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Abstract 

This paper deals with one-parameter linear perturbations of a family of polynomials {Pn(x)}~0 with deg[P.(x)] 
= n of the form 

P~'(x) = Pn(x) +/~Q.(x), 

where p is a real parameter and {Qn(x)}~ 0 are polynomials with deg[Qn(x)] ~< n. Let the polynomials {Pn(x)}~0 be 
eigenfunctions of a linear differential or difference operator L with eigenvalues {2n}~0. The purpose of this paper is 
to derive necessary and sufficient conditions for the polynomials {Q.(x)}.~0 such that the polynomials {P~(x)}~0 are 
eigenfunctions of a linear difference or differential operator (possibly of infinite order) of the form 

L + I~A 

with eigenvalues 

Ke),words." Differential operators; Difference operators; Orthogonal polynomials 

AMS classification: 34A35, 39A70, 47B39, 33C45 

I. Introduction 

In a number of  recent papers polynomials are considered orthogonal with respect to an inner 
product consisting of  the standard inner product of  one of  the classical orthogonal polynomials to 
which one or two linear perturbation terms are added. In all cases an explicit representation of  these 
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orthogonal polynomials is given and a linear differential or difference operator and eigenvalues are 
constructed with these orthogonal polynomials as eigenfunctions. 

Polynomials orthogonal with respect to the inner product 

( f ' g )  - F(z~ + 1).  .f(x)g(x)x~e - 'dx  + pf(O)g(O), 

with y >_. 0, ~ > - 1 were considered in [15] and a representation was given of  the form 

P,,l'(x) : P,,(x) + pQ,,(x), n = 0, l . . . . .  ( l )  

where the polynomials {P,,(x)},~= 0 are the Laguerre polynomials {L~J(x)}~_0 and the polynomials 
{Q,(- )},,=0 can be expressed in terms of  Laguerre polynomials. In [! 1] (see also [2]) it is shown that 
if p > 0 the polynomials are eigcnthnctions of  a uniquely determined linear differential operator o f  
order 2z~+4 if ~ is a nonnegativc integer and of  infinite order otherwise, which is a linear perturbation 
of  the differential equation for Laguerre polynomials. In [10] a one-parameter perturbation o f  the 
inner product for uitraspherical polynomials is discussed and a linear differential operator o f  order 
2 ~ + 4  if ~ is a nonnegative integer and of  infinite order otherwise is derived having these polynomials 
as eigenfunctions. 

In [4] the inncr product 

C - .  aa 
(f,,q) = ~ .f(x)~Ax).~-U. + ~f(o),u(o) + v~f(O)Aq(O), 

x 0 

a > 0 ,  y>lO, v>lO, A f ( x ) = f ( x + l ) - f ( x ) ,  (2) 

has been dealt with and the corresponding orthogonal polynomials which are generalizations o f  the 
Charlier polynomials have been constructed. In [6] the case y > 0 and v = 0 was studied and it is 
shown that in that case the polynomials are eigenfunctions o f  a linear difference equation o f  infinite 
order and in [4] it was proved that also in the case p = 0  and v > 0 the polynomials are eigenfunctions 
of  a difference operator o f  infinite order but the operator is no longer uniquely determined. 

Later the inner product 

( f ,  g) = (1 - c)/; ~___, x ~ f ( x ) g ( x )  + pf(O)g(O) + vAf(O)Ag(O), 
, 0 

(3) 

D' > o, 0 < c < 1, p ~ o, v ~ 0 was treated. Here ([3), = fl(fl + I )([] + 2 ) . . .  ([] + x - 1 ). The case 
p > 0 and v- -  0 has been considered in [5]. The corresponding orthogonal polynomials which are 
generalizations of  the Meixner polynomials have been constructed and it is shown that in that case 
the polynomials are eigenfunctions o f  a linear difference equation of  infinite order. In [7], by using a 
special normalization of  the polynomials, the situations fbr Meixner and for Laguerre polynomials are 
compared and the case p - -  0 and v > 0 is treated. In the Meixner case again a difference operator o f  
infinite order was found, not uniquely determined, which in the limit tends to a differential operator 
for the Laguerre case. 

In all these cases the orthogonal polynomials {P~'(x)},~ 0 are of  the form ( i ) ,  where {P,(x)},~ 0 are 
the classical orthogonal polynomials in question and {Q,,(x)},,~_0 are explicitly known polynomials. If  
L = L ( x )  denotes the linear differential or difference operator o f  the second order, having the classical 
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orthogonal polynomials {P,(x)},~_ 0 as eigenfunctions with eigenvalues {)~,},,~0, then the differential 
or difference operator is o f  the form L +/~A, where A - - A ( x )  is a linear differential or difference 
operator, possibly of  infinite order. 

Recently, in [9] some more general results were proved. These results will be discussed later. 
In this paper we take a different point o f  view putting the perturbations directly to the polynomials 

instead of  to the inner product or moment functional. 
Let ~'~ be the space of  all polynomials and '~'~. be the space of  all polynomials o f  degree ~< n 

(n =0 ,  1.2 . . . .  ). Let {P,,(x)},,~ o bc a system of  polynomials with deg[P.(x)] = n  for each n =0 ,  1,2 . . . . .  
which arc eigenfunctions of  a linear operator L = L ( x )  mapping ~t~,, into ~1.~. with eigenvalues { -,,}.=0, 
which are not all zero. Hence, 

L(x)P,,(x) = 2,,P,,(x), n = 0, 1,2 . . . . .  

We consider a system of  polynomials (1), where p is a real parameter and {Q,,(x)}.~_0 denotes a 
system o f  polynomials with deg[Q,,(x)] ~< n for each n = 0, !, 2 . . . . .  

We look for a linear operator A mapping '~. into '~.~,, and numbers {7. },,~-0 such that the polyno- 
mials {P,l'(x)},~_o (linear perturbations o f  {P.(x)},,~_0) are eigenfunctions of  a linear operator L + ~A 
(a linear perturbation of  L) with cigenvalues {2. + ~, ,} .~0 (linear perturbations of  {).,};~=o), i.e. 

[(L - )~,!) + p(A - z(,,I)]P~,'(x) = 0, n = 0, 1.2 . . . . .  (4) 

X "x_ Here ! denotes the identity operator. We derive conditions for the polynomials {Q,( )},,-0 such that 
the operator A mapping ',t~,, into ~:t~,, and the numbers {~,,}~-0 exist. 

2. A necessary condition for the polynomials { Q.(x) },,_~-o 

If we insert (1) into (4) and consider both sides to be polynomials in I~, comparing the coefficients 
of  equal powers o f  ~ we obtain the following two systems of  cquations: 

(L - 2,,l)Q,,(x) + (A - ~,,l)P,,,(x) = 0, n = 0. 1,2 . . . . .  (5) 

(A - %,l)Q,,(x) = 0, n = 0. 1,2 . . . . .  (6) 

X 7y~ 7x2 . We expand the polynomials {Q,,( )}, ,o in terms o f  {P,,(x)}._ 0. 

Q,,(x) = L q,,.kP,(x), n = 0, 1.2 . . . .  (7) 
k 0 

and find 

(L - ) . , , l )Q.(x)= - L ( ) . , , -  2,)q,,.kP~(x). n = 0 , 1 , 2  . . . . .  
k = 0  

From (5) and (6) we deduce that any operator A mapping ':t~. into ~-I.~. and any numbers a,, satisfy 
(4) if and only if 

AP.(x )=~, ,P . (x )+~-~(2 , , - ) .~)q . , kP~. (x ) ,  n = 0 , 1 , 2  . . . . .  (8) 
k - 0  
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~-~ qn,kAPk(x) = ~n ~ qn.,Pk(x), n = 0, 1,2 . . . . .  
k =0 k =0 

(9) 

A necessary condition for the existence o f  an operator A and the numbers {~n}~0 satisfying (8) 
and (9) is 

qn.k ~kPk(x) + ~ (2k - 2j)qk, j~(x)  
k =0 j=0  

o r  

tz 

= an Z q..kPk(x), 
k - 0  

n = 0 , 1 , 2  . . . . .  

qn.*[~n - 7,]P~.(x) = qn.k ~--~ (2k -- 2j)qk,/Pj(x), n = 0, 1,2 . . . . .  
k=0 k=0 .i=0 

Interchanging the summations we find 

) qn, k[c~. -- :~k]Pk(x)= ().j -- ).~)q.4qj.k Pk(x), n = 0, 1,2 . . . . .  (10) 
k =0 k =0 

As the polynomials {P. (x)}~0 form a basis for ~13 and since (10) is trivial for n = 0 we conclude: 

. ~ 2  Theorem 2.1. A necessary condition Jor the existence o f  a lh~ear operator A and numbers { n}.=0, 
satisfyin9 (8) and (9)  is that for  all n = 1,2,3 . . . .  and k = O, 1 . . . . .  n -  1 

q.,k[~. - ek] = ~ (2j - ).k)q.jqj, k. 
j=k-l 

(11) 

Example  2.2. Let P, (x )=x"  for n = 0, 1,2 . . . .  and let the operator L be given by 

fO 
x Xn 

L(x") = LP.(x) = 1 P( t )d t  - - -  , 

x n + l  

Hence, 2. = l/(n + I). If  we take 

O.(x)  = ~ ,  n = 0 , 1 , 2  . . . . .  
k=0 

then q..k = Ilk! for all nC {0,1,2 . . . .  } and all k c { 0 , 1 , 2  . . . . .  n}. By using (11) for k = n -  1 and 
the fact that q . . . .  ~#  0 we obtain 

which can be summed up to 

~,, - Otk = ~ ().j -- 2j_ ,  )q~.y. 
j = k - I  



H. Bavinck I Journal (~1 Computational and Applied Mathematics 78 (1997) 179-195 183 

Insertion into ( ! i )  would lead to 

1)1 
k! . j + l  j !  k! j +  1 k + l  j !  

j--k - I j -~  + I 

o r  

1 ~ k + l - j  
k +--T i.)" - o, 

)-=k+2 

which is clearly false for n >t k +2.  It follows that there cannot exist a linear operator A and numbers 
~. (hE {0, 1,2 . . . .  }) such that the polynomials 

Xk 

x" + I~ k~ " 
k : 0  

are eigenfunctions of  L + pA. 

3. Difference or differential operators 

3. 1. Notations 

Let {P. (x)}~0 be a set o f  polynomials with deg[P.(x)] = n for each n = 0, 1,2 . . . .  and let {)-,,}.~0 
be a sequence of  real numbers with 20 = 0 
is a polynomial set o f  solutions of  

L(x)y(x) =_ ~ li(x)~:,y(x) = ;t,y(x). 
i - - I  

and {-.},,=l not all equal to zero such that {P.(x)},,=0 

(12) 

l o c  , . . . .  Here { i(x)}~= I is a sequence of  polynomials with deg[l~(x)] <~ i for all i =  1 2, 3, ~ y ( x )  may be 
read as the derivative Dy(x) = dy(x)/dx, the forward difference Ay(x) = y(x + 1 ) - y(x) or backward 
difference V y ( x ) =  y ( x ) -  y ( x -  1) and ~'xy(x)= ~,(~:~-~y(x)). 

Let { Q . ( x ) } ~  0 be a set o f  polynomials with deg[Q.(x)]  ~< n for each n = 0 ,  1,2 . . . .  and {P.~'(x)}L0 
be the set o f  polynomials given by 

P~'(x)=P,.(X)+laQ.(x). n = 0 . 1 , 2  . . . . .  pE[~.  (13) 

We look for an operator A of  the form 

A(x)y(x)  -- ~ a i (x )~y(x ) .  (14) 
i - I  

X r:,c. where {a~( )},=l is a sequence of  polynomials with deg[a~(x)] ~< i for all i = 1,2,3 . . . . .  and for a 
9~ ~c sequence of  real numbers { ,,}._0 with ~ 0 - - 0  such that 

(L + pA)P,l'(x) = ()~.+ltot.)Pf(x), n = 0 .1 ,2  . . . . .  (15) 

We will use the following lemma (see. for instance, [16]). 
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X o c  ~ Lemma 3.1. Let {p.(  )}.-0 be an arbitrary set o f  poO'nomials with deg[p . (x)]  n ./or each 
n = 0, 1,2 . . . .  and/e t  {).,,}L0 he an arbitrary sequence o f  constants with 20 = 0 and {2 .}L  ~ not all 
equal to zero. Then there exists a unique sequence {l,(x)}i~l o /polynomials  with deg[l,(x)] ~<i 
Jbr all i = 1,2, 3 . . . .  such that 

~-~ l,(x):g~y(x) = )..y(x) 
/ = 1  

has {p,,(x)}._o~ as a polynomial set o f  solutions. Moreover, i f  li(x) = kixi+ lower-order terms for  
i = 1,2, 3 . . . . .  then 

nkl + n ( n -  1 ) k 2 + . . . + n ? k , , = 2 , , ,  n =  1.2.3 . . . . .  

X De. Definition 3.2. Let {P,,(x)}~ o and {Q.( )}.~o be as in Section 3.1 and let (7) hold. We call the 
set o f  polynomials {Pff(x)}~ o given by (13) a linear perturbation o f  {P.(x)}L0 of  t h e  c l a s s  m 
(mE {0, 1,2 . . . .  }) when the following conditions are satisfied: 

(i) i f n  ~<m then q,,.k = 0  for all k with 0 ~<k ~<n, (16) 
(ii) if n > m  then q . . . : ~ 0 , q . . . _ ~ # 0  a n d q . . k - - 0  for a i l k  w i t h 0 < ~ k < m .  

We now state and prove our main result. 

Theorem 3.3. Let {P~(x)}L 0 be a linear perturbation o f  {P.(x)}.~ 0 o f  the class m. Then a neces- 
sary and sufficient condition for  the existence o f  an operator A o f  the Jorm (14) and real numbers 
~t. such that (15) holds, is 

q..k ~ ()v-)-/-n)qJ.i = ~ (2j-2k)q..,q/.k, 
j = k  ~ I ] - k + l  

(17) 

Jbr all n E { 1.2, 3 . . . .  }, k E {0.1 . . . . .  n -  1 }. I f  m =0,  then the real numbers { . } . - i  and the operatorA 
are uniquely determined. I f  m > O, then ~l . . . . .  ~., can be chosen arbitrarily and the operator ,4 is 
uniquely determined when ~l . . . . .  :t,, are chosen. 

Proof. (i) Condition (17) is necessary. 
In Theorem 2.1 we derived the necessary condition (11) for the existence of  the operator A and 

C( ~c  the numbers { ,,}.=0 such that (15) holds. 
It is clear that the condition (1 1 ) is trivially satisfied for n ~< m. If n > m then q.,._ t # 0 and (11 ) 

with k = n -  1 yields 

~. - ct._l = ( 2 .  - 2 . - i ) q . . . .  

Hence, by summing up 

~ . - x k =  ~ ( ) - j - 2 j - ~ ) q j ,  j for m ~ < k ~ n -  1. 
j - k ~ l  

If we insert this in (! 1) we obtain (17). 
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(ii) Condition (17) is sufficient. Let condition (17) be satisfied. We will construct a linear operator 
A and real numbers { .}.=1 such that (8) and (9) are both fulfilled. First. if  m > 0, the numbers 
~ . . . . .  ~.. are chosen arbitrarily and for n > m we define 

t t  

~ , , = ~ . . +  y ~  ( ) . / - ) t / _ l )q j .~ ,  n = m + l , m + 2  . . . . .  (18) 
/ = m  ~ I 

Further, let A be the operator of  the form (14). uniquely determined by Lemma 3.1. such that 

AP,,.(x):-~nP,,.(x). n = 0 , 1  . . . . .  m. (19) 

A Q . ( x )  = ~.Q,.(x), n =- m + l ,m + 2 . . . . .  (20) 

Note that deg[P,,(x)]--n, n-:0,  1 . . . . .  m and by (16) deg[Q. (x )]=n,  n = m + l , m + 2  . . . . .  Then it follows 
that the system of  equations (9) is satisfied for all nE {0, 1,2 . . . .  } and (8) for all nE {0, 1,2 . . . . .  m}. 
So it remains to prove that the system of  equations (8) is satisfied for all n C {m + 1. m + 2 . . . .  }. We 
prove this by induction. By (16) we have 

Q.(x)-- - -~q~.kPk(x) ,  n-- - -m+ l , m + 2  . . . .  
k-m 

with q.. .  ~ O, q..,,_ ~ ~ O. 
Take first n = m + 1. Eq. (20) leads to 

q,.. I,.,.~AP,.~ i (x)  + qm+l.mAP.,(x) = ~,..+l(q.,+l..,+lP,.+l(X) + qm+l.mPm(X)), 

hence, 

q.,-I .... IAP. . - I (x)  = 7.,+1q..~ I.m-IPm-I(X) q- qm-I..,(a..+~ -- O~m)P,,(x) 

and by (18) 

AP,._ i (x)  = o~.,. 1P,,+l(x) + q,.+l.,.(2,., t - 2re)Pro(X). 

which is (8) for n = m + 1. 
Now let (8) hold for all n with m + i ~< n ~< m + t. We prove (8) for n = m + t + I. Eq. (20) 

leads to 

qm-t~l. . . f t-~l(A-~m+,+ll)P,,*,-~(x) = - ~ q . , + t - l . , , , ÷ k ( A - ~ . , . , ,  l l)P,,+k(x) 
k = 0  

= Z qm-,-I ..... k(~m+t ~ I - -  ~.,+k)Prntk(X) 
k--O 

k - ]  

- q ' " ' J . ' + *  Z (2~k  - ).m-j)q.,,k.m*)P,.~/(x) 
k =O j~o 

k =0  \ j=k - I 
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t k - I  

-- Z qm+t.l.m-~k Z (}.m-k -- }'m-j)qm+k.m-jPm+j(X) 
k • 0 j - 0 

- q,.. t~-I , rn- /Z  (Am+) -- J-m+k )qm+j.m~-kPm+k(X) 
i-O k--O 

= ~ - ~  ( ~ ( ) . m - / - - 2 m + , ) q m - t + , . m ÷ j q m + / . m + , )  / = k + ,  

- -  (Am, j  -- )'m+k)qm+t+l,m-yqm+Lrn+k Pm-k(x) 
k-o \ j : k -  I 

t 

: Z ( 2 m - t + l  - -  )-m-k )qm~t. I,m+t+lqm+t+l,m+kPm+k(X) . 
k-O 

Thus, 

I 

Aem+t-I(X ) = °~m~t+lPm+t+l(X ) + Z ( 2 r r t 4 t "  I - -  /.m-k )qm-t+l.m+kPm+k(X ) • 
k=0  

[] 

Remark. Formula (17) can also be written as 

q..k - 2/_ I )q/.j - ()~,,_ ~ - 2~.)q... = ( 2 / -  2k )q.,/q/.k. 
/ i=k + I 

(21) 

We now treat two other kinds of  perturbations with more specific requirements for the coefficients 
q..k. These perturbations are especially relevant in the case of  symmetric polynomials {P,,(. )}.=0- 

Definition 3.4. Let {P.(x)}~0 and { Q . ( x ) } ~  0 be as in Section 3.1 and let (7) hold. We call the 
set of  polynomials {P~(x)}~0 given by 

P ~ ( x ) = P . ( x ) + p Q . ( x ) ,  n---0,1 . . . . .  pER,  

a s p e c i a l  l inear  p e r t u r b a t i o n  o f { P . ( x ) } ~ o  of  t h e  c l a s s  m (mE{0 ,1 ,2  . . . .  }) when the following 
conditions are satisfied: 

(a) if n ~< m then 

q,, .k=0 for a l lk  with 0~<k.G<n; 
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(b) if  n > m then for all t E {1,2,3 . . . .  } 
(i) q,,,2,_Lk = 0 for all k with 0 ~< k <~ m + 2t - 2, 

(ii) q m - 2 t . m - 2 t  = qm-~2t-l.rn-2t-I ¢ O, 
(iii) q.,~2,.~ = 0 for all k with 0 ~< k ~ rn - 1. 
( i v )  qr,,+2t, m+2/~+l = 0 for all k with 0 ~< k ~ t - 1. 

( V )  q m - 2 ,  . . . . .  2 t - 2  ¢ 0  . 

(22) 

Theorem 3.5. Let {P[ (x )}Lo  be a .special linear perturbation o f  {P~(x)}2 0 of  the class m. Then 
a necessary and sufficient condition for  the existence o f  an operator A o f  the form (14) and real 
numbers ~,, such that (15) holds', is 

tl 

qm*2,,.m-2k ~_~ (}-m+2/ - -  2m~-2j-2)q,,f 2j.m+ 2j 
j = k ; l  

= ~ (2m~ 2i -- ~'m*2*)qm+2n, m*2jqm+2j, m+2*, (23) 
j -k+l  

for  all n c {1,2,3 . . . .  }, k E {0, 1 . . . . .  n - 1}. For all t C {1,2,3 . . . .  } the numbers ot,.2,_, and, i f  
m > O, the numbers :q . . . .  , ~,~ can be chosen arbitrarily. The other values o f  ~, and the operator 
A are uniquely determined when these arbitrary numbers have been chosen. 

Proof .  (i) Condition (23) is necessary. In Theorem 2.1 we derived the necessary condition (11) for 
the existence o f  the operator A and the numbers {:~,},~0 such that (15) holds. 

It is clear that conditions (11) are trivially satisfied for n ~< m. If  j >~ i then (22(i), (v ) )  and (11) 
with n = m + 2/', k = m + 2j  - 2 yield 

~m4-2j -- ~m ÷ 2 j - 2  ~ ( 2 m + 2 j  - -  /~rn-~.2j-2 )qm.2j.m+2j 

and hence by summing up 

9~n, t2,, -- 3~m-2k = ~ (2rn-2j -- }'m+2j-2)qra~2Lm-2j for m ~< k ~< n - 1. 
j=k ~ I 

If  we insert this on the left-hand side of  ( i l )  with n := m + 2n and k := m + 2k we obtain the 
left-hand side o f  (23). The right-hand side o f  (11) is 

2n 

( ~-m~-j - }.,,-2k )qm-2~.n,.jqm+j.,~ ~ 2t. 
j = 2 k  • I 

By (22(iv)) the right-hand side of (23) follows. 
( i i )  Condit ion (23) is" s'ufficient. Let condition (23) be satisfied. We wil l  construct a linear operator 

A and real numbers { ,},=1 such that (8) and (9) are both fulfilled. First, the numbers ~,,~2,-i 
(t E { I ,2 ,3  . . . .  } )  and, i f  m > 0 ,  the numbers ~ . . . . .  ~,, are chosen arbitrarily. For n = m + 2t (t E 
{1,2,3 . . . .  }) we define the numbers ~n by 

t 

~lm~-2t = O~m -~- Z (~-rn-2j -- ").m+2/-2)qrn+2j, m*2). (24) 
/=1 
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Further, let A be the operator of  the form (14), uniquely determined by Lemma 3.1, such that (19) 
and (20) hold. Then it follows that the system of  equations (9) is satisfied for all n E {0, 1,2 . . . .  }, 
and (8) for all n E {0, 1,2 . . . . .  m}. So it remains to prove that the system of  equations (8) is satisfied 
for all n = m  + s  (s E {1,2 . . . .  }). This is obvious for odd values of  s, since by (22(i))  

Qrn+2t_l(x)=qma2t, m+2tPm+2t_l(X) for all t E { i , 2  . . . .  }. 

For even values of  s we prove this by induction. 
Take first n = m + 2. Eq. (20) leads to 

qm+ 2,m+ 2.4Pm+ 2( x ) if- qm_ 2.maPm(x ) = :Xm_2( q,n + 2,m_2Pm+ 2(x ) + qm+ 2,rnPm(x ) ), 

hence, 

qm.2.m+2APm,.2(x) = :~m+aqm+2.m+2Pm_2(x) q- qm.2,m(Otm+2 -- Ogm)Pm(X ) 

and by (24) 

.4Pm_2(x ) : O~m+2em._2(x ) --~ qm+2,m().m+2 -- Am)Pm(X), 

which is (8) for n = m + 2. 
Now let (8) hold for all n with m + 2  ~ n ~ m + 2 t .  We prove (8) f o r n = m + 2 t + 2 .  Eq. (20) 

leads to 

qm+ 2t ~- 2,m+ 2t-2( A -~m+ 2t 4- 2 l )em+ 2t+ 2( x ) 

= -- ~ qm+2t+2,m+2k(A-gm+2t+21)Pm-2k(x) 
k=O 

I 

= Z  qm+2t+2.m..2k(~m+2t +2 -- ~m-~ 2k )Pm-2k(X) 
k-O 

k-I 
-- qm+2t;2 ..... 2h ~ ( 2 r n + 2 k  --  2m+2j)qm+2k, m+2jPm+2j(X) 

k =o ./ .o 

-- qm-~2t+2 . . . .  2k (2m+2j  --  Am+2j-2)qm+2j.m+2j P = + 2 k ( x )  
k=0 \ j=k+l 

t k-.l 

-- Z qm* 2,+2,m+2k Z (}.rn-2~ -- ).m*2j )qm+2k.m-2jem-2j(X) 
k =0 j -O 

:~ '~  ( ~'~ (/'m+2j -- /'m+2k)qm+2t+2'm+2Jqm-2j'm42k) \ j = k + l  

- - ~  qm+2t+2.m+2j ~()'m-~2j -- )'rn...2k)qm-~2j.m+2kem+2k(X) 
j=0 k=0 
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= Z (J-mf2i -- 2.,+2k)qm.2t+2.m+2jqm+2j, rn~-2k Prn,2k(X) 
k-O j:~k t I 

= ~  (L,,. 2,+2 - 2,,,. 2* )q,,,.2,+ 2 ..... 2,. 2q,,~ 2,-2 ..... 2kPm. 2k(x). 
/`-0 

Thus, 

I 

d P , , - 2 t .  2(X)  = g . , .  2t+2Pm+2t ., 2(X) + Z(,t-m~-2t }-2 -- ';-ml-2k )qm~ 2t-2.m+2kPm-2k(X), 
k=O 

which completes the proof. [] 

Remark.  Formula (23) can also be written as 

q,,,~2 ... . . .  2/, ( ')-. ,~2/ -- 2ma-2j-2 )q,,,.. 2/ m-~ 2/ -- (Am,2n-2 -- 2m.2k)qm~-2n.m,.Da 

1_ \ i..-/, ~-~ 

n -  1 

= ~ (2,,, ~2~ - 2~+:k )q,,~ 2,,.,,- 2jq,~ 2j.,,÷2k. 
i=k. I 

189 

( 2 5 )  

Definition 3.6. Let {P,.(x)}~_ 0 and {Q.(x)}~_ o be as in Section 3.1 and let (7) hold. We call the 
set of  polynomials {PnU(x)}~0 given by (13) a symmetric linear perturbation o f  {P,(x)}~ o of  the 
class m (m E {0, 1,2 . . . .  }) when the following conditions are satisfied: 

(i) q,,.~ = 0 for all k with 0 ~< k < n and n - k odd. 
(ii) if  n 4 m then q..k = 0 for all k with 0 ~< k ~ n, (26) 

(iii) if  n = m + i then q... # 0  and q~.k = 0 for all k with 0 ~< k < n, 
(iv) if n > m + l  then q . . .#O,q  . . . .  2 ~ 0  and q . . k = 0  for a l l k  with 0 ~ k  < m. 

l~ DG Theorem 3.7. Let {P~ (x)},= o be a symmetric linear perturbation W {P,,(x)}~±o o f  the class m. 
Then necessary and sufficient conditions Jbr the existence o f  an operator A o f  the ,/brm (14) and 
real numbers :t,, such that (15) holds, are 

q,,,-2n.rn+2k ' ~  (';~m,.2j -- '~-m., 2j-2 )qm.2/.,,,~-2j 
/ - k l l  

= ~ ()..~ 22 - ;t , .+x )q,.~ 2n ..... 2./q.,, 2j.m.~ 2k, 
j.~k+l 

(27) 
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qm+2,+ I,,,+2k.l ~ ( ) .m+2j .  1 - -  2 , , . 2 j - I ) q m ~ 2 / - l . m + 2 / - I  

i=k+ I 

= ~ ().m+2j41 - }'m+2k-I )qm+2n+Lm +2j~-Iqm+2j~ l,m+2* + 1, 
j=k+ l  

(28) 

for  all n ¢ {1,2, 3 . . . .  }, k C {0, 1 . . . . .  n -  !}. The real numbers oq . . . . .  ~,.+, can be chosen arbitrarily. 
The numbers {O~k}k%,.+ 2 and the operator A are uniquely determined when ~l . . . . .  ~,.+l have been 
chosen. 

Proof. (i) Conditions (27) and (28) are necessary, in Theorem 2.1 we derived the necessary con- 
dition (11) for the existence of  the operator A and the numbers {~,},~0 such that (15) holds. 

It is clear that the conditions (11) are trivially satisfied for n ~< m + I. I f j  >7 1 then by (26(iv)) 
qm.2j,,,+2j-2 ~ 0 and the proof that (27) is necessary is the same as in Theorem 3.5. The proof that 
(28) is necessary is similar. 

(ii) Conditions (27) and (28) are sufficient. Let conditions (27) and (28) be satisfied. We will 
construct a linear operator A and real numbers {~,},~l such that (8) and (9) are both fulfilled. First, 
the numbers ~l . . . . .  z~,,. ~ are chosen arbitrarily and for n > m + 1 we define for rE{ l , 2 ,3  . . . .  } 

/ 

~m-2t = am + Z (2m+2j  - -  Am+2j-2)qm+2j.m+2j, 
]= I 

• ,.~2~.1 = ~m+Z + ~ (2~+2/.1 - km+2j-I )q,.-2j+l.,..2)+l. 
j= l  

Further, let A be the operator of  the form (14), uniquely determined by Lemma 3.1, such that (19) 
and (20) hold. Then it follows that the system of equations (9) is satisfied for all n E ~ and (8) 
for all n E {0, 1,2,. . . ,m}. So it remains to prove that the system of  equations (8) is satisfied for all 
n = m + s (s E { 1.2, 3,...}). For s = i this is obvious, since by our assumptions for the polynomials 

X {Q,( )},=0 we have 

Q,,-~l(x) = q,,-I.m +IP,,, l(x). 

For even values o f s  we prove it by induction using (27) exactly as in the proof given in Theorem 3.5. 
For odd values of s the proof is similar by using (28). 

Remark. Formulae (27) and (28) can also be written as 

qrn+2n,m~-2k I (  ~ (Jtm+2j--)'rn+2j-2)qrn+2j, ra-2j) --()*rn+2n-2 --)~mtzk)qm+2n, m+2n 
L \j=k+l 

n--I 

= Z ().m~2) - )-m-2k)qm+2..m+2jqm+2j, m+2k, 
j-k+l 

(29) 
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q m .  2n+l ,m 1.2k-1 

) X ()~.,. 2;+ I -- )-m+2j-t )qm+2j+ I,,,,+2/, t -- (2m ~2,,-I -- )-m+2k + I )q,.*:,, ~ I.,,,-2,,+, 
i=k . - I  

n -  I 

: Z (l'~m-2]. I -- )~m-. 2k -I)q,,,+ 2 . +  I.m-2.j. l q m - 2 / ,  l.m+2*, 1. 

/ .,{ ~1 

( 3 0 )  

4. Applications 

4. 1. Soholev-type orthogonal polynomials  

Let {P,(x)},,~=0 be a system of  orthogonal polynomials relative to a quasi-definite moment functional 
a, which satisfy a differential equation of  the form (12). Let q~ be the symmetric bilinear form of  
Sobolev-type defined by 

0~( P,q)  = (~, Pq) + tJP~t~(c)¢l~(c), 

where p ( ¢  O) and c are real constants, l C {0, i ,2  . . . .  }, p and q are any polynomials and the notations 

pll~(x)= ~ p ( x ) ,  1 > 0 ,  

and 

= p , , ( x )  

are used. If 4) is quasi-definite then in the case ~., = d /dx  it is shown in [9] that if  P,l/'(c)-¢ 0 for all 
n = l, l + !, l + 2 . . . . .  then the corresponding orthogonal polynomials {P[(x)}~0 satisfy a differential 
equation (possibly of  infinite order) o f  the form (15), where a~ . . . . .  at can be chosen arbitrarily and 
the operator A is uniquely determined when a~ . . . . .  at are chosen. We are now in a position to derive 
this and the corresponding result for differences directly from Theorem 3.3. 

If we write 
,, ) 

K]['"(:c,y) = Z (a, p Z(x)) , n , r , s  C {0, 1,2 . . . .  }, 
i - 0  

then (see [1, 3]) the polynomials {Pf (x )} ,~  o can be written as (13) with 

o , , ( x ) :  < ' : ' , ' ( c , c ) P o ( x )  - 

hence, 

and 

(l) (/) 
P'. (c)P k (c) 0 ~< k ~< n - 1, (31) = ' 

(I,I) q ..... = K,,_l(c,c ). (32) 
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It fol lows that i f  P,}/)(c) ¢ 0 for all n = 1, l + 1,1 + 2 . . . . .  then {Pfl(x)},~- 0 is a linear perturbation o f  
class l o f  {P,,(x)}~o • 

In fact, if  wc insert (31) and (32) in (21), after somc cancellation it remains to show that for 
,, E {0, 1,2 . . . .  }, k E {0, 1 . . . . .  n -  2}, l E {0, 1,2 . . . .  } 

n - I  n- . I  ( l )  (/) P; (c) 
( 2 / -  ):i-I ~t~l""lLn'l tO,' C) -- (2,,_1 -- 2~ )K~/'II~(c,c)_ = - ~ (2j - )-k) ~ - 

j=k 4 1 l-k I I 

The summation-by-parts  formula 

ajbj = ~ ak (b,. - bj+l) + b, ~ ak, 
j -  p J-  p - ~ = p 

applied to the sum at the left-hand side with i :=  n -  I, p :=  k + 1, ai :=  )v 
yields 

n -2  r , ( / ) ,  )5 tc)P,' k C) 
left-hand s i d e =  - ~ (2, - ).~ (a,P~(x)) 

j=k- I  

= right-hand side. 

+ ().,,._., - 2, )K~/.12)(c, c) - (2,,_, - ).k )K~) (c , c )  

and 

Let {P,,(x)},,Z 0 be a system o f  orthogonal polynomials  relative to a quasi-definite moment  functional 
a,  such that P2k(x) is an even function and P2~-i(x) is an odd function for all k = 0, 1,2 . . . .  and let 
these polynomials  satisfy a differential equation o f  the form (12). Let 4' be the symmetr ic  bilinear 
lbrm o f  Sobolev-type defined by 

4'(p.q ) = (a, pq) + pp~n(O )q(n(O ), 

w h e r e / ~ ( ¢  O) is a real constant,  pU~(x)=dlp(x)/dx I, I E {0,  1,2 . . . .  }, and p and q are any polynomials .  
The corresponding orthogonal polynomials  {P,~'(x)}.~_0 can be written as (13) with 

Q,,(x ) = K],~','( O, O )P,(x ) - P, In( O )K~,~','(x, 0). 

Hence, 

P'}/)(O)P~n(O) 0 ~< k ~< n - 1, (34) 
q"'* - (a,P~(x)) ' 

q ..... = K~[/~'(0,0). (35) 

In this case i f  l > 0 then P,l;~(x) - 0 for 0 ~< n < l. Further for n >~ l we have P,I;)(0) = 0 i f  n - l 
is odd. Let 

P~ /1 (0 )¢0  for a l l n > ~ l  i f n - l i s  even. (36) 

(33) 

v i i .  l), , . ,  
- - 2 j  I, b j  :=  lkj._ I t¢_,¢.~ 

4.2. Even and odd orthogonal polynomials with Soboh, v-O,pe perturbation at 0 
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Then it easily follows from (34) and (35) that { P f ( x ) } ~  o is a special linear perturbation of  the class 
l o f  { . (x)}.= 0. We show that condition (25) is satisfied for all n E {0, 1,2, ..}, k C {0, I , n - 2 } .  
If  we insert (34) and (35) in (25) we obtain after some cancellation 

n -  I 

. , i ,  - ~ K  (l"a _2(0,0) Z ( ) ' / f 2 j  - -  } H 1 2 j - 2 ) K I . 2 j _ 2 ( O ,  O )  - -  ().1-2n--2 ) . l . 2 k !  I -2n  
j=k - 1 

n--I (/) (/~ 
. .g 2j(O)g+2j(O) 

= - ~ (),t~-zj - / 4 + : k )  ~ • 
z - k . "  I ~ f f '  l ' i  "k2J [ x  ) )  

By using the summation-by-parts formula (33) to the sum at the left-hand side this follows imme- 
diately. 
Conclusion. We may conclude that in the case of  the classical symmetric polynomials (Gegenbauer,  
Chebyshev,  Legendre and Hermite) which all satisfy condition (36) and are eigenfunctions o f  a 
second-order differential operator, the polynomials orthogonal with respect to the classical weight 
function with a one-parameter discrete Sobolev-type perturbation in 0 are also eigenfunctions of  a 
differential operator, possibly of  infinite order. 

4.3. Er,.en and odd polynomials  with a symmetr ic  perturbation 

/•, OG Let { ,,(x)},,_0 be a system of  orthogonal polynomials relative to a quasi-definite moment functional 
a, such that &k(x)  is an even function and P2~+~(x) is an odd function for all k - - 0 ,  1,2 . . . .  and 
let these polynomials satisfy a differential equation of  the form (12). We consider the polynomials 
{Pf(x)},,.~.o written as (13) with 

[ ~ ( I . I )  I v ( I . I ) ~  , (I) . (0.1) p ( I ) l c X ~ 1 ( O . I ) z  Q,,(x) = ~ . . . _ ~ x - c , - c )  + r . ._ l tc ,  c))P,,(x ) - (P,, (-c)K~,_ I ( x , - c )  + . t ')/%,-I tx, c)),  

dtp(x) I E { 0 . 1 , 2  . . . .  }. Hence. f o r 0 ~ < k ~ < n -  1 where p C l ~ ( x ) -  d x  t , 

P,( ,° ( -c)P~U(-c)  + P~a(c)P~')(c) 
= 

and 

, . , .(I,I)i 
q,,.,, = K~/'l,l(-c,_ - e )  + t%__ i tc, c). 

In this case if l > 0 then P, It)(x) ~ 0 for 0 ~< n < I. Let P~t) (c)¢O for all n ~> l. For all n >t l 
we have (t) P,, ( - c ) =  -U~l)(c) if n - 1 is odd and let ~ t ) ( - c ) =  ~ t ) ( c )  if n - l is even. Hence, for 
n > k  >~l 

and 

q,,,-- ¢o ,  

0, 

if n - k is even, (37) 

i f n - k  is odd, 

q ..... = 2K~,~l.~(c,c) ¢ 0 .  (38) 
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It easily follows from (37) and (38) that {Pfl(x)},~__ o is a symmetric linear perturbation of  the class 
/ of  {P, (x)}~0 and in a similar way as in the preceding cases we can show that (29) and (30) are 
satisfied. 

5. Conclusions 

In the papers [4-6, 8, 11] differential and difference operators (in some cases of  finite order, in 
some other cases of  infinite order) are constructed having certain families of  orthogonal polynomials 
as eigenfunctions. All these orthogonal polynomials are linear perturbations of  the classical orthogonal 
polynomials. The classical orthogonal polynomials are eigenfunctions of  a differential or difference 
operator L of  the second order with eigenvalues { 2 , } ~  0. In the papers mentioned above tedious 
proofs were needed to show the existence of  an operator of  the form L+I~A having the linear 
perturbations of  the classical orthogonal polynomials as eigenfunctions with eigenvalues of  the form 
{2,, + / ~ , } , ~ 0 .  By the results in this paper in all these cases and in many more such proofs have 
become superfluous. 
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