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1. Introduction

The interactions between the theory of dynamical systems and operator algebras are one of the main venues in modern
mathematics. Exploring this interplay, Kawamura, see [3], recently showed that the theory of representations of the Cuntz-
Krieger algebras is closely related to the theory involving the Perron-Frobenius operator. The work of Kawamura is done
for the Cuntz-Krieger algebras O 4, for finite matrices A. In this paper we generalize many of the results in [3] for the
Cuntz-Krieger algebras for infinite matrices (a concept introduced by Exel and Laca in [1]). For example, under some mild
assumptions, we are able to give an explicit characterization of the Perron-Frobenius operator, associated to a nonsingular
transformation, as an infinite sum, using a representation of an infinite Cuntz-Krieger algebra. In our efforts to generalize
the notions of [3] we found two problems with the work done in there that we believe are worth mentioning. First is the
necessity of an extra hypothesis in the definition of a branching function system given in [3]. The other problem is in the
statement of Theorem 1.2 of [3], where BA should read ATB. We will deal with both these cases when introducing our
generalized versions of the theory of [3].

We organize the paper in the following way: In the remaining of the introduction we quickly recall the reader the main
definitions of [3] and show the need for an extra hypothesis in the definition of a branching function system. In Section 2,
we define branching systems for infinite matrices A, which we denote by A,,. We deal with the existence of A,,-branching
systems for any given matrix A (infinite or not) and show how they induce representations of 04 in Section 3. Next, in
Section 4, we use the representations introduced in Section 3 to describe the Perron-Frobenius operator as an infinite sum;
we also present the generalized and corrected version of Theorem 1.2 of [3] in this section. We finish the paper in Section 5
with a few examples.
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Given a measure space (X, u), let L, (X, nt) be the set of all complex valued measurable functions f such that || ||, < oo.
For a nonsingular transformation F : X — X (that is, w(F~1(E)) = 0 if w(E) =0) let Pr:Li(X, ) — Li(X, ) be the
Perron-Frobenius operator, that is, Pg is such that

/vaf(x)du: / v dp
E FI(E)

for each measurable subset E of X, for all ¥ € L1(X, i). Notice that, for ¢ € L1(X, ), Pr(¥) is the Radon-Nikodym
derivative of the measure pp,, given by wp.(E) = /F*I(E) ¥(x)du, with respect to  (see [4] for more details about the
Perron-Frobenius operator).

In order to describe the Perron-Frobenius operators and representations of the Cuntz-Krieger algebras, Kawamura, in [3],
introduces the notion of A-branching function system on a measure space (X, @): a family ({fi},N:p {Di}f\’zl) of measurable
maps and measurable subsets of X, respectively, together with a nonsingular transformation F : X — X such that f;: D; —
fi(Dy) = Rj, (X \ U:V:1 Ri) =0, w(R; N Rj) =0 for all i # j, there exists the Radon-Nikodym derivative @y, of 1t o f; with
respect to ju (where o f; denotes the measure defined by o fi(E) = w(fi(E)), for all measurable set E in D;) and @5, >0
almost everywhere in D; fori=1,...,N, Fo f; =idp, for each i e N and pu(D;\ Uj: ajj=1 R;) =0, where q;; are the entries
of the matrix A defining O 4.

Next, a family {S(f,l)}l!":1 of partial isometries in Lo(X, u) is defined by S(fi)(¢) = xx; - (<1§F)% -¢ o F, where g, denotes
the characteristic function of R;, and a representation of O, in Ly(X, i) is obtained by defining 7s(s;) = S(fi) (i=1,
..., N) (where s; is one of the generating partial isometry in O 4), and using the universal property of O 4. But it happens
that the definition given above for an A-branching function system is not enough to guarantee that we get a representation
of 04, in fact, it is not enough to prove most of the theorems in [3]. For example, let X = [0,2], u be the Lebesgue
measure, R1 =[0,1] =Dy, Ry =[1,2] = Dy, F : X — X defined by F(x) = x for each x € [0, 2] (so, fi(x) =x for each x € D;)
and A = (1 ;) Following [3], ({fi}i=12, {Di}i=12) is an A-branching function system, but S(f1)*S(f1)(¢) = X[0,11 - ¢ and

(SUDSUD* + S(f2)S(f2)*)(@) = Xj0.21 - ¢, for each ¢ € Ly(X. ), so that S(f1)*S(f1) # Xr—; S(fi)S(f)*. Therefore, the
existence of a representation of O4 in Ly([0, 2], n) is not guaranteed.

As we have seen, we need to add some extra hypothesis to the definition of an A-branching function system. Namely, we
also have to ask that u(UJ;. a=1 Rj\Di) =0, for each i=1,..., N. We should mention that this extra condition is satisfied
in all the examples given in [3]. With this new definition of an A-branching function system in mind, we are now able to
generalize it to the countable infinite case.

2. Axo-branching systems

For a measure space (X, ) and for measurable subsets Y, Z of X, we write Y K2% 7 if Y \NZ)=0=pu(Z\Y) or
equivalently, if there exist Y', Z’ € X such that YUY’ =Z U Z’ with u(Y’) =0=u(Z’).

Let A be an infinite matrix, with entries A(i, j) € {0, 1}, for (i, j) e N x N, and let (X, ) be a measurable space. For each
pair of finite subsets U, V of N and j € N define

AU V. p=]TAy]]a-Ap.

uel veV

Definition 2.1. An Ay -branching system on a o -finite measure space (X, u) is a family ({f;}7°,,{D;}{2;) together with a
nonsingular transformation F : X — X such that:

. fi: Di — R; is a measurable map, D;, R; are measurable subsets of X and f;(D;) nze R; for each i e N;
. F satisfies F o fj =idp, w-a.e. in D; for each i e N;

. w(RiNRj)=0 for all i # j;

. w(RjN D) =0if A(i, j)=0 and w(R;\ D;) =0 if AG, j)=1;

. For each pair U, V of finite subsets of N such that A(U, V, j) =1 only for a finite number of j's,

() Dun ﬂ(X\DV)“i'e' U Rj;

uel veV jeN: A(U,V,j)=1

G A WN -

6. There exist the Radon-Nikodym derivatives @y, of 1 o f; with respect to u in D; and qﬁfl__l of o fi_1 with respect
to u in R;.

The existence of the Radon-Nikodym derivative @, of u o f; with respect to p in D; together with the fact that
Fo fi =idp; p-a.e. imply that f;o F\R,- =idg, m-a.e. So, the function f; is u-a.e. invertible, with inverse fi_l = F‘Ri. These
are the functions that appear in condition 6 above. If follows from the same condition that @y, and @ ;-1 are measurable
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functions in D; and R;, respectively. We will also consider these functions as measurable functions in X, defining it as being
zero out of D; and Rj, respectively.
The functions @, and @ 1 are nonnegative /i-a.e., because j is a (positive) measure. It is possible to show that @y, > 0
1

and q)f.-l >0 p-a.e. in D; and R;, respectively, and &y, (x)¢f__1 (fi(x)) =1 p-almost everywhere in D;. This equality will be
used in the next section.

3. Representations of Cuntz-Krieger algebras for infinite matrices

Representations of the Cuntz-Krieger algebras are of great importance, having applications both to operator algebras and
to dynamical systems. In this section we show that for each Ay -branching system, there exists a representation of the
unital Cuntz-Krieger C*-algebra 04 on B(Ly(X, i)), the bounded operators on Ly (X, ).

Following [1], recall that the unital Cuntz-Krieger algebra of an infinite matrix A, with A(i, j) € {0,1} and (i, j) e N x N
is the unital universal C*-algebra generated by a family {S;}icn of partial isometries that satisfy:

1. SiS;‘SjS}? =0ifi##j;

2. S7S; and S;ij commute, for all i, j;

3. S?SiSij = A(i,j)Sijf, for all i, j;

4. TTyeu SuSiTlyev (1 — SvS) = Z?‘;] AU, V,j)SjS}‘, for each pair of finite subsets U, V € N such that A(U,V, j) :=
[Tucy A, HTT,ey (1 — A(v, j)) vanishes for all but a finite number of j's.

Theorem 3.1. For a given Ao-branching system (see 2.1), there exists a x-homomorphism 77 : 0 4 — B(L2(X, () such that 77 (S;)¢ =
xR - (q)f_,l)% ¢ oF foreach ¢ € Ly(X, ).
1

Proof. First notice that for a given ¢ € Ly (X, i) we have that
/ xR, 0D <X>%¢(F<x>)l2du=f @51 0] (7 00)|*dp = f o(f ) (o 7
X Ri Ri
= /\¢<x>|2du < /|¢(x)\2dw
D; X

To obtain the second equality we have considered the Radon-Nikodym derivative of w o fi’l with respect to w in R; and
the last equality is an application of the change of variable theorem.
So, we define the operator 7 (S;) : L(La(X, ) = L(La(X, ) by

T (S)$ =k, - (@) - (P oF),

for each ¢ € Lp(X, ). By using the above computation, we see that 7 (S;) € B(Ly(X, w)).

Our aim is to show that {¢(S;)}ien satisfies the relations 1-4 which define the Cuntz-Krieger algebra O 4. With this in
mind, let us first determine the operator ¥ (S;)*.

For each ¢, ¥ € Ly(X, ),

(z(S¢, v)= / XR (0P 1 (02§ (F(0) ¥ (X) dps = / @029 (f7 )T dp =

X R;

by using the change of variable theorem

= [ @ (r0) o (i) de fi) =

Dj

considering the Radon derivative @y, of u o f;

= / @0 1 (£(0) 2 0y (F0) de = / 5,002 (oY (fi0) dpe

Dj Dj

_ 1
:/¢(X)XDi¢ff(X)%W(fi(x)) diw=(p, xp; - @} - (W o f)).
X
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Then
1
T(S)* Y = xp; - P} - (¥ o fi).
It is easy to show that

(SN TSV = Xp; - ¥ = Myp, (),

for each ¥ € Ly(X, ) (that is, 7 (S;)*m (S;) is the multiplication operator by xp,). In the same way 7 (S;)7 (S;)* = MXRi.
Now we verify if {7 (S;)}ien satisfies the relations 1-4, which define the C*-algebra O 4. The first relation follows from
the fact that w(R; N Rj) =0 for i # j. The second one is trivial.
To see that the third relation is also satisfied, recall that if A(i, j) =0 then w(Rj N D;) =0 and hence

(S (SHm (ST (SH* = My, Mij = MXDiij =0,
and if A(i, j) =1 then w(R; \ D;) =0 and hence

(S 70 (SHT(SPT(S )™ = Myp, Myg; =Myp,on; = Mg, = 7 (SH7(SP*.
So, for each i, j e N,

7T (S)* (ST (SHT(SH* = A, T (SHT(SH*.

To verify the last relation, let U, V be finite subsets of N such that A(U, V, j) =1 only for finitely many j’s.
Then, by Definition 2.1.5,

M =M .
X(Nueu Pu Nvev (X\Dv)) XUaw,v, jy=1R)

Note that
Mot ey vuvevnionn = 1 I Mo, [ 104 =My =[] Sw*m (S [T (1 = 7(S0)*m (50).
uelU veV uel veV
On the other hand,
— — . . *
MX(UjeN: AUV =1 Rp) Z MXRj - Z T(SHTS))™
jeN: A(U,V,j)=1 jeN: A(U,V,j)=1

This shows that the last relation defining O 4 is also verified.
So, there exists a s-homomorphism 7 : 04 — B(L2(X, )) satisfying 7 (Sj)¢ = xr, - (<1>f_71)% -¢poF. O

The previous theorem applies only if an A -branching system is given. Our next step is to guarantee the existence of
Aco-branching systems for any matrix A. First we prove a lemma, which will be helpful in some situations.

Lemma 3.2. Let A be an infinite matrix with entries in N x N having no identically zero rows, (X, ) be a measure space, and let
{Rj}j°; and {D]-}]%'; be families of measurable subsets of X such that

(@) w(RiNRj)=0foralli# j;
(b) X"2° U, Ry;

u-ae.
(©) Di"="Ujen: ad.j=1 Rj-

Then conditions 4 and 5 of 2.1 are satisfied.

Proof. Condition 4 follows from (a) and (b). To show 5 first we note that X \ D, KA UjeN: AW, j)=0 Rj- Then, given U, V

finite subsets of N, we have that

() Dun )X\ Dy) Mi&( U Rf)“( U Rj)

uel veV jeN: A(u,j)=1 VueU jeN: A(v,j)=0 VveV

(U m)( U ) Y we o

jeN: [Tyey Alu, =1 jeN: [Tyey (1-A(v,j)=1 jeN: AUV, j)=1
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Theorem 3.3. For each infinite matrix A, without identically zero rows, there exists an Aoo-branching system in the measure space
([0, 00), ), where yu is the Lebesgue measure.

Proof. Consider [0, oo) with the Lebesgue measure i. Define R; =[i,i+1] and D; = Uj: AG, =1 R;. Note that w(R;NR;)=0
for i # j. Then, by the previous lemma, conditions 4 and 5 of Definition 2.1 are satisfied. So, it remains to define maps
fi:Di — R; and F : [0, 400) — [0, +00) satisfying the conditions of Definition 2.1. For a fixed ip € N we define fj, as
follows. First divide the interval Rnio (where R}O denotes the interior of R;,) in #{j: A(io, j) =1} intervals I;. Then, define
ﬁo : Uj: Adio.j)=1 jo — Uj: Alio,j)=1 Ioj such that f;o : Roj — I°j is a C1-diffeomorphism. We now define f;, : D, — R;, by

fio®) ifxe Uj: ado, j=1 Rj,
fio(x) = . . 5
io if x € Di; \ U]-: Adio, =1 K>

and F : [0, 00) — [0, c0) by

~ -1 . o
fio @ ifxeU; adg,jy=11i>

F(x)= . i
0 if x € Rig \Uj: adig.jy=11i-

Note that f; and F are measurable maps. Moreover, i o f; and w o f,._1 are o-finite measures in D; and R;. Next we

show that there exist the Radon-Nikodym derivatives @y, of u o f; with respect do w in D;. Let E C D; be such that
M(E) = 0. To show that w o fi(E) =0 it is enough to show that po f;(EN (U]-: A, =1 R})) =0, and this equality is true
by [5]. Then, by [2], there exists the desired nonnegative Radon-Nikodym derivative @y,. In the same way there exists
the (nonnegative) Radon-Nikodym derivative @ = of o fl.*l with respect to w in R;. We still need to show that F is

nonsingular. For this, let E C [0, co) be such that w(E) = 0. Notice that it is enough to prove that w(F~1(E) N Rj) =0 for
each j. Now w(F~1(E)n Rj) = u(f;(ENDj)) =0 (where the last equality follows from the fact that ;o fj < u in Dj), and
hence w(F~1(E)) =0 as desired. O

Corollary 3.4. Given an infinite matrix A, there exists a representation of O 4 in L([0, 00), i) where w is the Lebesgue measure. If
Ais N x N then there exists a representation of O 4 in Lo ([0, N), ) where  is the Lebesgue measure.

4. The Perron-Frobenius operator

We now describe the Perron-Frobenius operator using the representations introduced in the previous section.

Theorem 4.1. Let (X, () be a measure space with a branching system as in Definition 2.1 and let ¢ € L1(X, ) be such that ¢(x) > 0
JL-a.e.

1. If supp(¢p) C UfV:1 Rj, then

N

Pr(p) = Z(n(s;‘)\/a)z‘

i=1
2. If supp(p) € U2, R}, then
N
Prp) = fim 3 (x (S1)v%)>.
1=

where the convergence occurs in the norm of L1 (X, ).

Proof. The first assertion follow from the fact that for each measurable set E C X,
N 2
[ prowdu= [ 3 (i) Vo0 du.
E E =1

To prove this equality, we will use the Radon-Nikodym derivative of w o fj, the change of variable theorem and the fact
that F~1(E) N R; = fi(E N D;). Given E C X a measurable set we have that
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N
Z/( (SH)VP®)* du = Z/XD WP, ®e(fix)dp = Z / @ (0 (fix)dp = Z/ (fix)d(uo fi)
E

i=1 i=1% i= 1EﬂD i= ]EﬂD

N
= / P dp = Z / P dp = Z / XRip(X) dpt = / wa(x)du

=1 f(EnDy) F~1(E)NR; F-1(E) F-1(E) !
= / w(x)duszF(w)(x)du-
F~1(E) E

We now prove the second assertion. For each N € N, define ¢y := Zf; XR; - ¢. Note that (¢n)nen is an increasing
sequence, bounded above by ¢. Then

lim /PF((PN)(X)dM: lim /‘PN(X)dM="'
N—oo N—oo
X

by the Lebesgue’s Dominated Convergence Theorem

=/¢<X)du=/PF<go><x>du.

X X

Moreover, the sequence (Pr(¢n))neN iS p-a.e. increasing and bounded above by Pr(¢).
Then,

Jim [[P(@) = Pr(on) | = lim / [PF@)(0 = Pr(on) ()| dpe = lim / Pr(@)(®) = Pr(pn) (x)dpu =0.
X X

Therefore, limy_ o Pr(¢n) = Pr(¢). By the first assertion, Pr(¢n) = Z?’Zl(n(S?‘)a/wN)Z and a simple calculation shows
that

N N

Yo (SHVen )2 = (e (S)ve)2.

i=1 i=1
So, we conclude that

N

NlewZ(ﬂ (SH)V@)2=Pr(p). O
i=1

Theorem 4.2. Let A be a matrix such that each row has a finite number of 1s and let (X, u) be an A~o-branching system. Suppose
1(R;) < oo for each i (so that xg, € L1(X, i)). Moreover, suppose @y, is a constant positive function for each i, say @5, = b; (for
example, if f; is linear). Let W C L1 (X, ) be the vector subspace

W =span{xg;: i e N},

that is, W is the subspace of all finite linear combinations of xg;. Then the Perron-Frobenius operator restricted to W, Pg,, : W — W,
has a matrix representation given by AT B, where B is the diagonal infinite matrix with nonzero entries Bii=b;.

Although A and B are infinite matrices, we are considering the matrix multiplication AT B as the usual multiplication for
finite matrices, since B is column-finite.

Proof. Since each row z of A has a finite number of 1s, then, by Definition 2.1.5, taking Z = {z} and Y = (J, we obtain
,u a.e.
D, Uj: a@.jy=1 Rj so that xp, =3 ;. a¢z.jy=1 XR,- Note that

Pr(xRr,) =bzxp, = Z bzR;,
ji Az, j)=1

and so the element (j, z) of the matrix representation of P, is b;A(z,j). O
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5. Examples

Example 5.1 (0, (0 4 where all entries of the matrix A are 1)). Consider X = [0, 1] with Lebesgue measure and define D; =

[0,1], for i =1,2,.... To define the R;’s we first need to define recursively the following sequences in X: Let a; =0,

ai=aj_1+ % i=2,3,..., and let bizaﬁ%, i=1,2,.... Now define R; =[aiz1,bi+1] for i odd and R,-:[bl-,a%-ﬂ] for i
2 2 2

even and define a map F on X by

bt dip
F(x) = + z , for xeR;, i odd,
bi+_1 —Ait1 Ait1 —bi+_1
2 2 2 2
and
X by
F(x)= 5 +b 2 , for xeR;, ieven.
Bya by By =gy

Notice that F is nothing more than an affine transformation that takes the interval R; onto D; = [0, 1], as shown in Fig. 1.
Finally, let f; = (F‘Ri)q. Then ({fi}{2;,{Di}{2,) is an Ax-branching system and hence induces a representation of the

Cuntz-Krieger algebra O .

Example 5.2. Let X be the measure space [0, oo), with the Lebesgue measure. Consider the map F : [0, c0) — [0, co) defined
by F(x) = 5(x—i)2 for xe[i—1,i] and i odd and F(x) = [5](x—(i—1))2 for x€ [i —1,i] and i even ([5] is the least integer
greater than or equal to %). In Fig. 2 we see the graph of F.
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Define R; =[i — 1,i] for i =1,2,3,..., set D;j = [0,[%]] and let f; : Dj — R; be defined by f; = (F|Ri)‘1. Then
({fi}2;, {Di}2,) is an Ao-branching system. This branching system induces a representation of the C*-algebra O 4, for

0

—_ = o
—_ = = O O
- O O O
o O o o
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