otimes b_i,$$

ψ

$$\mu: A_1 \otimes_{\mathbb{Z}} B_1 \to R \otimes_{\mathbb{Z}} A_1 \otimes_{\mathbb{Z}} B_1,$$
$$a_i \otimes b_i \mapsto \mathbf{1}_R \otimes a_i \otimes b_i$$

(i = 1, ..., n, j = 1, ..., s). Then $\psi \circ \varphi = \mu \circ \delta$. We define the canonical embeddings $\tilde{\varphi} : B_2 \to R \otimes_{\mathbb{Z}} B_2$, $\tilde{\delta} : B_2 \to A_2 \otimes_{\mathbb{Z}} B_2$, $\tilde{\psi} : R \otimes_{\mathbb{Z}} B_2 \to R \otimes_{\mathbb{Z}} A_2 \otimes_{\mathbb{Z}} B_2$ and $\tilde{\mu} : A_2 \otimes_{\mathbb{Z}} B_2 \to R \otimes_{\mathbb{Z}} A_2 \otimes_{\mathbb{Z}} B_2$ in an analogous way. Let

$$\alpha: A_1 \otimes_{\mathbb{Z}} B_1 \to A_2 \otimes_{\mathbb{Z}} B_2$$

be an isomorphism. We extend α linearly to the isomorphism

$$\hat{\alpha}: R \otimes_{\mathbb{Z}} A_1 \otimes_{\mathbb{Z}} B_1 \to R \otimes_{\mathbb{Z}} A_2 \otimes_{\mathbb{Z}} B_2.$$

Then $\hat{\alpha} \circ \mu = \tilde{\mu} \circ \alpha$. Let e_1, \ldots, e_n be the primitive idempotents of $R \otimes_{\mathbb{Z}} B_1$ and $\tilde{e}_1, \ldots, \tilde{e}_m$ be the primitive idempotents of $R \otimes_{\mathbb{Z}} B_2$. Then

$$R \otimes_{\mathbb{Z}} B_1 = \bigoplus_{i=1}^n Re_i$$
 and $R \otimes_{\mathbb{Z}} B_2 = \bigoplus_{i=1}^m R\tilde{e}_i$.

Moreover 0 and 1 are the only idempotents in $R \otimes_{\mathbb{Z}} A_1$ and $R \otimes_{\mathbb{Z}} A_2$. Then $1_{R \otimes_{\mathbb{Z}} A_1} \otimes e_i$, i = 1, ..., n, are the primitive idempotents of $(R \otimes_{\mathbb{Z}} A_1) \otimes_R (R \otimes_{\mathbb{Z}} B_1)$. Since

$$R \otimes_{\mathbb{Z}} A_1 \otimes_{\mathbb{Z}} B_1 \cong (R \otimes_{\mathbb{Z}} A_1) \otimes_R (R \otimes_{\mathbb{Z}} B_1)$$

the elements $\psi(e_i)$, i = 1, ..., n, are the primitive idempotents of $R \otimes_{\mathbb{Z}} A_1 \otimes_{\mathbb{Z}} B_1$. Similarly $\tilde{\psi}(\tilde{e}_i)$, i = 1, ..., m, are the primitive idempotents of $R \otimes_{\mathbb{Z}} A_2 \otimes_{\mathbb{Z}} B_2$. Thus

$$\hat{\alpha}\left(\left\{\psi(e_1),\ldots,\psi(e_n)\right\}\right)=\left\{\tilde{\psi}(\tilde{e}_1),\ldots,\tilde{\psi}(\tilde{e}_m)\right\}.$$

In particular n = m. We assume $\hat{\alpha}(\psi(e_i)) = \tilde{\psi}(\tilde{e}_i)$ for i = 1, ..., n. Let $c \in B_1$. Then there exist $r_1, ..., r_n \in R$ with $\varphi(c) = \sum_{i=1}^n r_i e_i$ and we get

$$(\hat{\alpha} \circ \psi \circ \varphi)(c) = (\hat{\alpha} \circ \psi) \left(\sum_{i=1}^{n} r_i e_i \right) = \sum_{i=1}^{n} r_i \tilde{\psi}(\tilde{e}_i).$$

Thus there exist $t_1, \ldots, t_n \in R$ with $(\hat{\alpha} \circ \psi \circ \varphi)(c) = \sum_{i=1}^n t_i (1_R \otimes 1_{A_2} \otimes \tilde{b}_i)$. It holds

$$(\hat{\alpha} \circ \psi \circ \varphi)(c) = (\hat{\alpha} \circ \mu \circ \delta)(c) = (\tilde{\mu} \circ \alpha \circ \delta)(c),$$

and there exist $z_{i,j} \in \mathbb{Z}$ (i = 1, ..., t, j = 1, ..., n) with

$$(\alpha \circ \delta)(c) = \sum_{i=1}^{t} \sum_{j=1}^{n} z_{i,j}(\tilde{a}_i \otimes \tilde{b}_j).$$

Therefore

$$\sum_{i=1}^{n} t_i (1_R \otimes 1_{A_2} \otimes \tilde{b}_i) = (\tilde{\mu} \circ \alpha \circ \delta)(c) = \sum_{i=1}^{t} \sum_{j=1}^{n} z_{i,j} (1_R \otimes \tilde{a}_i \otimes \tilde{b}_j).$$

Since $\tilde{a}_1 = 1_{A_2}$ the set $\{1_R \otimes 1_{A_2} \otimes \tilde{b}_j: j = 1, ..., n\}$ is a subset of the canonical basis $\{1_R \otimes \tilde{a}_i \otimes \tilde{b}_j: i = 1, ..., t, j = 1, ..., n\}$ of $R \otimes_{\mathbb{Z}} A_2 \otimes_{\mathbb{Z}} B_2$. Thus $t_j = z_{1,j} \in \mathbb{Z}$ for all j = 1, ..., n and $z_{i,j} = 0$ for $i \neq 1$, j = 1, ..., n. It follows that $(\hat{\alpha} \circ \psi \circ \varphi)(c) \in (\tilde{\psi} \circ \tilde{\varphi})(B_2)$ and therefore

$$\beta := \tilde{\varphi}^{-1} \circ \tilde{\psi}^{-1} \circ \hat{\alpha} \circ \psi \circ \varphi : B_1 \to B_2$$

is a ring monomorphism. Considering $\psi \circ \varphi = \mu \circ \delta$ and $\tilde{\delta}^{-1} \circ \tilde{\mu}^{-1} = \tilde{\varphi}^{-1} \circ \tilde{\psi}^{-1}$ we get

$$\beta = \tilde{\delta}^{-1} \circ \alpha \circ \delta. \tag{14}$$

With the same argumentation we get a ring monomorphism

$$\tilde{\beta} = \delta^{-1} \circ \alpha^{-1} \circ \tilde{\delta} : B_2 \to B_1.$$

Moreover $\beta \circ \tilde{\beta} = id_{B_2}$ and $\tilde{\beta} \circ \beta = id_{B_1}$. Therefore β is an isomorphism. \Box

Theorem 8.4. Let p be a prime number. Let $G = P \times H$ and $\tilde{G} = \tilde{P} \times \tilde{H}$ be finite groups with p-groups P, \tilde{P} and p'-groups H, \tilde{H} . If $D(G) \cong D(\tilde{G})$ then $D(H) \cong D(\tilde{H})$.

Proof. Let $\xi \in \mathbb{C}$ be a primitive |H|-th root of unity, \mathfrak{p} be a prime ideal in $\mathbb{Z}[\xi]$ with $\operatorname{char}(Z[\xi]/\mathfrak{p}) = p$ and $R := \mathbb{Z}[\xi]_{\mathfrak{p}}$ be the localization at \mathfrak{p} . By Theorem 6.4 the rings $D_R(H)$ and $D_{\mathbb{Q}(\xi)}(H)$ have the same primitive idempotents. Similarly the primitive idempotents of $D_R(\tilde{H})$ and $D_{\mathbb{Q}(\xi)}(\tilde{H})$ are corresponding. Therefore $D_R(H)$ and $D_R(\tilde{H})$ are completely reducible. Moreover by Theorem 6.4 we obtain that 0 and 1 are the only idempotents in $D_R(P)$ and $D_R(\tilde{P})$. By Proposition 8.2 we get the isomorphy

$$D(P) \otimes_{\mathbb{Z}} D(H) \cong D(G) \cong D(\tilde{G}) \cong D(\tilde{P}) \otimes_{\mathbb{Z}} D(\tilde{H}).$$

We set $A_1 := D(P)$, $A_2 := D(\tilde{P})$, $B_1 := D(H)$ and $B_2 := D(\tilde{H})$. Then all conditions in Theorem 8.3 are valid and we get the isomorphy $D(H) \cong D(\tilde{H})$. \Box

Corollary 8.5. Let G and \tilde{G} be finite nilpotent groups with $D(G) \cong D(\tilde{G})$. Let p_1, \ldots, p_n be the different prime divisors of |G|, and for $i = 1, \ldots, n$ let G_i and \tilde{G}_i be the Sylow p_i -subgroups of G and \tilde{G} . Let

$$\alpha: D(G_1) \otimes_{\mathbb{Z}} \ldots \otimes_{\mathbb{Z}} D(G_n) \to D(\tilde{G}_1) \otimes_{\mathbb{Z}} \ldots \otimes_{\mathbb{Z}} D(\tilde{G}_n)$$

be an isomorphism. Then there exist isomorphisms $\alpha_i : D(G_i) \to D(\tilde{G}_i)$ for i = 1, ..., n with $\alpha = \alpha_1 \otimes \cdots \otimes \alpha_n$.

Proof. For $i = 2, \ldots, n$ let

$$H_i := G_i \times \cdots \times G_n, \qquad \tilde{H}_i := \tilde{G}_i \times \cdots \times \tilde{G}_n$$

and

$$\delta_i : D(H_i) \to D(H_{i-1}), \qquad \tilde{\delta}_i : D(\tilde{H}_i) \to D(\tilde{H}_{i-1})$$

be the canonical embeddings. Applying Theorem 8.4 under consideration of Eq. (14) we get the isomorphism $\beta_2 := \tilde{\delta}_2^{-1} \circ \alpha \circ \delta_2 : D(H_2) \to D(\tilde{H}_2)$. Applying Theorem 8.4 again we get the isomorphism $\beta_3 := \tilde{\delta}_3^{-1} \circ \beta_2 \circ \delta_3 : D(H_3) \to D(\tilde{H}_3)$. If we go on like this we obtain the isomorphism

$$\beta_n := \tilde{\delta}_n^{-1} \circ \cdots \circ \tilde{\delta}_2^{-1} \circ \alpha \circ \delta_2 \circ \cdots \circ \delta_n : D(G_n) \to D(\tilde{G}_n)$$

where $\delta_2 \circ \cdots \circ \delta_n : D(G_n) \to D(G)$ and $\tilde{\delta}_2 \circ \cdots \circ \tilde{\delta}_n : D(\tilde{G}_n) \to D(\tilde{G})$ are the canonical embeddings. In this way we get isomorphisms $D(G_i) \to D(\tilde{G}_i)$ for all i = 1, ..., n. If we let $\tau_i : D(G_i) \to D(G)$ and $\tilde{\tau}_i : D(\tilde{G}_i) \to D(\tilde{G})$ be the canonical embeddings, the maps

$$\alpha_i := \tilde{\tau}_i^{-1} \circ \alpha \circ \tau_i : D(G_i) \to D(\tilde{G}_i), \quad i = 1, \dots, n$$

are these isomorphisms. Let $x = x_1 \otimes \cdots \otimes x_n \in D(G_1) \otimes_{\mathbb{Z}} \ldots \otimes_{\mathbb{Z}} D(G_n)$. Then

454

$$\alpha(x) = \alpha \left((x_1 \otimes 1_{D(G_2)} \otimes \cdots \otimes 1_{D(G_n)}) \cdot \ldots \cdot (1_{D(G_1)} \otimes \cdots \otimes 1_{D(G_{n-1})} \otimes x_n) \right)$$

= $(\alpha \circ \tau_1)(x_1) \cdot \ldots \cdot (\alpha \circ \tau_n)(x_n) = (\tilde{\tau}_1 \circ \alpha_1)(x_1) \cdot \ldots \cdot (\tilde{\tau}_n \circ \alpha_n)(x_n)$
= $\alpha_1(x_1) \otimes \cdots \otimes \alpha_n(x_n).$

Therefore $\alpha = \alpha_1 \otimes \cdots \otimes \alpha_n$. \Box

The next result is concerned with the group of torsion units of D(G) where G is a nilpotent group of odd order.

Theorem 8.6. Let G be a nilpotent group of odd order. Then $U_T(D(G)) \cong \hat{G} \times C_2$.

Proof. We assume $U_T(D(G)) \cong \hat{G} \times C_2$. By Theorem 4.6 with S = 1, G, there exists

$$0 \neq u = \sum_{[H,\varphi]_G \in \mathcal{M}(G)/G} z_{[H,\varphi]}[H,\varphi]_G \in D(G), \quad z_{[H,\varphi]} \in \mathbb{Z},$$

with $\sum_{k=1}^{2|G|} {2|G| \choose k} u^k = 0$ and $z_{[G,\varphi]} = 0$ for all $\varphi \in \hat{G}$. Thus $1 + u \in U_T(D(G))$. Choose $U \leq G$ such that |U| is maximal with the property $z_{[U,\psi]} \neq 0$ for some $\psi \in \hat{U}$. Then U < G. Since $\pm \hat{U}$ is the set of all torsion units in $\mathbb{Z}\hat{U}$ there exists $\tau \in \hat{U}$ with

$$\rho_U(u) = \sum_{[U,\varphi]_G \in \mathcal{M}(G)/G} z_{[U,\varphi]} \sum_{gU \in N_G(U)/U} {}^g \varphi = \pm \tau - 1.$$

In case $\tau \neq 1$ we get $z_{[U,1]} = -1$ and $(N_G(U) : U) = 1$. Since *G* is nilpotent, $(N_G(U) : U) \neq 1$ holds in contradiction to the above case. Therefore $\tau = 1$. Since $(N_G(U) : U) \neq 0 \pmod{2}$ the case $\rho_U(u) = -2$ is not possible. Therefore $\rho_U(u) = 0$. This implies $z_{[U,\varphi]} = 0$ for all $\varphi \in \hat{U}$ contradicting the assumption $z_{[U,\psi]} \neq 0$. Therefore $U_T(D(G)) \cong \hat{G} \times C_2$. \Box

Corollary 8.7. Let G and \tilde{G} be finite nilpotent groups with $D(G) \cong D(\tilde{G})$. Then the 2'-Hall subgroups of G/G' and \tilde{G}/\tilde{G}' are isomorphic.

Proof. Let *H* and \tilde{H} be the 2'-Hallgroups of *G* and \tilde{G} . By Theorem 8.4 we obtain the isomorphy $D(H) \cong D(\tilde{H})$. Moreover we get $H/H' \times C_2 \cong \tilde{H}/\tilde{H}' \times C_2$ by Theorem 8.6. Therefore we get $H/H' \cong \tilde{H}/\tilde{H}'$. \Box

For *p*-nilpotent groups we get the following result.

Theorem 8.8. Let G and \tilde{G} be finite groups with $D(G) \cong D(\tilde{G})$. Assume that for a prime divisor p of |G| the Sylow p-subgroups of G and \tilde{G} are cyclic. If G is p-nilpotent then \tilde{G} is p-nilpotent.

Proof. Let *P* be a Sylow *p*-subgroup of *G* and let $\alpha : D(\tilde{G}) \to D(G)$ be an isomorphism. By Proposition 3.7, $\alpha(e_{(1,1)}^{D(\tilde{G})}) = e_{(U,u)}^{D(G)}$ holds with a normal abelian subgroup *U* of *G* and $u \in Z(G)$. Let $H := O^p(U)$ and $h := u_{p'} \in Z(G)$. By Proposition 7.1 we obtain

$$\alpha(e_{(1,1)}^{D(\tilde{G}),p}) = \sum_{[K,KK']_G \in I} e_{(K,KK')}^{D(G)}$$
(15)

with

$$I = \left\{ \left[K, kK' \right]_G \in \mathcal{D}(G)/G \colon K = HV, \ V \leq P, \ k = h\nu, \ \nu \in V \right\}.$$

Let $V \leq P$, $v, w \in V$ and K := HV. Assume $[K, hvK']_G = [K, hwK']_G$. We first prove v = w.

There exists $gK' \in N_G(K)/K'$ with ${}^g(hv)K' = hwK'$. Since $h \in Z(G)$ we get ${}^gvK' = wK'$. Since *P* is cyclic $K/H \cong V$ is cyclic. Thus $K' \leq H$ and $VK'/K' \cong V$. In particular VK'/K' is a cyclic *p*-subgroup of $N_G(K)/K'$. It holds $vK', wK' \in VK'/K'$, and since $|\langle wK' \rangle| = |\langle {}^gvK' \rangle|$ we get $\langle wK' \rangle = \langle vK' \rangle =: T$. Thus $gK' \in N_{N_G(K)/K'}(T)$. Since *G* is *p*-nilpotent the subgroup $N_G(K)$ is *p*-nilpotent and therefore $N_G(K)/K'$ is *p*-nilpotent. By the *p*-nilpotency-criteria of Frobenius follows that $N_{N_G(K)/K'}(T)/C_{N_G(K)/K'}(T)$ is a *p*-group. Since *P* is abelian every Sylow *p*-subgroup of $N_G(K)/K'$ is abelian. Therefore a Sylow *p*-subgroup of $N_G(K)/K'$ is included in $C_{N_G(K)/K'}(T)$. Thus $|N_G(K)/K'|_p$ divides $|C_{N_G(K)/K'}(T)|$. It follows that $N_{N_G(K)/K'}(T) = C_{N_G(K)/K'}(T)$ and therefore wK' = vK'. We get $v^{-1}w \in K' \cap V = 1$. Thus v = w.

Let $|P| = p^n$ with $n \in \mathbb{N}$. For every divisor p^m , $m \in \mathbb{N}$, of |P| there exists exactly one subgroup $V \leq P$ with $|V| = p^m$. By the above part of the proof there exist exactly p^m different orbits $[HV, hv(HV)']_G$, $v \in V$, for every subgroup $V \leq P$ with $|V| = p^m$. Therefore

$$|I| = \sum_{i=0}^{n} p^{i} = \frac{p^{n+1} - 1}{p - 1}.$$

Let \tilde{P} be a Sylow *p*-subgroup of \tilde{G} . Since \tilde{P} is cyclic we get

$$e_{(1,1)}^{D(\tilde{G}),p} = \sum_{[\tilde{K},\tilde{k}\tilde{K}']_{\tilde{G}}\in J} e_{(\tilde{K},\tilde{k}\tilde{K}')}^{D(\tilde{G})}$$

with

$$J = \left\{ [\tilde{V}, \tilde{v}]_{\tilde{G}} \in \mathcal{D}(\tilde{G})/\tilde{G} \colon \tilde{V} \leq \tilde{P}, \ \tilde{v} \in \tilde{V} \right\}$$

by Theorem 6.4. Since $|\tilde{P}| = p^n$ it holds $|J| \leq \sum_{i=0}^n p^i$, and by Eq. (15) we get |I| = |J|. Hence $[\tilde{V}, \tilde{v}]_{\tilde{G}} = [\tilde{W}, \tilde{w}]_{\tilde{G}}$ with $\tilde{V}, \tilde{W} \leq \tilde{P}, \tilde{v} \in \tilde{V}, \tilde{w} \in \tilde{W}$ if and only if $\tilde{V} = \tilde{W}$ and $\tilde{v} = \tilde{w}$. Therefore $N_{\tilde{G}}(\tilde{V}) = C_{\tilde{G}}(\tilde{V})$ for all $\tilde{V} \leq \tilde{P}$. In particular $N_{\tilde{G}}(\tilde{P}) = C_{\tilde{G}}(\tilde{P})$. Thus \tilde{G} is *p*-nilpotent by the *p*-nilpotency criterion of Burnside. \Box

Acknowledgments

This paper contains a part of the author's doctoral thesis which was supervised by Professor Burkhard Külshammer.

References

- [1] R. Boltje, A canonical Brauer induction formula, Astérisque 181-182 (1990) 31-59.
- [2] R. Boltje, A general theory of canonical induction formulae, J. Algebra 206 (1) (1998) 293-343.
- [3] R. Boltje, Representation rings of finite groups, their species and idempotent formulae, J. Algebra, in press.
- [4] R. Boltje, Monomial resolutions, J. Algebra 246 (2) (2001) 811-848.
- [5] R. Boltje, Integrality conditions for elements in ghost rings of generalized Burnside rings, J. Algebra, in press.
- [6] R. Brandl, T. Huckle, On the isomorphism problem for Burnside rings, Proc. Amer. Math. Soc. 123 (12) (1995) 3623–3626.
 [7] M. Deiml, Zur Darstellungstheorie von Darstellungsringen, Dissertation, Jena 1997.
- [8] A. Dress, The ring of monomial representations. I. Structure theory, J. Algebra 18 (1971) 137–157.
- [9] B. Fotsing, B. Külshammer, Modular species and prime ideals for the ring of monomial representations of a finite group, Comm. Algebra 33 (10) (2005) 3667–3677.

- [10] D. Gluck, Idempotent formula for the Burnside algebra with applications to the p-subgroup simplicial complex, Illinois J. Math. 25 (1) (1981) 63–67.
- [11] T. Hawkes, I.M. Isaacs, M. Özaydin, On the Möbius function of a finite group, Rocky Mountain J. Math. 19 (4) (1989) 1003– 1034.
- [12] G. Higman, The units of group rings, Proc. London Math. Soc. 46 (1940) 231-248.
- [13] B. Huppert, Endliche Gruppen I, Springer-Verlag, 1967.
- [14] W. Kimmerle, F. Luca, A.G. Raggi-Cárdenas, Irreducible components and isomorphisms of the Burnside ring, preprint, 2006.
- [15] T. Matsuda, On the unit groups of Burnside rings, Jpn. J. Math. 8 (1) (1982) 71-93.
- [16] A.G. Raggi-Cárdenas, Groups with isomorphic Burnside rings, Arch. Math. 84 (3) (2005) 193-197.
- [17] V.P. Snaith, Explicit Brauer Induction. With Applications to Algebra and Number Theory, Cambridge University Press, 1994.