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Our aim here is to give a structure theorem for flat extensions of a commu-
tative noetherian ring R—that is, those R-algebras which are flat when
viewed as R-modules—which are obtained, essentially, by adjoining a single
element to R. Such an extension S is best described by an exact sequence of
R-homomorphisms

(*) 0—>I— RX]—>S—0;

S will be characterized in terms of the ideal I of the polynomial ring R[X].
Here is the main result.

STRUCTURE THEOREM. S as in (*) is a flat extension of R if and only if I is a
projective ideal of R[X), and the ideal of R generated by the coefficients of the
polynomials in I [the so-called content of I, notation : c(I)] is generated by an
idempotent element of R. Moreover, if ¢(I) = R, then S is R-projective if and
only if S is integral over R.

The proof will only use basic commutative algebra and is self-contained
except for a light invocation of [1].

Proof of Theorem. Assume first that S is R-flat and that I 2% (0). With
J = ¢(I) tensor (*) with R/] to get

0 —I/JI — R/ J[X] — S|JS — 0

and I = JI as IC JR[X], by the definition of content above. In particular
the last equality says that ] = ]2 which implies, as it is well known, | = Re
for some idempotent e. Using the decomposition R = Re @ R(1 — ¢), we
reduce the question of projectivity of I to the case when ¢() = R. Let M be

* This research was partially supported by NSF contract GP-8619.
105


https://core.ac.uk/display/82154549?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

106 VASCONCELOS

a prime ideal in R[X] and P = M N R its projection in R. By localizing at
P we may assume that R is local and, without danger of confusion still,
denote by P its maximal ideal. Tensoring (*) with R/P we get

** 0 — I/PI — R/P[X] — S/PS — 0

and I/PI is generated by one element as an R[X]-module, being an ideal of
the principal ideal domain R/P[X]. This is clearly enough to ensure that I,
is a principal ideal of R[X],,; thus I is R[X]-projective.

For the converse, as above, we first reduce to the case when ¢(/) = R.
We need the following lemmas which can be traced to Bourbaki [1].

Lemma 1. Let ¢ : R— S be a homomorphism of commutative rings and
E an S-module. Then E, via ¢, is flat over R if and only if, for all prime ideals
MCS, Ey is flat over Rp, P = ¢~ (M).

Lemma 2. Let R and S be two noetherian local rings, with maximal ideals
m,n; k = Rim. If $ : R — S is a local homomorphism (i.e., $(m) C n) and E
is a finitely penerated S-module then E, via ¢, is R-flat if and only if
Tor ®(k, E) = 0.

To complete the proof let M (for Lemma 1) be a prime ideal of S, N its
inverse image in R[X], and P = N N R. Localizing R[X] at N we get that
Iy = (f) where f can be taken as a polynomial where not all of its coefficients
are in P. Thus the monomorphism of R[X]y induced by multiplication by
f remains monic when one takes the coefficients mod P, that is, when we
tensor the exact sequence

0 — R[X]y £ R[X]y — Spr =0

by R/P. Thus Tor,® (R/P, S);) = 0 and by Lemma 2 S is R-flat.

Now consider the second statement of the theorem. If S is R-projective,
(**) says that S/PS is finitely generated as an R-module for each maximal
ideal P. Writing S © E = @ X R, (free direct sum of copies R, of R), to
show that S is finitely generated it is enough to prove that S only has
coordinates in finitely many R, ’s. Now pass to the total ring of quotients of
R, which is a semilocal ring and the statement follows (see [2] for a treatment
of these questions). The converse is well-known and the proof of the theorem
is complete.

Remark. It would be interesting to have a similar result for non-noetherian
rings, at least for those commutative rings for which finitely generated flat
modules are projective.
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