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In this paper we construct mass, angular momentum and entropy of black hole solution of Generalized 
Minimal Massive Gravity (GMMG) in asymptotically Anti-de Sitter (AdS) spacetimes. The Generalized 
Minimal Massive Gravity theory is realized by adding the CS deformation term, the higher derivative 
deformation term, and an extra term to pure Einstein gravity with a negative cosmological constant. 
We apply our result for conserved charge Q μ(ξ̄ ) to the rotating BTZ black hole solution of GMMG, and 
find energy, angular momentum and entropy. Then we show that our results for these quantities are 
consistent with the first law of black hole thermodynamics.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

We know that the pure Einstein–Hilbert gravity in three dimen-
sions exhibits no propagating physical degrees of freedom [1,2]. 
But adding the gravitational Chern–Simons term produces a prop-
agating massive graviton [3]. The resulting theory is called Topo-
logically Massive Gravity (TMG). Including a negative cosmolog-
ical constant yields Cosmological Topologically Massive Gravity
(CTMG). In this case the theory exhibits both gravitons and black 
holes. Unfortunately there is a problem in this model: with the 
usual sign for the gravitational constant, the massive excitations 
of CTMG carry negative energy. In the absence of a cosmological 
constant, one can change the sign of the gravitational constant, 
but if � < 0, this will give a negative mass to the BTZ black 
hole, so the existence of a stable ground state is in doubt in this 
model [4]. Recently an interesting three dimensional massive grav-
ity has been introduced by Bergshoeff et al. [5], dubbed Minimal 
Massive Gravity (MMG), which has the same minimal local struc-
ture as Topologically Massive Gravity (TMG) [3]. The MMG model 
has the same gravitational degree of freedom as the TMG has 
and the linearization of the metric field equations for MMG yields
a single propagating massive spin-2 field. So both models have 
the same spectrum [6]. However, in contrast to TMG, there is no
bulk vs boundary clash in the framework of this new model. Dur-
ing last months some interesting works have been done on MMG 
model [6]. More recently, this model has been extended to Gen-
eralized Minimal Massive Gravity (GMMG) theory [7]. The GMMG
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is a unification of MMG with New Massive Gravity (NMG) [8], so 
this model is realized by adding the higher derivative deformation 
term to the Lagrangian of MMG.

In this paper we want to construct mass, angular momen-
tum and entropy of black hole solution of GMMG in asymp-
totically Anti-de Sitter (AdS) spacetimes. There are several ap-
proaches to obtain mass and angular momentum of black holes 
for higher curvature theories [9–25]. The Arnowitt–Deser–Misner 
(ADM) method [10] uses a linearization of metric around asymp-
totically flat spacetime, so this approach fails here because we 
consider the solution which is not asymptotically flat. A method 
to calculate the energy of asymptotically AdS solution was given 
by Abbott and Deser [9]. Deser and Tekin have extended this ap-
proach to the calculation of the energy of asymptotically dS or AdS 
solutions in higher curvature gravity models and also to TMG [12]. 
In contrast to the ADM method, this ADT formalism is covariant. 
Another method is the Brown–York formalism [13] which is based 
on quasi-local concept, but this approach also is not covariant. The 
authors of [14] have obtained the quasi-local conserved charges 
for black holes in any diffeomorphically invariant theory of grav-
ity. By considering an appropriate variation of the metric, they 
have established a one-to-one correspondence between the ADT 
approach and the linear Noether expressions. They have extended 
this work to a theory of gravity containing a gravitational Chern–
Simons term in [15], and have computed the off-shell potential 
and quasi-local conserved charges of some black holes in TMG. 
We should mention that before these works, the authors of [16]
have computed the ADT charges for a solution of TMG linearized 
about an arbitrary background and have applied the result to eval-
uate the mass and angular momentum of the non-asymptotically 
flat, non-asymptotically AdS black hole solution (ACL black hole) of 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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TMG. Another way to obtain mass and angular momentum of black 
holes for higher curvature models in the case of asymptotically AdS 
space is application of AdS/CFT correspondence, because the defini-
tion of conserved charges in the dual field theory is clear and there 
are no ambiguities in their construction [20,22–24]. This method 
is covariant and takes into account the non-linear effects. How-
ever this formalism is applicable only to asymptotically (warped) 
AdS space. Moreover to obtain holographic conserved charges, one 
needs the boundary stress tensor which depends on the explicit 
form of Gibbons–Hawking terms [26] and counter term which are 
not known in general. So this approach becomes complicated for a 
higher derivative model of gravity [17]. Another way is the super-
angular momentum approach [18,19]; by this method one can 
compute the conserved charges with non-linear effects. In this for-
malism the non-linear conserved charge is obtained by the first 
integral of equation of motion. However this method is not com-
pletely covariant, moreover it is inconsistent with the first law of 
black hole thermodynamics for warped AdS3 black hole solution of 
TMG. Here we follow the method given by Abbott, Deser, and Tekin 
in [9,11,12], which needs to obtain the field equations and lin-
earize them about the (A)dS vacuum of the model. By this method 
we obtain conserved charges which are consistent with the first 
law of black hole thermodynamics.

Our paper is organized as follows. In Section 2 we review the 
GMMG briefly. In Section 3 we will obtain the formula for the cal-
culation of conserved charges in this model in asymptotically AdS3
spacetime. Then we apply our result for conserved charge Q μ(ξ̄ )

to the rotating BTZ black hole solution of GMMG, and find energy, 
angular momentum and entropy. Section 4 is devoted to conclu-
sions and discussions.

2. The Generalized Minimal Massive Gravity

We introduce the Lagrangian of GMMG model as [7]

LGMMG = LGMG + α

2
e.h × h (1)

where

LGMG = LTMG − 1

m2
( f .R + 1

2
e. f × f ) (2)

here m is a mass parameter of NMG term and f is an auxiliary 
one-form field. LTMG is the Lagrangian of TMG,

LTMG = −σ e.R + �0

6
e.e × e + h.T (ω)

+ 1

2μ
(ω.dω + 1

3
ω.ω × ω) (3)

where �0 is a cosmological parameter with dimension of mass 
squared, and σ a sign. μ is a mass parameter of Lorentz Chern–
Simons term. α is a dimensionless parameter, e is a dreibein, h
is the auxiliary field, ω is a dualized spin-connection, T (ω) and 
R(ω) are a Lorentz covariant torsion and a curvature 2-form re-
spectively. So by adding extra term α

2 e.h × h to the Lagrangian of 
generalized massive gravity we obtain the Lagrangian of GMMG 
model. The equation for the metric can be obtained by generaliz-
ing field equation of MMG. Due to this we introduce the GMMG
field equation as follows [7]

�μν = �0 gμν + σ Gμν + 1

μ
Cμν + γ

μ2
Jμν + s

2m2
K μν = 0, (4)

where Gμν is Einstein’s tensor, the Cotton tensor is

Cμν = 1√ εμαβ∇α Sν
β, (5)
−g
where Sμ
ν = Rμ

ν − 1
4 δ

μ
ν R is the Schouten tensor in 3 dimensions,

Jμν = 1

2g
εμρσ εναβ Sρα Sσβ, (6)

and

K μν = 2�Rμν − 1

2
∇μ∇ν R − 1

2
gμν�R − 8Rμα Rν

α

+ 9

2
R Rμν + 3gμν Rαβ Rαβ − 13

8
gμν R2, (7)

s is sign, γ , σ , �0 are the parameters defined in terms of cos-
mological constant � = −1

l2
, m, μ, and the sign of Einstein–Hilbert 

term. Here Gmn and Cmn denote the Einstein tensor and the Cotton
tensor respectively. Symmetric tensors Jmn and Kmn are coming 
from MMG and NMG parts respectively [8,5].

3. Charges of GMMG

In this section we would like to obtain the conserved charges 
of GMMG for asymptotically (A)dS space-times. Here we follow the 
method given in [9,11,12] (see also [27]), which needs to obtain 
the field equations and linearize them about the (A)dS vacuum of 
the model.1

The field equations of the model can be written as

�μν(g, R,∇(Riemann), R2, . . .) = 8π Tμν. (8)

We assume that (A)dS is the background solution �μν(ḡ) = 0. The 
linearized form of the above equation can be written symboli-
cally as

O(ḡ)μναβhαβ = 8π Tμν, (9)

where the deviation of background is hμν = gμν − ḡμν . If the field 
equation (8) comes from a diffeomorphism invariant action, then 
we have

∇μ�μν = 0. (10)

From (9) and (10) we have

∇̄μOμ
ναβhαβ = 0. (11)

In order to define globally conserved charges, we use the Killing
vector ξ̄ , and energy–momentum tensor T μν . Then we can define 
conserved current as

√−ḡ∇̄μ(ξ̄ν T μν) = ∂μ(
√−ḡξ̄ν T μν) = 0. (12)

So we obtain conserved charge by

Q μ(ξ̄ ) = c

∫
M

dD−1x
√−ḡξ̄ν T μν ≡ c

∫
�

dliFμi, (13)

where we have used Stoke’s theorem, c is an arbitrary constant, 
and M is a (D − 1)-dimensional spatial manifold with bound-
ary �. We have assumed that ξ̄ν T μν = ∇̄νFμν , where Fμν is an 
anti-symmetric tensor. For the background metric we have:

1 Here we should mention that although we obtain the conserved charges from 
the linearization of the field equations around a background, the method is gen-
eral. There is no dependence on background (except that there must be asymptotic 
Killing vectors and spatial infinity of course) in the method of [11]. Multiple vacua 
are universal features of all R + R2 etc. models, since they clearly allow both flat 
and (A)dS vacua, but energy is still definable around each branch, though one is 
unstable (see for example [28]).
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R̄μανβ = �
(

ḡμν ḡαβ − ḡμβ ḡνα

)
,

R̄μν = 2�ḡμν, R̄ = 6�. (14)

Now we obtain the linearized form of field equation (4) around 
the AdS3 space-time. So at the first order the field equation can be 
written as

�μν(ḡ) + �
μν
L = 8π T μν, (15)

where

�
μν
L = −�0hμν + σ Gμν

L + 1

μ
Cμν

L + γ

μ2
Jμν

L + s

2m2
K μν

L , (16)

GL
μν = R L

μν − 1

2
ḡμν R L − 2�hμν, (17)

Cμν
L = 1√−ḡ

εμαβ ḡβσ ∇α

(
Rσν

L − 1

4
ḡσν R L + 2�hσν

)
, (18)

Jμν
L = −1

2
�Gμν

L − 1

4
�2hμν, (19)

K μν
L = 2�̄Gμν

L + 1

2
ḡμν�̄R L − 1

2
∇̄μ∇̄ν R L

− 5�Gμν
L − �ḡμν R L + 1

2
�2hμν. (20)

Here we have defined that Gμν = Gμν +�gμν . The linear forms of 
Ricci tensor and Ricci scalar are given by the following equations
respectively

R L
μν = 1

2

(−�̄hμν − ∇̄μ∇̄νh + ∇̄λ∇̄μhλν + ∇̄λ∇̄νhλμ

)
, (21)

R L = −�̄h + ∇̄μ∇̄νhμν − 2�h. (22)

Using the Ricci tensor and the Ricci scalar of AdS3 background in 
(14), it is easy to see that

Ḡμν = −�ḡμν, C̄μν = 0,

J̄μν = 1

4
�2 ḡμν, K̄ μν = −1

2
�2 ḡμν. (23)

Then field equation for AdS3 reduces to a quadratic equation for

�0 − σ� + γ �2

4μ2
− s�2

4m2
= 0, (24)

so

� =
(σ ±

√
σ 2 − �0(

γ

μ2 − s
m2 ) )

1
2 (

γ

μ2 − s
m2 )

. (25)

Since �μν(ḡ) = 0, (15) takes the following form

�
μν
L = 8π Tμν. (26)

Substituting (17)–(20) and (24) in (26), we have(
σ� − γ �

2μ2

)
Gμν

L + 1

μ
Cμν

L + s

2m2

(
K μν

L − 1

2
�2hμν

)

= 8π T μν. (27)

One can show that ∇̄νGμν
L = ∇̄νCμν

L = 0, then by the following 
identities [12]

∇̄ν

[
(ḡμν�̄ − ∇̄μ∇̄ν + 2�ḡμν)R L

] = 0,

∇̄ν

[�̄Gμν
L − �ḡμν R L

] = 0, (28)

we conclude that
∇̄ν

(
K μν

L − 1

2
�2hμν

)
= 0. (29)

So (27) obeys the Bianchi identities, and we can use (27) for defi-
nition of conserved charges. One can check that [12,29]

√−ḡξ̄νGμν
L = 1

2
∂νqμν

E (ξ̄ ),

√−ḡξ̄νCμν
L = 1

2
∂ν

(
1

2μ
qμν

E (�̄) + 1

2μ
qμν

C (ξ̄ )

)
,

√−ḡξ̄ν

(
K μν

L − 1

2
�2hμν

)
= 1

2
∂ν

(
qμν

N (ξ̄ ) − �qμν
E (ξ̄ )

)
, (30)

where

qμν
E (ξ̄ ) = 2

√−ḡ

(
ξ̄λ∇̄[μhν]λ + ξ̄ [μ∇̄ν]h + hλ[μ∇̄ν]ξ̄λ

+ ξ̄ [ν∇̄λhμ]λ + 1

2
h∇̄μξ̄ν

)
,

qμν
C (ξ̄ ) = εμν

αGαβ
L ξ̄β + εβν

αGμα
L ξ̄β + εμβ

αGαν
L ξ̄β ,

qμν
N (ξ̄ ) = √−ḡ

[
4
(
ξ̄λ∇̄[νGμ]λ

L + Gλ[ν
L ∇̄μ]ξ̄λ

)

+ ξ̄ [μ∇̄ν]R L + 1

2
R L∇̄μξ̄ν

]
, (31)

also �̄β = 1√−ḡ
εαλβ ∇̄αξ̄λ . Using (30), we can rewrite (27) as

16π
√−ḡξ̄ν T μν = ∂ν

[(
σ − γ �

2μ2
− s�

2m2

)
qμν

E (ξ̄ )

+ 1

2μ
qμν

E (�̄) + 1

2μ
qμν

C (ξ̄ ) + s

2m2
qμν

N (ξ̄ )

]
,

(32)

substituting this result in (13), we obtain

Q μ(ξ̄ ) = c

16π

∫
�

dli

[(
σ − γ �

2μ2
− s�

2m2

)
qμi

E (ξ̄ ) + 1

2μ
qμi

E (�̄)

+ 1

2μ
qμi

C (ξ̄ ) + s

2m2
qμi

N (ξ̄ )

]
, (33)

where i denotes the space direction orthogonal to the boundary �.
In the limiting case 1

m2 → 0, where GMMG reduces to the 
MMG, our result for conserved charge Q μ(ξ̄ ) in the above equa-
tion reduces to the result of [29] for MMG. Now we apply Eq. (33)
to the rotating BTZ black hole solution of GMMG, in order to ob-
tain the energy, angular momentum and entropy of this black hole. 
The BTZ line-element is

ds2 = − (r2 − r2+)(r2 − r2−)

l2r2
dt2 + l2r2

(r2 − r2+)(r2 − r2−)
dr2

+ r2
(

dφ − r+r−
lr2

dt
)2

, (34)

where � = − 1

l2
, also r+ and r− are the outer and inner horizons

respectively. The case of r+ = r− = 0 corresponds to the back-
ground. Then one can read that

htt = r2+ + r2−
l2

, htφ = − r+r−
l

, hrr = l2(r2+ + r2−)

r4
, (35)

� is a circle and dli = (dφ, 0).
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Energy corresponds to the Killing vector ξ̄ = ∂t and c = −8,
then

E =
(
σ + γ

2μ2l2
+ s

2m2l2

)
r2+ + r2−

l2
− 2r+r−

μl3
. (36)

On the other hand angular momentum of BTZ black hole corre-
sponds to the Killing vector ξ̄ = ∂φ and c = 8, so we have

J =
(
σ + γ

2μ2l2
+ s

2m2l2

)
2r+r−

l
− r2+ + r2−

μl2
. (37)

If one writes the metric of rotating BTZ black hole in terms of 
mass M and angular momentum parameter a, the above expres-
sion for energy E and angular momentum J can be rewritten as

E =
[
(σ − γ �

2μ2
− s�

2m2
)M + �a

μ

]
, (38)

J =
[
(σ − γ �

2μ2
− s�

2m2
)a − M

μ

]
. (39)

The above equations reduce to the corresponding results for MMG 
in the limit 1

m2 → 0 [29]. If we take ξ̄ = ∂t + r−
lr+ ∂φ and c = − 32π

κ , 

where κ = r2+−r2−
l2r+

is a surface gravity, then

S = 4π

[(
σ + γ

2μ2l2
+ s

2m2l2

)
r+ − r−

μl

]
. (40)

One can check that these results satisfy the first law of thermody-
namics, that is

dE = T HdS + �Hd J , (41)

where T H = κ
2π and �H = r−

lr+ .

4. Conclusion

In this paper we have investigated the Abbott–Deser–Tekin 
charge construction in the framework of Generalized Minimal Mas-
sive Gravity in asymptotically AdS space-time. We have applied 
our result for conserved charge Q μ(ξ̄ ) in Eq. (33) to the rotat-
ing BTZ black hole solution of GMMG. In the limit 1

m2 → 0, where 
GMMG reduces to the MMG model, our conserved charge Q μ(ξ̄ )

reduces to the corresponding result for MMG, which has been ob-
tained in [29]. By this method and correspondence to the Killing 
vector fields ξ̄ = ∂t and ξ̄ = ∂φ , we have obtained energy and an-
gular momentum of rotating BTZ black hole respectively. After that 
by considering the Killing vector field ξ̄ = ∂t + r−
lr+ ∂φ we have ob-

tained the entropy of BTZ black hole. Then we have shown that 
our result for entropy is consistent with the first law of black hole
thermodynamics.
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