An Intemational Joumal '

computers &

mathematics
with applications

PERGAMON Computers and Mathematics with Applications 37 (1999) 85-102

Surface Fitting and
Numerical Gradient Computations
by Discrete Mollification

S. ZHAN* AND D. A. MurIoOf
Department of Mathematical Sciences
University of Cincinnati
Cincinnati, OH 45221-0025, U.S.A.
zhans@math.uc.edu diego@dmurio.csm.uc.edu

(Received February 1998; accepted March 1998)

Abstract—We review the §-mollification procedure for automatic fitting of surfaces defined from
discrete noisy data functions in R2. As a further application, the stable numerical computation of
gradient fields from discrete noisy data is also investigated. The main features of the algorithm are:

1. information about the noise is needed;
2. the mollification parameters are chosen automatically by means of the Generalized Cross
Validation (GCV) procedure.

A complete error analysis of the method is provided together with several numerical examples of
interest. © 1999 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

It is well known that appropriate regularization techniques are crucial for solving ill-posed prob-
lems. In this paper, we analyze an automatic §-mollification procedure to approximately solve two
related identification problems: given a discrete noisy data function defined on a bounded domain
in R2, recover an underlying smooth fitting surface (well-posed problem) and the corresponding
gradient field (ill-posed problem).

2. MOLLIFICATION

The mollification method is a filtering procedure that has been proven to be effective for the
regularization of a variety of ill-posed problems [1]. In this section, we introduce the mollification
method in R? and prove the main results.
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2.1. Abstract Setting

Recall that for a function f which is integrable on [0,1] C R, the 6-mollification with param-
eters §; > 0, p1 > 0 is defined, for every t € [p16:,1 — p161], by

1
Jsf(t) = /0 Py (t = 5)£(s) ds,

where the é6-mollifier ps, ,, (t) is given by

_ t2
Ap, 67 exp (_6_2> |t < p1éy,
i
0, otherwise,

Ps1,p1 (t) =

with Ap, = ( f;u exp(—s?)ds)~L.

We now consider the §-mollification for functions with two independent variables. Let z =
(z1,72), p = (p1,p2), and & = (61,62), p; > 0, 6; > 0, z; € R! (i = 1,2). We use the following
notations for simplicity:

I=[0,1] x [0,1],
|6leo = max(8y,82),
16| — 0o = min(é1, 62),
I, = [~p1,p1] x [=p2,p2],
Ips = [=p161,p161] X [—p2b2, p2ba),
Is = [p161,1 — p161] X [p262,1 — p26ba).

It should be noticed that the set I5 is nonempty whenever p; < (1/24;) (i = 1,2).
For a function which is integrable on R2, the é-mollification with parameters 6, p is based on
the convolution with the kernel

—1g-1 xf m%
ApbT 6y "exp| — 5 + 52 v T € Ing,
1 2

©5,p(Z) = Pb1.p1 (T1)P62,p,(T2) =
0, otherwise,

where 4, = (pr exp(~|z||?)dz)7 !, ||z||? = z% + 23.

The é-mollifier @5, is a nonnegative C°°(I,5) function vanishing outside Ips and satisfying
f1p6 wsp(x)dz = 1.

If f(z) is integrable on I, we define its 6-mollification on Is by the convolution

Jsf{z) = /Itpa(z — 8)f(s)ds,

where the p-dependency on the kernel has been dropped for simplicity.

Notice that Jsf(x) = Js, (J5, f(z1,22)) = J5,(Js, f(z1,22)) where Js, f(z1,22) (¢ = 1,2) de-
notes the §-mollification of f with parameters 8;, p; with respect to the variable z;.

The §-mollification of an integrable function satisfies well-known consistency and stability es-
timates. In what follows, C will represent a generic constant independent of é.

THEOREM 2.1. L2 NorM CONVERGENCE. If f(x) € L%(I), then

li Jsf — =0.
s N Jsf = fllacs)
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PROOF. For any z € Iy,

Jsf (@) - f(z) = / es(z — 3)1(5)ds - f(z)
= /, o6(z — )(F(s) - f(z)) ds
- /, ws(=9)(f(@ +9) - £(z)) dy,

after the change of variables y = s — . Consequently, by Holder inequality,

IJsf(w)—f(x)Izs/ (wa(—y))zdy/ |f(z +y) — f(z)]*dy
A,

<6 (f(m+y) f(z))? dy.

Therefore,
2 Ap 2
Wsf = flTa, < 5162 J; 5 If(w+y)—f($)| dy dz

-2 / / flz+y) - f@) dzdy.

By the continuity of L? functions with respect to their norm, Ve > 0, 3 8 > 0, such that whenever
lyll <8,

/Ilf(x +y) — f(z)|* dx < €2

This implies that for 0 < é; < (8/4p;) (i = 1,2),

Ap
s = fllfacrs < 5162 —L-4p,61pabag? = dp1pa Ape?

and the theorem follows.

COROLLARY 2.2. If Vf(z) € L%(I) x L?(I), then

, 11(m )"V(J&f) VfllL2asyxLras) =0,

where the norm ||(f1, f2)|lL3xL2 = ,/||f1||%, + ||f2||%2 is defined for (f1, f2) € L? x L2.

REMARK. This result shows that the gradient of the mollified function approximates the gradient
of the function in L2. Consequently, we shall concentrate on developing an approximation to the
smooth function V(Jsf).

LEMMA 2.3. MAXIMUM NORM CONSISTENCY. If f(x) is uniformly Lipschitz on I, with Lipschitz
constant L, then there exists a constant C such that

16 — flloo,1s < €' 16lco-
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PRrOOF. For any z € I,
(@) = 1) = | [l = )7(6)ds - 10
< [ lestz = 9)(7(s) - f(@))l ds
-/ iS4 - f@ldy

<L /, os(=v)llyll dy

P

4LAp P16y rp2be
= [ [ e (< (U 2)) il s e

P1 P2
< 4LAp/O /0 exp (— (7 + ¥3)) (6191 + 62y2) dy1 dyz

P2

< 4LA, [461 /0 8 exp (—-y}) mdy + ‘/77?52 /0 exp (—v2) y2dye
< VLA, (61 + &)
< 2yTLAL|6|0o.
COROLLARY 2.4. If -5‘2—1 f(z) and a%, (z) are uniformly Lipschitz on I, then
IV(Jsf) = Vflloo,15 £ Clbloo,
where for (f1, f2) € C(I) x C(I), the norm is defined by ||(f1, f2)llco,s = max (|| f1lloo, 1, || f2lloo.1)-

LEMMA 2.5. MAXIMUM NORM STABILITY. If f(z), f*(z) are integrable on I and Sup ,¢;|f(z) -
fé(z)| < e, then there exists a constant C such that

IJsf — Jsflloo,ts <€ and  ||V(Jsf) ~ V(Isfoo,1s < CI5|~

PROOF. The first estimate follows immediately from |, 1,s P6.p(z) dz = 1. We prove the second
inequality. For = € I,

0(Jsf) o(Jsf)
oz, )T "oz,

@)
=5z ([ oste = altr(o) - o1

T1+p161  pra+p2ds
- | ( / / ps(x — $)[£(s) - F4(s)] dss dsl)

1—-p161 2—p262
z2+p2b2
= / ws(—p161, 22 — 82)[f(x1 + p161, 82) — fE(=1 + P161, S2)] ds2
z2~p2b2 ,
T2+ p2b2
- / ©5(p161, T2 — 82)[f(T1 — P161, 82) — fE(T1 — P161, 52)] ds2
T2 —p2b2
z1+p161  pz2+p2da
+ [0 T st = o)lf(6) - 545N dsadn
z1-p161 Jza—p2b2

€ 15}
< ﬁA”E + ﬁA";ST + e/; %506(—3/)’ dy
pé

OTAp = + Ayt /m ( 2)d 2 /M ( %Yy,
= TAp— + Ap— ex = e -=
? 51 ? 62 —pab2 P 52 v 6% ;b *P 6% ) yl, v

< 4ﬁAp6i.
1
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Similarly,

o(Jsf) o(Jsf) €
oz ——=(z) - B2 ———(z) S4\/77Apg-

By the previous two lemmas, we have proved the following convergence theorem.

THEOREM 2.6. MAXIMUM NORM CONVERGENGE. If 2L (z) and 2L (z) are uniformly Lipschitz
on I, and f¢ is integrable satisfying Sup ,¢;|f(x) — fé(z)| < ¢, then

1947 = Fllots < Clélo +¢ and 906 = ¥ fllnyy < (181 + 2 ).

We observe that in order to obtain convergence as € — 0, in the first case it suffices to consider
|6]oc — 0, but in the second case we need to relate both parameters (¢ and é). For example, we
can choose 6; = O(+/¢), ¢ = 1,2. This is a consequence of the ill-posedness of differentiation of
noisy data.

From the proof of Lemma 2.5, if f(x) is bounded and integrable on I, then we have

IV (Tsf Moo 15 < M flloo, -

- |5|—w

This implies that VJ; is a bounded operator with

4/7A
I35 < 22,

The boundedness of V.J5 explains the restoration of continuity with respect to perturbations
in the data for differentiation by mollification.

3. DISCRETE MOLLIFICATION

In this section, we consider the é-mollification of a discrete function defined on the discrete set
K={=,z0):1<i<m,1<j<n}CI, with

OSx(ll) <z(12) <--.<m§m) <1, OS-'L‘(zl) <$§2) <"'<$§n) <L
Set
s(o) 0, sgm) =1, s§°) =0, sgn) =1,
Sgﬂ:%( 5")+z§‘+”), (i=1,2,...,m~1),
9 = é( G) | §j+1)), (G=1,2,...,n—1),

Az = max \/x(iﬂ) — 2
1<igm—1, 1<j<n~1 1 1

Let G = {955 : 1 <1 <m, 1 <j < n} be a discrete function defined on K. The discrete
S-mollification of G is defined as follows.

For z € I, "
m n J
JsG(z) = Z Z (/(‘ N /(, T ws(z — s)dsy dsz) gij-
i=1 j=1

Q)
Notice that 572, 37 1(f G-1) fs&—t) ps(x — s) dsydsz) = f1P5 ws(—s)ds = 1.
S2
The consistency estimates for the discrete é-mollification are presented in the following lemma.

2 . 12
4o - 29[
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LEMMA 3.1. MAXIMUM NORM CONSISTENCY OF DISCRETE MOLLIFICATION. Let g(z) be

defined on I, G = {g;j : 1 < i < m, 1 < j < n} be the discrete version of g with g;; =
) (J)

g(={, z§).

(1) If g is uniformly Lipschitz on I with Lipschitz constant L, then there exists a constant C
such that

176G = gllco,1, < C(lbleo + D).

(2) If 58% and -a%q; are uniformly Lipschitz on I with Lipschitz constant L, then there exists
a constant C such that

Az
IV(J5G) = Vglloo,1, < C <|5|°° M ) '

Proor. For z € I,
[JsG(x) — Jsg(z)]| < Z; z;/( o /(, 5 ps(x — 8)|gi; — g(s)|ds1dsa < LAxz.
i=1 j=

By Lemma 2.3 and the triangle inequality, Part (1) follows.
To prove Part (2), observe that

(—Q—(JsG(z) ~ Jsg(@))
(J)

<Zz/o—1)/(: )

=1 j=1

< LAx/
Ips
A p262 y2 2 p161 y2
= LAz=E / exp (—-3) dys | = / exp <——1) yi|dy
62 ( ~pabs 6% 6:13 —-p16 6% , 1| !

< 2LA,,\/E%”-”
1

906(93 s)|lgi; — g(s)| ds1 ds3

)
55;%(—11)’ dy

Similarly,

2 (156(z) - Jeg@)| < 2LAVFEE.
3.’131 62

Hence, Part (2) follows from the triangle inequality and Corollary 2.4.

In most applications, the only available data is a perturbed discrete version of g, denoted
G¢ = {g5; : 1 <i<m, 1 <j< n}, satisfying |G — G¢|lco,x < €, where G = {g;; : 1 < i < m,
1 <j < n}with g;; = 9(@{?,z{)). The stability of the discrete 5-mollification is proved in the

following lemma.
LEMMA 3.2. MAXIMUM NORM STABILITY OF DISCRETE MOLLIFICATION. If the discrete func-
tions G and G* satisfy |G — G|loo,x < €, then

176G* — J6Gllooss S €&, and  ||V(JsG*) = V(J5G)loo,1s < C

€
- T 1bl-eo
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PRrROOF. We prove the second inequality. Forzels;,i=1,2,

s4d)
Z Z (/0 1) /(: v Oz, 5a pe(z —s)dsy d32> (gij - gfj)

i=1 j=1

2]
<
'6/; dz;

2 stz —s)
< 2A,,ﬁ§.

The next theorem indicates that the discrete §-mollification of G¢ is a reasonable approximation
of the function g.

ds

THEOREM 3.3. MAXIMUM NORM CONVERGENCE OF DISCRETE MOLLIFICATION. Let g be
uniformly Lipschitz on I, with Lipschitz constant L. If G is its discrete version on K and G* is
a discrete function on K satisfying |G — G¢||eo,k < €, then there exists a constant C such that

1J6G — glloo,1s < Cle+ |8loo + D).

PrOOF. The result is obtained immediately from Lemmas 3.1, 3.2, and the triangle inequality.

NoTE. The corresponding abstract convergence statement readily follows: ||JsG* — gllco,1; — 0,
as ¢, Az — 0, and § — (0,0). The numerical convergence result establishes that the computed
mollified function JsG* converges to the mollified function Jsg. More precisely, we have the
following.

THEOREM 3.4. MAXIMUM NORM NUMERICAL CONVERGENCE OF DISCRETE MOLLIFICA-
TION. Under the conditions of Theorem 3.3, there exists a constant C, such that

| JsG€ — Jsglleo,1s < Cle + Ax).

Proor. By Lemma 3.2 and
|JsG(x) — Jsg{z)| < LAz, for z € I,
the result follows from the triangle inequality.

3.1. Computation of the Gradient

This subsection discusses the main results on stable computation of numerical gradients by the
mollification method.

THEOREM 3.5. MAXIMUM NORM CONVERGENCE OF THE GRADIENT COMPUTED BY DISCRETE
MOLLIFICATION. If —g—g; (i = 1,2) are uniformly Lipschitz on I with Lipschitz constant L, G, G¢
as described in Theorem 3.3, then there exists a constant C' such that

6l-c0  16]-c0

PRrRoOOF. The theorem follows immediately from Lemmas 3.1, 3.2, and the triangle inequality.

TAN
IV(JsG*) = Vglloo,zs < C (ww LI _x_> ,

NoTE. The corresponding abstract convergence statement should prescribe a link between the
parameters 6, €, and Az as ¢ — 0. We could establish convergence of V{(JsG¢) to Vg by
prescribing a rule as Az = € and §; = e (i = 1,2).

A numerical convergence statement should relate V(JsG¢) with V(Jsg), that is, the computed
gradient and the gradient of the mollified version of g. This is presented in the following theorem
which states that, for fixed 8, ||V(JsG¢) — V(Js9Hloo,1; — 0, as €, Az — 0.
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THEOREM 3.6. MAXIMUM NORM NUMERICAL CONVERGENCE OF THE GRADIENT COMPUTED
BY DISCRETE MOLLIFICATION. Under the conditions of Theorem 3.3, there exists a constant C
such that

A
IV(J5G) = V(Js9)lloots < C (— + —i) |
|6|—°° '6|—oo

PrOOF. By Lemma 3.2 and forz € I5,1i = 1,2,

d(JsG) 0(Jsg)

AV
oz O " o, (x){gI’AP‘/’T‘&T’

(see the proof of Lemma 3.1), the triangle inequality then yields the result.

Assuming from now on that

x(li) —x?"l) = x&iﬂ) - =Az;, i=2,...,m-1,
:cgj) —:cgj'l) =x§j+l) —xéj) =Nz, j=2,...,n-1,

given G¢, a perturbed discrete version of g, in order to approximate Vg, instead of utilizing 5%(p5
and convolution with the noisy data G¢, computations are carried out by using the centered differ-
ences of JsG¢. That is, we use V(J5G*) to approximate V(J5G¢) in I5 Here Vy = (D(()l) , D(2))

(’) (i = 1,2) denotes the centered difference operator with respect to the variable z;, and
Iy = [p161 + Az, 1 — p161 — Azy] X [p2da + Az, 1 — paby — Azy).

LEMMA 3.7. Under the conditions of Theorem 3.5, there exist a constant C' and a constant Cj,
depending on é, such that

€ Az

€y _ - <

) + Cs(Az)?.

PRrOOF. The result is a consequence of Theorem 3.5 and the estimate
[Vo(JsG*)(z) = V(JsG°)(2)| < C5(Az)?, (x)

for z € I~5.
For fixed 4, as a direct consequence of (*) and Theorem 3.6, a numerical convergence statement

establishing convergence of ||V (JsG*) ~ VJsgl|| o0, T; 10 Zero as €, Ax — 0 is given by the following.

LEMMA 3.8. Under the conditions of Theorem 3.3, there exist a constant C and a constant Cs,
depending on é, such that

A
IVo (JsG) — V (Jsg)lloy 7 < C (,—6,—6— et ) + Co(Ba)

Let G be a discrete function on K and ng = Vo(JsG). The next theorem states that V} is
a bounded operator.

THEOREM 3.9. There exists a constant C such that

Ivsel

0015 Iél_oo
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PRrooOF. Forz € 1::5,
D8 (756) (@)

m n
>3 (/( o /(J Y 6 ps(z ~ 5)dsy dsz) 9ij
i=1 j=1

Gl [ |8 pstz — 5] ds

IA

1
= “G“oo,K/ Ao, lps(z1 + DTy — 81,T2 ~ S2) — ps(x1 — Axy — 81, T2 — 82)|ds

p2ds  pp161+lx
= ||Glloo,k 55v— / / los(yr — Az1,y2) — ws(y1 + Az, y2)| dyr dys.
2A.’L‘ p262

s -Ax,
First, we consider the case p18; < Az;. In such case, we have

1861+Ax,
/ los(y1 — Az, y2) — ws(y1 + Az, y2)| din
-p1b61—Dxy

p161—Axq p1é61+Az)
-/ (osto + By, ) dys + | (ps(ys — D1, v2)] dys
-p161—AQxy -pr1&i+lDaxy

p161
= 2/ ws(y1,y2) dyr.

—p161
Therefore,

[0 (66)@)| < Gl i [ )

1
= ”G”oo,K‘ATl
-1
< ﬂl—ncnw.x-

Now assuming p151 > A(El,

161 +Axy
/ lps(y1 — Az1,y2) — ws(y1 + Dz, y2)| dyn
—p161—ALx

(x*)

-p161+Dx
= / los(yr + Azy,y2)l dy
-p161—-Dx

161 Azl
+/ los(y1 — D1, y2) ~ ws(y1 + Azy, y2)| dys
—p161+Lzy (*x)(cont.)

p161+D1)
+/ lps(y1 — Dz1,y2)| dyr-
P161—-Oxy

For the first and third terms in (*), we have

—p161+4z,
/ los (1 + Az, y2)] dyr < 2821050, 33),
—-p161—ADzy

151+41,
/ les(y1 — Ay, y2)| dyr < 28219050, y2)-
p1ér1—Axy

Using the fact that ps(y1 — Az1,¥2) > ws(y1 + Ax1,y2) for yy € [0,p16, — Azy], and a mean
value theorem in the following form: if f € Cla — h,b + h], then there exist constants §;, with
|8;] <1 (i = 1,2) such that

b
[ (e =) = flo+ W) dz = 2n(S(a-+ 6u8) = £+ 621)),

we obtain the following estimate for the second term in (*x):
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Figure 1.

7 —ADx
/ les(yr — Dx1,y2) — ws(y1 + Az1,y2) din
-p161+Lz)

p161~Az)y
= 2/ les(yr — Az1,y2) — ws(y1 + Az1, y2)| dyn
Jo

p161—~ AT
= 2/ (ws(y1 — Az, y2) — ws(y1 + Azy,42)) dyr
0

= 4Az1(ps(61 D71, y2) — ps(P161 — Dz + 02071, 2))
< 4Az105(0,y2)-
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0.2 0.4 0.6 0.8 1

(e) Error gradient field: exact-computed.

Figure 1. (cont.)

Consequently, for p16; > Az,

p262

DO (J5G) ()| < 4|Glleox / 5(0,y2) dyz

—p262
A, [ )
= 4“G||00,K_6_ exp (~v3) dy2
1 J-p2

4/TA
< T2 G k.

95
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2

0 0.20.40.6 0.8 1 1.2

97

-0.5-0.25 0

(c) Computed and error gradient fields.

Figure 2. (cont.)

Finally, with C = max(p7!,p; 1,4ﬁAp), we have

[pus6)]| < =1l
oo, Ig

Ty

Table 1. Error norms for e = 0.1, M = N = 1/128.

0.25 0.5 0.75

Relative {2-Error Norms on [0.1] x [0, 1]

Example 1 Example 2 Example 3 Example 4 Example 5
Surface 0.095311 0.076833 0.203602 0.006517 0.128756
Gradient 0.207191 0.132708 0.458221 0.072133 0.212290

Similarly,

[P < g6

4. IMPLEMENTATION

4.1. Extension of Data

1

Computation of Js f throughout the domain I = [0, 1] x [0, 1], requires the extension of f to a
slightly larger rectangle Iy = [—p161,1 + p161] X [—p262,1 + p2da). Since Jsf = Js,(J5, f(21, 22)),
we only need to consider the extension in the one-dimensional case.

For each fixed z; € [0,1], we seek constant extensions f* of f(-,z2) to the intervals [—p;61, 0]
and [1,1 + p164], satisfying the conditions

and

176, (f*) = F(:s z2)l| L2(0,p, 6, I8 minimum

”J61 (f*) - f('ax2)"L2[1—p161,1] is minimum.

A closed formula for the constants can be found in [2].
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4.2. Selection of Mollification Parameters

As indicated in previous sections, the parameter § = (81, 62) plays a crucial role in the regu-
larization procedure. The discrete §-mollification of G = {g;; : 1 <i <m,1 < j < n},

n sgj) m s(li)
JsGx) = /(j_l) P35 (T2 — $2) Z/(‘._U Pé1,z: (T1 — 51)gs5dsy | dsg
j=1"3%2 i=1v%

is reduced to a double “mollification sweep” of several one-dimensional functions. First, for each
fixed j, the discrete §-mollification of the one-dimensional data set {g;; : 1 <1 < m} is evaluated
and then, for each fixed x1, another discrete é-mollification with respect to z; of the previously

I5)
mollified data (the one-dimensional data set {_;-; f:(‘,--l) Poy,z: (1 — 81)gijdsy 1 1 < j < n})
1
is computed. Hence, the problem of parameter selection is reduced to that of one-dimensional
§-mollification. This problem can then be solved effectively using the method of Generalized Cross
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(c) Computed and error gradient fields.

Figure 4. (cont.)

Validation, without information on the noise in the data. See [3] for the first implementation of
GCV in the context of mollification and, more recently, consult [4] for numerical differentiation
problems.

4.3. Numerical Examples

In this section, to illustrate the effectiveness of the discrete §-mollification, we present several
numerical examples. In all cases, Az, = 1/M, Az = 1/N, and the discrete data set G = {g;; :
0<i< M,0<j< N} is generated as follows:

i =f(x§i),xgj)) +ey,  i=0,...,M, j=0,...,N,

where z{V = 1Az, ¥ = jAzo, and the €/ s are uniformly distributed random variables on
1 2 i
[—€,€]. The maximum noise level ¢ is used only for the simulation of the noisy data. Without

loss of generality, we set p = (3, 3).
The errors between the mollified and exact data are measured by the weighted I2—norms

N \ 1/2
(e Sbe ) -s(0))

Jj=0
The errors between the computed and exact gradients are also measured by the weighted

12 —norms 2
N

(A—}W > [V (zw,zsﬂ)—w(xw,zgﬁ)uz) ,
j=0

In all the examples, the maximum level of noise in the data is ¢ = 0.1. Numerical results
are summarized in Table 1 and the qualitative behaviors of the approximate solutions can be
observed in Figures 1-5.

ExAMPLE 1.

Mz

Il
=

M=

f(z1,22) = (z1 — 0.5)2 — (x5 — 0.5)2.



Discrete Mollification 101

AR
SR IAIYR
LRI /
R, ORIy ;
: -;’ ;.' ST W“%‘ \Q"'l’".’. / /
2l P TRRIALIR
7 \.’4/ . ‘ \\."""”# NG S #§‘%‘~ .‘\ 77] ’liis‘ﬁil:-‘:
1 S NS 71 ! SN s
S . IIRS D7 LR
o A e SR 0 %ﬁ%%’@b‘}w&- '
e Rt e SRS SN SO, 0.75 G DB B IR /075
i = S - R L IR RTINS
1 2 .'..Q L "5'.'"“‘::5“-{."’#}'
s o LR /oS

(a) Exact and noisy surfaces, € = 0.1.
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Figure 5.
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EXAMPLE 2.

flz1,22) = E [3(1 —a)?exp (—a® - (b+1)?) - 10 (-g i b5) exp (—a® - b?)

1N

—%exp (~(a+1)* - bz)} ,

where a = 2(z; — 0.5) and b = 2(z; — 0.5).

EXAMPLE 3.
f(z1,22) = —(21 — 0.5)* — (z2 ~ 0.5)*.
EXAMPLE 4.
f(z1,z2) = (0.5 + z1) exp((0.5 + 1 )(0.5 + z2)).
ExXAMPLE 5. in(2r)
s 2r
f(371,$2) = P

where r = 84/2[(z; — 0.5)2 + (z2 — 0.5)2.

Examination of the pictures shows that the computed surfaces and gradient fields behave
as predicted by the theory in Is. The errors associated with the reconstructed gradient fields

deteriorate substantially near the boundaries.
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