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We explore the formation of diquark bound states and their Bose–Einstein condensation (BEC) in the
phase diagram of three-flavor quark matter at nonzero temperature, T , and quark chemical potential,
μ. Using a quark model with a four-fermion interaction, we identify diquark excitations as poles of the
microscopically computed diquark propagator. The quark masses are obtained by solving a dynamical
equation for the chiral condensate and are found to determine the stability of the diquark excitations.
The stability of diquark excitations is investigated in the T –μ plane for different values of the diquark
coupling strength. We find that diquark bound states appear at small quark chemical potentials and at
intermediate coupling strengths. Bose–Einstein condensation of non-strange diquark states occurs when
the attractive interaction between quarks is sufficiently strong.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

The one-gluon exchange interaction between quarks is attrac-
tive in the color-anti-triplet channel and leads to color supercon-
ductivity in cold and dense quark matter [1]. Due to asymptotic
freedom of QCD, the strength of the gluon-exchange interaction
around the Fermi surface changes with the quark number den-
sity. At asymptotically high densities, the interaction is sufficiently
weak to apply perturbation theory and the mean-field approxima-
tion, and color superconductivity is very similar to standard BCS
superconductivity. The gap parameter is Δ ∼ μexp(−1/g), where
g is the QCD coupling constant. Quark Cooper pairs are large, with
a correlation length ξ ∼ 1/Δ which is parametrically larger than
the interparticle distance d ∼ 1/μ. On the other hand, at inter-
mediate densities which may be realized in the cores of compact
stars and/or in the intermediate stages of heavy-ion collisions, the
quark–quark interaction is relatively strong and the properties of
the quark Cooper pairs will be modified. In particular, we expect
their size to become of the same order as the interparticle dis-
tance, ξ ∼ 1/Δ ∼ d [2,3]. Moreover, it was argued that, due to the
strong coupling, the fluctuations of the diquark-pair field become
large around the critical temperature Tc [4] and that they give rise
to a pseudogap region in the normal phase above Tc [5,6].
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If the quark–quark interaction becomes strong enough before
the quarks are confined at lower density, quark Cooper pairs be-
come small enough to be considered as tightly bound diquark
states. The color-superconducting ground state of quark matter at
low temperature may turn into a Bose–Einstein condensed phase
of diquarks [2,3]. Most likely, the transition happens continuously
with the change of the density, just like the BCS-BEC crossover in
conventional condensed matter and atomic systems [7,8], see also
Refs. [9–15]. An interesting property of diquark bound states is that
they can exist even above the critical temperature Tc of BEC, up to
the dissociation temperature Tdiss > Tc [8]. If such modes exist in
quark matter, they will affect its properties and experimental ob-
servables.

In this work, we explore the appearance of bound diquarks and
their BEC in the phase diagram of quark matter using a low-energy
effective model. This model features an attractive quark–quark in-
teraction with a constant coupling strength G D that is regarded
as a free parameter of the model. We show that diquark bound
states appear at low density at intermediate values of G D . It is
also shown that BEC of such diquark states can occur for large
values of G D .

In the normal phase above Tc , the strongest decay mode of
diquark bound states is that into a pair of quarks. Since the ex-
citation energy of a quark at rest is M − μ, with M being the
mass of the quark, the threshold energy for this decay process is
ωthr = 2(M̄ − μ̄), where M̄ and μ̄ are the average mass and chemi-
cal potential of the quarks in the diquark. Recalling that the energy
of the diquark excitations should be positive to ensure the stabil-
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ity of the system, one finds that the necessary condition for the
existence of stable diquarks is ωthr > 0, or

M̄ > μ̄. (1)

At T = Tc , as we will see later, Eq. (1) is also a sufficient condi-
tion [8,9,14]. From Eq. (1), we conclude that the stability of diquark
excitations is determined by the quark masses. Quark masses are
dynamically generated by chiral symmetry breaking and change
as functions of T and μ. In this work, we solve the gap equa-
tions for the chiral condensates and incorporate this effect in our
calculation. Eq. (1) also indicates that diquarks composed of heav-
ier quarks tend to be more stable than those composed of light
quarks, provided they exist at all. One thus expects that diquarks
containing a strange quark are more stable than those composed
of up and down quarks only.

Usually, BEC is discussed using the canonical ensemble, i.e., the
particle number density is fixed as an external parameter. In this
work, however, we employ the grand canonical ensemble and draw
the phase diagram in the T –μ plane, as is usually done in the
literature when exploring the QCD phase diagram [1]. In order to
decide whether BEC of diquarks occurs in this ensemble, we regard
the region of the superconducting phase satisfying Eq. (1) as Bose–
Einstein condensed phase [8,14].

In this exploratory study, we employ a common chemical po-
tential μ for all flavors and colors. For quark matter in compact
stars, this is probably not a very good assumption, as the chem-
ical potentials should be determined to satisfy the neutrality and
beta-equilibrium conditions. It is known that a rich phase structure
can appear under these conditions [16]. However, as we shall see
in the following, diquark excitations play an important role even at
high temperatures and small chemical potentials in the range rele-
vant for heavy-ion collisions. In this case, our assumption of equal
chemical potentials for all quark flavors and colors is applicable to
very good approximation.

This statement warrants a few remarks. Thermal model fits
of hadron yields at chemical freeze-out show that, because of
strangeness and isospin conservation, neither the strangeness
chemical potential μS nor the isospin chemical potential μI are
zero. The strangeness chemical potential is nonzero because of
associated production channels in hadronic matter at nonzero
baryon chemical potential. For quark matter, however, μS should
be strictly zero if the system has zero strangeness, and we may
neglect μS . The isospin chemical potential is nonzero because
of the initial isospin asymmetry of the colliding nuclei. How-
ever, at all collision energies it has been demonstrated [17] that
μB ≡ 3μ � |μI |. Thus, to leading order we may set μI = 0.

We note that parts of the present work have been recently pub-
lished in Ref. [18]. Here, we go substantially beyond that work by
discussing in detail the dependence of the quark masses and the
order parameters on the quark chemical potential (Fig. 2), by inves-
tigating the dissociation temperatures as function of the diquark
coupling strength (Fig. 4), by showing the baryon density as a func-
tion of quark chemical potential at zero temperature (Fig. 5), and
by computing the equation of state (Fig. 6) which is a necessary in-
put to determine the mass-radius relationship of compact stars via
the Tolman–Oppenheimer–Volkov equation. We also note that in
Ref. [14] a related study was done, albeit only for two quark flavors
and without showing the phase diagram in the T –μ plane (in-
stead, color neutrality, additional vector meson coupling terms, and
the chromomagnetic instability were discussed). We agree qualita-
tively with the conclusions drawn in that work.

The remainder of this work is organized as follows. In Section 2
we present details of our mathematical formalism. In Section 3 we
show the numerical results. We conclude this work with a sum-
mary in Section 4. Our units are h̄ = c = kB = 1.
2. Formalism

In order to study the phase diagram of quark matter, we em-
ploy a three-flavor quark model with four-fermion interactions. The
Lagrangian is given by

L= ψ̄(i/∂ − m̂)ψ + G S

8∑
a=0

[
(ψ̄λaψ)2 + (ψ̄ iγ5λaψ)2]

+ G D

∑
γ ,c

[
ψ̄a

α iγ5ε
αβγ εabc(ψC )b

β

][
(ψ̄C )r

ρ iγ5ε
ρσγ εrscψ

s
σ

]
, (2)

where the quark field ψa
α has color (a = r, g,b) and flavor (α =

u,d, s) indices. The matrix of current quark masses is given by
m̂ = diag f (mu,md,ms); λ0 = √

2/31 and λa , a = 1, . . . ,8, are the
Gell-Mann matrices in flavor space. The charge conjugate spinors
are ψC = Cψ̄ T and ψ̄C = ψ T C , where C = iγ 2γ 0 is the charge
conjugation matrix. In the following, we only consider diquark
condensates and diquark excitations in the color anti-triplet chan-
nel. For the numerical calculations, we employ a three-dimensional
momentum cutoff Λ. We treat the diquark coupling constant G D

as a free parameter. For the other parameters, we use the values
of Ref. [19],1 mu = md = 5 MeV, ms = 120 MeV, G S = 6.41 GeV−2

and Λ = 600 MeV.
We evaluate the thermodynamic potential in the mean-field ap-

proximation:

Ω = 1

4G D

3∑
c=1

|Δc |2 + 1

8G S

3∑
α=1

(Mα − mα)2

− T

2

∑
n

∫
d3 p

(2π)3
TrD,f,c ln

[
S−1(iωn, p)

]
, (3)

where the trace is taken over Dirac, flavor, and color indices, ωn =
(2n + 1)π/T is the Matsubara frequency for fermions, and

Mα = mα − 4G S 〈ψ̄αψα〉, (4)

Δc = 2G D〈ψ̄C Pcψ〉, (5)

are the constituent quark masses and the gap parameters for
color superconductivity, respectively, with (Pc)

αβ

ab = iγ5ε
αβcεabc .

The 72 × 72 Nambu–Gor’kov propagator is defined by

S−1(iωn, p) =
(

/p + μγ0 − M̂
∑

η PηΔη∑
η γ 0 P †

ηγ
0Δη

t/p − μγ0 + M̂

)
, (6)

with /p = iωnγ0 − p · γ and M̂ = diag f (Mu, Md, Ms). The quark
chemical potential μ has a common value for all flavors and col-
ors, as mentioned above.

The physical values of the variational parameters Δc and Mα

satisfy the stationary conditions (the gap equations)

∂Ω

∂Δc
= 0 and

∂Ω

∂Mα
= 0. (7)

As we shall see later, the color-superconducting phase transitions
at nonzero temperature are of second order. Thus, the critical tem-
peratures are determined by solving the following equation:

1

Δc

∂Ω

∂Δc

∣∣∣∣
Δc=0

= 0. (8)

We shall see later that this equation determines the poles of the
diquark propagator at vanishing energy and momentum.

1 In this reference, since the same parameters are employed, the phase structure
is completely the same as in Fig. 1, except for the lines for T c

diss , which were not
shown in that reference.
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Since up and down flavors are degenerate in our model, we al-
ways have Mu = Md and Δ1 = Δ2. In the following, we refer to
the phase with Δ3 	= 0 and Δ1,2 = 0 as the 2SC phase; the phase
with Δ3 	= 0 and Δ1,2 	= 0 is the CFL phase [1]. Unpaired quark
matter has Δ1 = Δ2 = Δ3 = 0. Because of the explicit chiral sym-
metry breaking by the nonzero current quark masses, the chiral
condensates 〈ψ̄iψi〉 never vanish.

At nonzero temperature, the order-parameter fields, Δc(x, t)
and Mα(x, t) have fluctuations around the values determined by
the mean-field approximation. In the following, we consider the
amplitude fluctuations of Δc(x, t) in unpaired quark matter. The
propagation of the fluctuations is characterized by the retarded
propagator

D R
c (x, t; x′, t′)

= −iθ(t − t′)
〈[
ψ̄(x, t)PcψC (x, t), ψ̄C (x′, t′)Pcψ(x′, t′)

]〉
=

∫
d3 p dω

(2π)4
D R

c (p,ω)e−iω(t−t′)eip·(x−x′), (9)

where c = 1,2, and 3 correspond to the down-strange, up-strange,
and up–down diquark fields, respectively. In the random-phase ap-
proximation, the diquark propagator is given by

D R
c (p,ω) = 1

2

Q R
c (p,ω)

1 + G D Q R
c (p,ω)

, (10)

where Q R
c (p,ω) is the one-loop quark–quark polarization func-

tion. In the imaginary-time formalism, it is given by

Qc(p, iνn)

= −2T
∑

m

∫
d3q

(2π)3

× TrD,f,c
[

Pc S0(p − q, iνn − iωm)Pc C S T
0 (q, iωm)C

]
, (11)

where νn = 2πn/T denotes the Matsubara frequency for bosons,
and S0(p, iωn) = [/p + μγ0 − M̂]−1. Taking the analytic continua-
tion, Q R

c (p,ω) =Qc(p, iνn)|iνn→ω+iη , we obtain

Q R
c (p,ω) = −2

3∑
β,γ =1

∣∣εcβγ
∣∣ ∫ d3q

(2π)3

×
∑

s,t=±

(sEβ + t Eγ )2 − |p|2 − (δMc)
2

st Eβ Eγ

× f (t Eγ − μ) − f (−sEβ + μ)

ω + 2μ − sEβ − t Eγ + iη
, (12)

where Eβ =
√

|q − p|2 + M2
β , Eγ =

√
|q|2 + M2

γ , δMc = |Mβ − Mγ |,
and f (E) = [exp(E/T ) + 1]−1 is the Fermi distribution function.
The imaginary part of Q R

c (p,ω) denotes the difference of decay
and production rates of the diquark field. At p = 0, it is given by

Im Q R
c (0,ω)

= 2π

3∑
β,γ =1

∣∣εcβγ
∣∣ ∫ d3q

(2π)3

(ω + 2μ)2 − (δMc)
2

Eβ Eγ

× {−[
(1 − f +

β )(1 − f +
γ ) − f +

β f +
γ

]
δ(ω + 2μ − Eβ − Eγ )

+ [
(1 − f −

β )(1 − f −
γ ) − f −

β f −
γ

]
δ(ω + 2μ + Eβ + Eγ )

− [
f −
β (1 − f +

γ ) − (1 − f −
β ) f +

γ

]
δ(ω + 2μ + Eβ − Eγ )

− [
f +
β (1 − f −

γ ) − (1 − f +
β ) f −

γ

]
δ(ω + 2μ − Eβ + Eγ )

}
, (13)

where f ±
α = {exp[(Eα ∓ μ)/T ] + 1}−1. The first (second) term in

the bracket in Eq. (13) includes the decay processes of the di-
quark into two quarks (anti-quarks) and takes nonzero values at
ω > 2M̄c − 2μ (ω < −2M̄c − 2μ), with M̄c = (Mβ + Mγ )/2. The
third and fourth terms represent Landau damping of the diquark.
These terms become nonzero at −δMc − 2μ < ω < δMc − 2μ.

The poles of the diquark propagator D R
c are determined by solv-

ing D R
c (p,ω)

−1 = 0, or equivalently

1 + G D Q R
c (p,ω) = 0, (14)

in the complex-energy plane. Applying ω = |p| = 0 to this equa-
tion, one can easily show that Eq. (14) is equivalent to the critical
condition Eq. (8). Therefore, D R

c (p,ω) has a pole at the origin at
T = Tc of the second-order transition. This property is known as
the Thouless criterion in condensed matter physics [20]. Above Tc ,
the pole moves continuously from the origin to the fourth quad-
rant. This mode is called the soft mode. If M̄c < μ at T = Tc , ω = 0
is in the continuum of the decay process into two quarks and
the imaginary part at the pole starts growing just above Tc [4].
When M̄c > μ, on the other hand, the soft mode is stable against
spontaneous breaking into a pair of quarks and the pole moves
on the real axis in the vicinity of Tc . This mode is nothing but a
bound state of two quarks [8]. As T increases, the pole eventu-
ally arrives at the threshold of the decay process into two quarks
ωthr = 2(M̄c − μ) at the dissociation temperature Tdiss, and the
soft mode is no longer a bound state at T > T c

diss. Since the pole
is at ωthr at T c

diss, the dissociation temperature is determined by
solving

1 + G D Q c(p = 0,ωthr)|T =T c
diss

= 0. (15)

Although the diquark modes can acquire decay rates due to
Landau damping, i.e., the third and fourth term in Eq. (13), our nu-
merical results show that the soft modes never appear in the range
of energies where Landau damping is nonzero. Therefore, these
processes do not contribute to the decay rate of the soft modes
in the parameter range employed in the present study. There can
appear another pole of D R

c (p,ω) instead of the soft mode at the
energy −2M̄c − 2μ < ω < −δMc − 2μ. This mode does not have
a decay rate and should be identified as a bound anti-diquark [9].
For lower μ, thermal excitations of bound anti-diquarks play an
important role.

If bound diquarks are formed at T = Tc , it is natural to identify
the color-superconducting phase below Tc as a Bose–Einstein con-
densed phase of diquark bound states [8]. In the following, there-
fore, we regard the color-superconducting phase satisfying M̄c < μ
as a Bose–Einstein condensate. Notice, however, that this is just a
rough guide to separate the BEC and BCS regions; these two limits
are connected continuously and there is no sharp phase boundary
between them [8].

3. Numerical results

In this section, we show the phase diagram in the T –μ plane
for several values of the diquark coupling G D . In Fig. 1, we first
discuss the case G D/G S = 0.75, which is a value commonly used
in the literature [1,19]. The bold and thin solid lines represent
first- and second-order phase transitions, respectively. One sees
that there appear two types of color-superconducting phases, the
2SC and CFL phase, at high μ and low T . At T = 0, these phases
are separated by a first-order phase transition. The first-order tran-
sition terminates at a critical point for some nonzero value of tem-
perature. The dissociation temperatures of diquark bound states
T c

diss are shown by the dashed lines. We see that there exists
a region at small chemical potential where bound diquarks are
formed.

In order to see whether diquark states undergo BEC, we plot
the conditions μ = M̄c by the dash-dotted lines in Fig. 1; the re-
gions to the left of these lines satisfy μ < M̄c . We see that these
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Fig. 1. The phase diagram in the T –μ plane for G D/G S = 0.75. The bold and thin
solid lines represent first- and second-order phase transitions. The dashed lines de-
note the dissociation temperature of up–down diquark states, T 3

diss , and up-strange

and down-strange diquark states, T 1,2
diss . The conditions μ = M̄c are satisfied along

the dash-dotted lines.

Fig. 2. Order parameters Mα and Δc at T = 0 as functions of μ for various values of
the diquark coupling G D/G S = 0.75,1.1 and 1.2. The chemical potential is shown
by the dashed line.

lines terminate at the first-order transition and we do not have
a color-superconducting phase satisfying μ < M̄c . In other words,
BEC does not appear for this value of G D/G S . The behavior of
M̄c and Δc as functions of μ at T = 0 are shown in the upper
panel of Fig. 2. One observes that M̄3 = Mu,d has a discontinu-
ity at μ  343 MeV corresponding to a first-order transition, and
M̄3 is larger than μ to the left of the discontinuity. The diquark
Fig. 3. The phase diagram in the T –μ plane for relatively strong diquark couplings
G D/G S = 1.1 and 1.2. BEC of up–down diquarks occurs in the shaded area.

condensate Δ3 assumes nonzero values only for μ > M̄3. This is a
typical property at weak coupling; when μ > M̄3, the Fermi sur-
faces of up and down quarks exist and the Cooper instability leads
to a diquark condensate, while if not, the ground state is nothing
other than the vacuum.

It is worth mentioning that bound diquarks appear in the phase
diagram even though BEC does not exist in the phase diagram. The
diquark coupling used in Fig. 1 is strong enough to form bound
diquarks, but it is still too weak to lead to their BEC.

Next, we show the phase diagrams with much stronger diquark
couplings. In Fig. 3, the phase diagrams with G D/G S = 1.1 and
1.2 are shown. We see that, as G D becomes larger, the regions of
the 2SC and CFL phases expand toward lower μ and higher T . For
G D/G S = 1.1, there appears BEC of up–down diquarks in the re-
gion of the 2SC phase satisfying μ < M̄3, shown by the shaded
area in Fig. 3. The BEC region becomes wider for G D/G S = 1.2.
One also observes that the dissociation temperatures T c

diss become
higher as G D increases. In the phase diagrams in Fig. 3, T c

diss at
μ = 0 are comparable or much higher than the critical tempera-
ture of the QCD phase transition, which is predicted to be in the
range Tc ∼ 150–190 MeV in lattice QCD simulations [21]. This re-
sult shows that diquark bound states can exist even in the quark–
gluon plasma phase provided the diquark coupling is sufficiently
strong.

In order to see the diquark coupling dependence of the dissoci-
ation temperatures, we show T c

diss at μ = 0 as functions of G D/G S
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Fig. 4. Dissociation temperatures of up–down diquarks T 3
diss , and up-strange and

down-strange diquarks T 1,2
diss .

Fig. 5. The baryon number density ρB for T = 0 and G D/G S = 0.75,1.1 and 1.2.

in Fig. 4. At weak coupling, T c
diss = 0 and bound diquarks do not

exist. As G D/G S becomes larger, T c
diss eventually become nonzero

and increase rapidly. The dissociation temperatures for diquarks in-
cluding the strange quark, T 1,2

diss, are always higher than that for the
up–down diquark. This feature comes from the difference of the
threshold energy 2(M̄c − μ).

The other interesting feature shown in Figs. 1 and 3 is the be-
havior of the line of first-order phase transitions. The first-order
phase transition at lower density is shorter for G D/G S = 1.1 than
that for G D/G S = 0.75, and disappears at G D/G S = 1.2. To under-
stand this behavior, we display the order parameters for G D/G S =
1.1 and 1.2 in the middle and lower panels of Fig. 2, respectively.
The figure shows that, as G D becomes larger, Δc increase while the
quark masses M̄c become smaller, and the discontinuity of M̄3 dis-
appears at G D/G S = 1.2. The decrease of M̄c can be understood as
the interplay between the chiral and diquark condensates [22]: the
energy gain due to diquark condensation is proportional to the sur-
face area of the Fermi sphere. Since the radius of the Fermi sphere
is pF = √

μ2 − M2, the condensation energy increases when M de-
creases. Since the masses of quarks are suppressed as G D becomes
larger, the lines for μ = M̄c and the region of BEC move toward
lower μ.

It is of interest to consider the effects of BEC on thermody-
namic quantities. In Fig. 5, we show the baryon number density
ρB = −(∂Ω/∂μ)/3 at T = 0 as a function of μ for G D/G S = 0.75,
Fig. 6. The equation of states for T = 0 and G D/G S = 0.75,1.1 and 1.2 (upper
panel), and the energy density ε and pressure p as functions of μ for T = 0 (lower
panel).

1.1 and 1.2. For G D/G S = 0.75 and 1.1, there exist two discon-
tinuities of ρB corresponding to first-order transitions. While ρB

vanishes below the first first-order transition for G D/G S = 0.75,
ρB takes nonzero values even in this region for G D/G S = 1.1. This
region corresponds to BEC, and the density there is dominated by
diquarks. For G D/G S = 1.2, the first-order transition at lower μ
disappears and ρB varies continuously. The density ρB in the 2SC
phase is higher for larger G D/G S . The larger diquark gap Δ3 in-
duced by strong coupling as well as smaller quark masses Mu,d
contribute to this behavior.

The upper panel of Fig. 6 shows the equation of state (EoS)
at T = 0, i.e., energy density ε = Ω + μρ as a function of pres-
sure p = −Ω , for the three values of diquark coupling strength:
G D/G S = 0.75, 1.1 and 1.2. (The region of small pressure is de-
picted in the small insert in the figure.) Both ε and p as functions
of μ are shown in the lower panel of Fig. 6. The key feature to
be noted from the dependence of the EoS on G D/G S is that it
becomes harder with increasing coupling. This is violated only in
an intermediate range where the 2SC-CFL phase transition occurs.
(Note that the density of the 2SC-CFL transition decreases with in-
creasing coupling, as expected.)

Finally, let us consider the phase diagram for extremely large
diquark coupling. In Fig. 7, we show the phase diagram for
G D/G S = 1.5. The 2SC and CFL phases become much wider toward
lower μ and higher T , and T c

diss increases further. The region of
BEC of up–down diquarks also becomes wide. We do not obtain a
region in the CFL phase satisfying μ > M̄1,2, i.e., BEC of up-strange
and down-strange diquarks does not occur for G D/G S � 1.5. If the
diquark coupling is further increased, the vacuum, i.e., T = μ = 0,
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Fig. 7. The phase diagram in the T –μ plane for extremely strong diquark coupling
G D/G S = 1.5.

eventually becomes a Bose–Einstein condensate of diquark states,
which is clearly unphysical.

4. Summary and discussions

In this Letter, we explored the phase diagram of three-flavor
quark matter focusing on the appearance of diquark bound states
and their Bose–Einstein condensation under variation of the di-
quark coupling constant G D . We found that diquark states can
appear at small μ and (probably realistically large) intermediate
values of the diquark coupling, while BEC of up–down diquarks
is realized for (probably unphysically) large values of the diquark
coupling. The dissociation temperatures of diquarks become higher
as G D increases. The model employed in the present study does
not include the effect of confinement. In QCD, however, colored
objects are confined at lower T and μ. Therefore, it is not clear
that the bound diquarks and their BEC, which manifest itself at
lower T and μ in our model, appear in the QCD phase diagram. It
is, however, worth mentioning that at strong coupling the dissocia-
tion temperatures could be higher than the critical temperature of
the deconfinement transition determined by lattice QCD [21]. This
result implies that diquark bound states can exist in the quark–
gluon plasma phase.

In this work, we employed the random-phase approximation
for the calculation of the diquark propagator. In this approxi-
mation, the propagators in the polarization function Eq. (11) are
those for non-interacting quarks, i.e., the effect of diquark exci-
tations is not self-consistently incorporated. An extension of the
present work to include this effect is an interesting subject for
further study, because we expect that the formation of diquark
bound states would modify the result especially at high temper-
atures. Similarly, the mean-field approximation used to draw the
phase diagram is no longer applicable due to the existence of
well-developed soft modes in a strongly coupled system. The in-
corporation of these effects has already been partially made in
Ref. [15].
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