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In this paper we are concerned with the problem of finding
properties of a finite group G in the ring D(G) of monomial
representations of G . We determine the conductors of the primitive
idempotents of Q(ζ ) ⊗Z D(G), where ζ ∈ C is a primitive |G|-
th root of unity, and prove a structure theorem for the torsion
units of D(G). Using these results we show that an abelian
group G is uniquely determined by the ring D(G). We state an
explicit formula for the primitive idempotents of Z[ζ ]p ⊗Z D(G),
where Z[ζ ]p is a localization of Z[ζ ]. We get further results for
nilpotent and p-nilpotent groups and we obtain properties of
Sylow subgroups of G from D(G).
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1. Introduction

The ring D(G) of monomial representations of a finite group G has been investigated by Andreas
Dress and Robert Boltje (the letter D is paying tribute to Dress who studied similar rings in [8]).
A motivation to consider this ring arised from the Brauer induction theorem which says that there is
a canonical way of writing complex characters as an integral linear combination of induced linear
characters (cf. [1,17]). Detailed information about construction, species and idempotent formulae of
D(G) can be found in [3].

We are mainly interested in finding properties of G by analyzing the structure of D(G). Since the
Burnside ring B(G) can be embedded in D(G), there is a connection to the similar problem concerning
the ring B(G). This problem has been studied in [6,14,16], among others. Considering results for the
isomorphism problem for Burnside rings it seems to be useful to work with primitive idempotents of
R ⊗Z D(G), where R is a subring of C, with conductors of such idempotents and with torsion units
of D(G).
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In the second section we give a survey over the construction of D(G), the species and the prim-
itive idempotents of Q(ζ ) ⊗Z D(G) (ζ ∈ C primitive |G|-th root of unity). The third section contains
the determination of the conductors of the primitive idempotents of Q(ζ ) ⊗Z D(G) (i.e. the minimal
natural number ne ∈ N for a primitive idempotent e ∈ Q(ζ ) ⊗Z D(G) such that ne · e ∈ Z[ζ ] ⊗Z D(G))
and a first application concerning the order of the center of the group G . Next we prove a structure
theorem for the torsion units of D(G). In Section 5 we show that an abelian group G is uniquely
determined by the ring D(G). In the sixth section we state an explicit formula for the primitive idem-
potents of Z[ζ ]p ⊗Z D(G), where p is a maximal ideal of Z[ζ ] and Z[ζ ]p is the localization of Z[ζ ]
at p. Using this result we obtain properties of the Sylow subgroups of G from D(G). Among others
we show that the case D(G) ∼= D(G̃), where G has an abelian Sylow p-subgroup, implies the com-
mutativity of the Sylow p-subgroups of G̃ . In the last section we consider nilpotent and p-nilpotent
groups. Among others we show that the ring D(G) detects nilpotency of G .

Notation. For a group element g ∈ G we write ord(g) for the order of g . Let G p be the set of all
p-elements and G p′ be the set of all p-regular elements of G (p prime). For g ∈ G let gp ∈ G p and
gp′ ∈ G p′ be the uniquely determined elements with g = gp gp′ = gp′ gp . For a group G we denote by
G ′ the commutator subgroup of G and by Z(G) the center of G . For a subgroup H of G we use the
notation H � G . We sometimes write H < G in case H is a proper subgroup and H � G in case H is
a normal subgroup of G . For H � G let CG(H) be the centralizer and NG(H) be the normalizer of H
in G . For g ∈ G we set g H := g H g−1 and H g := g−1 H g . Moreover we set Ĝ := Hom(G,C×).

2. The ring of monomial representations

Let G be a finite group. The monomial category of G is denoted by monCG . The objects of monCG
are pairs (V , L) consisting of a finitely generated CG-module V and a set L of one-dimensional
subspaces of V with

⊕
L∈L L = V and gL ∈ L for g ∈ G and L ∈ L. A morphism f : (V , L) → (W , M)

of monCG is a homomorphism f : V → W of CG-modules such that for all L ∈ L there exists M ∈
M with f (L) ⊆ M . In [4] a morphisms between monomial objects is defined in a different way,
but this will not affect the results below. Two objects (V , L) and (W , M) are isomorphic if there
exists a morphism f : (V , L) → (W , M) such that the according CG-module homomorphism is an
isomorphism. There is a direct sum and a tensor product on monCG defined by

(V , L) ⊕ (W , M) := (V ⊕ W , L ∪ M)

and

(V , L) ⊗ (W , M) := (
V ⊗C W , {L ⊗C M: L ∈ L, M ∈ M})

for objects (V , L), (W , M) ∈ monCG . An object (V , L) of monCG with V 
= 0 is indecomposable if
(V , L) = (V 1, L1) ⊕ (V 2, L2) with objects (V 1, L1), (V 2, L2) ∈ monCG implies V 1 = 0 or V 2 = 0.

We denote by [V , L] the isomorphism class of the object (V , L) of monCG . The ring of monomial
representations D(G) is the Z-module generated by the isomorphism classes of the objects of monCG
relative to the relations

[V , L] + [W , M] = [
(V , L) ⊕ (W , M)

]
and

[V , L] · [W , M] = [
(V , L) ⊗ (W , M)

]
,

(V , L), (W , M) ∈ monCG . Then D(G) is a unitary ring with identity [C, {C}] (we consider C as the
trivial CG-module). Moreover D(G) is a free Z-module, and the isomorphism classes of the indecom-
posable objects of monCG form a Z-basis of D(G) (cf. [4,9]).
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Let H � G and ϕ ∈ Ĥ . The CG-module Cϕ is the C-vectorspace C with the underlying G-action
defined by g ∗ c := ϕ(g) · c, g ∈ G , c ∈ C. Moreover for g ∈ G we define a linear character gϕ ∈ ĝ H by

gϕ
(gh

) := ϕ(h), h ∈ H .

We can describe the indecomposable objects of monCG in the following way (cf. [4,9]):

Proposition 2.1.

(i) Let H � G and ϕ ∈ Ĥ . Then (indG
H Cϕ, {g ⊗ Cϕ : g ∈ G}) is an indecomposable object in monCG .

(ii) Let H, U � G, ϕ ∈ Ĥ and ψ ∈ Û . The objects (indG
H Cϕ, {g ⊗ Cϕ : g ∈ G}) and (indG

U Cψ, {g ⊗ Cψ :
g ∈ G}) are isomorphic if and only if there exists g ∈ G with g H = U and gϕ = ψ .

(iii) Every indecomposable object in monCG is isomorphic to an object (indG
H Cϕ, {g ⊗ Cϕ : g ∈ G}) with

H � G and ϕ ∈ Ĥ .

From now on we identify the object (indG
H Cϕ, {g ⊗ Cϕ : g ∈ G}) with the monomial pair (H,ϕ).

We denote by

M(G) := {
(H,ϕ): H � G, ϕ ∈ Ĥ

}
the set of all monomial pairs of G and define by g(H,ϕ) := (g H, gϕ) an action of G on M(G). We
write [H,ϕ]G for the G-orbit of (H,ϕ) ∈ M(G) and we set

M(G)/G := {[H,ϕ]G : (H,ϕ) ∈ M(G)
}
.

Moreover for (H,ϕ), (U ,ψ) ∈ M(G) we write (H,ϕ) � (U ,ψ) if H � U and ψ|H = ϕ . Therefore we
get a partial order on M(G). By

NG(H,ϕ) := {
g ∈ G: g(H,ϕ) = (H,ϕ)

}
we denote the stabilizer of (H,ϕ) ∈ M(G) in G . In particular we get the inclusion

H � NG(H,ϕ) � NG(H).

By Proposition 2.1 we can identify the isomorphism classes of indecomposable objects with the
elements of M(G)/G . Thus the ring D(G) is the free abelian group generated by the G-orbits
[H,ϕ]G ∈ M(G)/G together with the multiplication

[H,ϕ]G · [U ,ψ]G =
∑

H gU∈H\G/U

[
H ∩ g U ,ϕ|H∩g U · gψ|H∩g U

]
G

for [H,ϕ]G , [U ,ψ]G ∈ M(G)/G . In particular D(G) is finitely generated.
For a commutative unitary ring R and H � G we set

D R(H) := R ⊗Z D(H).

Let K � H � G and g ∈ G . The conjugation map cg,H is defined by

cg,H : D R(H) → D R
(g H

)
,

[U ,ϕ]H → [g U , gϕ
]

g ,
H
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the restriction map resH
K is defined by

resH
K : D R(H) → D R(K ),

[U ,ϕ]H →
∑

KhU∈K\H/U

[
K ∩ hU , hϕ|K∩h U

]
K

and the induction map indH
K is defined by

indH
K : D R(K ) → D R(H),

[U ,ϕ]K → [U ,ϕ]H .

The conjugation and the restriction maps are R-algebra homomorphisms. The induction maps are
morphisms of the additive groups. Together with these operations the functor D R becomes an R-
Green functor on G (cf. [4]).

A species of D(G) is a ring homomorphism s : D(G) → C. In the following we give a short survey
on the construction of the species of D(G) according to [3].

Let R(G) be the ordinary character ring of G . For g ∈ G we define the ring homomorphism

tg : R(G) → C,

ϕ → ϕ(g).

For H � G we define the ring homomorphism

πH : D(H) → R
(

H/H ′),
[U ,ψ]H →

{
ψ̄ if U = H,

0 otherwise,

where ψ̄ ∈ Ĥ/H ′ is defined by ψ̄(hH ′) := ψ(h). We set

D(G) := {(
H,hH ′): H � G, h ∈ H

}
and define an action of G on D(G) by g(H,hH ′) := (g H, ghg H ′) for g ∈ G . We write [H,hH ′]G for the
G-orbit of (H,hH ′) ∈ D(G) and we set

D(G)/G := {[
H,hH ′]

G :
(

H,hH ′) ∈ D(G)
}
.

The stabilizer of (H,hH ′) ∈ D(G) in G is denoted by

NG
(

H,hH ′) := {
g ∈ G: g(H,hH ′) = (

H,hH ′)}.
Moreover we obtain the inclusion

H � HCG(H) � NG
(

H,hH ′) � NG(H).

For every element (H,hH ′) ∈ D(G) we get a ring homomorphism

sD(G)
′ := thH ′ ◦ πH ◦ resG

H : D(G) → D(H) → R
(

H/H ′) → C.

(H,hH )
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In particular the images of the elements [U ,ψ]G ∈ M(G)/G are given by

sD(G)

(H,hH ′)
([U ,ψ]G

) =
∑

gU∈G/U
H�g U

gψ(h).

We get the set of all species of D(G) by this construction. Moreover sD(G)

(H,hH ′) = sD(G)

(U ,uU ′) if and only
if [H,hH ′]G = [U , uU ′]G . Thus there is a 1-1-correspondence between the species of D(G) and the
elements of D(G)/G . Moreover for H � G , (U , uU ′) ∈ D(H) and g ∈ G it holds

sD(g H)

(g U ,g ug U ′) ◦ cg,H = sD(H)

(U ,uU ′) and sD(H)

(U ,uU ′) ◦ resG
H = sD(G)

(U ,uU ′).

Let ζ ∈ C be a primitive |G|-th root of unity and m := |D(G)/G|. The map

sD(G) :=
∏

[H,hH ′]G∈D(G)/G

sD(G)

(H,hH ′) : D(G) → Z[ζ ]m

is a ring monomorphism. Thus we can identify the ring D(G) with a subring of Z[ζ ]m . The image of
M(G)/G under the map sD(G) is called species table of D(G).

If we extend D(G) with the coefficient ring Q(ζ ), we get a ring isomorphism DQ(ζ )(G) ∼= Q(ζ )m . If
we extend the species linearly to DQ(ζ )(G), the primitive idempotents of DQ(ζ )(G) are the elements

eD(G)

(H,hH ′) ∈ DQ(ζ )(G), (H,hH ′) ∈ D(G), determined by the property

sD(G)

(U ,uU ′)
(
eD(G)

(H,hH ′)
) =

{
1 if [U , uU ′]G = [H,hH ′]G ,

0 otherwise.

An explicit formula for the primitive idempotents of DQ(ζ )(G) is given by

eD(G)

(H,hH ′) = |H ′|
|NG(H,hH ′)||H|

∑
L�H

|L|μ(L, H)
∑
ϕ∈Ĥ

ϕ
(
h−1)[L,ϕ|L]G ,

(
H,hH ′) ∈ D(G) (1)

(cf. [3]). The map μ : V (G) × V (G) → Z is called Möbius function which is recursively defined by∑
H�K�U μ(H, K ) = 0 for H < U , μ(H, H) = 1 and μ(H, U ) = 0 for H 
� U (H, U ∈ V (G)) where

V (G) is the subgroup lattice of G .
Considering isomorphism problems, the following fact will be very useful. Let G̃ be another finite

group. For an isomorphism α : D(G) → D(G̃) and (H,hH ′) ∈ D(G) there exists (H̃, h̃H̃ ′) ∈ D(H̃) with

sD(G)

(H,hH ′) = sD(G̃)

(H̃,h̃H̃ ′)
◦ α.

Another important role plays the embedding of the Burnside ring into the ring of monomial repre-
sentations. We will introduce the Burnside ring as a subring of D(G) because for further results it is
not necessary to work with the theory of G-sets (cf. [3]).

The free abelian subgroup generated by the elements [H,1]G ∈ M(G)/G , H � G , form a subring
of D(G), the Burnside ring B(G) of G . The multiplication in B(G) is given by

[H,1]G · [U ,1]G =
∑

H gU∈H\G/U

[
H ∩ g U ,1

]
G .

For a commutative unitary ring R and H � G we set

B R(H) := R ⊗Z B(H).
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Since the conjugation maps, restriction maps and induction maps on D R(H) yield corresponding maps
on B R(H), the functor B R becomes a R-Green functor on G .

We get the species of B(G) by restricting the species of D(G). Therefore, the species of B(G) are
given by

sB(G)
H : B(G) → Z,

[U ,1]G →
∑

gU∈G/U
H�g U

1

for H � G . Moreover sB(G)
H = sB(G)

K for H, K � G if and only if H = g K for some g ∈ G . The primitive

idempotents of BQ(G) are exactly the elements eB(G)
H ∈ BQ(G) (H � G) with

sB(G)
U

(
eB(G)

H

) =
{

1 if U =G H,

0 else.

An explicit formula for the primitive idempotents eB(G)
H is given by

eB(G)
H = 1

|NG(H)|
∑

U�H

|U |μ(U , H)[U ,1]G (2)

(cf. [10]).

3. The conductors of the primitive idempotents

In the following let G always be a finite group and ζ ∈ C be a |G|-th root of unity. In this section
we determine the conductors of the primitive idempotents of DQ(ζ )(G). The conductor of a primitive
idempotent e ∈ DQ(ζ )(G) is the minimal natural number ne ∈ N with ne · e ∈ DZ[ζ ](G). First we state
a result about restricted and induced primitive idempotents.

Lemma 3.1. Let H � G and h ∈ H.

(i) resG
H (eD(G)

(H,hH ′)) = ∑
[H,uH ′]H ∈D(H)/H
[H,uH ′]G =[H,hH ′]G

eD(H)

(H,uH ′) .

(ii) indG
H (eD(H)

(H,hH ′)) = (NG(H,hH ′) : H)eD(G)

(H,hH ′) .

(iii) indG
H (resG

H (eD(G)

(H,hH ′))) = (NG(H) : H)eD(G)

(H,hH ′) .

Proof. (i) It holds

sD(H)

(K ,kK ′)
(
resG

H

(
eD(G)

(H,hH ′)
)) = sD(G)

(K ,kK ′)
(
eD(G)

(H,hH ′)
) = 1

for (K ,kK ′) ∈ D(H) if and only if (K ,kK ′) and (H,hH ′) are conjugate in G .
(iii) Let [K ,ψ]G ∈ M(G)/G . Then

indG
H

(
resG

H

([K ,ψ]G
)) =

∑
H g K∈H\G/K

[
H ∩ g K , gψ|H∩g K

]
G = [H,1]G [K ,ψ]G .
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Thus

indG
H

(
resG

H

(
eD(G)

(H,hH ′)
)) = [H,1]G eD(G)

(H,hH ′) = sD(G)

(H,hH ′)
([H,1]G

)
eD(G)

(H,hH ′) = |NG(H)|
|H| eD(G)

(H,hH ′).

(ii) Let (H, v H ′) ∈ D(G) and g ∈ G with g(H, v H ′) = (H,hH ′). Since sD(H)

(H,hH ′) ◦ cg,H = sD(H)

(H,v H ′) , we
get

cg,H
(
eD(H)

(H,v H ′)
) = eD(H)

(H,hH ′),

and since indG
H = cg,G ◦ indG

H = indG
H ◦cg,H , we obtain

indG
H

(
eD(H)

(H,v H ′)
) = indG

H

(
eD(H)

(H,hH ′)
)
.

Thus

indG
H

(
resG

H

(
eD(G)

(H,hH ′)
)) = indG

H

( ∑
[H,uH ′]H ∈D(H)/H
[H,uH ′]G=[H,hH ′]G

eD(H)

(H,uH ′)

)
= |NG(H)|

|NG(H,hH ′)| indG
H

(
eD(H)

(H,hH ′)
)
.

Together with part (iii) we get indG
H (eD(H)

(H,hH ′)) = (NG(H,hH ′) : H)eD(G)

(H,hH ′) . �
For using some important results of Boltje we have to introduce the ghost ring of the representa-

tion ring D(G) (cf. [5]). Let

x = (xH )H�G ∈
∏

H�G

ZĤ

with xH = ∑
ϕ∈Ĥ zH,ϕϕ (zH,ϕ ∈ Z, H � G , ϕ ∈ Ĥ). For H � G and ϕ ∈ Ĥ we define

x(H,ϕ) := zH,ϕ.

Note that this is well defined since the set of linear characters of H is a basis of ZĤ . The subring

D̂(G) :=
( ∏

H�G

ZĤ

)G

:=
{

x ∈
∏

H�G

ZĤ: x(H,ϕ) = x
(g(H,ϕ)

) ∀(H,ϕ) ∈ M(G) ∀g ∈ G

}

of
∏

H�G ZĤ is called the ghost ring of D(G). Identifying R(H/H ′) with ZĤ for H � G , we get a ring
monomorphism

ρ := (
πH ◦ resG

H

)
H�G : D(G) → D̂(G).

Moreover we set

ρH := πH ◦ resH : D(G) → ZĤ



434 M. Müller / Journal of Algebra 333 (2011) 427–457
for H � G . Note that the image of a basis element [U , λ]G ∈ M(G)/G under this map is given by

ρH
([U , λ]G

) =
∑

gU∈G/U
H�g U

gλ|H ∈ ZĤ .

By linear extension we get an isomorphism ρ : Q ⊗Z D(G) → Q ⊗Z D̂(G) (cf. [2]). We will use the
following integrality criteria for elements of the ghost ring:

Proposition 3.2. Let x ∈ D̂(G). Then x ∈ ρ(D(G)) if and only if the congruence∑
(H,ϕ)�(I,ψ)∈M(NG (H,ϕ))

μ(H, I) · x(I,ψ) ≡ 0
(
mod

(
NG(H,ϕ) : H

))
holds for all (H,ϕ) ∈ M(G).

Proof. See [5], Cor. 2.8. �
We also make use of the following two lemmata:

Lemma 3.3. Let H � G and Ĥ0 := {ϕ|H : ϕ ∈ Ĝ}. For ψ ∈ Ĥ0 we set Aψ := {ϕ ∈ Ĝ: ϕ|H = ψ}.

(i) Ĥ0 is a subgroup of Ĥ with Ĥ0 ∼= HG ′/G ′ . Moreover |Aψ | = (G : HG ′).

(ii) Let g ∈ G. Then
∑

ϕ∈Aψ
ϕ(g) =

{
(G : HG ′)ψ(g) if gG ′ ∈ HG ′/G ′,
0 else.

Part (i) is a well known consequence of the theory of irreducible characters of abelian groups (cf.
[13]) and part (ii) can be easily proved by the second orthogonality relation.

Lemma 3.4. Let H � G and m be the squarefree part of (G : G ′H). Then (NG(H) : H) divides mμ(H, G).

Proof. See [11], Thm. 4.5. �
We can now state the main result of this section.

Theorem 3.5. Let (H,hH ′) ∈ D(G). Then (NG(H,hH ′) : H ′) is the conductor of eD(G)

(H,hH ′) .

Proof. We first prove that m := (G : G ′) is the conductor of eD(G)

(G,gG ′) for g ∈ G . By the explicit formula
for the primitive idempotents (1) we obtain

eD(G)

(G,gG ′) = |G ′|
|G|2

∑
L�G

|L|μ(L, G)
∑
ϕ∈Ĝ

ϕ
(

g−1)[L,ϕ|L]G

= |G ′|
|G|

∑
ϕ∈Ĝ

ϕ
(

g−1)[G,ϕ]G + |G ′|
|G|2

∑
L<G

|L|μ(L, G)
∑
ϕ∈Ĝ

ϕ
(

g−1)[L,ϕ|L]G .

We conclude that the coefficient of [G,1]G in eD(G)

(G,gG ′) is m−1. Therefore m divides the conductor of

eD(G)

(G,gG ′) for all g ∈ G .
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Let f ∈ BQ(G) be the primitive idempotent with sB(G)
G ( f ) = 1 and sB(G)

H ( f ) = 0 for H < G .
Let C(G) be a system of representatives for the conjugacy classes of subgroups of G . Then f =∑

U∈C(G) aU [U ,1]G with uniquely determined coefficients aU ∈ Q. Let 1 = λ1, . . . , λm be the linear
characters of G . For i = 1, . . . ,m we define

xi :=
∑

U∈C(G)

aU [U , λi|U ]G ∈ DQ(G).

Note that x1 = f . We now show that ρH (xi) = 0 in the case H < G and ρG(xi) = λi for i = 1, . . . ,m.
It holds

0 = sB(G)
H (x1) = (

thH ′ ◦ πH ◦ resG
H

)
(x1)

for H < G and all h ∈ H . Therefore

ρH (x1) = (
πH ◦ resG

H

)
(x1) = 0.

Moreover gλi = λi for g ∈ G and i = 1, . . . ,m. Thus we get

ρH
([U , λi|U ]G

) =
∑

gU∈G/U
H�g U

gλi|H =
∑

gU∈G/U
H�g U

λi|H = λi|HρH
([U ,1]G

)

for H, U � G and i = 1, . . . ,m and we obtain

ρH (xi) =
∑

U∈C(G)

aU ρH
([U , λi|U ]G

) = λi|H
∑

U∈C(G)

aU ρH
([U ,1]G

) = λi|HρH (x1) = 0

for H < G and i = 1, . . . ,m. It holds

ρG(xi) = λi

∑
U∈C(G)

aU ρG
([U ,1]G

) = λiaG

for i = 1, . . . ,m, and by the explicit formula (2) for the primitive idempotents of BQ(G) we get aG = 1.
Thus ρG(xi) = λi and

sD(G)

(H,hH ′)(xi) =
{

λi(h) if H = G,

0 else.

Moreover ρ(xi) ∈ D̂(G) for i = 1, . . . ,m. By the second orthogonality relation we obtain

sD(G)

(H,hH ′)

(
1

m

m∑
i=1

λi
(

g−1)xi

)
=

{
1 if (H,hH ′) = (G, gG ′),
0 else

and therefore

eD(G)

(G,gG ′) = 1

m

m∑
i=1

λi
(

g−1)xi

for g ∈ G .
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We now show that the conductor of eD(G)

(G,1G ′) is equal to m. For i = 1, . . . ,m we set yi := ρ(xi) ∈
D̂(G). Then

yi(U , λ j|U ) =
{

1 if (U , λ j|U ) = (G, λi),

0 else
(3)

for U � G and i, j ∈ {1, . . . ,m}. By Proposition 3.2,
∑m

i=1 yi ∈ ρ(D(G)) holds if and only if the congru-
ence

∑
(H,ϕ)�(U ,ψ)∈M(NG (H,ϕ))

μ(H, U )

m∑
i=1

yi(U ,ψ) ≡ 0
(
mod

(
NG(H,ϕ) : H

))
(4)

holds for all (H,ϕ) ∈ M(G). Since ρU (xi) = 0 for U < G and i = 1, . . . ,m we get

m∑
i=1

yi(U ,ψ) = 0

for U < G . In the case (H,ϕ) ∈ M(G) with (H,ϕ) 
� (G, λi) for i = 1, . . . ,m and the case H � G

congruence (4) is fulfilled. Let (H,ϕ) ∈ M(G) with H � G and (H,ϕ) � (G, λ) for some λ ∈ Ĝ . In this
case we get exactly k := (G : HG ′) extensions of ϕ on G by Lemma 3.3(i). Let λi1 , . . . , λik (i1, . . . , ik ∈
{1, . . . ,m}) be these extensions. By equality (3) we obtain

∑
(H,ϕ)�(U ,ψ)∈M(NG (H,ϕ))

μ(H, U )

m∑
i=1

yi(U ,ψ) = μ(H, G)

k∑
j=1

yi j (G, λi j )

= μ(H, G)
(
G : HG ′).

By Lemma 3.4 (NG(H,ϕ) : H) divides (G : HG ′)μ(H, G). Thus congruence (4) holds for all (H,ϕ) ∈
M(G). Moreover

ρ
((

G : G ′)eD(G)

(G,1G ′)
) = ρ

(
m∑

i=1

xi

)
=

m∑
i=1

yi ∈ ρ
(

D(G)
)
.

Since ρ is injective we obtain (G : G ′)eD(G)

(G,1G ′) ∈ D(G). Therefore (G : G ′) is the conductor of eD(G)

(G,1G ′) .
For U � G let τU ,1, . . . , τU ,sU (sU = (U G ′ : G ′)) be the distinct restrictions λ1|U , . . . , λm|U . For j =

1, . . . , sU we set MτU , j := {ϕ ∈ Ĝ: ϕ|U = τU , j}. By Lemma 3.3(ii) we get

m∑
i=1

λi
(

g−1)[U , λi|U ]G =
sU∑
j=1

[U , τU , j]G

∑
ϕ∈MτU , j

ϕ
(

g−1)

=
{

(G : U G ′)
∑sU

j=1 τU , j(g−1)[U , τU , j]G if gG ′ ∈ U G ′/G ′,
0 else

for U � G and g ∈ G . Therefore

m∑
i=1

λi
(

g−1)xi =
∑

U∈C(G)

aU

m∑
i=1

λi
(

g−1)[U , λi|U ]G
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=
∑

U∈C(G)
gG ′∈U G ′/G ′

aU
(
G : U G ′) sU∑

j=1

τU , j
(

g−1)[U , τU , j]G

for g ∈ G . Note that this equation does not depend on the choice of C(G). Since

meD(G)

(G,1G ′) =
m∑

i=1

xi =
∑

U∈C(G)

aU
(
G : U G ′) sU∑

j=1

[U , τU , j]G ∈ D(G)

and [U , τU ,r]G 
= [U , τU ,t]G for r, t ∈ {1, . . . , sU } with r 
= t we get aU (G : U G ′) ∈ Z for U ∈ C(G). Thus

meD(G)

(G,gG ′) =
m∑

i=1

λi
(

g−1)xi ∈ DZ[ζ ](G).

Therefore m = (G : G ′) is the conductor of eD(G)

(G,gG ′) , g ∈ G .
Let (H,hH ′) ∈ D(G). By Lemma 3.1(ii) we obtain(

NG
(

H,hH ′) : H ′)eD(G)

(H,hH ′) = indG
H

((
H : H ′)eD(H)

(H,hH ′)
) ∈ DZ[ζ ](G).

Moreover the coefficient of [H,1]G in eD(G)

(H,hH ′) is equal to |H ′|/|NG(H,hH ′)|. Therefore

(NG(H,hH ′) : H ′) is the conductor of eD(G)

(H,hH ′) . �
We can now state the first consequences.

Theorem 3.6. The group order |G| is uniquely determined by D(G).

Proof. Let W ⊆ C be the set of all roots of unity and let O be the ring of the algebraic in-
tegers of Q(W ). Every eD(G)

(H,hH ′) is a primitive idempotent of DQ(W )(G) for (H,hH ′) ∈ D(G) and

(NG(H,hH ′) : H ′) is the minimal natural number n ∈ N with neD(G)

(H,hH ′) ∈ D O(G). Moreover |G| is the

conductor of eD(G)
(1,1) and therefore

|G| = min
{
n ∈ N: neD(G)

(H,hH ′) ∈ D O(G) for all
(

H,hH ′) ∈ D(G)
}
.

Thus the theorem is proved. �
The following proposition is an immediate consequence of Theorem 3.5.

Proposition 3.7. Let (H,hH ′) ∈ D(G). Then the conductor of eD(G)

(H,hH ′) ∈ DQ(ζ )(G) is equal to |G| if and only
if H is a normal abelian subgroup and h ∈ Z(G). Moreover G is abelian if and only if the conductors of the
primitive idempotents of DQ(ζ )(G) are equal to |G|.

Therefore the ring D(G) detects commutativity of a finite group. We now state an interesting
proposition concerning the orders of elements of the center of G .

Proposition 3.8. Let G and G̃ be finite groups and α : D(G) → D(G̃) be an isomorphism. Let h ∈ Z(G),

H := 〈h〉, n := |H| and α(eD(G)

(H,h)
) = eD(G̃)

(H̃,h̃H̃ ′) with (H̃, h̃H̃ ′) ∈ D(G̃). Then H̃ is a normal abelian subgroup

of G̃ , h̃ ∈ Z(G̃) and |〈h̃〉| ∈ {n,2n, n
2 }.
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Proof. The subgroup H is abelian and normal since h ∈ Z(G). Moreover the conductor of eD(G)

(H,h)
is

equal to |G|. We set

M := {
x ∈ DQ(G): sD(G)

(H,h)
(x) ∈ C is root of unity

}
.

It holds sD(G)

(H,h)
(x) ∈ Q(ζ ) for all x ∈ M , and the set {ord(ξ): sD(G)

(H,h)
(x) = ξ, x ∈ M} is bounded since ±ζ i

(i ∈ N) are the only roots of unity in Q(ζ ). We set

m := max
{

ord(ξ): sD(G)

(H,h)
(x) = ξ, x ∈ M

}
.

Let λ ∈ Ĥ with λ(h) = ω where ω ∈ C is a primitive n-th root of unity. Then

sD(G)

(H,h)

([H, λ]G
) =

∑
g H∈G/H

gλ(h) = (G : H)ω.

Thus y := (−1)n(G : H)−1[H, λ]G ∈ M . We obtain

ord
(
sD(G)

(H,h)
(y)

) =
{

2n if n odd,

n if n even.
(5)

We now show the equality m = ord(sD(G)

(H,h)
(y)). Let

x :=
∑

[U ,ψ]G∈M(G)/G

a[U ,ψ][U ,ψ]G ∈ M

with a[U ,ψ] ∈ Q for [U ,ψ]G ∈ M(G)/G . In case U � G with H 
�G U we get sD(G)

(H,h)
([U ,ψ]G) = 0. In

case [U ,ψ]G ∈ M(G)/G with H �G U we get H � U and ψ(h) ∈ Q(ω). Thus

sD(G)

(H,h)
(x) =

∑
[U ,ψ]G∈M(G)/G

a[U ,ψ]sD(G)

(H,h)

([U ,ψ]G
) =

∑
[U ,ψ]G∈M(G)/G

H�U

a[U ,ψ]
∑

gU∈G/U

ψ(h) ∈ Q(ω).

Since ωi (i ∈ N) are the only roots of unity in Q(ω) we get m � 2n in case n is odd and m � n in case
n is even. Together with Eq. (5) we obtain

m =
{

2n if n odd,

n if n even.

By Proposition 3.7, H̃ is abelian and normal and h̃ ∈ Z(G̃) since the conductor of eD(G̃)

(H̃,h̃)
is equal to

|G| = |G̃|. We set

M̃ := {
x̃ ∈ DQ(G̃): sD(G̃)

(H̃,h̃)
(x̃) ∈ C is root of unity

}
and

m̃ := max
{

ord(ξ): sD(G̃)

˜ ˜ (x̃) = ξ, x̃ ∈ M̃
}
.

(H,h)
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Let ñ := |〈h̃〉| and ω̃ ∈ C a primitive ñ-th root of unity. Since H̃ is abelian there exists a linear character
λ̃ of H̃ with λ̃(h̃) = ω̃. Analogous to the above descriptions we set ỹ := (−1)ñ(G̃ : H̃)−1[H̃, λ̃]G̃ ∈ M̃
and we obtain

ord
(
sD(G̃)

(H̃,h̃)
( ỹ)

) =
{

2ñ if ñ odd,

ñ if ñ even.

With the same argumentation as above we get

m̃ =
{

2ñ if ñ odd,

ñ if ñ even.

It holds α(M) = M̃ since sD(G̃)

(H̃,h̃)
◦ α = sD(G)

(H,h)
. Thus m = m̃ and n = ñ, n = 2ñ and 2n = ñ are the only

cases that could arise. Therefore ñ ∈ {n,2n, n
2 }. �

A direct consequence of this proposition is the following theorem:

Theorem 3.9. Let G and G̃ be finite groups with D(G) ∼= D(G̃). If 2 
= p is a prime number which divides
|Z(G)| then p divides |Z(G̃)|. If there exists an element of order 4 in Z(G) then 2 divides |Z(G̃)|.

4. The group of torsion units of D(G)

We develop some results on the group of torsion units of D(G) following results for the Burnside
ring in [15]. For a commutative unitary ring R let U T (R) be the group of torsion units of R .

Lemma 4.1. Let R be a commutative unitary ring and let A and B be additive subgroups of R with the following
properties:

R = A ⊕ B, A2 ⊆ A, B2 ⊆ B, AB ⊆ A, 1 ∈ B.

Therefore A is an ideal in R and B is a unitary subring of R. Moreover we require the existence of a natural
number n ∈ N with un = 1 for all u ∈ U T (R). Then:

(i) Every torsion unit u ∈ U T (R) is of the form u = b(1 + a) with uniquely determined elements b ∈ U T (B)

and a ∈ Ã := {a ∈ A:
∑n

k=1

(n
k

)
ak = 0}. Moreover every element b(1 + a) with b ∈ U T (R) and a ∈ Ã is a

torsion unit of R.
(ii) It is |U T (R)| = |U T (B)|| Ã| in case U T (R) is finite.

Proof. Ã is not empty since 0 ∈ Ã. Let b ∈ U T (B) and a ∈ Ã. Then

(
b(1 + a)

)n = (1 + a)n =
n∑

k=0

(
n

k

)
ak = 1.

Thus b(1 + a) ∈ U T (R).
Let u ∈ U T (R). Then there exist uniquely determined elements a ∈ A and b ∈ B with u = a + b.

Therefore

1 = un = (a + b)n =
n−1∑(

n

k

)
an−kbk + bn.
k=0
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Note that
∑n−1

k=0

(n
k

)
an−kbk ∈ A and bn − 1 ∈ B . We obtain bn − 1 = 0 since R = A ⊕ B . Thus b ∈ U T (B).

Let c := abn−1 ∈ A. Then b(1 + c) = b + a = u, and since

n∑
k=1

(
n

k

)
ck =

n∑
k=1

(
n

k

)(
abn−1)k =

n∑
k=1

(
n

k

)
akbn−k = (a + b)n − bn = 1 − bn = 0

we get c ∈ Ã.
Let b1,b2 ∈ U T (B) and c1, c2 ∈ Ã with b1(1 + c1) = b2(1 + c2). Then b1 − b2 + b1c1 − b2c2 = 0, and

since b1,b2 ∈ B , b1c1,b2c2 ∈ A and R = A ⊕ B it follows that b1 = b2 and c1 = c2 and the proof of
part (i) is complete. Part (ii) is a direct consequence of part (i). �

A partially ordered set (I,�) is called rigid if

(i) I contains a greatest element e and a smallest element 0.
(ii) Every subset Mi, j := {k ∈ I: k � i,k � j}, i, j ∈ I , contains a greatest element m(i, j). (Therefore

every two elements i, j ∈ I have an infimum in I .)

Proposition 4.2. Let R be a commutative unitary ring and (I,�) be a finite, partially ordered, rigid set. We
assume the existence of a family {R(i): i ∈ I} of additive subgroups of R with the following properties:

(1) R = ⊕
i∈I R(i) (direct sum of additive groups),

(2) R(e) = ZH with a finite subgroup H � U T (R),
(3) R(i)R( j) ⊆ R(m(i, j)) for all i, j ∈ I .

Furthermore there exists n ∈ N with un = 1 for all u ∈ U T (R). For i ∈ I\{e} we set

Ri :=
{

a ∈ R(i):
n∑

k=1

(
n

k

)
ak = 0

}
.

Then:

(i) Every torsion unit u ∈ U T (R) is of the form

u = g
∏

i∈I\{e}
(1 + ai)

with uniquely determined elements ai ∈ Ri and g ∈ ±H. Moreover every element of this form is a torsion
unit in R.

(ii) It is |U T (R)| = 2|H|∏i∈I\{e} |Ri | in case U T (R) is finite.

Proof. We show the first part of (i) by induction on |I|. In case |I| = 1 we get R = R(e) = ZH . Since
H is an abelian group, U T (ZH) = ±H (cf. [12]).

Let |I| = 2. Then R = R(0) ⊕ R(e). Since m(i, i) = i and m(i,0) = 0 for i ∈ I we obtain

R(0)R(0) ⊆ R(0), R(e)R(e) ⊆ R(e), and R(0)R(e) ⊆ R(0).

Moreover 1 ∈ R(e). By Lemma 4.1 (with A := R(0) and B := R(e)) every torsion unit u ∈ U T (R) is of
the form u = g(1 + a) with uniquely determined elements a ∈ R0 and g ∈ U T (R(e)) = U T (ZH) = ±H .
Moreover every element u = g(1 + a) with g ∈ ±H and a ∈ R0 is a torsion unit of R by Lemma 4.1.
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Let |I| � 3 and k be a maximal element of {i ∈ I: i < e}. We set

J := I\{k}, A :=
⊕

j∈ J\{e}
R( j) and B := R(e) ⊕ R(k).

Then

R = A ⊕ B, A2 ⊆ A, B2 ⊆ B, AB ⊆ A and 1 ∈ R(e) ⊆ B.

Let u ∈ U T (R). By Lemma 4.1 we can write u = b(1 + a) with uniquely determined b ∈ U T (B) =
U T (R(e) ⊕ R(k)) and a ∈ Ã := {a ∈ A:

∑n
k=1

(n
k

)
ak = 0}. Since

R(e)2 ⊆ R(e), R(k)2 ⊆ R(k), R(e)R(k) ⊆ R(k) and 1 ∈ R(e)

we can use Lemma 4.1 for the unitary subring B = R(e) ⊕ R(k). Thus b is of the form b = g(1 + ak)

with uniquely determined elements g ∈ U T (R(e)) = ±H and ak ∈ Rk . Therefore u = g(1 + ak)(1 + a).
The ring

⊕
j∈ J R( j) is commutative and unitary and J is a finite, partial ordered, rigid set. There-

fore the conditions of the propositions are fulfilled and we can use induction. Since

(1 + a)n =
n∑

k=0

(
n

k

)
ak = 1,

it holds 1+a ∈ U T (
⊕

j∈ J R( j)), and by induction follows that 1+a = h
∏

j∈ J\{e}(1+a j) with uniquely
determined h ∈ ±H and a j ∈ R j . Therefore u = gh

∏
i∈I\{e}(1 + a j).

Let u = g′ ∏
i∈I\{e}(1 + a′

i) with g′ ∈ ±H and a′
i ∈ Ri . Then

1 = gh
(

g′)−1 ∏
i∈I\{e}

(1 + ai)
(
1 + a′

i

)−1
.

Since (1 + a′
i) ∈ U T (R) there exists si ∈ N with (1 + a′

i)
si = (1 + a′

i)
−1 for i ∈ I\{e}. Since R(i)2 ⊆ R(i)

there exists ci ∈ R(i) with (1 + ai)(1 + a′
i)

−1 = (1 + ai)(1 + a′
i)

si = 1 + ci for i ∈ I\{e}. Therefore

1 = gh
(

g′)−1 ∏
i∈I\{e}

(1 + ci). (6)

Since R(e)R(i) ⊆ R(i) for i ∈ I we get 1 = gh(g′)−1 + r1 with r1 /∈ R(e) by expanding Eq. (6). The
decomposition R = ⊕

i∈I R(i) implies gh(g′)−1 = 1 and therefore gh = g′ . Assume ci 
= 0 for some
i ∈ I\{e}. We choose i ∈ I\{e} maximal with the property ci 
= 0. In case j ∈ I\{e, i} with c j 
= 0 we get
m(i, j) 
= i by the maximality of i. Thus cic j /∈ R(i). By expanding Eq. (6) we get 1 = 1 + ci + r2 with
r2 /∈ R(i) The decomposition R = ⊕

i∈I R(i) implies ci = 0 contradicting our assumption. Therefore
ci = 0 for all i ∈ I\{e}. Thus 1 + ai = 1 + a′

i for all i ∈ I\{e}.
Conversely g

∏
i∈I\{e}(1 + ai) ∈ U T (R) since g ∈ U T (R) for g ∈ ±H and 1 + ai ∈ U T (R) for ai ∈ Ri .

Thus assertion (i) is proved.
Part (ii) follows immediately from part (i). �
Let G be a finite group and N (G) be the set of normal subgroups of G . We say that a subset

S ⊆ N (G) has property (∗) in cases

1. 1, G ∈ S ,
2. M, N ∈ S implies MN ∈ S and M ∩ N ∈ S .
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Let S ⊆ N (G) with property (∗). For N ∈ S let S(N) be the set of all elements [K ,ψ]G ∈ M(G)/G
with the following properties:

1. N � K ,
2. N � M � K with M ∈ S implies N = M .

Remark 4.3. We should remark the following facts: For a nonempty subset S ⊆ N (G) we get S(N) 
= ∅
since [N,1]G ∈ S(N) for N ∈ S . The set {S(N): N ∈ S} is a partially ordered rigid set with S(L) � S(M)

in case L � M . Moreover S(G) is the greatest and S(1) is the smallest element of {S(N): N ∈ S}. The
infimum of two elements S(L), S(N) ∈ {S(N): N ∈ S} is given by S(L ∩ N). The group (S(G), ·) is a
subgroup of U T (D(G)) with S(G) ∼= Ĝ . We should also remark that [K ,ψ]G ∈ S(N) implies N � g K
for all g ∈ G . Thus the above definition of S(N) does not depend on the choice of the representative
subgroup K .

Let T ⊆ M(G)/G . The additive subgroup of D(G) which is generated by the elements [H,ϕ]G ∈ T
will be denoted by D(G)T . We set D(G)T = {0} in case T = ∅.

Lemma 4.4. Let S ⊆ N (G) with property (∗). Then:

(i) D(G) = ⊕
N∈S D(G)S(N) (direct sum of additive subgroups),

(ii) D(G)S(M) D(G)S(N) ⊆ D(G)S(M∩N) for M, N ∈ S,

(iii) D(G)S(G) = ZS(G) ∼= ZĜ .

Proof. Let [K ,ψ]G ∈ S(M)∩ S(N) with M, N ∈ S . Then M � MN � K and N � N M � K . Since MN ∈ S
we get M = MN = N . Thus S(M) ∩ S(N) = ∅ for M, N ∈ S with M 
= N .

Let [K ,ψ]G ∈ M(G)/G and set XK := {N ∈ S: N � K }. It is XK 
= ∅ since 1 ∈ S . Let N0 := ∏
N∈XK

N .
Since S has property (∗) we get N0 ∈ S and therefore N0 ∈ XK . Thus [K ,ψ]G ∈ S(N0) and we get

M(G)/G =
⊎
N∈S

S(N).

Part (i) follows immediately.
Let [H,ψ]G ∈ S(M) and [K ,ψ]G ∈ S(N) with M, N ∈ S . Since

[H,ϕ]G [K ,ψ]G =
∑

H g K∈H\G/K

[
H ∩ g K ,ϕ · gψ

]
G

we have to show [H ∩ g K ,ϕ · gψ]G ∈ S(M ∩ N) for all g ∈ G . It holds M � H and N � g K for all g ∈ G .
Therefore M ∩ N � H ∩ g K for all g ∈ G . Let M ∩ N � L � H ∩ g K for L ∈ S and g ∈ G . Then

M � ML � M
(

H ∩ g K
)
� H

and

N � N L � N
(

H g ∩ K
)
� K .

Since [H,ϕ]G ∈ S(M) and [K ,ψ]G ∈ S(N) we get M = ML and N = N L. Thus L � M ∩ N , and this
implies L = M ∩ N . Therefore [H ∩ g K , τ ]G ∈ S(M ∩ N) for all g ∈ G and all linear characters τ of
H ∩ g K and part (ii) is proved.

Part (iii) is a direct consequence of S(G) ∼= Ĝ and the definition of D(G)S(G) . �
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Remark 4.5. Let ζ ∈ C be a primitive |G|-th root of unity. Every torsion unit u ∈ U T (D(G)) is of the
form

u =
∑

[H,hH ′]G∈D(G)/G

u[H,hH ′]eD(G)

(H,hH ′)

with u[H,hH ′] ∈ {±ζ i: i ∈ N} for all [H,hH]G ∈ D(G)/G . Thus U T (D(G)) is a finite group. Moreover
the exponent exp(U T (D(G))) of U T (D(G)) divides 2|G|.

We can now state the main theorem of this section which is a direct consequence of Proposi-
tion 4.2, Lemma 4.4 and Remark 4.5.

Theorem 4.6. Let G be a finite group and S be a subset of N (G) with property (∗). Let n ∈ N be a multiple of
exp(U T (D(G))). For H ∈ S we set

H∗ :=
{

a ∈ D(G)S(H):
n∑

k=1

(
n

k

)
ak = 0

}
.

Then every torsion unit u ∈ U T (D(G)) is of the form

u = ±[G,ψ]G

∏
H∈S\{G}

(1 + uH )

with uniquely determined uH ∈ H∗ and ψ ∈ Ĝ . Moreover

∣∣U T
(

D(G)
)∣∣ = 2|Ĝ|

( ∏
H∈S\{G}

∣∣H∗∣∣).

5. Abelian groups

In Proposition 3.7 we proved that the ring D(G) detects commutativity of the group G . With the
help of Theorem 4.6 we will show that D(G) ∼= D(G̃) with an abelian group G implies G ∼= G̃ . In the
following we will use the notation C2 for the group with 2 elements.

Proposition 5.1. Let G be an abelian group. Then

U T
(

D(G)
) ∼= G × Cm+1

2 ,

where m is the number of subgroups of G with index 2.

Proof. For G = 1 the assumption is clear. Let G 
= 1. We use the notations of Theorem 4.6 and set S :=
{H: H � G} and n := 2|G|. Then S has property (∗), and for H ∈ S , S(H) = {[H,ψ]G : ψ ∈ Ĥ} holds.
Let U < G be a proper subgroup and a ∈ U∗ . Then a+1 is a torsion unit in D(G). Let ρ : D(G) → D̂(G)

be the embedding of D(G) in the ghost ring D̂(G) and ρU the projection in ZÛ . Then ρU (a + 1) ∈ ZÛ
is a torsion unit in ZÛ . Since Û is abelian, the set of all torsion units of ZÛ is ±Û (cf. [12]). Thus
there exists τ ∈ Û with ρU (a + 1) = ±τ . The element a is of the form a = ∑

λ∈Û a[U ,λ][U , λ]G with
a[U ,λ] ∈ Z. Since G is abelian, we obtain

±τ − 1 = ρU (a) =
∑

ˆ
a[U ,λ]

∑
gU∈G/U

gλ = (G : U )
∑

ˆ
a[U ,λ]λ.
λ∈U λ∈U
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Note that in the above equation we use ρU ([U , λ]G) = ∑
gU∈G/U

gλ. In case 2 < (G : U ) we get

a[U ,λ] = 0 for all λ ∈ Û and therefore a = 0. Let (G : U ) = 2. We obtain ρU (a) ∈ {0,−2}, and in case
ρU (a) = 0 we get a[U ,λ] = 0 for all λ ∈ Û and therefore a = 0. Let ρU (a) = −2. Then a[U ,1] = −1 and
a[U ,λ] = 0 for all λ ∈ Û\{1}. Moreover

(
1 − [U ,1]G

)2 = 1 − 2[U ,1]G + [U ,1]2
G = 1 − 2[U ,1] +

∑
gU∈G/U

[U ,1]G = 1. (7)

Then (1 − [U ,1]G)2|G| = 1 and therefore −[U ,1]G ∈ U∗ . Thus U∗ = {0,−[U ,1]G}. All in all we get

∣∣U∗∣∣ =
{

2 if (G : U ) = 2,

1 else.
(8)

Since every torsion unit u ∈ U T (D(G)) is of the form

u = ±[G,ψ]G

∏
H∈S\{G}

(1 + uH )

with uniquely determined uH ∈ H∗ and ψ ∈ Ĝ we get the desired isomorphism by Eq. (7) and (8). �
Theorem 5.2. Let G be a finite abelian group and let G̃ be a finite group with D(G) ∼= D(G̃). Then G ∼= G̃ .

Proof. By Proposition 3.7 the group G̃ is abelian. Moreover U T (D(G)) ∼= U T (D(G̃)). By Proposition 5.1
we get G × Cm+1

2
∼= G̃ × Cm̃+1

2 where m and m̃ are the numbers of subgroups of G and G̃ with index 2.

Then |G × Cm+1
2 | = |G̃ × Cm̃+1

2 |, and since |G| = |G̃| we obtain m = m̃ and therefore G ∼= G̃ . �
6. The primitive idempotents of ZZZ[ζ ]p ⊗ZZZ D(G)

Let p be a maximal ideal in Z[ζ ], p := char(Z[ζ ]/p) and R := Z[ζ ]p the localization of Z[ζ ] at p.
In this section we will state a formula for the primitive idempotents of D R(G).

We write (
H,hH ′) ≡p

(
U , uU ′)

for (H,hH ′), (U , uU ′) ∈ D(G) in case

sD(G)

(H,hH ′)(x) ≡ sD(G)

(U ,uU ′)(x) (mod p)

for all x ∈ D(G). Then ≡p is an equivalence relation on D(G). The equivalence classes of this relation
are called p-equivalence classes of D(G). We define

D p(G) := {(
K ,kK ′) ∈ D(G):

∣∣〈k〉∣∣ 
≡ 0 
≡ (
NG

(
K ,kK ′) : K

)
(mod p)

}
.

The following proposition summarizes some results of [9].

Proposition 6.1.

(i) It holds (H,hH ′) ≡p (H,hp′ H ′) for all (H,hH ′) ∈ D(G).
(ii) Let (H,hH ′) ∈ D(G) and K/H be a p-subgroup of NG(H,hH ′)/H. Then (H,hH ′) ≡p (K ,hK ′).

(iii) Let (H,hH ′), (K ,kK ′) ∈ D p(G). Then (H,hH ′) ≡p (K ,kK ′) if and only if (H,hH ′) and (K ,kK ′) are
conjugate in G.
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Proof. See [9], Lem. 1, Lem. 2, Prop. 3. �
Let (H,hH ′) ∈ D(G). By Proposition 6.1(i) we get (H,hH ′) ≡p (H,hp′ H ′), and for a Sylow p-

subgroup H1/H of NG(H,hH ′)/H we conclude (H,hp′ H ′) ≡p (H1,hp′ H ′
1) by Proposition 6.1(ii).

With the same argument we get (H2,hp′ H ′
2) ≡p (H1,hp′ H ′

1) for a Sylow p-subgroup H2/H1 of
NG(H1,hp′ H ′

1)/H1. If we go on like this we obtain (Hn,hp′ H ′
n) ∈ D p(G) for some n ∈ N. We call

(Hn,hp′ H ′
n) a p-regularization of (H,hH ′). Moreover (Hn,hp′ H ′

n) is uniquely determined up to con-
jugation in G (cf.[9]). By Proposition 6.1 we conclude that every p-equivalence class of D(G) is
represented by exactly one orbit [H,hH ′]G ∈ D(G)/G with (H,hH ′) ∈ D p(G).

We use the notation O p(G) for the smallest normal subgroup of G such that G/O p(G) is a p-
group. The group G is called p-perfect in case O p(G) = G . The subgroup O p(G) is p-perfect and char-
acteristic in G . For a p-regularization (Hn,hp′ H ′

n) of (H,hH ′) ∈ D(G) it holds O p(Hn) = O p(H) � H .
We also use the following well-known lemmata.

Lemma 6.2. Let G be a finite group, A a normal abelian Hall-subgroup of G and [A, G] the commutator of A
with G. Then A = C A(G) ⊕ [A, G].

Proof. See [13], Kapitel III, Satz 13.4. �
Lemma 6.3. Let G be a finite group and H be an abelian Hall-subgroup of G. Then H ∩ G ′ ∩ Z(G) = 1.

Proof. See [13], Kapitel IV, Satz 2.2. �
Let H be a p-perfect subgroup of G and h ∈ G . We define

S p(
H,hH ′) := {

U � G: O p(U ) = H, U � NG
(

H,hH ′)}.
For U ∈ S p(H,hH ′) and u ∈ U we get up′ ∈ H . Since p does not divide (H : H ′), the group H/H ′ is a
normal abelian Hall-subgroup of U/H ′ . It follows that

H/H ′ = C H/H ′
(
U/H ′) ⊕ [

H/H ′, U/H ′]
by Lemma 6.2. In the following we write up′,c H ′ for the C H/H ′ (U/H ′)-part of up′ H ′ in H/H ′ . We can
now state the main theorem of this section.

Theorem 6.4. There is a 1-1-correspondence between the primitive idempotents of D R(G) and the elements
of the set

I := {[
H,hH ′]

G ∈ D(G)/G: H = O p(H)
}
.

An explicit formula for the primitive idempotents is given by

eD(G),p
(H,hH ′) =

∑
[U ,uU ′]G∈D(G)/G

U∈S p(H,hH ′)
up′,c H ′=hH ′

eD(G)

(U ,uU ′),
[

H,hH ′]
G ∈ I.

Proof. There is a 1-1-correspondence between the primitive idempotents of D R(G) and the p-
equivalence classes of D(G) (cf. [7], Satz 1.12). We will show that every p-equivalence class of D(G)

contains exactly one G-orbit [H,hH ′]G with a p-perfect subgroup H .
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Let (U , uU ′) ∈ D(G). We set H := O p(U ), H̄ := H/H ′ and Ū := U/H ′ . Then H is p-perfect and H̄
is a normal abelian Hall-subgroup of Ū . By Lemma 6.2 we get

H̄ = C H̄ (Ū ) ⊕ [H̄, Ū ],

where [H̄, Ū ] is the commutator of H̄ and Ū . It holds up′ H ′ ∈ H̄ since (Ū : H̄) is a p-power. Thus
there exist hH ′ ∈ C H̄ (Ū ) and v H ′ ∈ [H̄, Ū ] with up′ H ′ = hv H ′ . Therefore up′ U ′ = hvU ′ ∈ U/U ′ holds.
Moreover v ∈ U ′ since v H ′ ∈ [H̄, Ū ] � Ū ′ = U ′/H ′ . Thus(

U , up′ U ′) = (
U ,hU ′).

It is H � U and since hH ′ ∈ C H̄ (Ū ) we get whw−1 H ′ = hH ′ for all w ∈ U . Thus U � NG(H,hH ′) and
U/H is a p-subgroup of NG(H,hH ′)/H . By Proposition 6.1(i) and (ii) it holds(

H,hH ′) ≡p
(
U ,hU ′) = (

U , up′ U ′) ≡p
(
U , uU ′).

All in all we can say at this point that for (U , uU ′) ∈ D(G) it holds

(
U , uU ′) ≡p

(
O p(U ), up′,c O p(U )′

)
. (9)

Let K be a p-perfect subgroup of G and k ∈ K with (H,hH ′) ≡p (K ,kK ′). We will show [H,hH ′]G =
[K ,kK ′]G . Since O p(K ) = K , the group K/K ′ is a p′-group. Thus kp ∈ K ′ , and it follows that
kK ′ = kp′ K ′ . Therefore we can assume k = kp′ . With the same argumentation we assume h = hp′ .
Let (H̃,hH̃ ′) and (K̃ ,kK̃ ′) be p-regularizations of (H,hH ′) and (K ,kK ′). Then(

H̃,hH̃ ′) ≡p
(

H,hH ′) ≡p
(

K ,kK ′) ≡p
(

K̃ ,kK̃ ′).
By Lemma 6.1(iii) (H̃,hH̃ ′) and (K̃ ,kK̃ ′) are conjugate in G . Thus

H = O p(H̃) =G O p(K̃ ) = K .

In the following we assume H = K . We will show that hH ′ and kH ′ are conjugate in NG(H). Let
V /H be a Sylow p-subgroup of NG(H,hH ′)/H and set V̄ := V /H ′ . It holds H̄ = C H̄ (V̄ ) ⊕ [H̄, V̄ ] by
Lemma 6.2. Obviously it holds [H̄, V̄ ] ⊆ V̄ ′ ∩ H̄ . Conversely we assume x ∈ V̄ ′ ∩ H̄ . Then x = cd with
c ∈ C H̄ (V̄ ) and d ∈ [H̄, V̄ ]. We get

c = xd−1 ∈ C H̄ (V̄ ) ∩ V̄ ′ = Z(V̄ ) ∩ H̄ ∩ V̄ ′ = 1

by Lemma 6.3. Thus x ∈ [H̄, V̄ ] and

V̄ ′ ∩ H̄ = [H̄, V̄ ]. (10)

The group H is normal in NG(V ) since H = O p(V ) is characteristic in V . Since H ′ is characteristic in
H we get H ′ � NG(V ). It holds CNG (V )/H ′(V̄ ) � NG(V )/H ′ , and since H̄ � NG(V )/H ′ we get

C H̄ (V̄ ) = CNG (V )/H ′(V̄ ) ∩ H̄ � NG(V )/H ′. (11)

We now show that (V ,hV ′) is a p-regularization of (H,hH ′). Let t ∈ NG(V ,hV ′) � NG(H). It is hH ′ ∈
C H̄ (V̄ ) since V � NG(H,hH ′). Moreover it is tht−1 H ′ ∈ C H̄ (V̄ ) since C H̄ (V̄ ) � NG(V )/H ′ (by Eq. (11)).



M. Müller / Journal of Algebra 333 (2011) 427–457 447
Thus h−1tht−1 H ′ ∈ C H̄ (V̄ ). It holds h−1tht−1 ∈ V ′ , therefore we get h−1tht−1 H ′ ∈ V ′/H ′ = V̄ ′ . By
Eq. (10) we obtain

C H̄ (V̄ ) ∩ V̄ ′ = C H̄ (V̄ ) ∩ V̄ ′ ∩ H̄ = C H̄ (V̄ ) ∩ [H̄, V̄ ] = 1.

It follows that tht−1 H ′ = hH ′ . Thus t ∈ NG(H,hH ′) and we get NG(V ,hV ′) � NG(H,hH ′). Then(
NG

(
V ,hV ′) : V

) = (
NG

(
V ,hV ′)/H : V /H

) 
≡ 0 (mod p).

Therefore (V ,hV ′) is a p-regularization of (H,hH ′). We can now assume(
H̃,hH̃ ′) = (

V ,hV ′).
In particular hH ′ ∈ C H̄ (H̃/H ′), and with the same argumentation we get kH ′ ∈ C H̄ (K̃/H ′). Since(

V ,hV ′) = (
H̃,hH̃ ′) ≡p

(
K̃ ,kK̃ ′)

we obtain by Proposition 6.1(iii) the existence of g ∈ G with g(K̃ ,kK̃ ′) = (V ,hV ′). Since O p(K̃ ) = H =
O p(V ) it holds g ∈ NG(H). Thus gkg−1 H ′ ∈ C H̄ (g(K̃/H ′)) = C H̄ (V̄ ). Since hH ′ ∈ C H̄ (V̄ ) it follows that
h−1 gkg−1 H ′ ∈ C H̄ (V̄ ). Since h−1 gkg−1 ∈ V ′ we get h−1 gkg−1 H ′ ∈ V̄ ′ and therefore

h−1 gkg−1 H ′ ∈ C H̄ (V̄ ) ∩ V̄ ′ = Z(V̄ ) ∩ H̄ ∩ V̄ ′ = 1

by Lemma 6.3. Thus hH ′ = gkg−1 H ′ with g ∈ NG(H) and therefore every p-equivalence class is rep-
resented by exactly one orbit [H,hH ′]G with a p-perfect subgroup H .

Let H be any p-perfect subgroup of G , h ∈ H and let X be the equivalence class represented by
[H,hH ′]G . We set

T := {[
U , uU ′]

G ∈ D(G)/G:
(
U , uU ′) ∈ X

}
and

Y := {[
U , uU ′]

G ∈ D(G)/G: U ∈ S p(
H,hH ′), up′,c H ′ = hH ′}.

Let [U , uU ′]G ∈ T with O p(U ) = H . We get [H, up′,c H ′]G = [H,hH ′]G by the above argumentations.
Thus there exists g ∈ NG(H) with g−1hg H ′ = up′,c H ′ . Since U � NG(H, up′,c H ′) it follows that g U �
NG(H,hH ′). Moreover up′ H ′ = up′,c v H ′ with v H ′ ∈ [H̄, U/H ′]. Thus(g u

)
p′ H

′ = g(up′)H ′ = g(up′,c)
g v H ′

with g(up′,c)H ′ ∈ C H̄ (g U/H ′) and g v H ′ ∈ [H̄, g U/H ′]. It holds(g u
)

p′ H ′ = (g u
)

p′,c w H ′

with (g u)p′,c ∈ C H̄ (g U/H ′) and w H ′ ∈ [H̄, g U/H ′]. Since H̄ = C H̄ (g U/H ′) ⊕ [H̄, g U/H ′] we get

g(up′,c)H ′ = (g u
)

p′,c H ′.

Thus (g u)p′,c H ′ = hH ′ and we get [U , uU ′]G = [g U , g ug U ′]G ∈ Y .
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Let conversely be [U , uU ′]G ∈ Y . We can assume O p(U ) = H and up′,c H ′ = hH ′ . We get(
U , uU ′) ≡p

(
H, up′,c H ′) = (

H,hH ′)
by Eq. (9). Thus we get [U , uU ′]G ∈ T and so Y = T .

Every primitive idempotent of D R(G) corresponding to X is of the form∑
[U ,uU ′]G∈T

eD(G)

(U ,uU ′).

Since Y = T we obtain the idempotent formula stated in the theorem. �
7. Sylow subgroups

In this section we present some results about Sylow subgroups of two finite groups G and G̃ with
D(G) ∼= D(G̃).

Proposition 7.1. Let G and G̃ be finite groups, α : D(G̃) → D(G) an isomorphism, p a prime divisor of |G|
and P a Sylow p-subgroup of G. Let α(eD(G̃)

(1,1) ) = eD(G)

(U ,uU ′) . Then the group H := O p(U ) is a normal abelian

p′-subgroup of G and h := up′ ∈ Z(G). We set

I := {[
K ,kK ′]

G ∈ D(G)/G: K = H V , V � P , k = hv, v ∈ V
}
.

Then

α
(
eD(G̃),p
(1,1)

) =
∑

[K ,kK ′]G∈I

eD(G)

(K ,kK ′).

Proof. We get |G| = |G̃| by Theorem 3.6. Moreover by Proposition 3.8 U is a normal abelian subgroup
of G and u ∈ Z(G) with |〈u〉| ∈ {1,2}. Thus H is a normal abelian p′-subgroup of G and h ∈ {1, u} ⊆
Z(G). It holds

U ∈ S p(H,h) := {
K � G: O p(K ) = H, K � NG(H,h)

} = {
K � G: O p(K ) = H

}
,

and since up′ ∈ Z(G) we get up′,c = up′ . Thus the idempotent eD(G)
(U ,u)

is included in the sum

eD(G),p
(H,h)

=
∑

[K ,kK ′]G ∈D(G)/G
K∈S p(H,h)

kp′,c=h

eD(G)

(K ,kK ′).

Therefore α(eD(G̃),p
(1,1) ) = eD(G),p

(H,h)
. Let

J := {[
K ,kK ′]

G ∈ D(G)/G: O p(K ) = H, kp′,c = h
}
.

We show I = J . Let [K ,kK ′]G ∈ I . Then O p(K ) = H . Moreover we can assume k = hv with v ∈ V for
some subgroup V � P . Since h ∈ Z(G) it holds h = kp′ = kp′,c . Thus [K ,kK ′]G ∈ J .

Let conversely be [K ,kK ′]G ∈ J . We can assume kp′,c = h. It holds H = O p(K ) and by Lemma 6.2
we get H = C H (K ) ⊕ [H, K ]. Since kp′ ∈ H it holds kp′ = kp′,c y = hy with some y ∈ [H, K ] � K ′ . Thus[

K ,kK ′] = [
K ,kpkp′ K ′] = [

K ,kphyK ′] = [
K ,hkp K ′] .
G G G G
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By the Schur–Zassenhaus theorem there exists a p-subgroup V � G with K = H V . Moreover there
exists g ∈ G with g V � P . Then g K = H(g V ). Since g V is a Sylow p-subgroup of g K there exists
w ∈ g K with wgkp ∈ g V . Thus[

K ,kK ′]
G = [g K ,h

(gkp
)g K ′]

G = [g K ,h
(wgkp

)g K ′]
G ∈ I

and the proposition is proved. �
We can now state the first result.

Theorem 7.2. Let G and G̃ be finite groups with D(G) ∼= D(G̃) and let p be a prime divisor of |G|. If G̃ has a
non-trivial normal p-subgroup then G has a non-trivial normal p-subgroup.

Proof. Let P̃ be a Sylow p-subgroup of G̃ . By Theorem 6.4 we get

eD(G̃),p
(1,1) =

∑
[K̃ ,k̃ K̃ ′]G∈D(G̃)/G̃

K̃� P̃

eD(G̃)

(K̃ ,k̃ K̃ ′)
. (12)

By the assumption there exists a normal p-subgroup 1 
= Ũ of G̃ with Ũ � P̃ . Then K̃ := Z(Ũ ) 
= 1
is an abelian p-subgroup of G̃ which is characteristic in Ũ . Thus K̃ is normal in G̃ and therefore

eD(G̃)

(K̃ ,1)
has conductor |G̃|. Thus the sum in Eq. (12) includes at least two primitive idempotents with

conductor |G̃| (consider eD(G̃)
(1,1) and eD(G̃)

(K̃ ,1)
). Let α : D(G̃) → D(G) be an isomorphism, P a Sylow p-

subgroup of G and let α(eD(G̃)
(1,1)

) = eD(G)

(U ,uU ′) with a normal abelian subgroup U � G and u ∈ Z(G). By
Proposition 7.1,

α
(
eD(G̃),p
(1,1)

) =
∑

[K ,kK ′]G∈I

eD(G)

(K ,kK ′)

holds with

I = {[
K ,kK ′]

G ∈ D(G)/G: K = O p(U )V , k = up′ v, v ∈ V , V � P
}
.

There exists at least one element [K ,kK ′]G ∈ I with [K ,kK ′]G 
= [O p(U ), up′ ]G such that eD(G)

(K ,kK ′) has

conductor |G| = |G̃|. Thus K is an abelian normal subgroup of G . Since K/O p(U ) is a non-trivial
p-group, the Sylow p-subgroup of K is non-trivial and normal in G . �
Theorem 7.3. Let G and G̃ be finite groups with D(G) ∼= D(G̃). Let p be a prime divisor of |G| and let P and P̃
be Sylow p-subgroups of G and G̃. If P̃ is abelian then P is abelian.

Proof. Let α : D(G̃) → D(G) be an isomorphism, α(eD(G̃)
(1,1)

) = eD(G)

(U ,uU ′) with a normal abelian subgroup
U � G and u ∈ Z(G). Let H := O p(U ) and h := up′ . By Proposition 7.1 we obtain

α
(
eD(G̃),p
(1,1)

) =
∑

[K ,kK ′]G∈I

eD(G)

(K ,kK ′)

with

I := {[
K ,kK ′] ∈ D(G)/G: K = H V , V � P , k = hv, v ∈ V

}
.
G
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Let P̃ be abelian. Then the conductors of all primitive idempotents eD(G̃)

(K̃ ,k̃ K̃ ′) , K̃ � P̃ , k̃ ∈ K̃ , are divisible

by | P̃ |. Since

eD(G̃),p
(1,1)

=
∑

[K̃ ,k̃ K̃ ′]G̃∈D(G̃)/G̃

K̃� P̃

eD(G̃)

(K̃ ,k̃ K̃ ′)

|P | = | P̃ | divides the conductor of eD(G)

(K ,kK ′) for all [K ,kK ′]G ∈ I . We set K := H P . Then [K ,hK ′]G ∈ I

and p does not divide (NG(K ,hK ′) : K ). Thus |P | divides (K : K ′) and therefore P ∩ K ′ = 1. It follows
that P ′ � K ′ ∩ P = 1 and therefore P is abelian. �

The next theorem is concerned with Sylow 2-subgroups of groups G and G̃ with D(G) ∼= D(G̃). We
first need the following lemma.

Lemma 7.4. Let G be a finite group and (H,hH ′) ∈ D(G). We assume the existence of x ∈ DQ(G) and n ∈ N

such that sD(G)

(H,hH ′)(x) is a primitive n-th root of unity.

(i) If 2 � n or 4 | n then n divides |〈h〉|.
(ii) If n = 2m with m ∈ N and 2 � m then m divides |〈h〉|.

Proof. Let ω ∈ C be a primitive |〈h〉|-th root of unity. For every subgroup U � G with H � U and
every linear character ψ ∈ Û it holds ψ(h) = ωi for some i ∈ N. For [U ,ψ]G ∈ M(G)/G we get

sD(G)

(H,hH ′)
([U ,ψ]G

) =
∑

gU∈G/U
H�g U

gψ(h) ∈ Q(ω).

Therefore sD(G)

(H,hH ′)(x) ∈ Q(ω). Since ±ωi (i ∈ N) are the only roots of unity in Q(ω) we get

sD(G)

(H,hH ′)(x) ∈ {±ωi: i ∈ N}. Therefore

n | max
{

ord
(±ωi): i ∈ N

} ∈ {
ord(ω),ord(−ω)

}
.

In case ord(ω) � ord(−ω) we obtain that n divides |〈h〉| and (i) and (ii) is proved. Let 2 · ord(ω) =
ord(−ω). Then 2 � ord(ω) and since n | ord(−ω) we get 4 � n. If 2 � n we get n | ord(ω) and therefore (i).
Let 2 | n. Since n | ord(−ω) = 2 · ord(ω) we obtain that n

2 divides ord(ω) and we proved (ii). �
Theorem 7.5. Let G and G̃ be finite groups with D(G) ∼= D(G̃) and let P and P̃ be Sylow 2-subgroups of G
and G̃. If P is cyclic then P̃ is cyclic.

Proof. Let P = 〈h〉 and |P | = 2n with n ∈ N. We assume n � 2. Note that (NG(P ) : CG(P )) divides
|Aut(P )| = 2n−1. Since 2 � (NG(P ) : CG(P )) we get NG(P ) = CG(P ). Let λ ∈ P̂ such that λ(h) is a
primitive 2n-th root of unity. Then

sD(G)

(P ,h)

(
1

(NG(P ) : P )
[P , λ]G

)
= 1

(NG(P ) : P )

∑
g P∈N (P )/P

gλ(h) = λ(h).
G
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Let α : D(G) → D(G̃) be an isomorphism. Then sD(G)

(P ,h)
= sD(G̃)

(H̃,h̃H̃ ′) ◦ α with (H̃, h̃H̃ ′) ∈ D(G̃). We set

x̃ := α

(
1

(NG(P ) : P )
[P , λ]G

)
∈ DQ(G̃).

Then sD(G̃)

(H̃,h̃H̃ ′)
(x̃) = λ(h) is a primitive 2n-th root of unity. Moreover 2n divides |〈h̃〉| by Lemma 7.4.

Thus G̃ contains an element of order 2n . Therefore P̃ is cyclic. �
8. Nilpotent and p-nilpotent groups

In the first theorem of this section we prove that the ring of monomial representations of a finite
group detects nilpotency.

Theorem 8.1. Let G be a finite nilpotent group and G̃ a finite group with D(G) ∼= D(G̃). Then G̃ is nilpotent.

Proof. Let α : D(G̃) → D(G) be an isomorphism and let

α
(
eD(G̃)
(1,1)

) = eD(G)

(U ,uU ′).

By Proposition 3.7 U is a normal abelian subgroup of G and u ∈ Z(G). Let p be a prime divisor of G ,
P the Sylow p-subgroup of G and H := O p(U ). Then H is a normal abelian subgroup of G with
p � |H|. Since u ∈ Z(G) we get h := up′ ∈ Z(G) ∩ H . Since G is nilpotent we obtain

α
(
eD(G̃),p
(1,1)

) =
∑

[K ,kK ′]G∈I

eD(G)

(K ,kK ′) (13)

with

I = {[
K ,kK ′]

G ∈ D(G)/G: K = H × V , V � P , k = hv, v ∈ V
}

by Proposition 7.1. Let K := H × V with V � P and k := hv with v ∈ V . Since G is nilpotent it holds
G p′ � CG (V ), and since H is normal in G we get G p′ � NG(K ). Since h ∈ Z(G) we get

gkK ′g−1 = ghvg−1 K ′ = hv K ′ = kK ′

for all g ∈ G p′ . Thus G p′ � NG(K ,kK ′). Moreover K ′ = (H × V )′ = V ′ is a p-subgroup of G . Thus |G p′ |
divides (NG(K ,kK ′) : K ′). Therefore |G p′ | divides the conductor of the primitive idempotents eD(G)

(K ,kK ′)
with [K ,kK ′]G ∈ I . Let P̃ be a Sylow p-subgroup of G̃ . By

eD(G̃),p
(1,1) =

∑
[Ũ ,ũŨ ′]∈D(G̃)/G̃

Ũ� P̃

eD(G̃)

(Ũ ,ũŨ ′)

and Eq. (13) we obtain that |G p′ | = |G̃|p′ divides the conductor of the primitive idempotents eD(G̃)

(Ũ ,ũŨ ′)

with Ũ � P̃ . In particular |G̃|p′ divides the conductor of eD(G̃)

( P̃ ,1 P̃ ′) . Therefore |G̃|p′ divides (NG̃( P̃ ) :
P̃ ′)p′ = (NG̃( P̃ ) : P̃ ) and therefore P̃ is normal in G̃ and the theorem is proved. �
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Next we will show that the isomorphy D(G) ∼= D(G̃) with nilpotent groups G and G̃ implies the
isomorphy D(P ) ∼= D( P̃ ) where P and P̃ are Sylow p-subgroups of G and G̃ . We need the following
two propositions.

Proposition 8.2. Let G and H be finite groups with gcd(|G|, |H|) = 1. Then

D(G × H) ∼= D(G) ⊗Z D(H).

Proof. Since gcd(|G|, |H|) = 1, every subgroup of G × H is of the form U × V with subgroups U � G
and V � H . Moreover every linear character of a subgroup U × V � G × H is of the form ϕ × ψ with
(ϕ,ψ) ∈ Û × V̂ . Therefore the map

D(G × H) → D(G) ⊗Z D(H),

[U × V ,ϕ × ψ]G×H → [U ,ϕ]G ⊗ [V ,ψ]H

is well defined and an isomorphism. �
Proposition 8.3. Let A1, A2, B1, B2 be commutative rings with unit element which are finitely generated and
free as a Z-module. Moreover, assume that the rings A1 and A2 have Z-bases which contain the respective unit
element. Further, assume that there exists a unitary subring R ⊆ C such that the only idempotents in R ⊗Z Ai
(i = 1,2) are 0 and 1 and such that the R-algebra R ⊗Z Bi (i = 1,2) is isomorphic to a direct product of copies
of R. If A1 ⊗Z B1 ∼= A2 ⊗Z B2 then B1 ∼= B2 .

Proof. Let {a1, . . . ,as} ⊆ A1, {ã1, . . . , ãt} ⊆ A2, {b1, . . . ,bn} ⊆ B1 and {b̃1, . . . , b̃m} ⊆ B2 the respective
Z-bases with the unit elements a1 = 1A1 and ã1 = 1A2 . Then {ai ⊗ b j: i = 1, . . . , s, j = 1, . . . ,n} is a
Z-basis of A1 ⊗Z B1 and {ãi ⊗ b̃ j: i = 1, . . . , t, j = 1, . . . ,m} is a Z-basis of A2 ⊗Z B2. Consider the
canonical embeddings

ϕ : B1 → R ⊗Z B1,

bi → 1R ⊗ bi,

δ : B1 → A1 ⊗Z B1,

bi → 1A1 ⊗ bi

ψ := 1 ⊗ δ : R ⊗Z B1 → R ⊗Z A1 ⊗Z B1,

1R ⊗ bi → 1R ⊗ 1A1 ⊗ bi,

μ : A1 ⊗Z B1 → R ⊗Z A1 ⊗Z B1,

a j ⊗ bi → 1R ⊗ a j ⊗ bi

(i = 1, . . . ,n, j = 1, . . . , s). Then ψ ◦ϕ = μ ◦ δ. We define the canonical embeddings ϕ̃ : B2 → R ⊗Z B2,
δ̃ : B2 → A2 ⊗Z B2, ψ̃ : R ⊗Z B2 → R ⊗Z A2 ⊗Z B2 and μ̃ : A2 ⊗Z B2 → R ⊗Z A2 ⊗Z B2 in an analogous
way. Let

α : A1 ⊗Z B1 → A2 ⊗Z B2
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be an isomorphism. We extend α linearly to the isomorphism

α̂ : R ⊗Z A1 ⊗Z B1 → R ⊗Z A2 ⊗Z B2.

Then α̂ ◦ μ = μ̃ ◦ α. Let e1, . . . , en be the primitive idempotents of R ⊗Z B1 and ẽ1, . . . , ẽm be the
primitive idempotents of R ⊗Z B2. Then

R ⊗Z B1 =
n⊕

i=1

Rei and R ⊗Z B2 =
m⊕

i=1

Rẽi .

Moreover 0 and 1 are the only idempotents in R ⊗Z A1 and R ⊗Z A2. Then 1R⊗Z A1 ⊗ ei , i = 1, . . . ,n,
are the primitive idempotents of (R ⊗Z A1) ⊗R (R ⊗Z B1). Since

R ⊗Z A1 ⊗Z B1 ∼= (R ⊗Z A1) ⊗R (R ⊗Z B1)

the elements ψ(ei), i = 1, . . . ,n, are the primitive idempotents of R ⊗Z A1 ⊗Z B1. Similarly ψ̃(ẽi),
i = 1, . . . ,m, are the primitive idempotents of R ⊗Z A2 ⊗Z B2. Thus

α̂
({

ψ(e1), . . . ,ψ(en)
}) = {

ψ̃(ẽ1), . . . , ψ̃(ẽm)
}
.

In particular n = m. We assume α̂(ψ(ei)) = ψ̃(ẽi) for i = 1, . . . ,n. Let c ∈ B1. Then there exist
r1, . . . , rn ∈ R with ϕ(c) = ∑n

i=1 riei and we get

(α̂ ◦ ψ ◦ ϕ)(c) = (α̂ ◦ ψ)

(
n∑

i=1

riei

)
=

n∑
i=1

riψ̃(ẽi).

Thus there exist t1, . . . , tn ∈ R with (α̂ ◦ ψ ◦ ϕ)(c) = ∑n
i=1 ti(1R ⊗ 1A2 ⊗ b̃i). It holds

(α̂ ◦ ψ ◦ ϕ)(c) = (α̂ ◦ μ ◦ δ)(c) = (μ̃ ◦ α ◦ δ)(c),

and there exist zi, j ∈ Z (i = 1, . . . , t , j = 1, . . . ,n) with

(α ◦ δ)(c) =
t∑

i=1

n∑
j=1

zi, j(ãi ⊗ b̃ j).

Therefore

n∑
i=1

ti(1R ⊗ 1A2 ⊗ b̃i) = (μ̃ ◦ α ◦ δ)(c) =
t∑

i=1

n∑
j=1

zi, j(1R ⊗ ãi ⊗ b̃ j).

Since ã1 = 1A2 the set {1R ⊗1A2 ⊗ b̃ j: j = 1, . . . ,n} is a subset of the canonical basis {1R ⊗ ãi ⊗ b̃ j: i =
1, . . . , t, j = 1, . . . ,n} of R ⊗Z A2 ⊗Z B2. Thus t j = z1, j ∈ Z for all j = 1, . . . ,n and zi, j = 0 for i 
= 1,
j = 1, . . . ,n. It follows that (α̂ ◦ ψ ◦ ϕ)(c) ∈ (ψ̃ ◦ ϕ̃)(B2) and therefore

β := ϕ̃−1 ◦ ψ̃−1 ◦ α̂ ◦ ψ ◦ ϕ : B1 → B2

is a ring monomorphism. Considering ψ ◦ ϕ = μ ◦ δ and δ̃−1 ◦ μ̃−1 = ϕ̃−1 ◦ ψ̃−1 we get

β = δ̃−1 ◦ α ◦ δ. (14)



454 M. Müller / Journal of Algebra 333 (2011) 427–457
With the same argumentation we get a ring monomorphism

β̃ = δ−1 ◦ α−1 ◦ δ̃ : B2 → B1.

Moreover β ◦ β̃ = idB2 and β̃ ◦ β = idB1 . Therefore β is an isomorphism. �
Theorem 8.4. Let p be a prime number. Let G = P × H and G̃ = P̃ × H̃ be finite groups with p-groups P , P̃
and p′-groups H, H̃ . If D(G) ∼= D(G̃) then D(H) ∼= D(H̃).

Proof. Let ξ ∈ C be a primitive |H|-th root of unity, p be a prime ideal in Z[ξ ] with char(Z [ξ ]/p) = p
and R := Z[ξ ]p be the localization at p. By Theorem 6.4 the rings D R(H) and DQ(ξ)(H) have the same
primitive idempotents. Similarly the primitive idempotents of D R(H̃) and DQ(ξ)(H̃) are corresponding.
Therefore D R(H) and D R(H̃) are completely reducible. Moreover by Theorem 6.4 we obtain that 0 and
1 are the only idempotents in D R(P ) and D R( P̃ ). By Proposition 8.2 we get the isomorphy

D(P ) ⊗Z D(H) ∼= D(G) ∼= D(G̃) ∼= D( P̃ ) ⊗Z D(H̃).

We set A1 := D(P ), A2 := D( P̃ ), B1 := D(H) and B2 := D(H̃). Then all conditions in Theorem 8.3 are
valid and we get the isomorphy D(H) ∼= D(H̃). �
Corollary 8.5. Let G and G̃ be finite nilpotent groups with D(G) ∼= D(G̃). Let p1, . . . , pn be the different prime
divisors of |G|, and for i = 1, . . . ,n let Gi and G̃i be the Sylow pi -subgroups of G and G̃. Let

α : D(G1) ⊗Z . . . ⊗Z D(Gn) → D(G̃1) ⊗Z . . . ⊗Z D(G̃n)

be an isomorphism. Then there exist isomorphisms αi : D(Gi) → D(G̃ i) for i = 1, . . . ,n with α = α1 ⊗
· · · ⊗ αn.

Proof. For i = 2, . . . ,n let

Hi := Gi × · · · × Gn, H̃i := G̃ i × · · · × G̃n

and

δi : D(Hi) → D(Hi−1), δ̃i : D(H̃i) → D(H̃i−1)

be the canonical embeddings. Applying Theorem 8.4 under consideration of Eq. (14) we get the iso-
morphism β2 := δ̃−1

2 ◦ α ◦ δ2 : D(H2) → D(H̃2). Applying Theorem 8.4 again we get the isomorphism
β3 := δ̃−1

3 ◦ β2 ◦ δ3 : D(H3) → D(H̃3). If we go on like this we obtain the isomorphism

βn := δ̃−1
n ◦ · · · ◦ δ̃−1

2 ◦ α ◦ δ2 ◦ · · · ◦ δn : D(Gn) → D(G̃n)

where δ2 ◦ · · · ◦ δn : D(Gn) → D(G) and δ̃2 ◦ · · · ◦ δ̃n : D(G̃n) → D(G̃) are the canonical embeddings. In
this way we get isomorphisms D(Gi) → D(G̃ i) for all i = 1, . . . ,n. If we let τi : D(Gi) → D(G) and
τ̃i : D(G̃ i) → D(G̃) be the canonical embeddings, the maps

αi := τ̃−1
i ◦ α ◦ τi : D(Gi) → D(G̃ i), i = 1, . . . ,n,

are these isomorphisms. Let x = x1 ⊗ · · · ⊗ xn ∈ D(G1) ⊗Z . . . ⊗Z D(Gn). Then
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α(x) = α
(
(x1 ⊗ 1D(G2) ⊗ · · · ⊗ 1D(Gn)) · . . . · (1D(G1) ⊗ · · · ⊗ 1D(Gn−1) ⊗ xn)

)
= (α ◦ τ1)(x1) · . . . · (α ◦ τn)(xn) = (τ̃1 ◦ α1)(x1) · . . . · (τ̃n ◦ αn)(xn)

= α1(x1) ⊗ · · · ⊗ αn(xn).

Therefore α = α1 ⊗ · · · ⊗ αn . �
The next result is concerned with the group of torsion units of D(G) where G is a nilpotent group

of odd order.

Theorem 8.6. Let G be a nilpotent group of odd order. Then U T (D(G)) ∼= Ĝ × C2 .

Proof. We assume U T (D(G)) � Ĝ × C2. By Theorem 4.6 with S = 1, G , there exists

0 
= u =
∑

[H,ϕ]G∈M(G)/G

z[H,ϕ][H,ϕ]G ∈ D(G), z[H,ϕ] ∈ Z,

with
∑2|G|

k=1

(2|G|
k

)
uk = 0 and z[G,ϕ] = 0 for all ϕ ∈ Ĝ . Thus 1 + u ∈ U T (D(G)). Choose U � G such that

|U | is maximal with the property z[U ,ψ] 
= 0 for some ψ ∈ Û . Then U < G . Since ±Û is the set of all
torsion units in ZÛ there exists τ ∈ Û with

ρU (u) =
∑

[U ,ϕ]G∈M(G)/G

z[U ,ϕ]
∑

gU∈NG (U )/U

gϕ = ±τ − 1.

In case τ 
= 1 we get z[U ,1] = −1 and (NG(U ) : U ) = 1. Since G is nilpotent, (NG(U ) : U ) 
= 1 holds in
contradiction to the above case. Therefore τ = 1. Since (NG(U ) : U ) 
≡ 0 (mod 2) the case ρU (u) = −2
is not possible. Therefore ρU (u) = 0. This implies z[U ,ϕ] = 0 for all ϕ ∈ Û contradicting the assumption
z[U ,ψ] 
= 0. Therefore U T (D(G)) ∼= Ĝ × C2. �
Corollary 8.7. Let G and G̃ be finite nilpotent groups with D(G) ∼= D(G̃). Then the 2′-Hall subgroups of G/G ′
and G̃/G̃ ′ are isomorphic.

Proof. Let H and H̃ be the 2′-Hallgroups of G and G̃ . By Theorem 8.4 we obtain the isomorphy
D(H) ∼= D(H̃). Moreover we get H/H ′ × C2 ∼= H̃/H̃ ′ × C2 by Theorem 8.6. Therefore we get H/H ′ ∼=
H̃/H̃ ′ . �

For p-nilpotent groups we get the following result.

Theorem 8.8. Let G and G̃ be finite groups with D(G) ∼= D(G̃). Assume that for a prime divisor p of |G| the
Sylow p-subgroups of G and G̃ are cyclic. If G is p-nilpotent then G̃ is p-nilpotent.

Proof. Let P be a Sylow p-subgroup of G and let α : D(G̃) → D(G) be an isomorphism. By Propo-

sition 3.7, α(eD(G̃)
(1,1) ) = eD(G)

(U ,u) holds with a normal abelian subgroup U of G and u ∈ Z(G). Let
H := O p(U ) and h := up′ ∈ Z(G). By Proposition 7.1 we obtain

α
(
eD(G̃),p
(1,1)

) =
∑

[K ,kK ′] ∈I

eD(G)

(K ,kK ′) (15)

G
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with

I = {[
K ,kK ′]

G ∈ D(G)/G: K = H V , V � P , k = hv, v ∈ V
}
.

Let V � P , v, w ∈ V and K := H V . Assume [K ,hv K ′]G = [K ,hw K ′]G . We first prove v = w .
There exists g K ′ ∈ NG(K )/K ′ with g(hv)K ′ = hw K ′ . Since h ∈ Z(G) we get g v K ′ = w K ′ .

Since P is cyclic K/H ∼= V is cyclic. Thus K ′ � H and V K ′/K ′ ∼= V . In particular V K ′/K ′ is a
cyclic p-subgroup of NG(K )/K ′ . It holds v K ′, w K ′ ∈ V K ′/K ′ , and since |〈w K ′〉| = |〈g v K ′〉| we get
〈w K ′〉 = 〈v K ′〉 =: T . Thus g K ′ ∈ NNG (K )/K ′ (T ). Since G is p-nilpotent the subgroup NG(K ) is p-
nilpotent and therefore NG(K )/K ′ is p-nilpotent. By the p-nilpotency-criteria of Frobenius follows
that NNG (K )/K ′ (T )/CNG (K )/K ′ (T ) is a p-group. Since P is abelian every Sylow p-subgroup of NG(K )/K ′
is abelian. Therefore a Sylow p-subgroup of NG(K )/K ′ is included in CNG (K )/K ′ (T ). Thus |NG(K )/K ′|p

divides |CNG (K )/K ′ (T )|. It follows that NNG (K )/K ′ (T ) = CNG (K )/K ′ (T ) and therefore w K ′ = v K ′ . We get
v−1 w ∈ K ′ ∩ V = 1. Thus v = w .

Let |P | = pn with n ∈ N. For every divisor pm , m ∈ N, of |P | there exists exactly one sub-
group V � P with |V | = pm . By the above part of the proof there exist exactly pm different orbits
[H V ,hv(H V )′]G , v ∈ V , for every subgroup V � P with |V | = pm . Therefore

|I| =
n∑

i=0

pi = pn+1 − 1

p − 1
.

Let P̃ be a Sylow p-subgroup of G̃ . Since P̃ is cyclic we get

eD(G̃),p
(1,1) =

∑
[K̃ ,k̃ K̃ ′]G̃∈ J

eD(G̃)

(K̃ ,k̃ K̃ ′)

with

J = {[Ṽ , ṽ]G̃ ∈ D(G̃)/G̃: Ṽ � P̃ , ṽ ∈ Ṽ
}

by Theorem 6.4. Since | P̃ | = pn it holds | J | �
∑n

i=0 pi , and by Eq. (15) we get |I| = | J |. Hence
[Ṽ , ṽ]G̃ = [W̃ , w̃]G̃ with Ṽ , W̃ � P̃ , ṽ ∈ Ṽ , w̃ ∈ W̃ if and only if Ṽ = W̃ and ṽ = w̃ . Therefore
NG̃(Ṽ ) = CG̃(Ṽ ) for all Ṽ � P̃ . In particular NG̃( P̃ ) = CG̃( P̃ ). Thus G̃ is p-nilpotent by the p-nilpotency
criterion of Burnside. �
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