[Journal of Algebra 333 \(2011\) 427–457](http://dx.doi.org/10.1016/j.jalgebra.2011.02.013)

On the isomorphism problem for the ring of monomial representations of a finite group

Michael Müller

Mathematisches Institut, Friedrich-Schiller-Universität, 07737 Jena, Germany

article info abstract

Article history: Received 18 September 2010 Available online 23 February 2011 Communicated by Michel Broué

Keywords: Representation rings Isomorphism problem Primitive idempotents Torsion units

In this paper we are concerned with the problem of finding properties of a finite group *G* in the ring *D(G)* of monomial representations of *G*. We determine the conductors of the primitive idempotents of $\mathbb{Q}(\zeta) \otimes_{\mathbb{Z}} D(G)$, where $\zeta \in \mathbb{C}$ is a primitive $|G|$ th root of unity, and prove a structure theorem for the torsion units of $D(G)$. Using these results we show that an abelian group *G* is uniquely determined by the ring *D(G)*. We state an explicit formula for the primitive idempotents of $\mathbb{Z}[\zeta]_p \otimes_{\mathbb{Z}} D(G)$, where $\mathbb{Z}[\zeta]_p$ is a localization of $\mathbb{Z}[\zeta]$. We get further results for nilpotent and *p*-nilpotent groups and we obtain properties of Sylow subgroups of *G* from *D(G)*.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The ring *D(G)* of monomial representations of a finite group *G* has been investigated by Andreas Dress and Robert Boltje (the letter *D* is paying tribute to Dress who studied similar rings in [8]). A motivation to consider this ring arised from the *Brauer induction theorem* which says that there is a canonical way of writing complex characters as an integral linear combination of induced linear characters (cf. [1,17]). Detailed information about construction, species and idempotent formulae of $D(G)$ can be found in [3].

We are mainly interested in finding properties of *G* by analyzing the structure of *D(G)*. Since the Burnside ring *B(G)* can be embedded in *D(G)*, there is a connection to the similar problem concerning the ring *B(G)*. This problem has been studied in [6,14,16], among others. Considering results for the isomorphism problem for Burnside rings it seems to be useful to work with primitive idempotents of $R \otimes_{\mathbb{Z}} D(G)$, where *R* is a subring of \mathbb{C} , with conductors of such idempotents and with torsion units of *D(G)*.

0021-8693/\$ – see front matter © 2011 Elsevier Inc. All rights reserved. [doi:10.1016/j.jalgebra.2011.02.013](http://dx.doi.org/10.1016/j.jalgebra.2011.02.013)

E-mail address: m_mueller76@gmx.net.

In the second section we give a survey over the construction of $D(G)$, the species and the primitive idempotents of $\mathbb{Q}(\zeta) \otimes_{\mathbb{Z}} D(G)$ ($\zeta \in \mathbb{C}$ primitive |*G*|-th root of unity). The third section contains the determination of the conductors of the primitive idempotents of $\mathbb{Q}(\zeta) \otimes_{\mathbb{Z}} D(G)$ (i.e. the minimal natural number $n_e \in \mathbb{N}$ for a primitive idempotent $e \in \mathbb{O}(\zeta) \otimes_{\mathbb{Z}} D(G)$ such that $n_e \cdot e \in \mathbb{Z}[\zeta] \otimes_{\mathbb{Z}} D(G)$ and a first application concerning the order of the center of the group *G*. Next we prove a structure theorem for the torsion units of $D(G)$. In Section 5 we show that an abelian group G is uniquely determined by the ring *D(G)*. In the sixth section we state an explicit formula for the primitive idempotents of $\mathbb{Z}[\zeta]_p \otimes_{\mathbb{Z}} D(G)$, where p is a maximal ideal of $\mathbb{Z}[\zeta]$ and $\mathbb{Z}[\zeta]_p$ is the localization of $\mathbb{Z}[\zeta]$ at p. Using this result we obtain properties of the Sylow subgroups of *G* from *D(G)*. Among others we show that the case $D(G) \cong D(\tilde{G})$, where G has an abelian Sylow *p*-subgroup, implies the commutativity of the Sylow *p*-subgroups of \tilde{G} . In the last section we consider nilpotent and *p*-nilpotent groups. Among others we show that the ring *D(G)* detects nilpotency of *G*.

Notation. For a group element $g \in G$ we write ord (g) for the order of *g*. Let G_p be the set of all *p*-elements and G_p be the set of all *p*-regular elements of *G* (*p* prime). For $g \in G$ let $g_p \in G_p$ and $g_{p'} \in G_{p'}$ be the uniquely determined elements with $g = g_p g_{p'} = g_{p'} g_p$. For a group *G* we denote by G' the commutator subgroup of *G* and by $Z(G)$ the center of *G*. For a subgroup *H* of *G* we use the notation $H \leqslant G$. We sometimes write $H < G$ in case H is a proper subgroup and $H \leqslant G$ in case H is a normal subgroup of *G*. For $H \le G$ let $C_G(H)$ be the centralizer and $N_G(H)$ be the normalizer of *H* in *G*. For *g* ∈ *G* we set ^{*g*} *H* := *gHg*^{−1} and *H^g* := *g*^{−1}*Hg*. Moreover we set \hat{G} := Hom(*G*, \mathbb{C}^{\times}).

2. The ring of monomial representations

Let *G* be a finite group. The *monomial category* of *G* is denoted by **mon**_{C*G*}. The objects of **mon**_{C*G*} are pairs (V, \mathcal{L}) consisting of a finitely generated $\mathbb{C}G$ -module V and a set \mathcal{L} of one-dimensional subspaces of *V* with $\bigoplus_{L \in \mathcal{L}} L = V$ and $gL \in \mathcal{L}$ for $g \in G$ and $L \in \mathcal{L}$. A morphism $f : (V, \mathcal{L}) \rightarrow (W, \mathcal{M})$ of **mon**_{C*G*} is a homomorphism $f: V \to W$ of C*G*-modules such that for all $L \in \mathcal{L}$ there exists $M \in \mathcal{L}$ M with $f(L) ⊆ M$. In [4] a morphisms between monomial objects is defined in a different way, but this will not affect the results below. Two objects (V, \mathcal{L}) and (W, \mathcal{M}) are *isomorphic* if there exists a morphism $f : (V, \mathcal{L}) \to (W, \mathcal{M})$ such that the according CG-module homomorphism is an isomorphism. There is a direct sum and a tensor product on **mon**_{*CG*} defined by

$$
(V, \mathcal{L}) \oplus (W, \mathcal{M}) := (V \oplus W, \mathcal{L} \cup \mathcal{M})
$$

and

$$
(V,\mathcal{L})\otimes(W,\mathcal{M}):=\big(V\otimes_{\mathbb{C}}W,\{L\otimes_{\mathbb{C}}M;\ L\in\mathcal{L},\ M\in\mathcal{M}\}\big)
$$

for objects (V, \mathcal{L}) , $(W, \mathcal{M}) \in \text{mon}_{\mathbb{C}G}$. An object (V, \mathcal{L}) of $\text{mon}_{\mathbb{C}G}$ with $V \neq 0$ is *indecomposable* if $(V, \mathcal{L}) = (V_1, \mathcal{L}_1) \oplus (V_2, \mathcal{L}_2)$ with objects $(V_1, \mathcal{L}_1), (V_2, \mathcal{L}_2) \in \text{mon}_{\mathbb{C}G}$ implies $V_1 = 0$ or $V_2 = 0$.

We denote by $[V, \mathcal{L}]$ the isomorphism class of the object (V, \mathcal{L}) of **mon**_{C*G*}. The *ring of monomial representations D*(*G*) is the Z-module generated by the isomorphism classes of the objects of **mon**_{C*G*} relative to the relations

$$
[V,\mathcal{L}]+[W,\mathcal{M}]=[(V,\mathcal{L})\oplus(W,\mathcal{M})]
$$

and

$$
[V, \mathcal{L}] \cdot [W, \mathcal{M}] = [(V, \mathcal{L}) \otimes (W, \mathcal{M})],
$$

 (V, \mathcal{L}) , $(W, \mathcal{M}) \in \text{mon}_{\mathbb{C}G}$. Then $D(G)$ is a unitary ring with identity $[\mathbb{C}, \{\mathbb{C}\}]$ (we consider \mathbb{C} as the trivial \mathbb{C} *G*-module). Moreover $D(G)$ is a free \mathbb{Z} -module, and the isomorphism classes of the indecomposable objects of **mon**_{C*G*} form a \mathbb{Z} -basis of *D*(*G*) (cf. [4,9]).

Let $H \leqslant G$ and $\varphi \in \hat{H}$. The $\mathbb{C}G$ -module \mathbb{C}_{φ} is the $\mathbb{C}\text{-vectorspace}}$ $\mathbb C$ with the underlying $G\text{-action}$ defined by $g * c := \varphi(g) \cdot c$, $g \in G$, $c \in \mathbb{C}$. Moreover for $g \in G$ we define a linear character $g \varphi \in \widehat{gH}$ by

$$
\mathscr{E}\varphi(\mathscr{E}h):=\varphi(h),\quad h\in H.
$$

We can describe the indecomposable objects of **mon**_{\subset G} in the following way (cf. [4,9]):

Proposition 2.1.

- $p(\textbf{i})$ Let $H \leqslant G$ and $\varphi \in \hat{H}$. Then $(\text{ind}_H^G \mathbb{C}_{\varphi}, \{g \otimes \mathbb{C}_{\varphi} \colon g \in G\})$ is an indecomposable object in $\textbf{mon}_{\mathbb{C}G}$.
- (ii) Let H, $U \leqslant G$, $\varphi \in \hat{H}$ and $\psi \in \hat{U}$. The objects $(\text{ind}_H^G \mathbb{C}_{\varphi}, \{g \otimes \mathbb{C}_{\varphi}: g \in G\})$ and $(\text{ind}_U^G \mathbb{C}_{\psi}, \{g \otimes \mathbb{C}_{\psi}: g \in G\})$ $g \in G$ }*) are isomorphic if and only if there exists* $g \in G$ *with* $gH = U$ *and* $g\phi = \psi$ *.*
- p (iii) Every indecomposable object in $\bf{mon}_{\mathbb{C}G}$ is isomorphic to an object $(\rm{ind}_H^G\,\mathbb{C}_\varphi, \{g\otimes\mathbb{C}_\varphi\colon\, g\in G\})$ with $H \leqslant G$ and $\varphi \in \hat{H}$.

From now on we identify the object $(\text{ind}_{H}^{G} \mathbb{C}_{\varphi}, \{g \otimes \mathbb{C}_{\varphi}: g \in G\})$ with the *monomial pair* (H, φ) . We denote by

$$
\mathcal{M}(G) := \big\{ (H, \varphi) \colon H \leqslant G, \ \varphi \in \hat{H} \big\}
$$

the set of all monomial pairs of *G* and define by ${}^g(H,\varphi) := ({}^gH,{}^g\varphi)$ an action of *G* on $\mathcal{M}(G)$. We write $[H, \varphi]_G$ for the *G*-orbit of $(H, \varphi) \in \mathcal{M}(G)$ and we set

$$
\mathcal{M}(G)/G:=\bigl\{[H,\varphi]_G\colon(H,\varphi)\in\mathcal{M}(G)\bigr\}.
$$

Moreover for (H, φ) , $(U, \psi) \in \mathcal{M}(G)$ we write $(H, \varphi) \leq (U, \psi)$ if $H \leq U$ and $\psi_{|H} = \varphi$. Therefore we get a partial order on $\mathcal{M}(G)$. By

$$
N_G(H, \varphi) := \{ g \in G : {}^{g}(H, \varphi) = (H, \varphi) \}
$$

we denote the stabilizer of $(H, \varphi) \in \mathcal{M}(G)$ in *G*. In particular we get the inclusion

$$
H\leqslant N_G(H,\varphi)\leqslant N_G(H).
$$

By Proposition 2.1 we can identify the isomorphism classes of indecomposable objects with the elements of $\mathcal{M}(G)/G$. Thus the ring $D(G)$ is the free abelian group generated by the *G*-orbits $[H, \varphi]_G \in \mathcal{M}(G)/G$ together with the multiplication

$$
[H,\varphi]_G \cdot [U,\psi]_G = \sum_{HgU \in H \setminus G/U} \left[H \cap {}^gU, \varphi_{|H \cap {}^gU} \cdot {}^g\psi_{|H \cap {}^gU} \right]_G
$$

for $[H, \varphi]_G$, $[U, \psi]_G \in \mathcal{M}(G)/G$. In particular $D(G)$ is finitely generated.

For a commutative unitary ring R and $H \leqslant G$ we set

$$
D_R(H) := R \otimes_{\mathbb{Z}} D(H).
$$

Let $K \leq H \leq G$ and $g \in G$. The *conjugation map* $c_{g,H}$ is defined by

$$
c_{g,H}: D_R(H) \to D_R({}^gH),
$$

$$
[U,\varphi]_H \mapsto [{}^gU, {}^g\varphi]_{g_H},
$$

the *restriction map* res $_K^H$ is defined by

$$
\text{res}_{K}^{H}: D_{R}(H) \to D_{R}(K),
$$

\n
$$
[U, \varphi]_{H} \mapsto \sum_{KhU \in K\backslash H/U} [K \cap {}^{h}U, {}^{h}\varphi_{|K \cap {}^{h}U}]_{K}
$$

and the *induction map* ind $_K^H$ is defined by

$$
ind_K^H: D_R(K) \to D_R(H),
$$

$$
[U, \varphi]_K \mapsto [U, \varphi]_H.
$$

The conjugation and the restriction maps are *R*-algebra homomorphisms. The induction maps are morphisms of the additive groups. Together with these operations the functor *DR* becomes an *R*-Green functor on *G* (cf. [4]).

A *species* of $D(G)$ is a ring homomorphism $s : D(G) \to \mathbb{C}$. In the following we give a short survey on the construction of the species of *D(G)* according to [3].

Let $R(G)$ be the ordinary character ring of *G*. For $g \in G$ we define the ring homomorphism

$$
t_g: R(G) \to \mathbb{C},
$$

$$
\varphi \mapsto \varphi(g).
$$

For $H \leqslant G$ we define the ring homomorphism

$$
\pi_H: D(H) \to R(H/H'),
$$

[U, ψ]_H \mapsto $\begin{cases} \bar{\psi} & \text{if } U = H, \\ 0 & \text{otherwise,} \end{cases}$

 $\bar{\psi} \in \widehat{H/H'}$ is defined by $\bar{\psi}$ (hH') := ψ (h). We set

$$
\mathcal{D}(G):=\big\{\big(H,hH'\big)\colon\,H\leqslant G,\;h\in H\big\}
$$

and define an action of G on $\mathcal{D}(G)$ by ${}^g(H, hH') := ({}^gH, {}^gh^gH')$ for $g \in G$. We write $[H, hH']_G$ for the *G*-orbit of $(H, hH') \in \mathcal{D}(G)$ and we set

$$
\mathcal{D}(G)/G := \{ \big[H, hH' \big]_G : (H, hH') \in \mathcal{D}(G) \}.
$$

The stabilizer of $(H, hH') \in \mathcal{D}(G)$ in *G* is denoted by

$$
N_G(H, hH') := \{ g \in G : {}^{g}(H, hH') = (H, hH') \}.
$$

Moreover we obtain the inclusion

$$
H \leqslant HC_G(H) \leqslant N_G\big(H, hH'\big) \leqslant N_G(H).
$$

For every element $(H, hH') \in \mathcal{D}(G)$ we get a ring homomorphism

$$
s_{(H,hH')}^{D(G)} := t_{hH'} \circ \pi_H \circ \text{res}_H^G : D(G) \to D(H) \to R(H/H') \to \mathbb{C}.
$$

In particular the images of the elements $[U, \psi]_G \in \mathcal{M}(G)/G$ are given by

$$
s_{(H,hH')}^{D(G)}\big([U,\psi]_G\big) = \sum_{\substack{gU \in G/U\\ H \leqslant^g U}} \frac{g_{\psi}(h)}{h}.
$$

We get the set of all species of $D(G)$ by this construction. Moreover $s^{D(G)}_{(H,hH')} = s^{D(G)}_{(U,uU')}$ if and only if $[H, hH']_G = [U, uU']_G$. Thus there is a 1-1-correspondence between the species of $D(G)$ and the elements of $\mathcal{D}(G)/G$. Moreover for $H \leqslant G$, $(U, uU') \in \mathcal{D}(H)$ and $g \in G$ it holds

$$
s_{(g_1, g_1 g_1 g_1)}^{D(\mathcal{S} H)} \circ c_{g, H} = s_{(u, uU')}^{D(H)} \quad \text{and} \quad s_{(u, uU')}^{D(H)} \circ \text{res}_{H}^G = s_{(u, uU')}^{D(G)}.
$$

Let $\zeta \in \mathbb{C}$ be a primitive $|G|$ -th root of unity and $m := |\mathcal{D}(G)/G|$. The map

$$
s^{D(G)} := \prod_{[H, hH']_G \in \mathcal{D}(G)/G} s^{D(G)}_{(H, hH')} : D(G) \to \mathbb{Z}[\zeta]^m
$$

is a ring monomorphism. Thus we can identify the ring $D(G)$ with a subring of $\mathbb{Z}[\zeta]^{m}$. The image of $M(G)/G$ under the map $s^{D(G)}$ is called *species table* of $D(G)$.

If we extend *D*(*G*) with the coefficient ring $\mathbb{Q}(\zeta)$, we get a ring isomorphism $D_{\mathbb{Q}(\zeta)}(G) \cong \mathbb{Q}(\zeta)^m$. If we extend the species linearly to $D_{\mathbb{Q}(\zeta)}(G)$, the primitive idempotents of $D_{\mathbb{Q}(\zeta)}(G)$ are the elements $e^{D(G)}_{(H,hH')} \in D_{\mathbb{Q}(\zeta)}(G)$, $(H,hH') \in \mathcal{D}(G)$, determined by the property

$$
s_{(U,uU')}^{D(G)}(e_{(H,hH')}^{D(G)}) = \begin{cases} 1 & \text{if } [U,uU']_G = [H,hH']_G, \\ 0 & \text{otherwise.} \end{cases}
$$

An explicit formula for the primitive idempotents of $D_{\mathbb{Q}(\zeta)}(G)$ is given by

$$
e_{(H,hH')}^{D(G)} = \frac{|H'|}{|N_G(H,hH')||H|} \sum_{L \le H} |L|\mu(L,H) \sum_{\varphi \in \hat{H}} \varphi(h^{-1})[L,\varphi_{|L}]_G, \quad (H,hH') \in \mathcal{D}(G) \tag{1}
$$

(cf. [3]). The map $\mu : V(G) \times V(G) \to \mathbb{Z}$ is called *Möbius function* which is recursively defined by $\sum_{H \leq K \leq U} \mu(H, K) = 0$ for $H < U$, $\mu(H, H) = 1$ and $\mu(H, U) = 0$ for $H \nleq U$ $(H, U \in V(G))$ where $\overline{\mathcal{V}(G)}$ is the subgroup lattice of *G*.

Considering isomorphism problems, the following fact will be very useful. Let *G*˜ be another finite group. For an isomorphism $\alpha: D(G) \to D(\tilde{G})$ and $(H, hH') \in \mathcal{D}(G)$ there exists $(\tilde{H}, \tilde{h}\tilde{H}') \in \mathcal{D}(\tilde{H})$ with

$$
s_{(H,hH')}^{D(G)} = s_{(\tilde{H},\tilde{h}\tilde{H}')}^{D(\tilde{G})} \circ \alpha.
$$

Another important role plays the embedding of the Burnside ring into the ring of monomial representations. We will introduce the Burnside ring as a subring of *D(G)* because for further results it is not necessary to work with the theory of *G*-sets (cf. [3]).

The free abelian subgroup generated by the elements $[H, 1]_G \in \mathcal{M}(G)/G$, $H \leq G$, form a subring of $D(G)$, the *Burnside ring* $B(G)$ of *G*. The multiplication in $B(G)$ is given by

$$
[H,1]_G\cdot [U,1]_G=\sum_{HgU\in H\backslash G/U}\left[H\cap^gU,1\right]_G.
$$

For a commutative unitary ring R and $H \leqslant G$ we set

$$
B_R(H) := R \otimes_{\mathbb{Z}} B(H).
$$

Since the conjugation maps, restriction maps and induction maps on $D_R(H)$ yield corresponding maps on $B_R(H)$, the functor B_R becomes a *R*-Green functor on *G*.

We get the species of $B(G)$ by restricting the species of $D(G)$. Therefore, the species of $B(G)$ are given by

$$
s_H^{B(G)}: B(G) \to \mathbb{Z},
$$

$$
[U, 1]_G \mapsto \sum_{\substack{gU \in G/U \\ H \leq gU}} 1
$$

for $H \le G$. Moreover $s_H^{B(G)} = s_K^{B(G)}$ for $H, K \le G$ if and only if $H = {^g}K$ for some $g \in G$. The primitive idempotents of $B_{\mathbb{Q}}(G)$ are exactly the elements $e_H^{B(G)} \in B_{\mathbb{Q}}(G)$ $(H \leqslant G)$ with

$$
s_U^{B(G)}\big(e_H^{B(G)}\big) = \begin{cases} 1 & \text{if } U =_G H, \\ 0 & \text{else.} \end{cases}
$$

An explicit formula for the primitive idempotents $e_H^{B(G)}$ is given by

$$
e_H^{B(G)} = \frac{1}{|N_G(H)|} \sum_{U \le H} |U|\mu(U, H)[U, 1]_G
$$
 (2)

(cf. [10]).

3. The conductors of the primitive idempotents

In the following let *G* always be a finite group and *ζ* ∈ C be a |*G*|-th root of unity. In this section we determine the conductors of the primitive idempotents of $D_{\mathbb{Q}(\zeta)}(G)$. The *conductor* of a primitive idempotent $e \in D_{\mathbb{Q}(\zeta)}(G)$ is the minimal natural number $n_e \in \mathbb{N}$ with $n_e \cdot e \in D_{\mathbb{Z}(\zeta)}(G)$. First we state a result about restricted and induced primitive idempotents.

Lemma 3.1. *Let* $H \leq G$ and $h \in H$.

(i)
$$
\text{res}_{H}^{G}(e_{(H,hH')}^{D(G)}) = \sum_{\substack{[H,uH']_H \in \mathcal{D}(H)/H \\ [H,uH']_G = [H,hH']_G}} e_{(H,uH')}^{D(H)}
$$
.

(ii)
$$
ind_H^G(e_{(H,hH')}^{D(H)}) = (N_G(H,hH'):H)e_{(H,hH')}^{D(G)}
$$

(iii)
$$
ind_H^G(res_H^G(e_{(H,hH')}^{D(G)})) = (N_G(H):H)e_{(H,hH')}^{D(G)}
$$

Proof. (i) It holds

$$
s_{(K,kK')}^{D(H)}\left(\text{res}_{H}^{G}(e_{(H,hH')}^{D(G)})\right) = s_{(K,kK')}^{D(G)}\left(e_{(H,hH')}^{D(G)}\right) = 1
$$

for $(K, kK') \in \mathcal{D}(H)$ if and only if (K, kK') and (H, hH') are conjugate in *G*. (iii) Let $[K, \psi]_G \in \mathcal{M}(G)/G$. Then

$$
\mathrm{ind}_H^G\bigl(\mathrm{res}^G_H\bigl([K,\psi]_G\bigr)\bigr)=\sum_{HgK\in H\backslash G/K}\bigl[H\cap {}^gK, {}^g\psi_{|H\cap {}^gK}\bigr]_G=[H,1]_G[K,\psi]_G.
$$

Thus

$$
\text{ind}_{H}^{G} \left(\text{res}_{H}^{G} \left(e_{(H,hH')}^{D(G)} \right) \right) = [H, 1]_{G} e_{(H,hH')}^{D(G)} = s_{(H,hH')}^{D(G)} \left([H, 1]_{G} \right) e_{(H,hH')}^{D(G)} = \frac{|N_{G}(H)|}{|H|} e_{(H,hH')}^{D(G)}.
$$

(ii) Let $(H, vH') \in \mathcal{D}(G)$ and $g \in G$ with ${}^g(H, vH') = (H, hH')$. Since $s^{D(H)}_{(H, hH')} \circ c_{g,H} = s^{D(H)}_{(H, vH')}$, we get

$$
c_{g,H}\big(e_{(H,vH')}^{D(H)}\big)=e_{(H,hH')}^{D(H)},
$$

and since $\text{ind}_{H}^{G} = c_{g,G} \circ \text{ind}_{H}^{G} = \text{ind}_{H}^{G} \circ c_{g,H}$, we obtain

$$
\mathrm{ind}_{H}^{G}(e_{(H,\nu H')}^{D(H)}) = \mathrm{ind}_{H}^{G}(e_{(H,hH')}^{D(H)}).
$$

Thus

$$
\text{ind}_{H}^{G}(\text{res}_{H}^{G}(e_{(H,hH')}^{O(G)})) = \text{ind}_{H}^{G}\left(\sum_{\substack{[H,uH']_{H} \in \mathcal{D}(H)/H \ (H,uH']_{G} = [H,hH']_{G}}} e_{(H,uH')}^{D(H)}\right) = \frac{|N_{G}(H)|}{|N_{G}(H,hH')|} \text{ind}_{H}^{G}(e_{(H,hH')}^{O(H)}).
$$

Together with part (iii) we get $ind_H^G(e_{(H,hH')}^{D(H)}) = (N_G(H,hH'):H)e_{(H,hH')}^{D(G)}$

For using some important results of Boltje we have to introduce the ghost ring of the representation ring *D(G)* (cf. [5]). Let

$$
x = (x_H)_{H \leqslant G} \in \prod_{H \leqslant G} \mathbb{Z} \hat{H}
$$

with $x_H = \sum_{\varphi \in \hat{H}} z_{H,\varphi} \varphi$ ($z_{H,\varphi} \in \mathbb{Z}$, $H \leqslant G$, $\varphi \in \hat{H}$). For $H \leqslant G$ and $\varphi \in \hat{H}$ we define

$$
x(H,\varphi):=z_{H,\varphi}.
$$

Note that this is well defined since the set of linear characters of H is a basis of $\mathbb{Z}\hat{H}$. The subring

$$
\hat{D}(G) := \bigg(\prod_{H \leq G} \mathbb{Z}\hat{H}\bigg)^G := \bigg\{x \in \prod_{H \leq G} \mathbb{Z}\hat{H} \colon x(H, \varphi) = x\big(\mathcal{E}(H, \varphi)\big) \ \forall (H, \varphi) \in \mathcal{M}(G) \ \forall g \in G\bigg\}
$$

of $\prod_{H\leqslant G}\mathbb{Z}\hat{H}$ is called the *ghost ring* of $D(G)$. Identifying $R(H/H')$ with $\mathbb{Z}\hat{H}$ for $H\leqslant G$, we get a ring monomorphism

$$
\rho := (\pi_H \circ \operatorname{res}_H^G)_{H \leqslant G} : D(G) \to \hat{D}(G).
$$

Moreover we set

$$
\rho_H := \pi_H \circ \text{res}_H : D(G) \to \mathbb{Z} \hat{H}
$$

for $H \leq G$. Note that the image of a basis element $[U, \lambda]_G \in \mathcal{M}(G)/G$ under this map is given by

$$
\rho_H([U,\lambda]_G)=\sum_{\substack{gU\in G/U\\H\leqslant^gU}}{}^g\lambda_{|H}\in\mathbb{Z}\hat{H}.
$$

By linear extension we get an isomorphism $\rho : \mathbb{O} \otimes_{\mathbb{Z}} D(G) \to \mathbb{O} \otimes_{\mathbb{Z}} \hat{D}(G)$ (cf. [2]). We will use the following integrality criteria for elements of the ghost ring:

Proposition 3.2. Let $x \in \hat{D}(G)$. Then $x \in \rho(D(G))$ if and only if the congruence

$$
\sum_{(H,\varphi)\leq (I,\psi)\in \mathcal{M}(N_G(H,\varphi))}\mu(H,I)\cdot x(I,\psi)\equiv 0\quad \big(\mathrm{mod}\big(N_G(H,\varphi):H\big)\big)
$$

holds for all $(H, \varphi) \in \mathcal{M}(G)$ *.*

Proof. See [5], Cor. 2.8. \Box

We also make use of the following two lemmata:

Lemma 3.3. Let $H\leqslant G$ and $\hat{H}_0:=\{\varphi_{|H}\colon \varphi\in \hat{G}\}$. For $\psi\in \hat{H}_0$ we set $A_\psi:=\{\varphi\in \hat{G}\colon \varphi_{|H}=\psi\}$.

- (i) \hat{H}_0 is a subgroup of \hat{H} with $\hat{H}_0 \cong$ $HG'/G'.$ Moreover $|A_\psi| = (G : HG').$
- (ii) Let $g \in G$. Then $\sum_{\varphi \in A_{\psi}} \varphi(g) = \begin{cases} (G : HG') \psi(g) & \text{if } gG' \in HG'/G', \\ 0 & \text{else} \end{cases}$ 0 *else.*

Part (i) is a well known consequence of the theory of irreducible characters of abelian groups (cf. [13]) and part (ii) can be easily proved by the second orthogonality relation.

Lemma 3.4. Let $H \le G$ and m be the squarefree part of $(G : G'H)$. Then $(N_G(H) : H)$ divides $m \mu(H, G)$.

Proof. See [11], Thm. 4.5. \Box

We can now state the main result of this section.

Theorem 3.5. Let $(H, hH') \in \mathcal{D}(G)$. Then $(N_G(H, hH'): H')$ is the conductor of $e_{(H, hH')}^{D(G)}$.

Proof. We first prove that $m := (G : G')$ is the conductor of $e_{(G, gG')}^{D(G)}$ for $g \in G$. By the explicit formula for the primitive idempotents (1) we obtain

$$
e_{(G,gG')}^{D(G)} = \frac{|G'|}{|G|^2} \sum_{L \le G} |L|\mu(L, G) \sum_{\varphi \in \hat{G}} \varphi(g^{-1})[L, \varphi_{|L}]_G
$$

=
$$
\frac{|G'|}{|G|} \sum_{\varphi \in \hat{G}} \varphi(g^{-1})[G, \varphi]_G + \frac{|G'|}{|G|^2} \sum_{L < G} |L|\mu(L, G) \sum_{\varphi \in \hat{G}} \varphi(g^{-1})[L, \varphi_{|L}]_G.
$$

We conclude that the coefficient of $[G,1]_G$ in $e^{D(G)}_{(G,gG')}$ is m^{-1} . Therefore *m* divides the conductor of $e^{D(G)}_{(G, gG')}$ for all $g \in G$.

Let $f \in B_{\mathbb{Q}}(G)$ be the primitive idempotent with $s_G^{B(G)}(f) = 1$ and $s_H^{B(G)}(f) = 0$ for $H < G$. Let $C(G)$ be a system of representatives for the conjugacy classes of subgroups of *G*. Then $f =$ $\sum_{U \in \mathcal{C}(G)} a_U[U, 1]_G$ with uniquely determined coefficients $a_U \in \mathbb{Q}$. Let $1 = \lambda_1, ..., \lambda_m$ be the linear characters of G. For $i = 1, ..., m$ we define

$$
x_i := \sum_{U \in \mathcal{C}(G)} a_U[U, \lambda_{i|U}]_G \in D_{\mathbb{Q}}(G).
$$

Note that $x_1 = f$. We now show that $\rho_H(x_i) = 0$ in the case $H < G$ and $\rho_G(x_i) = \lambda_i$ for $i = 1, \ldots, m$. It holds

$$
0 = s_H^{B(G)}(x_1) = (t_{hH'} \circ \pi_H \circ \text{res}_H^G)(x_1)
$$

for $H < G$ and all $h \in H$. Therefore

$$
\rho_H(x_1) = (\pi_H \circ \text{res}_H^G)(x_1) = 0.
$$

Moreover ${}^{g} \lambda_i = \lambda_i$ for $g \in G$ and $i = 1, \ldots, m$. Thus we get

$$
\rho_H([U, \lambda_{i|U}]_G) = \sum_{\substack{gU \in G/U \\ H \leqslant^g U}} {}^g \lambda_{i|H} = \sum_{\substack{gU \in G/U \\ H \leqslant^g U}} \lambda_{i|H} = \lambda_{i|H} \rho_H([U, 1]_G)
$$

for $H, U \leqslant G$ and $i = 1, \ldots, m$ and we obtain

$$
\rho_H(x_i) = \sum_{U \in \mathcal{C}(G)} a_U \rho_H([U, \lambda_{i|U}]_G) = \lambda_{i|H} \sum_{U \in \mathcal{C}(G)} a_U \rho_H([U, 1]_G) = \lambda_{i|H} \rho_H(x_1) = 0
$$

for $H < G$ and $i = 1, \ldots, m$. It holds

$$
\rho_G(x_i) = \lambda_i \sum_{U \in \mathcal{C}(G)} a_U \rho_G \big([U, 1]_G \big) = \lambda_i a_G
$$

for $i = 1, \ldots, m$, and by the explicit formula (2) for the primitive idempotents of $B_{\mathbb{Q}}(G)$ we get $a_G = 1$. Thus $\rho_G(x_i) = \lambda_i$ and

$$
s_{(H, hH')}^{D(G)}(x_i) = \begin{cases} \lambda_i(h) & \text{if } H = G, \\ 0 & \text{else.} \end{cases}
$$

Moreover $\rho(x_i) \in \hat{D}(G)$ for $i = 1, \ldots, m$. By the second orthogonality relation we obtain

$$
s_{(H,hH')}^{D(G)}\left(\frac{1}{m}\sum_{i=1}^{m}\lambda_i(g^{-1})x_i\right) = \begin{cases} 1 & \text{if } (H,hH') = (G,gG'),\\ 0 & \text{else} \end{cases}
$$

and therefore

$$
e_{(G,gG')}^{D(G)} = \frac{1}{m} \sum_{i=1}^{m} \lambda_i (g^{-1}) x_i
$$

for $g \in G$.

We now show that the conductor of $e^{D(G)}_{(G,1G')}$ is equal to m. For $i=1,\ldots,m$ we set $y_i := \rho(x_i) \in$ $\hat{D}(G)$. Then

$$
y_i(U, \lambda_{j|U}) = \begin{cases} 1 & \text{if } (U, \lambda_{j|U}) = (G, \lambda_i), \\ 0 & \text{else} \end{cases}
$$
 (3)

for $U \le G$ and $i, j \in \{1, \ldots, m\}$. By Proposition 3.2, $\sum_{i=1}^{m} y_i \in \rho(D(G))$ holds if and only if the congruence

$$
\sum_{(H,\varphi)\leq (U,\psi)\in \mathcal{M}(N_G(H,\varphi))}\mu(H,U)\sum_{i=1}^m y_i(U,\psi)\equiv 0\pmod{(N_G(H,\varphi):H)}
$$
(4)

holds for all $(H, \varphi) \in \mathcal{M}(G)$. Since $\rho_U(x_i) = 0$ for $U < G$ and $i = 1, \ldots, m$ we get

$$
\sum_{i=1}^{m} y_i(U, \psi) = 0
$$

for $U < G$. In the case $(H, \varphi) \in \mathcal{M}(G)$ with $(H, \varphi) \nleq (G, \lambda_i)$ for $i = 1, ..., m$ and the case $H \ntrianglelefteq G$ congruence (4) is fulfilled. Let $(H, \varphi) \in \mathcal{M}(G)$ with $H \leqslant G$ and $(H, \varphi) \leqslant (G, \lambda)$ for some $\lambda \in \hat{G}$. In this case we get exactly $k := (G : HG')$ extensions of φ on G by Lemma 3.3(i). Let $\lambda_{i_1}, \ldots, \lambda_{i_k}$ $(i_1, \ldots, i_k \in$ $\{1, \ldots, m\}$ be these extensions. By equality (3) we obtain

$$
\sum_{(H,\varphi)\leq (U,\psi)\in \mathcal{M}(N_G(H,\varphi))}\mu(H,U)\sum_{i=1}^my_i(U,\psi)=\mu(H,G)\sum_{j=1}^ky_{i_j}(G,\lambda_{i_j})\\=\mu(H,G)\bigl(G:HG'\bigr).
$$

By Lemma 3.4 $(N_G(H, \varphi): H)$ divides $(G: HG')\mu(H, G)$. Thus congruence (4) holds for all $(H, \varphi) \in$ M*(G)*. Moreover

$$
\rho((G:G')e_{(G,1G')}^{D(G)}) = \rho\left(\sum_{i=1}^m x_i\right) = \sum_{i=1}^m y_i \in \rho(D(G)).
$$

Since ρ is injective we obtain $(G:G')e^{D(G)}_{(G,1G')} \in D(G)$. Therefore $(G:G')$ is the conductor of $e^{D(G)}_{(G,1G')}$.

For $U \le G$ let $\tau_{U,1},\ldots,\tau_{U,s_U}$ $(s_U=(UG':G'))$ be the distinct restrictions $\lambda_{1|U},\ldots,\lambda_{m|U}$. For $j=$ 1,..., *s_U* we set $M_{\tau_{U,i}} := \{ \varphi \in \hat{G} : \varphi_{|U} = \tau_{U,j} \}$. By Lemma 3.3(ii) we get

$$
\sum_{i=1}^{m} \lambda_i(g^{-1})[U, \lambda_{i|U}]_G = \sum_{j=1}^{s_U} [U, \tau_{U,j}]_G \sum_{\varphi \in M_{\tau_{U,j}}} \varphi(g^{-1})
$$

=
$$
\begin{cases} (G:UG') \sum_{j=1}^{s_U} \tau_{U,j}(g^{-1})[U, \tau_{U,j}]_G & \text{if } gG' \in UG'/G', \\ 0 & \text{else} \end{cases}
$$

for $U \leqslant G$ and $g \in G$. Therefore

$$
\sum_{i=1}^{m} \lambda_i(g^{-1})x_i = \sum_{U \in C(G)} a_U \sum_{i=1}^{m} \lambda_i(g^{-1}) [U, \lambda_{i|U}]_G
$$

$$
= \sum_{\substack{U \in C(G) \\ gG' \in UG'/G'}} a_U(G:UG') \sum_{j=1}^{s_U} \tau_{U,j}(g^{-1}) [U, \tau_{U,j}]_G
$$

for $g \in G$. Note that this equation does not depend on the choice of $C(G)$. Since

$$
me_{(G,1G')}^{D(G)} = \sum_{i=1}^{m} x_i = \sum_{U \in C(G)} a_U(G : UG') \sum_{j=1}^{s_U} [U, \tau_{U,j}]_G \in D(G)
$$

and $[U, \tau_{U,r}]_G \neq [U, \tau_{U,t}]_G$ for $r, t \in \{1, ..., s_U\}$ with $r \neq t$ we get $a_U(G : UG') \in \mathbb{Z}$ for $U \in \mathcal{C}(G)$. Thus

$$
me_{(G, gG')}^{D(G)} = \sum_{i=1}^{m} \lambda_i (g^{-1}) x_i \in D_{\mathbb{Z}[\zeta]}(G).
$$

Therefore $m = (G : G')$ is the conductor of $e^{D(G)}_{(G, gG')}, g \in G$.

Let $(H, hH') \in \mathcal{D}(G)$. By Lemma 3.1(ii) we obtain

$$
(N_G(H, hH'): H')e_{(H, hH')}^{D(G)} = ind_H^G((H:H')e_{(H, hH')}^{D(H)}) \in D_{\mathbb{Z}[\zeta]}(G).
$$

Moreover the coefficient of $[H,1]_G$ in $e^{D(G)}_{(H,hH')}$ is equal to $|H'|/|N_G(H,hH')|$. Therefore $(N_G(H, hH'): H')$ is the conductor of $e_{(H, hH')}^{D(G)}$. \Box

We can now state the first consequences.

Theorem 3.6. *The group order* $|G|$ *is uniquely determined by D* (G) *.*

Proof. Let $W \subseteq \mathbb{C}$ be the set of all roots of unity and let \mathcal{O} be the ring of the algebraic integers of $\mathbb{Q}(W)$. Every $e^{D(G)}_{(H,hH')}$ is a primitive idempotent of $D_{\mathbb{Q}(W)}(G)$ for $(H,hH') \in \mathcal{D}(G)$ and $(N_G(H, hH'): H')$ is the minimal natural number $n \in \mathbb{N}$ with $ne_{(H, hH')}^{D(G)} \in D_{\mathcal{O}}(G)$. Moreover $|G|$ is the conductor of $e_{(1,1)}^{D(G)}$ and therefore

$$
|G| = \min\bigl\{n \in \mathbb{N}: \, ne_{(H,hH')}^{D(G)} \in D_{\mathcal{O}}(G) \text{ for all } (H,hH') \in \mathcal{D}(G)\bigr\}.
$$

Thus the theorem is proved. \Box

The following proposition is an immediate consequence of Theorem 3.5.

Proposition 3.7. Let $(H, hH') \in \mathcal{D}(G)$. Then the conductor of $e^{D(G)}_{(H, hH')} \in D_{\mathbb{Q}(\zeta)}(G)$ is equal to $|G|$ if and only *if H is a normal abelian subgroup and* h *∈* $Z(G)$ *<i>. Moreover G is abelian if and only if the conductors of the primitive idempotents of* $D_{\mathbb{Q}(\zeta)}(G)$ *are equal to* $|G|$ *.*

Therefore the ring *D(G)* detects commutativity of a finite group. We now state an interesting proposition concerning the orders of elements of the center of *G*.

Proposition 3.8. Let G and \tilde{G} be finite groups and $\alpha : D(G) \to D(\tilde{G})$ be an isomorphism. Let $h \in Z(G)$, $H:=\langle h\rangle$, $n:=|H|$ and $\alpha(e_{(H,h)}^{D(G)})=e_{(\tilde{H},\tilde{h}\tilde{H}')}^{D(\tilde{G})}$ with $(\tilde{H},\tilde{h}\tilde{H}')\in\mathcal{D}(\tilde{G})$. Then \tilde{H} is a normal abelian subgroup $of \tilde{G}, \tilde{h} \in Z(\tilde{G}) \text{ and } |\langle \tilde{h} \rangle| \in \{n, 2n, \frac{n}{2}\}.$

Proof. The subgroup *H* is abelian and normal since $h \in Z(G)$. Moreover the conductor of $e^{D(G)}_{(H,h)}$ is equal to |*G*|. We set

$$
M := \left\{ x \in D_{\mathbb{Q}}(G) \colon s_{(H,h)}^{D(G)}(x) \in \mathbb{C} \text{ is root of unity} \right\}.
$$

It holds $s_{(H,h)}^{D(G)}(x) \in \mathbb{Q}(\zeta)$ for all $x \in M$, and the set {ord(ξ): $s_{(H,h)}^{D(G)}(x) = \xi$, $x \in M$ } is bounded since $\pm \zeta^{\dagger}$ $(i \in \mathbb{N})$ are the only roots of unity in $\mathbb{O}(\zeta)$. We set

$$
m := \max\{\text{ord}(\xi): s_{(H,h)}^{D(G)}(x) = \xi, x \in M\}.
$$

Let $\lambda \in \hat{H}$ with $\lambda(h) = \omega$ where $\omega \in \mathbb{C}$ is a primitive *n*-th root of unity. Then

$$
s_{(H,h)}^{D(G)}\big([H,\lambda]_G\big) = \sum_{gH \in G/H} s_{\lambda}(h) = (G:H)\omega.
$$

Thus *y* := *(*−1*) ⁿ(^G* : *^H)*−¹[*H,λ*]*^G* ∈ *^M*. We obtain

$$
\operatorname{ord}(s_{(H,h)}^{D(G)}(y)) = \begin{cases} 2n & \text{if } n \text{ odd,} \\ n & \text{if } n \text{ even.} \end{cases}
$$
(5)

We now show the equality $m = \text{ord}(s_{(H,h)}^{D(G)}(y))$. Let

$$
x:=\sum_{[U,\psi]_G\in\mathcal{M}(G)/G}a_{[U,\psi]}[U,\psi]_G\in M
$$

with $a_{[U,\psi]} \in \mathbb{Q}$ for $[U,\psi]_G \in \mathcal{M}(G)/G$. In case $U \leqslant G$ with $H \nleqslant_G U$ we get $s_{(H,h)}^{D(G)}([U,\psi]_G) = 0$. In case $[U, \psi]_G \in \mathcal{M}(G)/G$ with $H \leqslant_G U$ we get $H \leqslant U$ and $\psi(h) \in \mathbb{Q}(\omega)$. Thus

$$
s_{(H,h)}^{D(G)}(x) = \sum_{[U,\psi]_G \in \mathcal{M}(G)/G} a_{[U,\psi]} s_{(H,h)}^{D(G)}([U,\psi]_G) = \sum_{\substack{[U,\psi]_G \in \mathcal{M}(G)/G \\ H \le U}} a_{[U,\psi]} \sum_{\substack{gU \in G/U}} \psi(h) \in \mathbb{Q}(\omega).
$$

Since ω^i ($i \in \mathbb{N}$) are the only roots of unity in $\mathbb{Q}(\omega)$ we get $m \leqslant 2n$ in case n is odd and $m \leqslant n$ in case *n* is even. Together with Eq. (5) we obtain

$$
m = \begin{cases} 2n & \text{if } n \text{ odd,} \\ n & \text{if } n \text{ even.} \end{cases}
$$

By Proposition 3.7, \tilde{H} is abelian and normal and $\tilde{h} \in Z(\tilde{G})$ since the conductor of $e^{D(\tilde{G})}_{(\tilde{H},\tilde{h})}$ is equal to $|G|=|\tilde{G}|$. We set

$$
\tilde{M} := \left\{ \tilde{x} \in D_{\mathbb{Q}}(\tilde{G}) : s^{D(\tilde{G})}_{(\tilde{H}, \tilde{h})}(\tilde{x}) \in \mathbb{C} \text{ is root of unity} \right\}
$$

and

$$
\tilde{m} := \max\big\{\text{ord}(\xi)\colon\, s_{(\tilde{H},\tilde{h})}^{D(\tilde{G})}(\tilde{x}) = \xi,\,\,\tilde{x} \in \tilde{M}\big\}.
$$

Let $\tilde{n} := |\langle \tilde{h} \rangle|$ and $\tilde{\omega} \in \mathbb{C}$ a primitive \tilde{n} -th root of unity. Since \tilde{H} is abelian there exists a linear character $\tilde{\lambda}$ of \tilde{H} with $\tilde{\lambda}(\tilde{h}) = \tilde{\omega}$. Analogous to the above descriptions we set $\tilde{y} := (-1)^{\tilde{n}} (\tilde{G} : \tilde{H})^{-1} [\tilde{H}, \tilde{\lambda}]_{\tilde{G}} \in \tilde{M}$ and we obtain

$$
\operatorname{ord}(s_{(\tilde{H},\tilde{h})}^{D(\tilde{G})}(\tilde{y})) = \begin{cases} 2\tilde{n} & \text{if } \tilde{n} \text{ odd,} \\ \tilde{n} & \text{if } \tilde{n} \text{ even.} \end{cases}
$$

With the same argumentation as above we get

$$
\tilde{m} = \begin{cases} 2\tilde{n} & \text{if } \tilde{n} \text{ odd,} \\ \tilde{n} & \text{if } \tilde{n} \text{ even.} \end{cases}
$$

It holds $\alpha(M) = \tilde{M}$ since $s_{(\tilde{H},\tilde{h})}^{D(\tilde{G})} \circ \alpha = s_{(H,h)}^{D(G)}$. Thus $m = \tilde{m}$ and $n = \tilde{n}$, $n = 2\tilde{n}$ and $2n = \tilde{n}$ are the only cases that could arise. Therefore $\tilde{n} \in \{n, 2n, \frac{n}{2}\}$. \Box

A direct consequence of this proposition is the following theorem:

Theorem 3.9. Let G and \tilde{G} be finite groups with $D(G) \cong D(\tilde{G})$. If $2 \neq p$ is a prime number which divides $|Z(G)|$ then p divides $|Z(\tilde{G})|$. If there exists an element of order 4 in $Z(G)$ then 2 divides $|Z(\tilde{G})|$.

4. The group of torsion units of $D(G)$

We develop some results on the group of torsion units of *D(G)* following results for the Burnside ring in [15]. For a commutative unitary ring *R* let $U_T(R)$ be the group of torsion units of *R*.

Lemma 4.1. *Let R be a commutative unitary ring and let A and B be additive subgroups of R with the following properties*:

$$
R = A \oplus B, \qquad A^2 \subseteq A, \qquad B^2 \subseteq B, \qquad AB \subseteq A, \qquad 1 \in B.
$$

Therefore A is an ideal in R and B is a unitary subring of R. Moreover we require the existence of a natural number $n \in \mathbb{N}$ *with* $u^n = 1$ *for all* $u \in U_T(R)$ *. Then:*

- (i) *Every torsion unit u* \in *U_T*(*R*) *is of the form u* = *b*(1 + *a*) *with uniquely determined elements b* \in *U_T*(*B*) and $a \in \tilde{A} := \{a \in A: \sum_{k=1}^{n} {n \choose k} a^{k} = 0\}$. Moreover every element $b(1 + a)$ with $b \in U_T(R)$ and $a \in \tilde{A}$ is a *torsion unit of R.*
- (ii) *It is* $|U_T(R)| = |U_T(B)| |\tilde{A}|$ *in case* $U_T(R)$ *is finite.*

Proof. \tilde{A} is not empty since $0 \in \tilde{A}$. Let $b \in U_T(B)$ and $a \in \tilde{A}$. Then

$$
(b(1+a))^{n} = (1+a)^{n} = \sum_{k=0}^{n} {n \choose k} a^{k} = 1.
$$

Thus $b(1 + a) \in U_T(R)$.

Let $u \in U_T(R)$. Then there exist uniquely determined elements $a \in A$ and $b \in B$ with $u = a + b$. Therefore

$$
1 = u^{n} = (a + b)^{n} = \sum_{k=0}^{n-1} {n \choose k} a^{n-k} b^{k} + b^{n}.
$$

Note that $\sum_{k=0}^{n-1} {n \choose k} a^{n-k} b^k \in A$ and $b^n - 1 \in B$. We obtain $b^n - 1 = 0$ since $R = A \oplus B$. Thus $b \in U_T(B)$. Let *c* := ab^{n-1} ∈ *A*. Then *b*(1 + *c*) = *b* + *a* = *u*, and since

$$
\sum_{k=1}^{n} {n \choose k} c^{k} = \sum_{k=1}^{n} {n \choose k} (ab^{n-1})^{k} = \sum_{k=1}^{n} {n \choose k} a^{k} b^{n-k} = (a+b)^{n} - b^{n} = 1 - b^{n} = 0
$$

we get $c \in \tilde{A}$.

Let $b_1, b_2 \in U_T(B)$ and $c_1, c_2 \in \tilde{A}$ with $b_1(1+c_1) = b_2(1+c_2)$. Then $b_1 - b_2 + b_1c_1 - b_2c_2 = 0$, and since $b_1, b_2 \in B$, $b_1c_1, b_2c_2 \in A$ and $R = A \oplus B$ it follows that $b_1 = b_2$ and $c_1 = c_2$ and the proof of part (i) is complete. Part (ii) is a direct consequence of part (i). \Box

A partially ordered set *(I,*-*)* is called *rigid* if

- (i) *I* contains a greatest element *e* and a smallest element 0.
- (ii) Every subset $M_{i,j} := \{k \in I:~k \leqslant i, k \leqslant j\},~i,j \in I,~contains~a~greatest~element~m(i,j).~(Therefore,~i,j) \in I\}$ every two elements *i*, $i \in I$ have an infimum in *I*.)

Proposition 4.2. *Let R be a commutative unitary ring and (I,*-*) be a finite, partially ordered, rigid set. We assume the existence of a family* ${R(i): i \in I}$ *of additive subgroups of R with the following properties:*

- (1) $R = \bigoplus_{i \in I} R(i)$ (direct sum of additive groups),
- (2) $R(e) = \mathbb{Z}H$ with a finite subgroup $H \le U_T(R)$,
- $R(i) R(j) \subseteq R(m(i, j))$ for all $i, j \in I$.

Furthermore there exists n $\in \mathbb{N}$ *with* $u^n = 1$ *for all* $u \in U_T(R)$ *. For* $i \in I \setminus \{e\}$ *we set*

$$
R_i := \left\{ a \in R(i) \colon \sum_{k=1}^n \binom{n}{k} a^k = 0 \right\}.
$$

Then:

(i) *Every torsion unit* $u \in U_T(R)$ *<i>is of the form*

$$
u = g \prod_{i \in I \setminus \{e\}} (1 + a_i)
$$

with uniquely determined elements a_i ∈ R_i *and* g ∈ $±$ *H. Moreover every element of this form is a torsion unit in R.*

(ii) *It is* $|U_T(R)| = 2|H| \prod_{i \in I \setminus \{e\}} |R_i|$ *in case* $U_T(R)$ *is finite.*

Proof. We show the first part of (i) by induction on |*I*|. In case $|I| = 1$ we get $R = R(e) = \mathbb{Z}H$. Since *H* is an abelian group, $U_T(\mathbb{Z}H) = \pm H$ (cf. [12]).

Let $|I| = 2$. Then $R = R(0) \oplus R(e)$. Since $m(i, i) = i$ and $m(i, 0) = 0$ for $i \in I$ we obtain

 $R(0)R(0) \subseteq R(0)$, $R(e)R(e) \subseteq R(e)$, and $R(0)R(e) \subseteq R(0)$.

Moreover $1 \in R(e)$. By Lemma 4.1 (with $A := R(0)$ and $B := R(e)$) every torsion unit $u \in U_T(R)$ is of the form $u = g(1 + a)$ with uniquely determined elements $a \in R_0$ and $g \in U_T(R(e)) = U_T(ZH) = \pm H$. Moreover every element $u = g(1 + a)$ with $g \in \pm H$ and $a \in R_0$ is a torsion unit of *R* by Lemma 4.1.

Let $|I|$ ≥ 3 and *k* be a maximal element of $\{i \in I: i < e\}$. We set

$$
J := I \setminus \{k\}, \qquad A := \bigoplus_{j \in J \setminus \{e\}} R(j) \quad \text{and} \quad B := R(e) \oplus R(k).
$$

Then

 $R = A \oplus B$, $A^2 \subset A$, $B^2 \subset B$, $AB \subset A$ and $1 \in R(e) \subset B$.

Let $u \in U_T(R)$. By Lemma 4.1 we can write $u = b(1 + a)$ with uniquely determined $b \in U_T(B)$ *U*_{*T*} (*R*(*e*) ⊕ *R*(*k*)) and *a* ∈ \tilde{A} := {*a* ∈ *A*: $\sum_{k=1}^{n} {n \choose k} a^k = 0$ }. Since

$$
R(e)^2 \subseteq R(e)
$$
, $R(k)^2 \subseteq R(k)$, $R(e)R(k) \subseteq R(k)$ and $1 \in R(e)$

we can use Lemma 4.1 for the unitary subring $B = R(e) \oplus R(k)$. Thus *b* is of the form $b = g(1 + a_k)$ with uniquely determined elements $g \in U_T(R(e)) = \pm H$ and $a_k \in R_k$. Therefore $u = g(1 + a_k)(1 + a)$.

The ring $\bigoplus_{j\in J} R(j)$ is commutative and unitary and *J* is a finite, partial ordered, rigid set. Therefore the conditions of the propositions are fulfilled and we can use induction. Since

$$
(1+a)^n = \sum_{k=0}^n \binom{n}{k} a^k = 1,
$$

it holds $1+a\in U_T(\bigoplus_{j\in J}R(j))$, and by induction follows that $1+a=h\prod_{j\in J\setminus\{e\}}(1+a_j)$ with uniquely determined *h* ∈ $\pm H$ and *a*_{*j*} ∈ *R*_{*j*}. Therefore *u* = *gh* $\prod_{i \in I \setminus \{e\}} (1 + a_j)$.

Let $u = g' \prod_{i \in I \setminus \{e\}} (1 + a'_i)$ with $g' \in \pm H$ and $a'_i \in R_i$. Then

$$
1 = gh(g')^{-1} \prod_{i \in I \setminus \{e\}} (1 + a_i) (1 + a'_i)^{-1}.
$$

Since $(1 + a'_i) \in U_T(R)$ there exists $s_i \in \mathbb{N}$ with $(1 + a'_i)^{s_i} = (1 + a'_i)^{-1}$ for $i \in I \setminus \{e\}$. Since $R(i)^2 \subseteq R(i)$ there exists $c_i \in R(i)$ with $(1 + a_i)(1 + a'_i)^{-1} = (1 + a_i)(1 + a'_i)^{s_i} = 1 + c_i$ for $i \in I \setminus \{e\}$. Therefore

$$
1 = gh(g')^{-1} \prod_{i \in I \setminus \{e\}} (1 + c_i).
$$
 (6)

Since $R(e)R(i) \subseteq R(i)$ for $i \in I$ we get $1 = gh(g')^{-1} + r_1$ with $r_1 \notin R(e)$ by expanding Eq. (6). The decomposition $R = \bigoplus_{i \in I} R(i)$ implies $gh(g')^{-1} = 1$ and therefore $gh = g'$. Assume $c_i \neq 0$ for some *i* ∈ *I*\{*e*}. We choose *i* ∈ *I*\{*e*} maximal with the property $c_i \neq 0$. In case $j \in I\setminus\{e, i\}$ with $c_j \neq 0$ we get $m(i, j) \neq i$ by the maximality of *i*. Thus $c_i c_j \notin R(i)$. By expanding Eq. (6) we get $1 = 1 + c_i + r_2$ with $r_2 \notin R(i)$ The decomposition $R = \bigoplus_{i \in I} R(i)$ implies $c_i = 0$ contradicting our assumption. Therefore $c_i = 0$ for all $i \in I \setminus \{e\}$. Thus $1 + a_i = 1 + a'_i$ for all $i \in I \setminus \{e\}$.

Conversely $g\prod_{i\in I\setminus\{e\}}(1+a_i)\in U_T(R)$ since $g\in U_T(R)$ for $g\in \pm H$ and $1+a_i\in U_T(R)$ for $a_i\in R_i$. Thus assertion (i) is proved.

Part (ii) follows immediately from part (i). \Box

Let *G* be a finite group and $\mathcal{N}(G)$ be the set of normal subgroups of *G*. We say that a subset $S \subseteq \mathcal{N}(G)$ has property (*) in cases

1. $1, G \in S$,

2. *M*, $N \in S$ implies $MN \in S$ and $M \cap N \in S$.

Let $S \subseteq \mathcal{N}(G)$ with property (*). For $N \in S$ let $S(N)$ be the set of all elements $[K, \psi]_G \in \mathcal{M}(G)/G$ with the following properties:

 $1. N \leqslant K$, 2. $N \leq M \leq K$ with $M \in S$ implies $N = M$.

Remark 4.3. We should remark the following facts: For a nonempty subset $S \subseteq \mathcal{N}(G)$ we get $S(N) \neq \emptyset$ since $[N, 1]_G \in S(N)$ for $N \in S$. The set $\{S(N): N \in S\}$ is a partially ordered rigid set with $S(L) \leq S(M)$ in case $L \le M$. Moreover $S(G)$ is the greatest and $S(1)$ is the smallest element of $\{S(N): N \in S\}$. The infimum of two elements $S(L)$, $S(N) \in \{S(N): N \in S\}$ is given by $S(L \cap N)$. The group $(S(G), \cdot)$ is a subgroup of $U_T(D(G))$ with $S(G) \cong \hat{G}$. We should also remark that $[K, \psi]_G \in S(N)$ implies $N \leqslant^g K$ for all $g \in G$. Thus the above definition of $S(N)$ does not depend on the choice of the representative subgroup *K*.

Let $T \subseteq \mathcal{M}(G)/G$. The additive subgroup of $D(G)$ which is generated by the elements $[H, \varphi]_G \in T$ will be denoted by $D(G)_T$. We set $D(G)_T = \{0\}$ in case $T = \emptyset$.

Lemma 4.4. *Let* $S \subseteq \mathcal{N}(G)$ *with property* (*). *Then*:

- (i) $D(G) = ∃_{N ∈ S} D(G)_{S(N)}$ (direct sum of additive subgroups),
- (ii) $D(G)_{S(M)} D(G)_{S(N)} \subseteq D(G)_{S(M \cap N)}$ for $M, N \in S$,
- (iii) $D(G)_{S(G)} = \mathbb{Z}S(G) \cong \mathbb{Z}\hat{G}$.

Proof. Let $[K, \psi]_G \in S(M) \cap S(N)$ with $M, N \in S$. Then $M \leqslant MN \leqslant K$ and $N \leqslant N M \leqslant K$. Since $MN \in S$ we get $M = MN = N$. Thus $S(M) \cap S(N) = \emptyset$ for $M, N \in S$ with $M \neq N$.

Let $[K, \psi]_G \in \mathcal{M}(G)/G$ and set $X_K := \{N \in S: N \leq K\}$. It is $X_K \neq \emptyset$ since $1 \in S$. Let $N_0 := \prod_{N \in X_K} N$. Since *S* has property (*) we get $N_0 \in S$ and therefore $N_0 \in X_K$. Thus $[K, \psi]_G \in S(N_0)$ and we get

$$
\mathcal{M}(G)/G = \biguplus_{N \in S} S(N).
$$

Part (i) follows immediately.

Let $[H, \psi]_G \in S(M)$ and $[K, \psi]_G \in S(N)$ with $M, N \in S$. Since

$$
[H,\varphi]_G[K,\psi]_G = \sum_{HgK \in H\backslash G/K} [H \cap {}^gK, \varphi \cdot {}^g\psi]_G
$$

we have to show $[H \cap {}^gK, \varphi \cdot {}^g\psi]_G \in S(M \cap N)$ for all $g \in G$. It holds $M \leqslant H$ and $N \leqslant {}^gK$ for all $g \in G$. $\text{Therefore } M \cap N \leqslant H \cap {}^g K \text{ for all } g \in G.$ Let $M \cap N \leqslant L \leqslant H \cap {}^g K \text{ for } L \in S \text{ and } g \in G.$ Then

$$
M \leqslant ML \leqslant M(H \cap {}^{g}K) \leqslant H
$$

and

$$
N\leqslant NL\leqslant N\big(H^g\cap K\big)\leqslant K.
$$

Since $[H, \varphi]_G \in S(M)$ and $[K, \psi]_G \in S(N)$ we get $M = ML$ and $N = NL$. Thus $L \leq M \cap N$, and this implies $L = M \cap N$. Therefore $[H \cap {}^g K, \tau]_G \in S(M \cap N)$ for all $g \in G$ and all linear characters τ of $H \cap {}^{g}K$ and part (ii) is proved.

Part (iii) is a direct consequence of *S*(*G*) ≅ \hat{G} and the definition of *D*(*G*)*s*_{(*G*}). □

Remark 4.5. Let $\zeta \in \mathbb{C}$ be a primitive $|G|$ -th root of unity. Every torsion unit $u \in U_T(D(G))$ is of the form

$$
u=\sum_{[H,hH']_G\in \mathcal{D}(G)/G}u_{[H,hH']}e_{(H,hH')}^{D(G)}
$$

with $u_{[H,hH']} \in \{\pm \zeta^i : i \in \mathbb{N}\}$ for all $[H,hH]_G \in \mathcal{D}(G)/G$. Thus $U_T(D(G))$ is a finite group. Moreover the exponent $exp(U_T(D(G)))$ of $U_T(D(G))$ divides 2|*G*|.

We can now state the main theorem of this section which is a direct consequence of Proposition 4.2, Lemma 4.4 and Remark 4.5.

Theorem 4.6. Let G be a finite group and S be a subset of $\mathcal{N}(G)$ with property $(*)$. Let $n \in \mathbb{N}$ be a multiple of $\exp(U_T(D(G)))$ *. For H* \in *S* we set

$$
H^* := \left\{ a \in D(G)_{S(H)} \colon \sum_{k=1}^n \binom{n}{k} a^k = 0 \right\}.
$$

Then every torsion unit $u \in U_T(D(G))$ *<i>is of the form*

$$
u = \pm [G, \psi]_G \prod_{H \in S \setminus \{G\}} (1 + u_H)
$$

with uniquely determined $u_H \in H^*$ *and* $\psi \in \hat{G}$ *. Moreover*

$$
|U_T(D(G))|=2|\hat{G}|\bigg(\prod_{H\in S\setminus\{G\}}|H^*|\bigg).
$$

5. Abelian groups

In Proposition 3.7 we proved that the ring *D(G)* detects commutativity of the group *G*. With the help of Theorem 4.6 we will show that $D(G) \cong D(\tilde{G})$ with an abelian group *G* implies $G \cong \tilde{G}$. In the following we will use the notation C_2 for the group with 2 elements.

Proposition 5.1. *Let G be an abelian group. Then*

$$
U_T(D(G))\cong G\times C_2^{m+1},
$$

where m is the number of subgroups of G with index 2*.*

Proof. For $G = 1$ the assumption is clear. Let $G \neq 1$. We use the notations of Theorem 4.6 and set $S :=$ $\{H: H \le G\}$ and $n := 2|G|$. Then *S* has property (*), and for $H \in S$, $S(H) = \{[H, \psi]_G: \psi \in \hat{H}\}$ holds. Let $U < G$ be a proper subgroup and $a \in U^*$. Then $a+1$ is a torsion unit in $D(G)$. Let $\rho: D(G) \to \hat{D}(G)$ be the embedding of D(G) in the ghost ring $\hat{D}(G)$ and ρ_U the projection in $\mathbb{Z} \hat{U}$. Then $\rho_U(a+1) \in \mathbb{Z} \hat{U}$ is a torsion unit in $\mathbb{Z}(\hat{U})$. Since \hat{U} is abelian, the set of all torsion units of $\mathbb{Z}(\hat{U})$ is $\pm \hat{U}$ (cf. [12]). Thus there exists $\tau \in \hat{U}$ with $\rho_U(a+1) = \pm \tau$. The element a is of the form $a = \sum_{\lambda \in \hat{U}} a_{[U,\lambda]}[U,\lambda]_G$ with $a_{[U,\lambda]} \in \mathbb{Z}$. Since *G* is abelian, we obtain

$$
\pm \tau - 1 = \rho_U(a) = \sum_{\lambda \in \hat{U}} a_{[U,\lambda]} \sum_{gU \in G/U} {^g\lambda} = (G:U) \sum_{\lambda \in \hat{U}} a_{[U,\lambda]} \lambda.
$$

Note that in the above equation we use $\rho_U([U,\lambda]_G) = \sum_{gU \in G/U} g\lambda$. In case 2 < (*G* : *U*) we get $a_{\text{[}U,\lambda\text{]}} = 0$ for all $\lambda \in \hat{U}$ and therefore $a = 0$. Let $(G:U) = 2$. We obtain $\rho_U(a) \in \{0, -2\}$, and in case $\rho_U(a) = 0$ we get $a_{[U,\lambda]} = 0$ for all $\lambda \in \hat{U}$ and therefore $a = 0$. Let $\rho_U(a) = -2$. Then $a_{[U,1]} = -1$ and $a_{\text{III} \lambda 1} = 0$ for all $\lambda \in \hat{U} \setminus \{1\}$. Moreover

$$
(1 - [U, 1]_G)^2 = 1 - 2[U, 1]_G + [U, 1]_G^2 = 1 - 2[U, 1] + \sum_{gU \in G/U} [U, 1]_G = 1.
$$
 (7)

Then $(1 - [U, 1]_G)^{2|G|} = 1$ and therefore $-[U, 1]_G ∈ U^*$. Thus $U^* = \{0, -[U, 1]_G\}$. All in all we get

$$
|U^*| = \begin{cases} 2 & \text{if } (G:U) = 2, \\ 1 & \text{else.} \end{cases}
$$
 (8)

Since every torsion unit $u \in U_T(D(G))$ is of the form

$$
u = \pm [G, \psi]_G \prod_{H \in S \setminus \{G\}} (1 + u_H)
$$

with uniquely determined $u_H \in H^*$ and $\psi \in \hat{G}$ we get the desired isomorphism by Eq. (7) and (8). \Box

Theorem 5.2. Let G be a finite abelian group and let \tilde{G} be a finite group with $D(G) \cong D(\tilde{G})$. Then $G \cong \tilde{G}$.

Proof. By Proposition 3.7 the group \tilde{G} is abelian. Moreover $U_T(D(G)) \cong U_T(D(\tilde{G}))$. By Proposition 5.1 we get $G \times C_2^{m+1} \cong \tilde{G} \times C_2^{\tilde{m}+1}$ where m and \tilde{m} are the numbers of subgroups of G and \tilde{G} with index 2. Then $|G \times C_2^{m+1}| = |\tilde{G} \times C_2^{\tilde{m}+1}|$, and since $|G| = |\tilde{G}|$ we obtain $m = \tilde{m}$ and therefore $G \cong \tilde{G}$. \Box

6. The primitive idempotents of $\mathbb{Z}[\zeta]_p \otimes_{\mathbb{Z}} D(G)$

Let p be a maximal ideal in $\mathbb{Z}[\zeta]$, $p := \text{char}(\mathbb{Z}[\zeta]/p)$ and $R := \mathbb{Z}[\zeta]_p$ the localization of $\mathbb{Z}[\zeta]$ at p. In this section we will state a formula for the primitive idempotents of $D_R(G)$. We write

$$
(H,hH')\equiv_p (U,uU')
$$

for (H, hH') , $(U, uU') \in \mathcal{D}(G)$ in case

$$
s_{(H, hH')}^{D(G)}(x) \equiv s_{(U, uU')}^{D(G)}(x) \pmod{\mathfrak{p}}
$$

for all $x \in D(G)$. Then \equiv_p is an equivalence relation on $D(G)$. The equivalence classes of this relation are called p-equivalence classes of $\mathcal{D}(G)$. We define

$$
\mathcal{D}_p(G) := \big\{ \big(K, kK' \big) \in \mathcal{D}(G) \colon \big| \langle k \rangle \big| \not\equiv 0 \not\equiv \big(N_G \big(K, kK' \big) : K \big) \; (\textrm{mod } p) \big\}.
$$

The following proposition summarizes some results of [9].

Proposition 6.1.

- (i) *It holds* $(H, hH') \equiv_p (H, h_p/H')$ *for all* $(H, hH') \in \mathcal{D}(G)$ *.*
- (ii) Let $(H, hH') \in \mathcal{D}(G)$ and K/H be a p-subgroup of $N_G(H, hH')/H$. Then $(H, hH') \equiv_p (K, hK').$
- (iii) Let $(H, hH'), (K, kK') \in \mathcal{D}_p(G)$. Then $(H, hH') \equiv_p (K, kK')$ if and only if (H, hH') and (K, kK') are *conjugate in G.*

Proof. See [9], Lem. 1, Lem. 2, Prop. 3. \Box

Let $(H, hH') \in \mathcal{D}(G)$. By Proposition 6.1(i) we get $(H, hH') \equiv_p (H, h_{p'}H')$, and for a Sylow psubgroup H_1/H of $N_G(H, hH')/H$ we conclude $(H, h_{p'}H') \equiv_p (H_1, h_{p'}H'_1)$ by Proposition 6.1(ii). With the same argument we get $(H_2, h_{p'}H'_2) \equiv_p (H_1, h_{p'}H'_1)$ for a Sylow *p*-subgroup H_2/H_1 of $N_G(H_1, h_{p'}H_1')/H_1$. If we go on like this we obtain $(H_n, h_{p'}H_n') \in \mathcal{D}_p(G)$ for some $n \in \mathbb{N}$. We call $(H_n, h_{p'}H'_n)$ a p-regularization of (H, hH') . Moreover $(H_n, h_{p'}H'_n)$ is uniquely determined up to conjugation in *G* (cf.[9]). By Proposition 6.1 we conclude that every p-equivalence class of $\mathcal{D}(G)$ is represented by exactly one orbit $[H, hH']_G \in \mathcal{D}(G)/G$ with $(H, hH') \in \mathcal{D}_p(G)$.

We use the notation $O^p(G)$ for the smallest normal subgroup of *G* such that $G/O^p(G)$ is a *p*group. The group *G* is called *p-perfect* in case $O^p(G) = G$. The subgroup $O^p(G)$ is *p*-perfect and characteristic in G. For a p-regularization $(H_n, h_{p'}H'_n)$ of $(H, hH') \in \mathcal{D}(G)$ it holds $O^p(H_n) = O^p(H) \le H$. We also use the following well-known lemmata.

Lemma 6.2. *Let G be a finite group, A a normal abelian Hall-subgroup of G and* [*A, G*] *the commutator of A with G. Then* $A = C_A(G) \oplus [A, G]$ *.*

Proof. See [13], Kapitel III, Satz 13.4. \Box

Lemma 6.3. *Let G be a finite group and H be an abelian Hall-subgroup of G. Then H* \cap *G'* \cap $Z(G) = 1$ *.*

Proof. See [13], Kapitel IV, Satz 2.2. \Box

Let *H* be a *p*-perfect subgroup of *G* and $h \in G$. We define

$$
Sp(H,hH') := \{U \leqslant G: Op(U) = H, U \leqslant N_G(H,hH')\}.
$$

For $U \in S^p(H, hH')$ and $u \in U$ we get $u_{p'} \in H$. Since p does not divide $(H : H')$, the group H/H' is a normal abelian Hall-subgroup of *U/H* . It follows that

$$
H/H' = C_{H/H'}(U/H') \oplus [H/H', U/H']
$$

by Lemma 6.2. In the following we write $u_{p',c}H'$ for the $C_{H/H'}(U/H')$ -part of $u_{p'}H'$ in H/H' . We can now state the main theorem of this section.

Theorem 6.4. *There is a* 1-1-correspondence between the primitive idempotents of $D_R(G)$ and the elements *of the set*

$$
I:=\bigl\{\bigl[H,hH'\bigr]_G\in\mathcal{D}(G)/G\colon\, H=O^p(H)\bigr\}.
$$

An explicit formula for the primitive idempotents is given by

$$
e^{D(G),p}_{(H,hH')}=\sum_{\substack{[U,uU']_G\in \mathcal{D}(G)/G\\U\in S^p(H,hH')}}e^{D(G)}_{(U,uU')},\quad \big[H,hH'\big]_G\in I.
$$

Proof. There is a 1-1-correspondence between the primitive idempotents of $D_R(G)$ and the pequivalence classes of $\mathcal{D}(G)$ (cf. [7], Satz 1.12). We will show that every p-equivalence class of $\mathcal{D}(G)$ contains exactly one *G*-orbit [*H,hH*]*^G* with a *p*-perfect subgroup *H*.

Let $(U, uU') \in \mathcal{D}(G)$. We set $H := O^p(U)$, $\overline{H} := H/H'$ and $\overline{U} := U/H'$. Then H is p-perfect and \overline{H} is a normal abelian Hall-subgroup of \bar{U} . By Lemma 6.2 we get

$$
\bar{H} = C_{\bar{H}}(\bar{U}) \oplus [\bar{H}, \bar{U}],
$$

where $[\bar{H}, \bar{U}]$ is the commutator of \bar{H} and \bar{U} . It holds $u_{p'}H' \in \bar{H}$ since $(\bar{U} : \bar{H})$ is a *p*-power. Thus there exist $hH' \in C_{\bar{H}}(\bar{U})$ and $vH' \in [\bar{H}, \bar{U}]$ with $u_{p'}H' = hvH'$. Therefore $u_{p'}U' = hvU' \in U/U'$ holds. Moreover $v \in U'$ since $vH' \in [\bar{H}, \bar{U}] \leqslant \bar{U}' = U'/H'$. Thus

$$
(U, u_{p'}U')=(U, hU').
$$

It is $H \le U$ and since $hH' \in C_{\bar{H}}(\bar{U})$ we get $whw^{-1}H' = hH'$ for all $w \in U$. Thus $U \le N_G(H, hH')$ and U/H is a p-subgroup of $N_G(H, hH')/H$. By Proposition 6.1(i) and (ii) it holds

$$
(H, hH') \equiv_p (U, hU') = (U, u_{p'}U') \equiv_p (U, uU').
$$

All in all we can say at this point that for $(U, uU') \in \mathcal{D}(G)$ it holds

$$
(U, uU') \equiv_p (0^p(U), u_{p',c} 0^p(U')).
$$
\n(9)

Let K be a p-perfect subgroup of G and $k \in K$ with $(H, hH') \equiv_p (K, kK')$. We will show $[H, hH']_G =$ $[K, kK']_G$. Since $O^p(K) = K$, the group K/K' is a p'-group. Thus $k_p \in K'$, and it follows that $kK' = k_{p'}K'$. Therefore we can assume $k = k_{p'}$. With the same argumentation we assume $h = h_{p'}$. Let $(\tilde{H}, h\tilde{H}')$ and $(\tilde{K}, k\tilde{K}')$ be p-regularizations of (H, hH') and (K, kK') . Then

$$
(\tilde{H}, h\tilde{H}') \equiv_p (H, hH') \equiv_p (K, kK') \equiv_p (\tilde{K}, k\tilde{K}').
$$

By Lemma 6.1(iii) $(\tilde{H}, h\tilde{H}')$ and $(\tilde{K}, k\tilde{K}')$ are conjugate in *G*. Thus

$$
H=Op(\tilde{H})=G Op(\tilde{K})=K.
$$

In the following we assume $H = K$. We will show that hH' and kH' are conjugate in $N_G(H)$. Let V/H be a Sylow p-subgroup of $N_G(H, hH')/H$ and set $\bar{V} := V/H'$. It holds $\bar{H} = C_{\bar{H}}(\bar{V}) \oplus [\bar{H}, \bar{V}]$ by Lemma 6.2. Obviously it holds $[\bar{H},\bar{V}]\subseteq \bar{V}'\cap\bar{H}.$ Conversely we assume $x\in\bar{V}'\cap\bar{H}.$ Then $x=cd$ with $c \in C_{\bar{H}}(\bar{V})$ and $d \in [\bar{H}, \bar{V}]$. We get

$$
c = xd^{-1} \in C_{\bar{H}}(\bar{V}) \cap \bar{V}' = Z(\bar{V}) \cap \bar{H} \cap \bar{V}' = 1
$$

by Lemma 6.3. Thus $x \in [\bar{H}, \bar{V}]$ and

$$
\bar{V}' \cap \bar{H} = [\bar{H}, \bar{V}]. \tag{10}
$$

The group *H* is normal in $N_G(V)$ since $H = O^p(V)$ is characteristic in *V*. Since *H'* is characteristic in H we get $H' \triangleleft N_G(V)$. It holds $C_{N_G(V)/H'}(\bar{V}) \triangleleft N_G(V)/H'$, and since $\bar{H} \triangleleft N_G(V)/H'$ we get

$$
C_{\tilde{H}}(\bar{V}) = C_{N_G(V)/H'}(\bar{V}) \cap \bar{H} \triangleleft N_G(V)/H'.
$$
\n(11)

We now show that (V, hV') is a p-regularization of (H, hH') . Let $t \in N_G(V, hV') \leq N_G(H)$. It is $hH' \in$ $C_{\tilde{H}}(\bar{V})$ since $V \leq N_G(H, hH')$. Moreover it is $tht^{-1}H' \in C_{\tilde{H}}(\bar{V})$ since $C_{\tilde{H}}(\bar{V}) \leq N_G(V)/H'$ (by Eq. (11)).

Thus $h^{-1}tht^{-1}H' \in C_{\bar{H}}(\bar{V})$. It holds $h^{-1}tht^{-1} \in V'$, therefore we get $h^{-1}tht^{-1}H' \in V'/H' = \bar{V}'$. By Eq. (10) we obtain

$$
C_{\bar{H}}(\bar{V}) \cap \bar{V}' = C_{\bar{H}}(\bar{V}) \cap \bar{V}' \cap \bar{H} = C_{\bar{H}}(\bar{V}) \cap [\bar{H}, \bar{V}] = 1.
$$

It follows that $tht^{-1}H'=hH'.$ Thus $t\in N_G(H,hH')$ and we get $N_G(V,hV')\leqslant N_G(H,hH').$ Then

$$
(N_G(V, hV'): V) = (N_G(V, hV')/H: V/H) \neq 0 \pmod{p}.
$$

Therefore *(V ,hV)* is a *p*-regularization of *(H,hH)*. We can now assume

$$
(\tilde{H}, h\tilde{H}') = (V, hV').
$$

In particular $hH' \in C_{\tilde{H}}(\tilde{H}/H'),$ and with the same argumentation we get $kH' \in C_{\tilde{H}}(\tilde{K}/H').$ Since

$$
(V, hV') = (\tilde{H}, h\tilde{H}') \equiv_p (\tilde{K}, k\tilde{K}')
$$

we obtain by Proposition 6.1(iii) the existence of $g \in G$ with ${}^g(\tilde{K}, k\tilde{K}') = (V, hV')$. Since $O^p(\tilde{K}) = H =$ $O^p(V)$ it holds $g \in N_G(H)$. Thus $gkg^{-1}H' \in C_{\tilde{H}}(\tilde{g}(K/H')) = C_{\tilde{H}}(\tilde{V})$. Since $hH' \in C_{\tilde{H}}(\tilde{V})$ it follows that *h*^{−1} *gkg*^{−1} *H*′ ∈ *C*_{*H*}</sub>(\bar{V}). Since *h*^{−1} *gkg*^{−1} ∈ *V*′ we get *h*^{−1} *gkg*^{−1} $H' \in \bar{V}'$ and therefore

$$
h^{-1}gkg^{-1}H' \in C_{\bar{H}}(\bar{V}) \cap \bar{V}' = Z(\bar{V}) \cap \bar{H} \cap \bar{V}' = 1
$$

by Lemma 6.3. Thus $hH' = gkg^{-1}H'$ with $g ∈ N_G(H)$ and therefore every p-equivalence class is represented by exactly one orbit [*H,hH*]*^G* with a *p*-perfect subgroup *H*.

Let *H* be any *p*-perfect subgroup of *G*, $h \in H$ and let *X* be the equivalence class represented by $[H, hH']$ _{*G*}. We set

$$
T:=\left\{\left[U,uU'\right]_G\in\mathcal{D}(G)/G\colon\left(U,uU'\right)\in X\right\}
$$

and

$$
Y := \{ [U, uU']_G \in \mathcal{D}(G)/G : U \in S^p(H, hH'), u_{p',c}H' = hH' \}.
$$

Let $[U, uU']_G \in T$ with $O^p(U) = H$. We get $[H, u_{p',c}H']_G = [H, hH']_G$ by the above argumentations. Thus there exists $g\in N_G(H)$ with $g^{-1}h g H'=u_{p',c}H'$. Since $U\leqslant N_G(H,u_{p',c}H')$ it follows that $^gU\leqslant$ *N_G*(*H*, *hH*[']). Moreover $u_{p'}H' = u_{p',c}vH'$ with $vH' \in [\bar{H}, U/H']$. Thus

$$
({}^{\mathcal{g}}u)_{p'}H' = {}^{\mathcal{g}}(u_{p'})H' = {}^{\mathcal{g}}(u_{p',c}){}^{\mathcal{g}}vH'
$$

with ${}^g(u_{p',c})H' \in C_{\tilde{H}}({}^gU/H')$ and ${}^g vH' \in [\tilde{H}, {}^gU/H']$. It holds

$$
({}^{\mathcal{g}}u)_{p'}H' = ({}^{\mathcal{g}}u)_{p',c}wH'
$$

with $({}^g u)_{p',c} \in C_{\tilde{H}}({}^g U/H')$ and $wH' \in [\tilde{H}, {}^g U/H']$. Since $\tilde{H} = C_{\tilde{H}}({}^g U/H') \oplus [\tilde{H}, {}^g U/H']$ we get

$$
g(u_{p',c})H'=\big(gu\big)_{p',c}H'.
$$

Thus $({}^{\mathcal{g}} u)_{p',c} H' = hH'$ and we get $[U, uU']_G = [{}^{\mathcal{g}} U, {}^{\mathcal{g}} u{}^{\mathcal{g}} U']_G \in Y$.

Let conversely be $[U, uU']_G \in Y$. We can assume $O^p(U) = H$ and $u_{p', c} H' = hH'$. We get

$$
(U, uU') \equiv_p (H, u_{p',c}H') = (H, hH')
$$

by Eq. (9). Thus we get $[U, uU']_G \in T$ and so $Y = T$.

Every primitive idempotent of $D_R(G)$ corresponding to *X* is of the form

$$
\sum_{[U,uU']_G\in T}e^{D(G)}_{(U,uU')}.
$$

Since $Y = T$ we obtain the idempotent formula stated in the theorem. \Box

7. Sylow subgroups

In this section we present some results about Sylow subgroups of two finite groups G and \tilde{G} with $D(G) \cong D(\tilde{G})$.

Proposition 7.1. *Let G and* \tilde{G} *be finite groups,* $\alpha : D(\tilde{G}) \rightarrow D(G)$ *an isomorphism, p a prime divisor of* $|G|$ and P a Sylow p-subgroup of G. Let $\alpha(e_{(1,1)}^{D(\tilde{G})})=e_{(U,uU')}^{D(G)}$. Then the group $H:=O^p(U)$ is a normal abelian p' -subgroup of G and $h := u_{p'} \in Z(G)$ *. We set*

$$
I:=\big\{\big[K,kK'\big]_G\in\mathcal{D}(G)/G\colon K=HV,\ V\leqslant P,\ k=h\nu,\ \nu\in V\big\}.
$$

Then

$$
\alpha(e_{(1,1)}^{D(\tilde{G}),p}) = \sum_{[K,kK']_G \in I} e_{(K,kK')}^{D(G)}.
$$

Proof. We get $|G| = |\tilde{G}|$ by Theorem 3.6. Moreover by Proposition 3.8 *U* is a normal abelian subgroup of *G* and $u \in Z(G)$ with $|\langle u \rangle| \in \{1, 2\}$. Thus *H* is a normal abelian *p*'-subgroup of *G* and $h \in \{1, u\} \subseteq$ *Z(G)*. It holds

$$
U \in S^p(H, h) := \left\{ K \leq G \colon \, O^p(K) = H, \ K \leq N_G(H, h) \right\} = \left\{ K \leq G \colon \, O^p(K) = H \right\},
$$

and since $u_{p'} \in Z(G)$ we get $u_{p',c} = u_{p'}$. Thus the idempotent $e_{(U,u)}^{D(G)}$ is included in the sum

$$
e_{(H,h)}^{D(G),p} = \sum_{\substack{[K,kK']_G \in \mathcal{D}(G)/G \\ K \in S^p(H,h) \\ k_{p',c} = h}} e_{(K,kK')}^{D(G)}.
$$

Therefore $\alpha(e_{(1,1)}^{D(\tilde{G}),p}) = e_{(H,h)}^{D(G),p}$. Let

$$
J := \{ [K, kK']_G \in \mathcal{D}(G)/G : \, O^p(K) = H, \, k_{p',c} = h \}.
$$

We show $I = J$. Let $[K, kK']_G \in I$. Then $O^p(K) = H$. Moreover we can assume $k = hv$ with $v \in V$ for some subgroup $V \leq P$. Since $h \in Z(G)$ it holds $h = k_{p'} = k_{p',c}$. Thus $[K, kK']_G \in J$.

Let conversely be $[K, kK']_G \in J$. We can assume $k_{p',c} = h$. It holds $H = O^p(K)$ and by Lemma 6.2 we get $H = C_H(K) \oplus [H, K]$. Since $k_{p'} \in H$ it holds $k_{p'} = k_{p',c} y = hy$ with some $y \in [H, K] \leq K'$. Thus

$$
[K, kK']_G = [K, k_p k_{p'} K']_G = [K, k_p h y K']_G = [K, hk_p K']_G.
$$

By the Schur–Zassenhaus theorem there exists a *p*-subgroup $V \leq G$ with $K = HV$. Moreover there exists $g \in G$ with $gV \leq P$. Then $gK = H(gV)$. Since gV is a Sylow p-subgroup of gK there exists $w \in {^gK}$ with $^{wg}k_p \in {^gV}$. Thus

$$
[K, kK']_G = [{}^gK, h({}^gk_p){}^gK']_G = [{}^gK, h({}^{wg}k_p){}^gK']_G \in I
$$

and the proposition is proved. \Box

We can now state the first result.

Theorem 7.2. Let G and \tilde{G} be finite groups with $D(G) \cong D(\tilde{G})$ and let p be a prime divisor of $|G|$. If \tilde{G} has a *non-trivial normal p-subgroup then G has a non-trivial normal p-subgroup.*

Proof. Let \tilde{P} be a Sylow *p*-subgroup of \tilde{G} . By Theorem 6.4 we get

$$
e_{(1,1)}^{D(\tilde{G}),p} = \sum_{\substack{[\tilde{K}, \tilde{k}\tilde{K}']_G \in \mathcal{D}(\tilde{G})/\tilde{G} \\ \tilde{K} \leq \tilde{P}}} e_{(\tilde{K}, \tilde{k}\tilde{K}')}^{D(\tilde{G})}.
$$
(12)

By the assumption there exists a normal p-subgroup $1\neq \tilde{U}$ of \tilde{G} with $\tilde{U}\leqslant\tilde{P}.$ Then $\tilde{K}:=Z(\tilde{U})\neq 1$ is an abelian *p*-subgroup of \tilde{G} which is characteristic in \tilde{U} . Thus \tilde{K} is normal in \tilde{G} and therefore $e^{D(\tilde{G})}_{(\tilde{K},1)}$ has conductor $|\tilde{G}|$. Thus the sum in Eq. (12) includes at least two primitive idempotents with conductor $|\tilde{G}|$ (consider $e^{D(\tilde{G})}_{(1,1)}$ and $e^{D(\tilde{G})}_{(\tilde{K},1)}$). Let $\alpha: D(\tilde{G}) \to D(G)$ be an isomorphism, P a Sylow psubgroup of G and let $\alpha(e_{(1,1)}^{D(\tilde{G})})=e_{(U,uU')}^{D(G)}$ with a normal abelian subgroup $U \leqslant G$ and $u \in Z(G)$. By Proposition 7.1,

$$
\alpha(e_{(1,1)}^{D(\tilde{G}),p}) = \sum_{[K,kK']_G \in I} e_{(K,kK')}^{D(G)}
$$

holds with

$$
I=\big\{\big[K,kK'\big]_G\in\mathcal{D}(G)/G\colon\, K=O^p(U)V,\; k=u_{p'}v,\; v\in V,\; V\leq P\big\}.
$$

There exists at least one element $[K, kK']_G \in I$ with $[K, kK']_G \neq [0^p(U), u_{p'}]_G$ such that $e^{D(G)}_{(K, kK')}$ has conductor $|G| = |\tilde{G}|$. Thus *K* is an abelian normal subgroup of *G*. Since $K/O^p(U)$ is a non-trivial *p*-group, the Sylow *p*-subgroup of *K* is non-trivial and normal in *G*. \Box

Theorem 7.3. Let G and \tilde{G} be finite groups with $D(G) \cong D(\tilde{G})$. Let p be a prime divisor of $|G|$ and let P and \tilde{P} *be Sylow p-subgroups of G and G. If* ˜ *P is abelian then P is abelian.* ˜

Proof. Let $\alpha: D(\tilde{G})\to D(G)$ be an isomorphism, $\alpha(e_{(1,1)}^{D(\tilde{G})})=e_{(U,uU')}^{D(G)}$ with a normal abelian subgroup *U* ≤ *G* and *u* ∈ *Z*(*G*). Let *H* := $O^p(U)$ and *h* := u_p . By Proposition 7.1 we obtain

$$
\alpha(e_{(1,1)}^{D(\tilde{G}),p}) = \sum_{[K,kK']_G \in I} e_{(K,kK')}^{D(G)}
$$

with

$$
I := \left\{ \left[K, kK' \right]_G \in \mathcal{D}(G)/G \colon K = HV, \ V \leqslant P, \ k = hv, \ v \in V \right\}.
$$

Let \tilde{P} be abelian. Then the conductors of all primitive idempotents $e^{D(\tilde{G})}_{(\tilde{K},\tilde{K}\tilde{K}')},\ \tilde{K}\leqslant\tilde{P},\ \tilde{k}\in\tilde{K},$ are divisible by $|\tilde{P}|$. Since

$$
e_{(1,1)}^{D(\tilde{G}),p} = \sum_{\substack{[\tilde{K}, \tilde{k}\tilde{K}']_{\tilde{G}} \in \mathcal{D}(\tilde{G})/\tilde{G} \\ \tilde{K} \leq \tilde{P}}} e_{(\tilde{K}, \tilde{k}\tilde{K}')}^{D(\tilde{G})}
$$

 $|P| = |\tilde{P}|$ divides the conductor of $e^{D(G)}_{(K,kK')}$ for all $[K, kK']_G \in I$. We set $K := HP$. Then $[K, hk']_G \in I$ and *p* does not divide $(N_G(K, hK'))$: *K*). Thus |*P*| divides $(K: K')$ and therefore $P \cap K' = 1$. It follows that $P' \leqslant K' \cap P = 1$ and therefore *P* is abelian. \Box

The next theorem is concerned with Sylow 2-subgroups of groups *G* and \tilde{G} with $D(G) \cong D(\tilde{G})$. We first need the following lemma.

Lemma 7.4. Let G be a finite group and $(H, hH') \in \mathcal{D}(G)$. We assume the existence of $x \in D_{\mathbb{Q}}(G)$ and $n \in \mathbb{N}$ such that $s^{D(G)}_{(H,hH')}(x)$ is a primitive n-th root of unity.

(i) If $2 \nmid n \text{ or } 4 \mid n \text{ then } n \text{ divides } |\langle h \rangle|$.

(ii) *If* $n = 2m$ *with* $m \in \mathbb{N}$ *and* $2 \nmid m$ *then m divides* $|\langle h \rangle|$ *.*

Proof. Let $\omega \in \mathbb{C}$ be a primitive $|\langle h \rangle|$ -th root of unity. For every subgroup $U \leqslant G$ with $H \leqslant U$ and every linear character $\psi \in \hat{U}$ it holds $\psi(h) = \omega^i$ for some $i \in \mathbb{N}$. For $[U, \psi]_G \in \mathcal{M}(G)/G$ we get

$$
s_{(H,hH')}^{D(G)}\bigl([U,\psi]_G\bigr)=\sum_{\substack{gU\in G/U\\ H\leqslant^gU}}{}^g\psi(h)\in\mathbb{Q}(\omega).
$$

Therefore $s^{D(G)}_{(H,hH')}(x) \in \mathbb{Q}(\omega)$. Since $\pm \omega^i$ $(i \in \mathbb{N})$ are the only roots of unity in $\mathbb{Q}(\omega)$ we get $s^{D(G)}_{(H,hH')}(x) \in {\pm \omega^i : i \in \mathbb{N}}$. Therefore

$$
n \mid \max\{\text{ord}(\pm \omega^i): i \in \mathbb{N}\} \in \{\text{ord}(\omega), \text{ord}(-\omega)\}.
$$

In case $ord(\omega) \geqslant ord(-\omega)$ we obtain that *n* divides $|\langle h \rangle|$ and (i) and (ii) is proved. Let 2 · ord (ω) = ord($-\omega$). Then 2 \nmid ord(ω) and since *n* | ord($-\omega$) we get 4 \nmid *n*. If 2 \nmid *n* we get *n* | ord(ω) and therefore (i). Let $2 | n$. Since $n | ord(-\omega) = 2 \cdot ord(\omega)$ we obtain that $\frac{n}{2}$ divides ord (ω) and we proved (ii). \Box

Theorem 7.5. Let G and \tilde{G} be finite groups with $D(G) \cong D(\tilde{G})$ and let P and \tilde{P} be Sylow 2-subgroups of G *and* \tilde{G} *. If P is cyclic then* \tilde{P} *is cyclic.*

Proof. Let $P = \langle h \rangle$ and $|P| = 2^n$ with $n \in \mathbb{N}$. We assume $n \ge 2$. Note that $(N_G(P) : C_G(P))$ divides $|\text{Aut}(P)| = 2^{n-1}$. Since $2 \nmid (N_G(P) : C_G(P))$ we get $N_G(P) = C_G(P)$. Let $\lambda \in \hat{P}$ such that $\lambda(h)$ is a primitive 2*n*-th root of unity. Then

$$
s_{(P,h)}^{D(G)}\left(\frac{1}{(N_G(P):P)}[P,\lambda]_G\right) = \frac{1}{(N_G(P):P)}\sum_{gP\in N_G(P)/P} s_{\lambda}(h) = \lambda(h).
$$

Let $\alpha: D(G) \to D(\tilde{G})$ be an isomorphism. Then $s^{D(G)}_{(P,h)} = s^{D(\tilde{G})}_{(\tilde{H},\tilde{h})}$ $^{D(G)}$ $($ ^{*G*} $)$ \circ *α* with $($ *H* $)$ *,* h *H*^{$'$} $)$ \in \mathcal{D} (\tilde{G}). We set

$$
\tilde{x} := \alpha \left(\frac{1}{(N_G(P) : P)} [P, \lambda]_G \right) \in D_{\mathbb{Q}}(\tilde{G}).
$$

Then $s^{D(\tilde{G})}_{\tilde{G}\tilde{L}}$ $\chi^{D(G)}_{(\tilde{H},\tilde{h}\tilde{H}')}(\tilde{x}) = \lambda(h)$ is a primitive 2^n -th root of unity. Moreover 2^n divides $|\langle \tilde{h} \rangle|$ by Lemma 7.4. Thus \tilde{G} contains an element of order 2^n . Therefore \tilde{P} is cyclic. \Box

8. Nilpotent and *p***-nilpotent groups**

In the first theorem of this section we prove that the ring of monomial representations of a finite group detects nilpotency.

Theorem 8.1. *Let G be a finite nilpotent group and* \tilde{G} *a finite group with* $D(G) \cong D(\tilde{G})$ *. Then* \tilde{G} *is nilpotent.*

Proof. Let α : $D(\tilde{G}) \rightarrow D(G)$ be an isomorphism and let

$$
\alpha\big(e_{(1,1)}^{D(\tilde{G})}\big)=e_{(U,uU')}^{D(G)}.
$$

By Proposition 3.7 *U* is a normal abelian subgroup of *G* and $u \in Z(G)$. Let *p* be a prime divisor of *G*, *P* the Sylow *p*-subgroup of *G* and $H := O^p(U)$. Then *H* is a normal abelian subgroup of *G* with *p* \nmid |*H*|. Since *u* ∈ *Z*(*G*) we get *h* := *u_{p'}* ∈ *Z*(*G*) ∩ *H*. Since *G* is nilpotent we obtain

$$
\alpha(e_{(1,1)}^{D(\tilde{G}),p}) = \sum_{[K,kK']_G \in I} e_{(K,kK')}^{D(G)} \tag{13}
$$

with

$$
I=\left\{\left[K,kK'\right]_G\in\mathcal{D}(G)/G\colon\, K=H\times V,\,\, V\leqslant P,\,\, k=hv,\,\, v\in V\right\}
$$

by Proposition 7.1. Let $K := H \times V$ with $V \leq P$ and $k := hv$ with $v \in V$. Since *G* is nilpotent it holds $G_{p'} \leqslant C_G(V)$, and since *H* is normal in *G* we get $G_{p'} \leqslant N_G(K)$. Since $h \in Z(G)$ we get

$$
gkK'g^{-1} = ghvg^{-1}K' = hvK' = kK'
$$

for all $g \in G_{p'}$. Thus $G_{p'} \leqslant N_G(K, kK')$. Moreover $K' = (H \times V)' = V'$ is a p-subgroup of *G*. Thus $|G_{p'}|$ divides $(N_G(K, kK'): K')$. Therefore $|G_{p'}|$ divides the conductor of the primitive idempotents $e^{D(G)}_{(K, kK')}$ with $[K, kK']_G \in I$. Let \tilde{P} be a Sylow *p*-subgroup of \tilde{G} . By

$$
e_{(1,1)}^{D(\tilde{G}),p}=\sum_{\substack{[\tilde{U},\tilde{u}\tilde{U}']\in \mathcal{D}(\tilde{G})/\tilde{G}\\ \tilde{U}\leqslant \tilde{P}}}e_{(\tilde{U},\tilde{u}\tilde{U}')}^{D(\tilde{G})}
$$

and Eq. (13) we obtain that $|G_{p'}| = |\tilde{G}|_{p'}$ divides the conductor of the primitive idempotents $e^{D(\tilde{G})}_{(\tilde{U},\tilde{u}\tilde{U}')}$ with $\tilde{U}\leqslant \tilde{P}$. In particular $|\tilde{G}|_{p'}$ divides the conductor of $e^{D(\tilde{G})}_{(\tilde{P},1\tilde{P}')}.$ Therefore $|\tilde{G}|_{p'}$ divides $(N_{\tilde{G}}(\tilde{P}))$: $(\tilde{P}')_{p'} = (N_{\tilde{G}}(\tilde{P}) : \tilde{P})$ and therefore \tilde{P} is normal in \tilde{G} and the theorem is proved. \Box

Next we will show that the isomorphy $D(G) \cong D(\tilde{G})$ with nilpotent groups *G* and \tilde{G} implies the isomorphy $D(P) \cong D(\tilde{P})$ where *P* and \tilde{P} are Sylow *p*-subgroups of *G* and \tilde{G} . We need the following two propositions.

Proposition 8.2. *Let G and H be finite groups with* $gcd(|G|, |H|) = 1$ *. Then*

$$
D(G \times H) \cong D(G) \otimes_{\mathbb{Z}} D(H).
$$

Proof. Since $gcd(|G|, |H|) = 1$, every subgroup of $G \times H$ is of the form $U \times V$ with subgroups $U \leq G$ and $V \leqslant H.$ Moreover every linear character of a subgroup $U \times V \leqslant G \times H$ is of the form $\varphi \times \psi$ with $(\varphi, \psi) \in \hat{U} \times \hat{V}$. Therefore the map

> $D(G \times H) \rightarrow D(G) \otimes_{\mathbb{Z}} D(H)$ $[U \times V, \varphi \times \psi]_{G \times H} \mapsto [U, \varphi]_G \otimes [V, \psi]_H$

is well defined and an isomorphism. \Box

Proposition 8.3. *Let A*1*, A*2*, B*1*, B*² *be commutative rings with unit element which are finitely generated and free as a* Z*-module. Moreover, assume that the rings A*¹ *and A*² *have* Z*-bases which contain the respective unit element. Further, assume that there exists a unitary subring R* \subseteq *C such that the only idempotents in R* $\otimes_{\mathbb{Z}} A_i$ $(i = 1, 2)$ are 0 and 1 and such that the R-algebra R $\otimes_{\mathbb{Z}} B_i$ $(i = 1, 2)$ is isomorphic to a direct product of copies *of R. If* $A_1 ⊗_\mathbb{Z} B_1 \cong A_2 ⊗_\mathbb{Z} B_2$ *then* $B_1 \cong B_2$ *.*

Proof. Let $\{a_1,\ldots,a_s\} \subseteq A_1$, $\{\tilde{a}_1,\ldots,\tilde{a}_t\} \subseteq A_2$, $\{b_1,\ldots,b_n\} \subseteq B_1$ and $\{\tilde{b}_1,\ldots,\tilde{b}_m\} \subseteq B_2$ the respective \mathbb{Z} -bases with the unit elements $a_1 = 1_{A_1}$ and $\tilde{a}_1 = 1_{A_2}$. Then $\{a_i ⊗ b_j : i = 1, ..., s, j = 1, ..., n\}$ is a \mathbb{Z} -basis of $A_1 \otimes_{\mathbb{Z}} B_1$ and $\{\tilde{a}_i \otimes \tilde{b}_j : i = 1, \ldots, t, j = 1, \ldots, m\}$ is a \mathbb{Z} -basis of $A_2 \otimes_{\mathbb{Z}} B_2$. Consider the canonical embeddings

$$
\varphi: B_1 \to R \otimes_{\mathbb{Z}} B_1,
$$

\n
$$
b_i \mapsto 1_R \otimes b_i,
$$

\n
$$
\delta: B_1 \to A_1 \otimes_{\mathbb{Z}} B_1,
$$

\n
$$
b_i \mapsto 1_{A_1} \otimes b_i
$$

```
\psi := 1 \otimes \delta : R \otimes_{\mathbb{Z}} B_1 \to R \otimes_{\mathbb{Z}} A_1 \otimes_{\mathbb{Z}} B_11_R \otimes b_i \mapsto 1_R \otimes 1_{A_1} \otimes b_i,
```

$$
\mu: A_1 \otimes_{\mathbb{Z}} B_1 \to R \otimes_{\mathbb{Z}} A_1 \otimes_{\mathbb{Z}} B_1,
$$

$$
a_j \otimes b_i \mapsto 1_R \otimes a_j \otimes b_i
$$

 $(i = 1, \ldots, n, j = 1, \ldots, s)$. Then $\psi \circ \varphi = \mu \circ \delta$. We define the canonical embeddings $\tilde{\varphi} : B_2 \to R \otimes_{\mathbb{Z}} B_2$, δ : $B_2 \to A_2 \otimes_{\mathbb{Z}} B_2$, $\dot{\psi}$: $R \otimes_{\mathbb{Z}} B_2 \to R \otimes_{\mathbb{Z}} A_2 \otimes_{\mathbb{Z}} B_2$ and $\tilde{\mu}$: $A_2 \otimes_{\mathbb{Z}} B_2 \to R \otimes_{\mathbb{Z}} A_2 \otimes_{\mathbb{Z}} B_2$ in an analogous way. Let

$$
\alpha: A_1 \otimes_{\mathbb{Z}} B_1 \to A_2 \otimes_{\mathbb{Z}} B_2
$$

be an isomorphism. We extend α linearly to the isomorphism

$$
\hat{\alpha}: R \otimes_{\mathbb{Z}} A_1 \otimes_{\mathbb{Z}} B_1 \to R \otimes_{\mathbb{Z}} A_2 \otimes_{\mathbb{Z}} B_2.
$$

Then $\hat{\alpha} \circ \mu = \tilde{\mu} \circ \alpha$. Let e_1, \ldots, e_n be the primitive idempotents of $R \otimes_{\mathbb{Z}} B_1$ and $\tilde{e}_1, \ldots, \tilde{e}_m$ be the primitive idempotents of $R \otimes_{\mathbb{Z}} B_2$. Then

$$
R \otimes_{\mathbb{Z}} B_1 = \bigoplus_{i=1}^n Re_i
$$
 and $R \otimes_{\mathbb{Z}} B_2 = \bigoplus_{i=1}^m R \tilde{e}_i$.

Moreover 0 and 1 are the only idempotents in $R \otimes_{\mathbb{Z}} A_1$ and $R \otimes_{\mathbb{Z}} A_2$. Then $1_{R \otimes_{\mathbb{Z}} A_1} \otimes e_i$, $i = 1, \ldots, n$, are the primitive idempotents of $(R \otimes_{\mathbb{Z}} A_1) \otimes_R (R \otimes_{\mathbb{Z}} B_1)$. Since

$$
R \otimes_{\mathbb{Z}} A_1 \otimes_{\mathbb{Z}} B_1 \cong (R \otimes_{\mathbb{Z}} A_1) \otimes_R (R \otimes_{\mathbb{Z}} B_1)
$$

the elements $\psi(e_i)$, $i = 1, \ldots, n$, are the primitive idempotents of $R \otimes_{\mathbb{Z}} A_1 \otimes_{\mathbb{Z}} B_1$. Similarly $\bar{\psi}(\tilde{e}_i)$, $i = 1, \ldots, m$, are the primitive idempotents of $R \otimes_{\mathbb{Z}} A_2 \otimes_{\mathbb{Z}} B_2$. Thus

$$
\hat{\alpha}\big(\big\{\psi(e_1),\ldots,\psi(e_n)\big\}\big)=\big\{\tilde{\psi}(\tilde{e}_1),\ldots,\tilde{\psi}(\tilde{e}_m)\big\}.
$$

In particular $n = m$. We assume $\hat{\alpha}(\psi(e_i)) = \tilde{\psi}(\tilde{e}_i)$ for $i = 1, ..., n$. Let $c \in B_1$. Then there exist *r*₁,...,*r*_{*n*} ∈ *R* with φ (*c*) = $\sum_{i=1}^{n} r_i e_i$ and we get

$$
(\hat{\alpha} \circ \psi \circ \varphi)(c) = (\hat{\alpha} \circ \psi) \left(\sum_{i=1}^n r_i e_i \right) = \sum_{i=1}^n r_i \tilde{\psi}(\tilde{e}_i).
$$

Thus there exist $t_1, \ldots, t_n \in R$ with $(\hat{\alpha} \circ \psi \circ \varphi)(c) = \sum_{i=1}^n t_i (1_R \otimes 1_{A_2} \otimes \tilde{b}_i)$. It holds

$$
(\hat{\alpha} \circ \psi \circ \varphi)(c) = (\hat{\alpha} \circ \mu \circ \delta)(c) = (\tilde{\mu} \circ \alpha \circ \delta)(c),
$$

and there exist $z_{i,j} \in \mathbb{Z}$ $(i = 1, \ldots, t, j = 1, \ldots, n)$ with

$$
(\alpha \circ \delta)(c) = \sum_{i=1}^t \sum_{j=1}^n z_{i,j} (\tilde{a}_i \otimes \tilde{b}_j).
$$

Therefore

$$
\sum_{i=1}^n t_i (1_R \otimes 1_{A_2} \otimes \tilde{b}_i) = (\tilde{\mu} \circ \alpha \circ \delta)(c) = \sum_{i=1}^t \sum_{j=1}^n z_{i,j} (1_R \otimes \tilde{a}_i \otimes \tilde{b}_j).
$$

Since $\tilde{a}_1 = 1_{A_2}$ the set $\{1_R \otimes 1_{A_2} \otimes \tilde{b}_j:~j=1,\ldots,n\}$ is a subset of the canonical basis $\{1_R \otimes \tilde{a}_i \otimes \tilde{b}_j:~i=1,\ldots,n\}$ 1,...,t, $j = 1, \ldots, n$ of $R \otimes_{\mathbb{Z}} A_2 \otimes_{\mathbb{Z}} B_2$. Thus $t_j = z_{1,j} \in \mathbb{Z}$ for all $j = 1, \ldots, n$ and $z_{i,j} = 0$ for $i \neq 1$, $j = 1, \ldots, n$. It follows that $(\hat{\alpha} \circ \psi \circ \varphi)(c) \in (\tilde{\psi} \circ \tilde{\varphi})(B_2)$ and therefore

$$
\beta := \tilde{\varphi}^{-1} \circ \tilde{\psi}^{-1} \circ \hat{\alpha} \circ \psi \circ \varphi : B_1 \to B_2
$$

is a ring monomorphism. Considering $\psi \circ \varphi = \mu \circ \delta$ and $\tilde{\delta}^{-1} \circ \tilde{\mu}^{-1} = \tilde{\varphi}^{-1} \circ \tilde{\psi}^{-1}$ we get

$$
\beta = \tilde{\delta}^{-1} \circ \alpha \circ \delta. \tag{14}
$$

With the same argumentation we get a ring monomorphism

$$
\tilde{\beta} = \delta^{-1} \circ \alpha^{-1} \circ \tilde{\delta} : B_2 \to B_1.
$$

Moreover $β ∘ β = id_{β}$ and $β ∘ β = id_{β_1}$. Therefore $β$ is an isomorphism. $□$

Theorem 8.4. Let p be a prime number. Let $G = P \times H$ and $\tilde{G} = \tilde{P} \times \tilde{H}$ be finite groups with p-groups P, \tilde{P} $and p'$ -groups H , \tilde{H} . If $D(G) \cong D(\tilde{G})$ then $D(H) \cong D(\tilde{H})$.

Proof. Let $\xi \in \mathbb{C}$ be a primitive $|H|$ -th root of unity, p be a prime ideal in $\mathbb{Z}[\xi]$ with char $(Z[\xi]/p) = p$ and $R := \mathbb{Z}[\xi]_p$ be the localization at p. By Theorem 6.4 the rings $D_R(H)$ and $D_{\mathbb{Q}(\xi)}(H)$ have the same primitive idempotents. Similarly the primitive idempotents of $D_R(\tilde{H})$ and $D_{\mathbb{Q}(\xi)}(\tilde{H})$ are corresponding. Therefore $D_R(H)$ and $D_R(\tilde{H})$ are completely reducible. Moreover by Theorem 6.4 we obtain that 0 and 1 are the only idempotents in $D_R(P)$ and $D_R(\tilde{P})$. By Proposition 8.2 we get the isomorphy

$$
D(P) \otimes_{\mathbb{Z}} D(H) \cong D(G) \cong D(\tilde{G}) \cong D(\tilde{P}) \otimes_{\mathbb{Z}} D(\tilde{H}).
$$

We set $A_1 := D(P)$, $A_2 := D(\tilde{P})$, $B_1 := D(H)$ and $B_2 := D(\tilde{H})$. Then all conditions in Theorem 8.3 are *valid and we get the isomorphy* $D(H) \cong D(\tilde{H})$ *. □*

Corollary 8.5. Let G and \tilde{G} be finite nilpotent groups with $D(G) \cong D(\tilde{G})$. Let p_1, \ldots, p_n be the different prime *divisors of* $|G|$ *, and for* $i = 1, \ldots, n$ *let* G_i *and* \tilde{G}_i *be the Sylow p_i-subgroups of* G *and* \tilde{G} *. Let*

$$
\alpha: D(G_1) \otimes_{\mathbb{Z}} \ldots \otimes_{\mathbb{Z}} D(G_n) \to D(\tilde{G}_1) \otimes_{\mathbb{Z}} \ldots \otimes_{\mathbb{Z}} D(\tilde{G}_n)
$$

be an isomorphism. Then there exist isomorphisms $\alpha_i : D(G_i) \to D(\tilde{G}_i)$ *for* $i = 1, \ldots, n$ with $\alpha = \alpha_1 \otimes$ ···⊗ *αn.*

Proof. For $i = 2, \ldots, n$ let

$$
H_i := G_i \times \cdots \times G_n, \qquad \tilde{H}_i := \tilde{G}_i \times \cdots \times \tilde{G}_n
$$

and

$$
\delta_i: D(H_i) \to D(H_{i-1}), \qquad \tilde{\delta}_i: D(\tilde{H}_i) \to D(\tilde{H}_{i-1})
$$

be the canonical embeddings. Applying Theorem 8.4 under consideration of Eq. (14) we get the isomorphism $\beta_2 := \tilde{\delta}_2^{-1} \circ \alpha \circ \delta_2 : D(H_2) \to D(H_2)$. Applying Theorem 8.4 again we get the isomorphism $\beta_3 := \tilde{\delta}_3^{-1} \circ \beta_2 \circ \delta_3 : D(H_3) \to D(\tilde{H}_3)$. If we go on like this we obtain the isomorphism

$$
\beta_n := \tilde{\delta}_n^{-1} \circ \cdots \circ \tilde{\delta}_2^{-1} \circ \alpha \circ \delta_2 \circ \cdots \circ \delta_n : D(G_n) \to D(\tilde{G}_n)
$$

where $\delta_2\circ\cdots\circ\delta_n:D(G_n)\to D(G)$ and $\tilde{\delta}_2\circ\cdots\circ\tilde{\delta}_n:D(\tilde{G}_n)\to D(\tilde{G})$ are the canonical embeddings. In this way we get isomorphisms $D(G_i) \to D(\tilde{G}_i)$ for all $i = 1, ..., n$. If we let $\tau_i : D(G_i) \to D(G)$ and $\tilde{\tau}_i : D(\tilde{G}_i) \rightarrow D(\tilde{G})$ be the canonical embeddings, the maps

$$
\alpha_i := \tilde{\tau}_i^{-1} \circ \alpha \circ \tau_i : D(G_i) \to D(\tilde{G}_i), \quad i = 1, \ldots, n,
$$

are these isomorphisms. Let $x = x_1 \otimes \cdots \otimes x_n \in D(G_1) \otimes \mathbb{Z} \cdots \otimes \mathbb{Z} D(G_n)$. Then

$$
\alpha(x) = \alpha((x_1 \otimes 1_{D(G_2)} \otimes \cdots \otimes 1_{D(G_n)}) \cdot \cdots \cdot (1_{D(G_1)} \otimes \cdots \otimes 1_{D(G_{n-1})} \otimes x_n))
$$

= $(\alpha \circ \tau_1)(x_1) \cdot \cdots \cdot (\alpha \circ \tau_n)(x_n) = (\tilde{\tau}_1 \circ \alpha_1)(x_1) \cdot \cdots \cdot (\tilde{\tau}_n \circ \alpha_n)(x_n)$
= $\alpha_1(x_1) \otimes \cdots \otimes \alpha_n(x_n).$

Therefore $\alpha = \alpha_1 \otimes \cdots \otimes \alpha_n$. \Box

The next result is concerned with the group of torsion units of *D(G)* where *G* is a nilpotent group of odd order.

Theorem 8.6. Let G be a nilpotent group of odd order. Then $U_T(D(G)) \cong \hat{G} \times \mathcal{C}_2$.

Proof. We assume $U_T(D(G)) \ncong \hat{G} \times C_2$. By Theorem 4.6 with $S = 1$, G, there exists

$$
0 \neq u = \sum_{[H,\varphi]_G \in \mathcal{M}(G)/G} z_{[H,\varphi]}[H,\varphi]_G \in D(G), \quad z_{[H,\varphi]} \in \mathbb{Z},
$$

with $\sum_{k=1}^{\lfloor 2|G|} {\binom{2|G|}{k}} u^k = 0$ and $z_{[G,\varphi]} = 0$ for all $\varphi \in \hat{G}$. Thus $1 + u \in U_T(D(G))$. Choose $U \le G$ such that $|U|$ is maximal with the property $z_{[U,\psi]}\neq 0$ for some $\psi\in\hat{U}$. Then $U< G$. Since $\pm\hat{U}$ is the set of all torsion units in $\mathbb{Z} \hat{U}$ there exists $\tau \in \hat{U}$ with

$$
\rho_U(u)=\sum_{[U,\varphi]_G\in \mathcal{M}(G)/G}z_{[U,\varphi]} \sum_{gU\in N_G(U)/U}{}^g\varphi=\pm\tau-1.
$$

In case $\tau \neq 1$ we get $z_{[U,1]} = -1$ and $(N_G(U) : U) = 1$. Since G is nilpotent, $(N_G(U) : U) \neq 1$ holds in contradiction to the above case. Therefore $τ = 1$. Since $(N_G(U): U) \neq 0 \pmod{2}$ the case $ρ_U(u) = -2$ is not possible. Therefore $\rho_U(u) = 0$. This implies $z_{[U,\varphi]} = 0$ for all $\varphi \in \hat{U}$ contradicting the assumption $z_{[U,\psi]} \neq 0$. Therefore $U_T(D(G)) \cong \hat{G} \times C_2$. \Box

Corollary 8.7. Let G and \tilde{G} be finite nilpotent groups with $D(G) \cong D(\tilde{G})$. Then the 2'-Hall subgroups of G/G' *and G*˜ */G*˜ *are isomorphic.*

Proof. Let *H* and \tilde{H} be the 2'-Hallgroups of *G* and \tilde{G} . By Theorem 8.4 we obtain the isomorphy $D(H) \cong D(H)$. Moreover we get $H/H' \times C_2 \cong H/H' \times C_2$ by Theorem 8.6. Therefore we get $H/H' \cong$ *H̃*/*H[″].* □

For *p*-nilpotent groups we get the following result.

Theorem 8.8. Let G and \tilde{G} be finite groups with $D(G) \cong D(\tilde{G})$. Assume that for a prime divisor p of $|G|$ the *Sylow p-subgroups of G and* \tilde{G} *are cyclic. If G is p-nilpotent then* \tilde{G} *is p-nilpotent.*

Proof. Let *P* be a Sylow *p*-subgroup of *G* and let $\alpha : D(\tilde{G}) \rightarrow D(G)$ be an isomorphism. By Proposition 3.7, $\alpha(e_{(1,1)}^{D(\tilde{G})})=e_{(U,u)}^{D(G)}$ holds with a normal abelian subgroup U of G and $u \in Z(G)$. Let *H* := $O^p(U)$ and $h := u_{p'} \in Z(G)$. By Proposition 7.1 we obtain

$$
\alpha(e_{(1,1)}^{D(\tilde{G}),p}) = \sum_{[K,kK']_G \in I} e_{(K,kK')}^{D(G)} \tag{15}
$$

with

$$
I = \left\{ \left[K, kK' \right]_G \in \mathcal{D}(G)/G \colon K = HV, \ V \leqslant P, \ k = hv, \ v \in V \right\}.
$$

Let $V \leq P$, $v, w \in V$ and $K := HV$. Assume $[K, hvK']_G = [K, hwK']_G$. We first prove $v = w$.

There exists $gK' \in N_G(K)/K'$ with $^g(hv)K' = hwK'$. Since $h \in Z(G)$ we get $^g vK' = wK'$. Since *P* is cyclic $K/H \cong V$ is cyclic. Thus $K' \leq H$ and $VK'/K' \cong V$. In particular VK'/K' is a cyclic *p*-subgroup of $N_G(K)/K'$. It holds $vK', wK' \in VK'/K'$, and since $|\langle wK' \rangle| = |\langle^g vK' \rangle|$ we get $\langle wK' \rangle = \langle vK' \rangle =: T$. Thus $gK' \in N_{N_G(K)/K'}(T)$. Since *G* is *p*-nilpotent the subgroup $N_G(K)$ is *p*nilpotent and therefore $N_G(K)/K'$ is *p*-nilpotent. By the *p*-nilpotency-criteria of Frobenius follows that $N_{N_C(K)/K'}(T)/C_{N_C(K)/K'}(T)$ is a p-group. Since P is abelian every Sylow p-subgroup of $N_G(K)/K'$ is abelian. Therefore a Sylow p-subgroup of $N_G(K)/K'$ is included in $C_{N_G(K)/K'}(T).$ Thus $|N_G(K)/K'|_p$ divides $|C_{N_G(K)/K'}(T)|$. It follows that $N_{N_G(K)/K'}(T) = C_{N_G(K)/K'}(T)$ and therefore $wK' = vK'$. We get $v^{-1}w$ ∈ *K'* ∩ *V* = 1. Thus $v = w$.

Let $|P| = p^n$ with $n \in \mathbb{N}$. For every divisor p^m , $m \in \mathbb{N}$, of $|P|$ there exists exactly one subgroup $V\leqslant P$ with $|V|=p^m.$ By the above part of the proof there exist exactly p^m different orbits $[HV, hv(HV)']_G$, $v \in V$, for every subgroup $V \leq P$ with $|V| = p^m$. Therefore

$$
|I| = \sum_{i=0}^{n} p^{i} = \frac{p^{n+1} - 1}{p - 1}.
$$

Let \tilde{P} be a Sylow *p*-subgroup of \tilde{G} . Since \tilde{P} is cyclic we get

$$
e_{(1,1)}^{D(\tilde{G}),p} = \sum_{[\tilde{K},\tilde{k}\tilde{K}']_{\tilde{G}} \in J} e_{(\tilde{K},\tilde{k}\tilde{K}')}^{D(\tilde{G})}
$$

with

$$
J = \left\{ \left[\tilde{V}, \tilde{v} \right]_{\tilde{G}} \in \mathcal{D}(\tilde{G}) / \tilde{G} : \tilde{V} \leqslant \tilde{P}, \tilde{v} \in \tilde{V} \right\}
$$

by Theorem 6.4. Since $|\tilde{P}| = p^n$ it holds $|J| \leq \sum_{i=0}^n p^i$, and by Eq. (15) we get $|I| = |J|$. Hence $[\tilde{V},\tilde{v}]_{\tilde{G}}=[\tilde{W},\tilde{w}]_{\tilde{G}}$ with $\tilde{V},\tilde{W}\leqslant\tilde{P},\ \tilde{v}\in\tilde{V},\ \tilde{w}\in\tilde{W}$ if and only if $\tilde{V}=\tilde{W}$ and $\tilde{v}=\tilde{w}$. Therefore $N_{\tilde{G}}(\tilde{V})=C_{\tilde{G}}(\tilde{V})$ for all $\tilde{V}\leqslant\tilde{P}.$ In particular $N_{\tilde{G}}(\tilde{P})=C_{\tilde{G}}(\tilde{P}).$ Thus \tilde{G} is p-nilpotent by the p-nilpotency criterion of Burnside. \Box

Acknowledgments

This paper contains a part of the author's doctoral thesis which was supervised by Professor Burkhard Külshammer.

References

- [1] R. Boltje, A canonical Brauer induction formula, Astérisque 181–182 (1990) 31–59.
- [2] R. Boltje, A general theory of canonical induction formulae, J. Algebra 206 (1) (1998) 293–343.
- [3] R. Boltje, Representation rings of finite groups, their species and idempotent formulae, J. Algebra, in press.
- [4] R. Boltje, Monomial resolutions, J. Algebra 246 (2) (2001) 811–848.
- [5] R. Boltje, Integrality conditions for elements in ghost rings of generalized Burnside rings, J. Algebra, in press.
- [6] R. Brandl, T. Huckle, On the isomorphism problem for Burnside rings, Proc. Amer. Math. Soc. 123 (12) (1995) 3623–3626. [7] M. Deiml, Zur Darstellungstheorie von Darstellungsringen, Dissertation, Jena 1997.
- [8] A. Dress, The ring of monomial representations. I. Structure theory, J. Algebra 18 (1971) 137–157.
- [9] B. Fotsing, B. Külshammer, Modular species and prime ideals for the ring of monomial representations of a finite group, Comm. Algebra 33 (10) (2005) 3667–3677.
- [10] D. Gluck, Idempotent formula for the Burnside algebra with applications to the *p*-subgroup simplicial complex, Illinois J. Math. 25 (1) (1981) 63–67.
- [11] T. Hawkes, I.M. Isaacs, M. Özaydin, On the Möbius function of a finite group, Rocky Mountain J. Math. 19 (4) (1989) 1003– 1034.
- [12] G. Higman, The units of group rings, Proc. London Math. Soc. 46 (1940) 231-248.
- [13] B. Huppert, Endliche Gruppen I, Springer-Verlag, 1967.
- [14] W. Kimmerle, F. Luca, A.G. Raggi-Cárdenas, Irreducible components and isomorphisms of the Burnside ring, preprint, 2006.
- [15] T. Matsuda, On the unit groups of Burnside rings, Jpn. J. Math. 8 (1) (1982) 71–93.
- [16] A.G. Raggi-Cárdenas, Groups with isomorphic Burnside rings, Arch. Math. 84 (3) (2005) 193–197.
- [17] V.P. Snaith, Explicit Brauer Induction. With Applications to Algebra and Number Theory, Cambridge University Press, 1994.