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In this paper we extend the work of Kawamura, see [K. Kawamura, The Perron–Frobenius
operators, invariant measures and representations of the Cuntz–Krieger algebras, J. Math.
Phys. 46 (2005)], for Cuntz–Krieger algebras O A for infinite matrices A. We generalize the
definition of branching systems, prove their existence for any given matrix A and show
how they induce some very concrete representations of O A . We use these representations
to describe the Perron–Frobenius operator, associated to a nonsingular transformation,
as an infinite sum and under some hypothesis we find a matrix representation for the
operator. We finish the paper with a few examples.
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1. Introduction

The interactions between the theory of dynamical systems and operator algebras are one of the main venues in modern
mathematics. Exploring this interplay, Kawamura, see [3], recently showed that the theory of representations of the Cuntz–
Krieger algebras is closely related to the theory involving the Perron–Frobenius operator. The work of Kawamura is done
for the Cuntz–Krieger algebras O A , for finite matrices A. In this paper we generalize many of the results in [3] for the
Cuntz–Krieger algebras for infinite matrices (a concept introduced by Exel and Laca in [1]). For example, under some mild
assumptions, we are able to give an explicit characterization of the Perron–Frobenius operator, associated to a nonsingular
transformation, as an infinite sum, using a representation of an infinite Cuntz–Krieger algebra. In our efforts to generalize
the notions of [3] we found two problems with the work done in there that we believe are worth mentioning. First is the
necessity of an extra hypothesis in the definition of a branching function system given in [3]. The other problem is in the
statement of Theorem 1.2 of [3], where B A should read AT B . We will deal with both these cases when introducing our
generalized versions of the theory of [3].

We organize the paper in the following way: In the remaining of the introduction we quickly recall the reader the main
definitions of [3] and show the need for an extra hypothesis in the definition of a branching function system. In Section 2,
we define branching systems for infinite matrices A, which we denote by A∞ . We deal with the existence of A∞-branching
systems for any given matrix A (infinite or not) and show how they induce representations of O A in Section 3. Next, in
Section 4, we use the representations introduced in Section 3 to describe the Perron–Frobenius operator as an infinite sum;
we also present the generalized and corrected version of Theorem 1.2 of [3] in this section. We finish the paper in Section 5
with a few examples.
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Given a measure space (X,μ), let L p(X,μ) be the set of all complex valued measurable functions f such that ‖ f ‖p < ∞.
For a nonsingular transformation F : X → X (that is, μ(F −1(E)) = 0 if μ(E) = 0) let P F : L1(X,μ) → L1(X,μ) be the
Perron–Frobenius operator, that is, P F is such that∫

E

P F ψ(x)dμ =
∫

F −1(E)

ψ(x)dμ

for each measurable subset E of X , for all ψ ∈ L1(X,μ). Notice that, for ψ ∈ L1(X,μ), P F (ψ) is the Radon–Nikodym
derivative of the measure μP F , given by μP F (E) = ∫

F −1(E)
ψ(x)dμ, with respect to μ (see [4] for more details about the

Perron–Frobenius operator).
In order to describe the Perron–Frobenius operators and representations of the Cuntz–Krieger algebras, Kawamura, in [3],

introduces the notion of A-branching function system on a measure space (X,μ): a family ({ f i}N
i=1, {Di}N

i=1) of measurable
maps and measurable subsets of X , respectively, together with a nonsingular transformation F : X → X such that f i : Di →
f i(Di) = Ri , μ(X \ ⋃N

i=1 Ri) = 0, μ(Ri ∩ R j) = 0 for all i �= j, there exists the Radon–Nikodym derivative Φ f i of μ ◦ f i with
respect to μ (where μ◦ f i denotes the measure defined by μ◦ f i(E) = μ( f i(E)), for all measurable set E in Di ) and Φ f i > 0
almost everywhere in Di for i = 1, . . . , N , F ◦ f i = idDi for each i ∈ N and μ(Di \ ⋃

j: aij=1 Ri) = 0, where aij are the entries
of the matrix A defining O A .

Next, a family {S( f i)}N
i=1 of partial isometries in L2(X,μ) is defined by S( f i)(φ) = χRi · (ΦF )

1
2 · φ ◦ F , where χRi denotes

the characteristic function of Ri , and a representation of O A in L2(X,μ) is obtained by defining π f (si) = S( f i) (i = 1,

. . . , N) (where si is one of the generating partial isometry in O A ), and using the universal property of O A . But it happens
that the definition given above for an A-branching function system is not enough to guarantee that we get a representation
of O A , in fact, it is not enough to prove most of the theorems in [3]. For example, let X = [0,2], μ be the Lebesgue
measure, R1 = [0,1] = D1, R2 = [1,2] = D2, F : X → X defined by F (x) = x for each x ∈ [0,2] (so, f i(x) = x for each x ∈ Di )
and A = ( 1 1

1 0

)
. Following [3], ({ f i}i=12, {Di}i=12) is an A-branching function system, but S( f1)

∗ S( f1)(φ) = χ[0,1] · φ and

(S( f1)S( f1)
∗ + S( f2)S( f2)

∗)(φ) = χ[0,2] · φ, for each φ ∈ L2(X,μ), so that S( f1)
∗ S( f1) �= ∑2

i=1 S( f i)S( f i)
∗ . Therefore, the

existence of a representation of O A in L2([0,2],μ) is not guaranteed.
As we have seen, we need to add some extra hypothesis to the definition of an A-branching function system. Namely, we

also have to ask that μ(
⋃

j: aij=1 R j \ Di) = 0, for each i = 1, . . . , N . We should mention that this extra condition is satisfied
in all the examples given in [3]. With this new definition of an A-branching function system in mind, we are now able to
generalize it to the countable infinite case.

2. A∞-branching systems

For a measure space (X,μ) and for measurable subsets Y , Z of X , we write Y
μ-a.e.= Z if μ(Y \ Z) = 0 = μ(Z \ Y ) or

equivalently, if there exist Y ′, Z ′ ⊂ X such that Y ∪ Y ′ = Z ∪ Z ′ with μ(Y ′) = 0 = μ(Z ′).
Let A be an infinite matrix, with entries A(i, j) ∈ {0,1}, for (i, j) ∈ N×N, and let (X,μ) be a measurable space. For each

pair of finite subsets U , V of N and j ∈ N define

A(U , V , j) =
∏
u∈U

Au j

∏
v∈V

(1 − Av j).

Definition 2.1. An A∞-branching system on a σ -finite measure space (X,μ) is a family ({ f i}∞i=1, {Di}∞i=1) together with a
nonsingular transformation F : X → X such that:

1. f i : Di → Ri is a measurable map, Di, Ri are measurable subsets of X and f i(Di)
μ-a.e.= Ri for each i ∈ N;

2. F satisfies F ◦ f i = idDi μ-a.e. in Di for each i ∈ N;
3. μ(Ri ∩ R j) = 0 for all i �= j;
4. μ(R j ∩ Di) = 0 if A(i, j) = 0 and μ(R j \ Di) = 0 if A(i, j) = 1;
5. For each pair U , V of finite subsets of N such that A(U , V , j) = 1 only for a finite number of j’s,⋂

u∈U

Du ∩
⋂
v∈V

(X \ D v )
μ-a.e.=

⋃
j∈N: A(U ,V , j)=1

R j;

6. There exist the Radon–Nikodym derivatives Φ f i of μ ◦ f i with respect to μ in Di and Φ f −1
i

of μ ◦ f −1
i with respect

to μ in Ri .

The existence of the Radon–Nikodym derivative Φ f i of μ ◦ f i with respect to μ in Di together with the fact that
F ◦ f i = idDi μ-a.e. imply that f i ◦ F |Ri

= idRi μ-a.e. So, the function f i is μ-a.e. invertible, with inverse f −1
i := F |Ri

. These

are the functions that appear in condition 6 above. If follows from the same condition that Φ f i and Φ −1 are measurable
f i
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functions in Di and Ri , respectively. We will also consider these functions as measurable functions in X , defining it as being
zero out of Di and Ri , respectively.

The functions Φ f i and Φ f −1
i

are nonnegative μ-a.e., because μ is a (positive) measure. It is possible to show that Φ f i > 0

and Φ f −1
i

> 0 μ-a.e. in Di and Ri , respectively, and Φ f i (x)Φ f −1
i

( f i(x)) = 1 μ-almost everywhere in Di . This equality will be

used in the next section.

3. Representations of Cuntz–Krieger algebras for infinite matrices

Representations of the Cuntz–Krieger algebras are of great importance, having applications both to operator algebras and
to dynamical systems. In this section we show that for each A∞-branching system, there exists a representation of the
unital Cuntz–Krieger C∗-algebra O A on B(L2(X,μ)), the bounded operators on L2(X,μ).

Following [1], recall that the unital Cuntz–Krieger algebra of an infinite matrix A, with A(i, j) ∈ {0,1} and (i, j) ∈ N × N

is the unital universal C∗-algebra generated by a family {Si}i∈N of partial isometries that satisfy:

1. Si S∗
i S j S∗

j = 0 if i �= j;
2. S∗

i Si and S∗
j S j commute, for all i, j;

3. S∗
i Si S j S∗

j = A(i, j)S j S∗
j , for all i, j;

4.
∏

u∈U Su S∗
u
∏

v∈V (1 − S v S∗
v ) = ∑∞

j=1 A(U , V , j)S j S∗
j , for each pair of finite subsets U , V ⊆ N such that A(U , V , j) :=∏

u∈U A(u, j)
∏

v∈V (1 − A(v, j)) vanishes for all but a finite number of j’s.

Theorem 3.1. For a given A∞-branching system (see 2.1), there exists a ∗-homomorphism π : O A → B(L2(X,μ)) such that π(Si)φ =
χRi · (Φ f −1

i
)

1
2 · φ ◦ F for each φ ∈ L2(X,μ).

Proof. First notice that for a given φ ∈ L2(X,μ) we have that∫
X

∣∣χRi (x)Φ f −1
i

(x)
1
2 φ

(
F (x)

)∣∣2
dμ =

∫
Ri

Φ f −1
i

(x)
∣∣φ(

f −1
i (x)

)∣∣2
dμ =

∫
Ri

∣∣φ(
f −1

i (x)
)∣∣2

d
(
μ ◦ f −1

i

)

=
∫
Di

∣∣φ(x)
∣∣2

dμ �
∫
X

∣∣φ(x)
∣∣2

dμ.

To obtain the second equality we have considered the Radon–Nikodym derivative of μ ◦ f −1
i with respect to μ in Ri and

the last equality is an application of the change of variable theorem.
So, we define the operator π(Si) : L(L2(X,μ)) → L(L2(X,μ)) by

π(Si)φ = χRi · (Φ f −1
i

)
1
2 · (φ ◦ F ),

for each φ ∈ L2(X,μ). By using the above computation, we see that π(Si) ∈ B(L2(X,μ)).
Our aim is to show that {φ(Si)}i∈N satisfies the relations 1–4 which define the Cuntz–Krieger algebra O A . With this in

mind, let us first determine the operator ψ(Si)
∗ .

For each φ,ψ ∈ L2(X,μ),

〈
π(Si)φ,ψ

〉 = ∫
X

χRi (x)Φ f −1
i

(x)
1
2 φ

(
F (x)

)
ψ(x)dμ =

∫
Ri

Φ f −1
i

(x)
1
2 φ

(
f −1

i (x)
)
ψ(x)dμ = · · ·

by using the change of variable theorem

· · · =
∫
Di

Φ f −1
i

(
f i(x)

) 1
2 φ(x)ψ

(
f i(x)

)
d
(
μ ◦ f i

) = · · ·

considering the Radon derivative Φ f i of μ ◦ f i

· · · =
∫
Di

Φ f i (x)Φ f −1
i

(
f i(x)

) 1
2 φ(x)ψ

(
f i(x)

)
dμ =

∫
Di

Φ f i (x)
1
2 φ(x)ψ

(
f i(x)

)
dμ

=
∫

φ(x)χDi Φ f i (x)
1
2 ψ

(
f i(x)

)
dμ = 〈

φ,χDi · Φ
1
2
f i

· (ψ ◦ f i)
〉
.

X
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Then

π(Si)
∗ψ = χDi · Φ

1
2
f i

· (ψ ◦ f i).

It is easy to show that

π(Si)
∗π(Si)ψ = χDi · ψ = MχDi

(ψ),

for each ψ ∈ L2(X,μ) (that is, π(Si)
∗π(Si) is the multiplication operator by χDi ). In the same way π(Si)π(Si)

∗ = MχRi
.

Now we verify if {π(Si)}i∈N satisfies the relations 1–4, which define the C∗-algebra O A . The first relation follows from
the fact that μ(Ri ∩ R j) = 0 for i �= j. The second one is trivial.

To see that the third relation is also satisfied, recall that if A(i, j) = 0 then μ(R j ∩ Di) = 0 and hence

π(Si)
∗π(Si)π(S j)π(S j)

∗ = MχDi
MχR j

= MχDi∩R j
= 0,

and if A(i, j) = 1 then μ(R j \ Di) = 0 and hence

π(Si)
∗π(Si)π(S j)π(S j)

∗ = MχDi
MχR j

= MχDi∩R j
= MχR j

= π(S j)π(S j)
∗.

So, for each i, j ∈ N,

π(Si)
∗π(Si)π(S j)π(S j)

∗ = A(i, j)π(S j)π(S j)
∗.

To verify the last relation, let U , V be finite subsets of N such that A(U , V , j) = 1 only for finitely many j’s.
Then, by Definition 2.1.5,

Mχ(
⋂

u∈U Du
⋂

v∈V (X\D v ))
= Mχ(

⋃
A(U ,V , j)=1 R j )

.

Note that

Mχ(
⋂

u∈U Du
⋂

v∈V (X\D v ))
=

∏
u∈U

MχDu

∏
v∈V

(Id − Mχ D v ) =
∏
u∈U

π(Su)∗π(Su)
∏
v∈V

(
Id − π(S v )∗π(S v )

)
.

On the other hand,

Mχ(
⋃

j∈N: A(U ,V , j)=1 R j )
=

∑
j∈N: A(U ,V , j)=1

MχR j
=

∑
j∈N: A(U ,V , j)=1

π(S j)π(S j)
∗.

This shows that the last relation defining O A is also verified.

So, there exists a ∗-homomorphism π : O A → B(L2(X,μ)) satisfying π(Si)φ = χRi · (Φ f −1
i

)
1
2 · φ ◦ F . �

The previous theorem applies only if an A∞-branching system is given. Our next step is to guarantee the existence of
A∞-branching systems for any matrix A. First we prove a lemma, which will be helpful in some situations.

Lemma 3.2. Let A be an infinite matrix with entries in N × N having no identically zero rows, (X,μ) be a measure space, and let
{R j}∞j=1 and {D j}∞j=1 be families of measurable subsets of X such that

(a) μ(Ri ∩ R j) = 0 for all i �= j;

(b) X
μ-a.e.= ⋃∞

j=1 R j ;

(c) Di
μ-a.e.= ⋃

j∈N: A(i, j)=1 R j .

Then conditions 4 and 5 of 2.1 are satisfied.

Proof. Condition 4 follows from (a) and (b). To show 5 first we note that X \ D v
μ-a.e.= ⋃

j∈N: A(v, j)=0 R j . Then, given U , V
finite subsets of N , we have that

⋂
u∈U

Du ∩
⋂
v∈V

(X \ D v)
μ-a.e.=

( ⋃
j∈N: A(u, j)=1 ∀u∈U

R j

)
∩

( ⋃
j∈N: A(v, j)=0 ∀v∈V

R j

)

μ-a.e.=
( ⋃

j∈N:
∏

u∈U A(u, j)=1

R j

)
∩

( ⋃
j∈N:

∏
v∈V (1−A(v, j))=1

R j

)
μ-a.e.=

⋃
j∈N: A(U ,V , j)=1

R j . �
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Theorem 3.3. For each infinite matrix A, without identically zero rows, there exists an A∞-branching system in the measure space
([0,∞),μ), where μ is the Lebesgue measure.

Proof. Consider [0,∞) with the Lebesgue measure μ. Define Ri = [i, i+1] and Di = ⋃
j: A(i, j)=1 R j . Note that μ(Ri ∩ R j) = 0

for i �= j. Then, by the previous lemma, conditions 4 and 5 of Definition 2.1 are satisfied. So, it remains to define maps
f i : Di → Ri and F : [0,+∞) → [0,+∞) satisfying the conditions of Definition 2.1. For a fixed i0 ∈ N we define f i0 as
follows. First divide the interval ˚Ri0 (where ˚Ri0 denotes the interior of Ri0 ) in #{ j: A(i0, j) = 1} intervals I j . Then, define
˜f i0 :

⋃
j: A(i0, j)=1 R̊ j → ⋃

j: A(i0, j)=1
˚I j such that ˜f i0 : R̊ j → ˚I j is a C1-diffeomorphism. We now define f i0 : Di0 → Ri0 by

f i0 (x) =
{ ˜f i0 (x) if x ∈ ⋃

j: A(i0, j)=1 R̊ j,

i0 if x ∈ Di0 \ ⋃
j: A(i0, j)=1 R̊ j,

and F : [0,∞) → [0,∞) by

F (x) =
⎧⎨
⎩

˜f i0

−1
(x) if x ∈ ⋃

j: A(i0, j)=1
˚I j,

0 if x ∈ Ri0 \ ⋃
j: A(i0, j)=1

˚I j .

Note that f i and F are measurable maps. Moreover, μ ◦ f i and μ ◦ f −1
i are σ -finite measures in Di and Ri . Next we

show that there exist the Radon–Nikodym derivatives Φ f i of μ ◦ f i with respect do μ in Di . Let E ⊆ Di be such that
μ(E) = 0. To show that μ ◦ f i(E) = 0 it is enough to show that μ ◦ f i(E ∩ (

⋃
j: A(i, j)=1 R̊ j)) = 0, and this equality is true

by [5]. Then, by [2], there exists the desired nonnegative Radon–Nikodym derivative Φ f i . In the same way there exists
the (nonnegative) Radon–Nikodym derivative Φ f −1

i
of μ ◦ f −1

i with respect to μ in Ri . We still need to show that F is

nonsingular. For this, let E ⊆ [0,∞) be such that μ(E) = 0. Notice that it is enough to prove that μ(F −1(E) ∩ R j) = 0 for
each j. Now μ(F −1(E)∩ R j) = μ( f j(E ∩ D j)) = 0 (where the last equality follows from the fact that μ ◦ f j � μ in D j ), and
hence μ(F −1(E)) = 0 as desired. �
Corollary 3.4. Given an infinite matrix A, there exists a representation of O A in L2([0,∞),μ) where μ is the Lebesgue measure. If
A is N × N then there exists a representation of O A in L2([0, N),μ) where μ is the Lebesgue measure.

4. The Perron–Frobenius operator

We now describe the Perron–Frobenius operator using the representations introduced in the previous section.

Theorem 4.1. Let (X,μ) be a measure space with a branching system as in Definition 2.1 and let ϕ ∈ L1(X,μ) be such that ϕ(x) � 0
μ-a.e.

1. If supp(ϕ) ⊆ ⋃N
i=1 R j , then

P F (ϕ) =
N∑

i=1

(
π

(
S∗

i

)√
ϕ

)
2.

2. If supp(ϕ) ⊆ ⋃∞
i=1 R j , then

P F (ϕ) = lim
N→∞

N∑
i=1

(
π

(
S∗

i

)√
ϕ

)
2,

where the convergence occurs in the norm of L1(X,μ).

Proof. The first assertion follow from the fact that for each measurable set E ⊆ X ,

∫
E

P F (ϕ)(x)dμ =
∫
E

N∑
i=1

(
π

(
S∗

i

)√
ϕ(x)

)2
dμ.

To prove this equality, we will use the Radon–Nikodym derivative of μ ◦ f i , the change of variable theorem and the fact
that F −1(E) ∩ Ri = f i(E ∩ Di). Given E ⊆ X a measurable set we have that
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N∑
i=1

∫
E

(
π

(
S∗

i

)√
ϕ(x)

)2
dμ =

N∑
i=1

∫
E

χDi (x)Φ f i (x)ϕ
(

f i(x)
)

dμ =
N∑

i=1

∫
E∩Di

Φ f i (x)ϕ
(

f i(x)
)

dμ =
N∑

i=1

∫
E∩Di

ϕ
(

f i(x)
)

d(μ ◦ f i)

=
N∑

i=1

∫
f i(E∩Di)

ϕ(x)dμ =
N∑

i=1

∫
F −1(E)∩Ri

ϕ(x)dμ =
N∑

i=1

∫
F −1(E)

χRi ϕ(x)dμ =
∫

F −1(E)

N∑
i=1

χRi ϕ(x)dμ

=
∫

F −1(E)

ϕ(x)dμ =
∫
E

P F (ϕ)(x)dμ.

We now prove the second assertion. For each N ∈ N, define ϕN := ∑N
i=1 χRi · ϕ. Note that (ϕN )N∈N is an increasing

sequence, bounded above by ϕ . Then

lim
N→∞

∫
X

P F (ϕN )(x)dμ = lim
N→∞

∫
X

ϕN(x)dμ = · · ·

by the Lebesgue’s Dominated Convergence Theorem

· · · =
∫
X

ϕ(X)dμ =
∫
X

P F (ϕ)(x)dμ.

Moreover, the sequence (P F (ϕN ))N∈N is μ-a.e. increasing and bounded above by P F (ϕ).
Then,

lim
N→∞

∥∥P F (ϕ) − P F (ϕN )
∥∥

1 = lim
N→∞

∫
X

∣∣P F (ϕ)(x) − P F (ϕN )(x)
∣∣dμ = lim

N→∞

∫
X

P F (ϕ)(x) − P F (ϕN )(x)dμ = 0.

Therefore, limN→∞ P F (ϕN ) = P F (ϕ). By the first assertion, P F (ϕN ) = ∑N
i=1(π(S∗

i )
√

ϕN )2, and a simple calculation shows
that

N∑
i=1

(
π

(
S∗

i

)√
ϕN

)
2 =

N∑
i=1

(
π

(
S∗

i

)√
ϕ

)
2.

So, we conclude that

lim
N→∞

N∑
i=1

(
π

(
S∗

i

)√
ϕ

)
2 = P F (ϕ). �

Theorem 4.2. Let A be a matrix such that each row has a finite number of 1s and let (X,μ) be an A∞-branching system. Suppose
μ(Ri) < ∞ for each i (so that χRi ∈ L1(X,μ)). Moreover, suppose Φ f i is a constant positive function for each i, say Φ f i = bi (for
example, if f i is linear). Let W ⊆ L1(X,μ) be the vector subspace

W = span{χRi : i ∈ N},
that is, W is the subspace of all finite linear combinations of χRi . Then the Perron–Frobenius operator restricted to W , P F |W : W → W ,
has a matrix representation given by AT B, where B is the diagonal infinite matrix with nonzero entries Bi,i = bi .

Although A and B are infinite matrices, we are considering the matrix multiplication AT B as the usual multiplication for
finite matrices, since B is column-finite.

Proof. Since each row z of A has a finite number of 1s, then, by Definition 2.1.5, taking Z = {z} and Y = ∅, we obtain

Dz
μ-a.e.= ⋃

j: A(z, j)=1 R j so that χDz = ∑
j: A(z, j)=1 χR j . Note that

P F (χRz ) = bzχDz =
∑

j: A(z, j)=1

bz R j,

and so the element ( j, z) of the matrix representation of P F |W is bz A(z, j). �
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Fig. 1.

Fig. 2.

5. Examples

Example 5.1 (O ∞ (O A where all entries of the matrix A are 1)). Consider X = [0,1] with Lebesgue measure and define Di =
[0,1], for i = 1,2, . . . . To define the Ri ’s we first need to define recursively the following sequences in X : Let a1 = 0,
ai = ai−1 + 1

2i , i = 2,3, . . ., and let bi = ai+ai+1
2 , i = 1,2, . . . . Now define Ri = [a i+1

2
,b i+1

2
] for i odd and Ri = [b i

2
,a i

2 +1] for i

even and define a map F on X by

F (x) = x

b i+1
2

− a i+1
2

+
a i+1

2

a i+1
2

− b i+1
2

, for x ∈ Ri , i odd,

and

F (x) = x

a i
2 +1 − b i

2

+
b i

2

b i
2

− a i
2 +1

, for x ∈ Ri , i even.

Notice that F is nothing more than an affine transformation that takes the interval Ri onto Di = [0,1], as shown in Fig. 1.
Finally, let f i = (F |Ri

)−1. Then ({ f i}∞i=1, {Di}∞i=1) is an A∞-branching system and hence induces a representation of the
Cuntz–Krieger algebra O ∞ .

Example 5.2. Let X be the measure space [0,∞), with the Lebesgue measure. Consider the map F : [0,∞) → [0,∞) defined
by F (x) = i

2 (x− i)2 for x ∈ [i −1, i] and i odd and F (x) = [ i
2 ](x− (i −1))2 for x ∈ [i −1, i] and i even ([ i

2 ] is the least integer

greater than or equal to i ). In Fig. 2 we see the graph of F .
2
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Define Ri = [i − 1, i] for i = 1,2,3, . . . , set Di = [0, [ i
2 ]] and let f i : Di → Ri be defined by f i = (F |Ri

)−1. Then
({ f i}∞i=1, {Di}∞i=1) is an A∞-branching system. This branching system induces a representation of the C∗-algebra O A , for

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 · · ·
1 0 0 0 · · ·
1 1 0 0 · · ·
1 1 0 0 · · ·
1 1 1 0 · · ·
.
.
.

.

.

.
.
.
.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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