JOURNAL OF ALGEBRA 16, 105-107 (1970)

Simple Flat Extensions*

WOLMER V. VASCONCELOS

Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903

Communicated by P. M. Cohn

Received July 28, 1969

Our aim here is to give a structure theorem for flat extensions of a commutative noetherian ring R—that is, those R-algebras which are flat when viewed as R-modules—which are obtained, essentially, by adjoining a single element to R. Such an extension S is best described by an exact sequence of R-homomorphisms

(*)
$$0 \to I \to R[X] \to S \to 0;$$

S will be characterized in terms of the ideal I of the polynomial ring R[X]. Here is the main result.

STRUCTURE THEOREM. S as in (*) is a flat extension of R if and only if I is a projective ideal of R[X], and the ideal of R generated by the coefficients of the polynomials in I [the so-called content of I, notation : c(I)] is generated by an idempotent element of R. Moreover, if c(I) = R, then S is R-projective if and only if S is integral over R.

The proof will only use basic commutative algebra and is self-contained except for a light invocation of [1].

Proof of Theorem. Assume first that S is R-flat and that $I \neq (0)$. With J = c(I) tensor (*) with R/J to get

$$0 \to I/JI \to R/J[X] \to S/JS \to 0$$

and I = JI as $I \subseteq JR[X]$, by the definition of content above. In particular the last equality says that $J = J^2$ which implies, as it is well known, J = Refor some idempotent e. Using the decomposition $R = Re \oplus R(1 - e)$, we reduce the question of projectivity of I to the case when c(I) = R. Let M be

^{*} This research was partially supported by NSF contract GP-8619.

a prime ideal in R[X] and $P = M \cap R$ its projection in R. By localizing at P we may assume that R is local and, without danger of confusion still, denote by P its maximal ideal. Tensoring (*) with R/P we get

$$(**) 0 \to I/PI \to R/P[X] \to S/PS \to 0$$

and I/PI is generated by one element as an R[X]-module, being an ideal of the principal ideal domain R/P[X]. This is clearly enough to ensure that I_M is a principal ideal of $R[X]_M$; thus I is R[X]-projective.

For the converse, as above, we first reduce to the case when c(I) = R. We need the following lemmas which can be traced to Bourbaki [1].

LEMMA 1. Let $\phi: R \to S$ be a homomorphism of commutative rings and E an S-module. Then E, via ϕ , is flat over R if and only if, for all prime ideals $M \subset S$, E_M is flat over R_P , $P = \phi^{-1}(M)$.

LEMMA 2. Let R and S be two noetherian local rings, with maximal ideals $\underline{m}, \underline{n}; k = R/\underline{m}$. If $\phi : R \to S$ is a local homomorphism (i.e., $\phi(\underline{m}) \subseteq \underline{n}$) and E is a finitely generated S-module then E, via ϕ , is R-flat if and only if $\operatorname{Tor}_{\mathbf{1}}^{R}(k, E) = 0$.

To complete the proof let M (for Lemma 1) be a prime ideal of S, N its inverse image in R[X], and $P = N \cap R$. Localizing R[X] at N we get that $I_N = (f)$ where f can be taken as a polynomial where not all of its coefficients are in P. Thus the monomorphism of $R[X]_N$ induced by multiplication by f remains monic when one takes the coefficients mod P, that is, when we tensor the exact sequence

$$0 \to R[X]_N \xrightarrow{j} R[X]_N \to S_M \to 0$$

by R/P. Thus $\operatorname{Tor}_{1^{R}}(R/P, S_{M}) = 0$ and by Lemma 2 S is R-flat.

Now consider the second statement of the theorem. If S is R-projective, (**) says that S/PS is finitely generated as an R-module for each maximal ideal P. Writing $S \oplus E = \bigoplus \sum R_{\alpha}$ (free direct sum of copies R_{α} of R), to show that S is finitely generated it is enough to prove that S only has coordinates in finitely many R_{α} 's. Now pass to the total ring of quotients of R, which is a semilocal ring and the statement follows (see [2] for a treatment of these questions). The converse is well-known and the proof of the theorem is complete.

Remark. It would be interesting to have a similar result for non-noetherian rings, at least for those commutative rings for which finitely generated flat modules are projective.

SIMPLE FLAT EXTENSIONS

References

- 1. N. BOURBAKI, "Algèbre Commutative," Chap. III, Hermann, Paris, 1961.
- 2. W. V. VASCONCELOS, Projective modules of finite rank, Proc. Amer. Math. Soc. 22 (1969), 430-433.