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In this paper, we prove the following

Theorem. Let f (z) be a transcendental meromorphic function on C, all of whose zeros have
multiplicity at least k+1 (k � 2), except possibly finitely many, and all of whose poles are multiple,
except possibly finitely many, and let the function a(z) = P (z)exp(Q (z)) �≡ 0, where P and Q
are polynomials such that limr→∞(

T (r,a)
T (r, f ) + T (r, f )

T (r,a)
) = ∞. Then the function f (k)(z) − a(z) has

infinitely many zeros.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

In his excellent paper [2], W.K. Hayman studied the value distribution of certain meromorphic functions and their deriva-
tives under various conditions. Among other important results, he proved that if f (z) is a transcendental meromorphic
function in the plane, then either f (z) assumes every finite value infinitely often, or every derivative of f (z) assumes every
finite nonzero value infinitely often. This result is known as “Hayman’s alternative.” Thereafter, the value distribution of
derivatives of transcendental functions continued to be studied.

In [9], Wang and Fang proved the following result.

Theorem WF. Let f (z) be a transcendental meromorphic function on C, all of whose zeros have multiplicity at least 3, then for all
integer numbers k � 1, f (k) assumes every finite nonzero value infinitely often.

Then, in [1], Bergweiler and Pang proved

Theorem BP. Let f be a transcendental meromorphic function and R �≡ 0 be a rational function. If all zeros and poles of f are multiple,
except possibly finitely many, then f ′ − R has infinitely many zeros.

In this paper, we continue to study omitted functions of derivatives of meromorphic functions. As a result, we have the
following theorem for functions of infinite order.

* Corresponding author.
E-mail addresses: xiaojunliu2007@hotmail.com (X. Liu), nevosh@macs.biu.ac.il (S. Nevo), xcpang@euler.math.ecnu.edu.cn (X. Pang).

1 Supported by the German–Israeli Foundation for Scientific Research and Development (Grant G-809-234.6/2003) and by the NSSF of China (Grant
No. 10671067).

2 Supported by the Israel Science Foundation, Grant No. 395/2007.
3 Supported by the NSSF of China (Grant No. 10671067).
0022-247X/$ – see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2008.07.019

https://core.ac.uk/display/82154317?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:xiaojunliu2007@hotmail.com
mailto:nevosh@macs.biu.ac.il
mailto:xcpang@euler.math.ecnu.edu.cn
http://dx.doi.org/10.1016/j.jmaa.2008.07.019


X. Liu et al. / J. Math. Anal. Appl. 348 (2008) 516–529 517
Theorem 1. Let f (z) be a transcendental meromorphic function on C of infinite order ρ( f ), and a(z) = P (z)exp(Q (z)) �≡ 0, where
P and Q are polynomials. Let also k � 2 be an integer. Suppose that

(C1) all zeros of f have multiplicity at least k + 1, except possibly finitely many, and
(C2) all poles of f are multiple, except possibly finitely many.

Then the function f (k)(z) − a(z) has infinitely many zeros.

For functions of finite order, we have the following result.

Theorem 2. Let f (z) be a transcendental meromorphic function on C of finite order ρ( f ), and a(z) = P (z)exp(Q (z)) �≡ 0, where
P and Q are polynomials. Let also k � 2 be an integer. Suppose that

(C1) all zeros of f have multiplicity at least k + 1, except possibly finitely many, and
(C2) limr→∞(

T (r,a)
T (r, f )

+ T (r, f )
T (r,a)

) = ∞.

Then the function f (k)(z) − a(z) has infinitely many zeros. Moreover, in the case that ρ( f ) /∈ N, then the result holds with condi-
tion (C2) only.

Remarks. (i) Note that condition (C2) of Theorem 2 is equivalent to the following condition:

(C̃2) There are no M1, M2 > 0, such that M1T (r,a) � T (r, f ) � M2(T (r,a) for large enough r.

(ii) Condition (C2) of Theorem 2 is sharp; for example, f (z) = exp(z2), a(z) = exp(z2)(k) + ez2
.

(iii) Condition (C2) of Theorem 2 is automatically fulfilled if ρ( f ) = ∞.

Notation. Let �(z0, r) := {z: |z − z0| < r}, C(z0, r) := {z: |z − z0| = r}, V (z0, θ0, A) := {z: |arg(z − z0) − θ0| < A}. Let D

be a domain in C and let { fn} be a sequence of meromorphic functions in D. We write fn(z)
χ⇒ f (z) in D to indicate

that { fn} converges spherically uniformly to the limit function f on compact subsets of D. If { fn} is analytic in D, we
write fn ⇒ f in D. If S is the angular domain V (z0, θ0, A), C ∈ Ĉ and f (z) is analytic in S for large enough |z|, we write

f (z)
∀⇒ C in S to indicate that f (z) tends uniformly to the constant C ∈ Ĉ as z → ∞ in S.

2. Auxiliary results for the proof of Theorem 1

Lemma 1. Let k � 1 be an integer and let { fn} be a family of functions meromorphic on �, all of whose zeros have multiplicity at least
k + 1. If an → a, |a| < 1, and f #

n (an) → ∞, then there exist

(i) a subsequence of { fn} (which we still write as { fn});
(ii) points zn → z0, |z0| < 1;

(iii) positive numbers ρn → 0 such that

(iv) gn(ζ ) := fn(zn+ρnζ )

ρk
n

χ⇒ g(ζ ) in C,

where g is a nonconstant meromorphic function on C, such that g#(ζ ) � g#(0) = k + 1, and ρn � M
k+1
√

f #
n (an)

, where M is a constant

which is independent on n.

The innovation of this lemma, comparing it to Lemma 2 of [6], Lemma 1 of [5] (or comparing it to the original Zalcman
Lemma, see [11] or [12]) is that given information about the rate of growth of the spherical derivatives of the members of
the sequence { fn} on some compact subset of the unit disc, we get an estimation to the size of the ρn ’s in the vicinity of
some point of nonnormality, and this helps to estimate fn(zn +ρnζ ) when the fn ’s are known. For related issues, the reader
is referred also to [7].

Proof. There exists 0 < r∗ < 1 such that |an| < r∗, ∀n. Take r, r∗ < r < 1. Since f #
n (an) → ∞, then

Sn := (1 − (
|an |

r )2)k+1| f ′
n(an)|

(1 − | an
r |2)2k + | fn(an)|2 �

(
1 −

∣∣∣∣an

r

∣∣∣∣
2)k+1

f #
n (an) → ∞,

and thus Sn > k + 1 (for large enough n, without loss of generality, for every n). By Lemma 1 in [6], there exists for each n
a point zn, |zn| < r and 0 < tn < 1 such that
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sup
|z|<r

(1 − | z
r |2)k+1tk+1

n | f ′
n(z)|

(1 − | z
r |2)2kt2k

n + | fn(z)|2 = (1 − | zn
r |2)k+1tk+1

n | f ′
n(zn)|

(1 − | zn
r |2)2kt2k

n + | fn(zn)|2 = k + 1. (1)

In particular,

k + 1 �
(1 − | an

r |2)k+1tk+1
n | f ′

n(an)|
(1 − | an

r |2)k+1t2k
n + | fn(an)|2 �

(
1 −

∣∣∣∣an

r

∣∣∣∣
2)k+1

tk+1
n f #

n (an) (2)

and thus tn → 0.

Set ρn = (1 − | zn
r |2)tn, then ρn = 1−| zn

r |2
1−| an

r |2 (1 − | an
r |2)tn. By (2) we have ρn � 1

1−( r∗
r )2

k+1√k+1
k+1
√

f #
n (an)

� μ
k+1
√

f #
n (an)

, where μ =
3√3

1−( r∗
r )2

. Now we continue by following the proof of Lemma 2 in [6].

We have

ρn

r − |zn| → 0, (3)

and then the functions gn(ζ ) := fn(zn + ρnζ )/ρk
n are defined for |ζ | � Rn, where Rn = r−|zn|

ρn
→ ∞. A calculation yields

|g′
n(ζ )|

1 + |gn(ζ )|2 = (1 − |zn/r|2)k+1tk+1
n | f ′

n(zn + ρnζ )|
(1 − |zn/r|2)2kt2k

n + | fn(zn + ρnζ )|2 , (4)

so by (1)

g#
n (0) = |g′

n(0)|
1 + |gn(0)|2 = k + 1. (5)

For |ζ | � R < Rn, we have

|zn|2 − 2ρn R − ρ2
n R2 � |zn + ρnζ |2 � |zn|2 + 2ρn R + ρ2

n R2.

It follows from (3) that (r2 − |zn|2)/(r2 − |zn + ρnζ |2) tends uniformly to 1 on compact subsets of C.

Now fix R and let ε > 0. Then for n sufficiently large, we have by (1) and (4)

g#
n (ζ ) = |g′

n(ζ )|
1 + |gn(ζ )|2 � (1 + ε)(1 − |(zn + ρnζ )/r|2)k+1tk+1

n | f ′
n(zn + ρnζ )|

(1 − |(zn + ρnζ )/r|2)2αt2α
n + | fn(zn + ρnζ )|2 � (1 + ε)(k + 1). (6)

Thus, by Marty’s Theorem, {gn} is a normal family in C. Taking a subsequence and renumbering, we may assume that the
gn converge locally uniformly on compacta to a limit function g. It is evident from (5) and (6) that g#(0) := k + 1 (so that
g is nonconstant) and g#(ζ ) � k + 1 for all ζ. This completes the proof. �
Lemma 2. Let f be a meromorphic function of infinite order on C. Then there exist points zn → ∞, such that for every N > 0,
g#(zn) > |zn|N if n is sufficiently large.

Proof. Suppose this were not the case. Then there exist N > 0 and R > 0 such that for all z, |z| � R, we have f #(z) < |z|N .

So

S(r, f ) = 1

π

∫ ∫
|z|<r

f #(z)2 dσ = 1

π

∫ ∫
R�|z|<r

f #(z)2 dσ + O (1) � 1

π

∫ ∫
R�|z|<r

|z|2N dσ + O (1) = 1

π

2π∫
0

dθ

2π∫
0

r∫
R

t · t2N dt + O (1)

= 1

N + 1

(
r2N+2 − R2N+2) + O (1) = 1

N + 1
r2N+2 + O (1).

By the definition of Ahlfors characteristic of g, we have

T (r, f ) =
r∫

0

S(t, f )

t
dt � 1

(N + 1)(2N + 2)
r2N+2 + O (log r).

Thus, ρ( f ) = limr→∞ log T (r, f )
log r � 2N + 2, which contradicts the fact that f is of infinite order. �

Lemma 3. Let f be a nonconstant meromorphic function of finite order on C, all of whose zeros have multiplicity at least k + 1.

If f (k)(z) �= 1 on C, then

f (z) = 1

k!
(z − a)k+1

z − b
for some a,b ∈ C, a �= b.
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This lemma follows easily from Lemmas 6 and 8 in [9]; see also [4, Lemma 4].

Lemma 4. Let R(z) �≡ 0 be a rational function. Then there exists k > 0, such that for large enough z, |zR ′(z)| � k|R(z)|.

This lemma is obvious.

3. Proof of Theorem 1

We assume by negation that the equation f (k)(z) = a(z) has finitely many zeros. This means that

f (k)(z)

a(z)
�= 1 (7)

for large enough z.
Set F (z) = f (z)

a(z) , and write b(z) = 1
a(z) = 1

P (z) e−Q (z) = P1(z)eQ 1(z), we have

F ( j)(z) = (
f (z)b(z)

)( j) =
j∑

i=0

C i
j f i(z)b( j−i)(z).

Computation yields⎛
⎜⎜⎜⎜⎝

0 0 . . . 0 b(z)

0 0 . . . b(z) b′(z)

.

.

.
.
.
.

. . .
.
.
.

.

.

.

b(z) C1
k b′(z) . . . Ck−1

k b(k−1)(z) b(k)(z)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

f (k)(z)

f (k−1)(z)

.

.

.

f (z)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

F (z)

F ′(z)

.

.

.

F (k)(z)

⎞
⎟⎟⎟⎟⎠ (8)

and ⎛
⎜⎜⎜⎜⎝

f (k)(z)

f (k−1)(z)

.

.

.

f (z)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0 0 . . . 0 b(z)

0 0 . . . b(z) b′(z)

.

.

.
.
.
.

. . .
.
.
.

.

.

.

b(z) C1
k b′(z) . . . Ck−1

k b(k−1)(z) b(k)(z)

⎞
⎟⎟⎟⎟⎠

−1 ⎛
⎜⎜⎜⎜⎝

F (z)

F ′(z)

.

.

.

F (k)(z)

⎞
⎟⎟⎟⎟⎠

= (−1)[ k+1
2 ]

bk+1

⎛
⎜⎜⎜⎜⎝

0 0 . . . 0 b(z)

0 0 . . . b(z) b′(z)

.

.

.
.
.
.

. . .
.
.
.

.

.

.

b(z) C1
k b′(z) . . . Ck−1

k b(k−1)(z) b(k)(z)

⎞
⎟⎟⎟⎟⎠

∗ ⎛
⎜⎜⎜⎜⎝

F (z)

F ′(z)

.

.

.

F (k)(z)

⎞
⎟⎟⎟⎟⎠ . (9)

So we obtain

f (k)(z)b(z) =
k∑

j=0

L j(z)F (k− j)(z), (10)

where L0(z) ≡ 1.

Observe that the (1,k + 1) element in the adjoint matrix in the right-hand side of (9) is (−1)k+[ k
2 ], but L0(z) ≡ 1

is also obvious from (8) and L j(z) is a polynomial of b′(z)/b(z), . . . ,b( j)(z)/b(z) (1 � j � k). Next we should calculate

b( j)(z)/b(z). Since b(z) = P1(z)exp(Q 1(z)), we have b( j)(z) = ∑ j
�=0 C�

j P (�)
1 (z)(exp(Q 1(z)))( j−�), and b( j)(z)/b(z) is a poly-

nomial of P (�)
1 (z)/P1(z) and Q (�)

1 (z) (� = 1,2, . . . , j). Since ρ( f ) = ρ(F ) = ∞, then by Lemma 2, there exist points {zn},
zn → ∞ such that for every N > 0,

F #(zn) > |zn|N if n is large enough. (11)

By Marty’s Theorem, the family of meromorphic functions {F (z + zn)} is not normal at z = 0, hence it is not normal in �.

Also, since a(z) has only finitely many zeros and poles, all the zeros of F (z + zn) in � have multiplicity at least k + 1, and
poles of which are multiple if n is sufficiently large. Thus, by Lemma 1 there exist points {z′

n}, |z′
n| < r < 1; positive numbers

ρn → 0+,

ρn � M
k+1
√

#
, (12)
F (zn)
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such that

gn(ζ ) := F (zn + z′
n + ρnζ )

ρk
n

χ⇒ g(ζ ) in C, (13)

where g is a nonconstant meromorphic function on C, all zeros of which have multiplicity at least k + 1 and all poles of
which are multiple.

(In fact, we can also ensure that z′
n → 0, but this is not needed.)

Given K , a compact subset of C, by (7), (10) and (13), we have for ζ ∈ K ,

1 �= f (k)(zn + z′
n + ρnζ )

a(zn + z′
n + ρnζ )

= F (k)
(
zn + z′

n + ρnζ
) + L1

(
zn + z′

n + ρnζ
)

F (k−1)
(
zn + z′

n + ρnζ
) + · · · + Lk

(
zn + z′

n + ρnζ
)

F
(
zn + z′

n + ρnζ
)

= g(k)
n (ζ ) + ρn L1

(
zn + z′

n + ρnζ
)

g(k−1)
n (ζ ) + · · · + ρk

n Lk
(
zn + z′

n + ρnζ
)

gn(ζ ) (14)

for sufficiently large n.

We show now that for 1 � j � k,

ρ
j

n L j
(
zn + z′

n + ρnζ
) → 0 uniformly as ζ → ∞ in C. (15)

We have by Lemma 4

P ( j)
1 (zn + z′

n + ρnζ )

P1(zn + z′
n + ρnζ )

= O

(
1

z j
n

)
,

Q ( j)
1

(
zn + z′

n + ρnζ
) = O

(
z|Q |− j

n
)
. (16)

It follows by the structure of L j(z) and (16) that it suffices if

ρ
j

n |zn||Q |− j �⇒
n→∞ 0 for 1 � j � k. (17)

By (11) and (12), we have for every N > 0,

ρ
j

n |zn||Q |− j � M|zn||Q |− j− jN
k+1 (1 � j � k) (18)

for large enough n.

On the other hand,

max
1� j�k

(
|Q | − j − jN

k + 1

)
= |Q | − 1 − N

k + 1
,

so (18) implies that (17) holds and so (15) holds. Thus, we have

g(k)
n (ζ ) + Cn L1

(
zn + z′

n + ρnζ
)

g(k−1)
n (ζ ) + · · · + ρk

n Lk
(
zn + z′

n + ρnζ
)

gn(ζ ) ⇒ g(k)(ζ )

in C \ P, where P is the set of poles of g(ζ ) in C. Now, if g(k)(ζ0) = 1 for some ζ0 ∈ C, then by (14), g(k)(ζ ) ≡ 1, and so
g is a polynomial of degree k, but this contradicts the fact that the zeros of g are of multiplicity at least k + 1. Thus we

have g(k)(ζ ) �= 1, and by Lemma 3, g(ζ ) = 1
k!

(ζ−a)k+1

ζ−b , where a �= b are two complex numbers. But this contradicts the fact
that all poles of g are multiple. This completes the proof of Theorem 1.

4. Auxiliary results for the proof of Theorem 2

Lemma 5. Let R(z) �≡ 0 be a rational function and let Q (z) = −zn + Cn−1 + · · · + C0 be a polynomial (n � 1). Then for every 0 <

ε < π
2n , the function hz(t) = |R(tz)exp(Q (tz))| is decreasing in {t � 1} for every |z| > L = L(ε) in the domain S = V (0,0, π

2n − ε).

Proof. Denote z = reiθ . Let R(z) = z�+a�−1 z�−1+···+a0
bm zm+···+b0

, bm �= 0. Then

hz(t) = ∣∣R(tz)
∣∣ · exp

(
Re Q (tz)

)
= ∣∣R(tz)

∣∣ exp
{

Re
[−rntn(

cos(nθ) + i sin(nθ)
) + Cn−1rn−1tn−1(cos

(
(n − 1)θ

) + i sin
(
(n − 1)θ

)) + · · · + C0
]}

.

It is enough to prove that for sufficiently large z in S,
hz(t+�t)

hz(t)
< 1 for small enough positive �t. There are d1, . . . ,dn−1 ∈ R

such that
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hz(t + �t)

hz(t)
=

∣∣∣∣ R((t + �t)z)

R(tz)

∣∣∣∣ · exp
[−rn(

(t + �t)n − tn)
cos(nθ) + dn−1rn−1((t + �t)n−1 − tn−1) + · · ·

+ d1r
(
(t + �t) − t

)]
=

∣∣∣∣ R((t + �t)z)

R(tz)

∣∣∣∣ · exp

[
−n cos(nθ)rntn−1�t + rn

n∑
k=2

ek,ntn−k�tk + rn−1
n−1∑
k=1

ek,n−1(�t)ktn−1+k + · · ·

+ e1,1r�t

]
,

where ek,n = Ck
n, 2 � k � n, e1,1 = d1 and {e j,�: 2 � � � n −1, 1 � j � �} are real numbers. Set A := A(ε) = cos( π

2 −nε) > 0,

then the last expression is

R((t + �t)z)

R(tz)
exp

[
−Arntn−1�t

(
1 + O (�t) + O

(
1

r

))]
(�t → 0, r → ∞)

<

∣∣∣∣ R((t + �t)z)

R(tz)

∣∣∣∣exp

(
− A

2
rntn−1�t

)
.

Claim. There exists k > 0 such that for t � 1 and large enough z, | R((t+�t)z)
R(tz) | < 1 + k�t, for small enough �t.

Proof. Obviously, it is enough to consider the case when R(z) is a polynomial. So assume R(z) = anzn + · · · + a0. We have

R((t + �t)z)

R(tz)
= an((t + �t)z)n[1 + an−1

(t+�t)z + · · · + a0
((t+�t)z)n ]

antnzn[1 + an−1
tz + · · · + a0

(tz)n ] =
(

1 + �t

t

)n

·
1 + ∑n−1

k=0
ak

((t+�t)z)n−k

1 + ∑n−1
k=0

ak
(tz)n−k

.

For each 0 � k � n − 1, when �t → 0 (since t � 1 and |z| is big), we have

ak

((t + �t)z)n−k
= ak

(tz)n−k(1 + �t
t )n−k

= ak

(tz)n−k

(
1 + O (�t)

)
.

Thus,

R((t + �t)z)

R(tz)
=

(
1 + �t

t

)n(
1 + O (�t)

)
,

and the claim is proved. �
Thus, if r is such that A

2 rn > 2k, then for small enough �t ,∣∣∣∣ R((t + �t)z)

R(tz)

∣∣∣∣exp

(
− A

2
rntn−1�t

)
< (1 + k�t)exp(−2k�t) < (1 + k�t)(1 − k�t) < 1,

and Lemma 5 is proved. �
Lemma 6. If f (z) is a meromorphic function in the finite plane, then

T (r, f ) < O
{

T (2r, f ′) + log r
}
, r → ∞.

This lemma is a corollary to Chuang Chi-Tai’s inequality [10, pp. 95–96].

Lemma 7. Let h(z) be analytic in S = V (z0, θ0, A) for large enough |z|. Suppose that h(z)
∀⇒ k ∈ C in Sε, for every 0 < ε < A, where

Sε := V (z0, θ0, A − ε). Then zh′(z)
∀⇒ 0 in Sε for every 0 < ε < A.

Proof. Without loss of generality, assume that k = 0. Let 0 < ε < A. Then h(z)
∀⇒ 0 in Sε/2. Let z ∈ Sε/2 and denote c =

c(ζ1, |z|tg ε
2 ). Then

∣∣h′(z)
∣∣ =

∣∣∣∣ 1

2π i

∫
C

h(ζ )

(ζ − z)2
dζ

∣∣∣∣ �
|z|tg ε

2 maxζ∈C |h(ζ )|
|z|2tg2 ε

2

.

So |zh′(z)| � maxζ∈C |h(ζ )|
tg ε

2
, and the lemma is proved. �

We also need the following lemma.
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Lemma 8. (See [10, p. 25].) If f (z) is a transcendental meromorphic function in C, then lim r→∞
T (r, f )
log r = ∞.

The following lemma is due to H. King-lai.

Lemma 9. (See [10, p. 99].) Let f (z) be a meromorphic function in {|z| < R}, R � ∞. If f (0) �= 0,∞, then for every k ∈ N,

m

(
r,

f (k)

f

)
< Ck

{
1 + log+ log+ 1

| f (0)| + log +1

r
+ log + 1

ρ − r
+ log+ ρ + log+ T (ρ, f )

}
,

where 0 < r < ρ < R and Ck is a constant depending only on k.

We shall also use the following result.

Theorem L. (See J.K. Langley [3].) Let f be a meromorphic function of finite order in C and let k � 2 be an integer, such that the kth
derivative f (k) has finitely many zeros. Then f has finitely many poles.

The Phragmen–Lindelöf Principle, presented in the following two theorems, will play a central role in our proof.

Theorem PL1. (See [8, p. 177].) Let f be analytic in D = V (0,0, π
2λ

). Suppose that logμ(r, f )
as
< rρ for some ρ < λ. If for every

ζ ∈ ∂ D, limz→ζ , z∈D | f (z)| � M, then | f (z)| � M in D.

Here μ(r, f ) = sup− π
2λ

<θ< π
2λ

| f (reiθ )|.

Theorem PL2. (See [8, p. 179].) If f (z) → a along two rays and f is bounded and analytic in the angle between them, then f (z) →
z→∞ a

uniformly in the whole angle.

5. Proof of Theorem 2

We divide into two cases.
Case (A). f has infinitely many poles. There exists a holomorphic function T (z) such that T (k)(z) = a(z) and since the poles

of f are exactly the poles of f − T , we have by Theorem L that the equation ( f (z) − T (z))(k) = 0 has infinitely many roots,
so f (k)(z) − a(z) takes the value 0 infinitely many times.

Case (B). f has finitely many poles. If, to the contrary, f (k)(z) − a(z) has only finitely many zeros, then we have

f (k)(z) = P1(z)exp
(

Q 1(z)
) + P2(z)exp

(
Q 2(z)

)
, (19)

where P1 = P , Q 1 = Q , P2 is a rational function and Q 2 is a polynomial.

Case (B) is now divided into two subcases.

Case (BI). Suppose that ρ( f ) is a fraction. Since ρ(a) is an integer, ρ( f ) �= ρ(a). If ρ( f ) < ρ(a), then if |Q 1| �= |Q 2|, we have
a contradiction to (19). If |Q 1| = |Q 2|, then they must be positive integers. In this case, also the leading coefficients in Q 1
and in Q 2 must be equal, because otherwise, the order of the right-hand side of (19) is |Q 1|, a contradiction. So assume
that the leading coefficient in Q 1 and in Q 2 is a1. Then by multiplying (19) in exp(−a1z|Q 1|), we get a contradiction by
comparing the order of both sides of the resulting identity. If ρ( f ) > ρ(a), then we get by (19) that ρ( f ) = ρ(P2 exp(Q 2)),

and this is impossible since ρ(P2 exp(Q 2)) is an integer.

Case (BII). Suppose now that ρ( f ) is an integer. Separate into cases.
(i) |Q 1| > |Q 2, |. Then

T (r,a) ∼ M1r|Q 1| for some M1 > 0, (20)

and by (19) also

T
(
r, f (k)

) ∼ M1r|Q 1| as r → ∞. (21)

Now, by Lemma 6, for all r > 0, we have

T (r, f ) < Ck T
(
2kr, f (k)

) + Dk log r + Ek for some positive constants Ck, Dk, Ek. (22)

By (21), we have T (2kr, f (k)) = O (r|Q 1|) and then by (20) and (22), we get

T (r, f ) = O
(
T (r,a)

)
. (23)
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Also by Lemmas 8 and 9,

T
(
r, f (k)

) = O
(
T (r, f )

)
. (24)

So from (20), (21) and (24), we have

T (r,a) = O
(
T (r, f )

)
. (25)

By (23) and (25), we get a contradiction to condition (C2) of Theorem 2.
(ii) |Q 1| = |Q 2|. If |Q 1| = |Q 2| = 0, then f (k)(z) is a rational function and so is f (z). (The theorem holds then if and only

if f (z) ≡ C, |C | > 1 and a(z) ≡ 0.) If |Q 1| = |Q 2| > 0, then if ρ( f ) = ρ( f (k)) < |Q 1|, then the leading coefficients of Q 1(z)
and Q 2(z) must be equal, say a1, and we get a contradiction by multiplying (19) in exp(−a1z|Q 1|). The case ρ( f ) > |Q 1|
is impossible by (19). Suppose ρ( f ) = |Q 1|, then if the leading coefficients of Q 1(z) and Q 2(z) were not equal, we would
deduce that r|Q 1| = O (T (r, f )).

Hence (25) holds (and also (23)), and we have again a contradiction to condition (C2). So the leading coefficients of Q 1(z)
and Q 2(z) must be equal. In this case we have again that (23) and (25) hold and we get a contradiction. (The possibility
of f (k)(z) = 0 is of course excluded.)

Observe that running over Case (BI) and on the case |Q 1| = |Q 2| = 0 in (ii) of Case (BII), show that in the case ρ( f ) = 0,

the theorem holds under condition (C2) alone.
So we are left with the case
(iii) |Q 2| > |Q 1|. Let m1 = |Q 1|, m2 = |Q 2|.
Without loss of generality, we may assume that Q 2(z) = −zm2 + · · · . Suppose first that f has finitely many zeros.

Then f (z) = R(z)exp(Q̃ (z)), where R(z) is a rational function and Q̃ (z) is a polynomial, with |Q̃ | = m2. Then f (k)(z) =
R̃(z)exp(Q̃ (z)), where R̃(z) is a rational function. If f (k)(z) − a(z) has only finitely many zeros in C, then

R̃(z)exp
(

Q̃ (z)
) − P1(z)exp

(
Q 1(z)

) = P2(z)exp
(

Q 2(z)
)
. (26)

We must have that |Q̃ | = m2 and that the leading coefficient in Q̃ must be −1. Multiply now (26) in exp(zm2 ) and by
comparing the order of both sides of the resulting equation, we get a contradiction.

Thus we can assume that f has infinitely many zeros {zn}, and since all of them are of multiplicity at least k + 1, we get

f (zn) = f ′(zn) = · · · = f (k)(zn) = 0. (27)

Let S be a subsequence of {zn} (denote it also by {zn}), such that arg(zn) converges to α. By (19) and (27), we have

α = π

2m2
+ π

m2
�, 0 � � � 2m2 − 1.

Without loss of generality, assume that α = π
2m2

. Denote f (z) = f1(z) + f2(z), where

f (k)
i (z) = Pi(z)exp

(
Q i(z)

)
(i = 1,2). (28)

Take r0 sufficiently large such that there are no zeros or poles of P2(z) in {|z| � r0} and also no zeros of P1(z) there. For all

m ∈ Z and for every 0 < ε < π
2m2

, we have zm exp(Q 2(z))
∀⇒ 0 in Sε, where Sε := V (0,0, π

2m2
− ε).

There exists a2 ∈ C such that

z∫
r0

P2(u)exp
(

Q 2(u)
)

du
∀⇒ a2 in Sε. (29)

The integral path can be taken to be the segment from r0 to |z| and then the arcγz on C(0, |z|) from |z| to z counterclock-
wise. This limit exists uniformly in Sε. To justify (29), first note that the limit exists when z is positive and then observe

that
∫
γz

P2(u)exp(Q 2(u))du
∀⇒ 0 in Sε. Thus we have

z∫
r0

P2(u)exp
(

Q 2(u)
)

du = a2 + o(1)

uniformly in Sε.

Next we estimate the o(1). We write

a2 −
z∫

P2(u)exp
(

Q 2(u)
)

du =
∞∫

P2(u)exp
(

Q 2(u)
)

du.
r0 z
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For the right-hand side of this equation, we can take the path as the ray from z to ∞, in the direction of arg(z). Integrating
by parts, we have

∞∫
z

P2(u)exp
(

Q 2(u)
)

du =
∞∫

z

P2(u)

Q ′
2(u)

Q ′
2(u)exp

(
Q 2(u)

)
du = − P2(z)

Q ′
2(z)

exp
(

Q 2(z)
) −

∞∫
z

exp
(

Q 2(u)
) d

du

(
P2(u)

Q ′
2(u)

)
du

= − P2(z)

Q ′
2(z)

exp
(

Q 2(z)
) −

∞∫
z

Q ′
2(u)P ′

2(u) − P2(u)Q ′′
2 (u)

Q ′
2

2(u)
exp

(
Q 2(u)

)
du.

We shall prove now that

∞∫
z

(
Q ′

2(u)P ′
2(u) − P2(u)Q ′′

2 (u)

Q ′
i (u)2

)
exp

(
Q 2(u)

)
du = o

(
P2(z)

Q ′
2(z)

exp
(

Q 2(z)
))

as z → ∞ uniformly in Sε. Again we integrate by parts and obtain

∞∫
z

(
Q ′

2(u)P ′
2(u) − P2(u)Q ′′

2 (u)

Q ′
2(u)2

)
exp

(
Q 2(u)

)
du

= − Q ′
2(z)P ′

2(z) − P2(z)Q ′′
2 (z)

Q ′
2(z)3

exp
(

Q 2(z)
) −

∞∫
z

exp
(

Q 2(u)
) d

du

(
Q ′

2(u)P ′
2(u) − P2(u)Q ′′

2 (u)

Q ′
2(u)3

)
du.

Applying Lemma 4 twice, there exists k > 0, such that for sufficiently large u in Sε ,∣∣∣∣u2 d

du

(
Q ′

2(u)P ′
2(u) − P2(u)Q ′′

2 (u)

Q ′
2

3(u)

)
exp

(
Q 2(u)

)∣∣∣∣ �
∣∣∣∣ kP2(u)

Q ′
2(u)2

exp
(

Q 2(u)
)∣∣∣∣.

Thus, for large enough z in Sε ,∣∣∣∣∣
∞∫

z

exp
(

Q 2(u)
) d

du

(
Q ′

2(u)P ′
2(u) − P2(u)Q ′′

2 (u)

Q ′
2(u)3

)
du

∣∣∣∣∣ � k

∞∫
z

∣∣∣∣ P2(u)

u2 Q ′
2(u)2

exp
(

Q 2(u)
)∣∣∣∣du

= k

|z|
∞∫

1

1

t2

∣∣∣∣ P2(tz)

Q ′
2(tz)2

exp
(

Q 2(tz)
)∣∣∣∣dt. (30)

By Lemma 5, there is Lε > 0, such that for every z ∈ Sε, |z| > Lε, the function hz(t) := | P2(tz)
Q ′

2(tz)2 exp(Q 2(tz))| is decreasing

in {t � 1}. Thus we have by (30) that for z in Sε, |z| > Lε,∣∣∣∣∣
∞∫

z

exp
(

Q 2(u)
) d

du

(
Q ′

2(u)P ′
2(u) − P2(u)Q ′′

2 (u)

Q ′
2(u)3

)
du

∣∣∣∣∣ � k

|z|
∣∣∣∣ P2(z)

Q ′
2(z)2

exp
(

Q 2(z)
)∣∣∣∣

∞∫
1

dt

t2

= k

|z|
∣∣∣∣ P2(z)

Q ′
2(z)2

exp
(

Q 2(z)
)∣∣∣∣. (31)

By Lemma 4, we also have that for large enough z in Sε ,∣∣∣∣ Q ′
2(z)P ′

2(z) − P2(z)Q ′′
2 (z)

Q ′
2(z)3

exp
(

Q 2(z)
)∣∣∣∣ � k′

|z|
∣∣∣∣ P2(z)

Q ′
2(z)2

exp
(

Q 2(z)
)∣∣∣∣ (32)

for some k′ > 0.

From (31) and (32), we have∣∣∣∣∣
∞∫

z

(
Q ′

2(u)P ′
2(u) − P2(u)Q ′′

2 (u)

Q ′
2(u)2

)
exp

(
Q 2(u)

)
du

∣∣∣∣∣ � k + k′

|z|
∣∣∣∣ P2(z)

Q ′
2(z)2

exp
(

Q 2(z)
)∣∣∣∣;

and thus
∞∫ (

Q ′
2(u)P ′

2(u) − P2(u)Q ′′
2 (u)

Q ′
2(u)2

)
exp

(
Q 2(u)

)
du = o

(
P2(z)

Q ′
2(z)

exp
(

Q 2(z)
))

as z → ∞ uniformly in Sε.
z
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So we can write

a2 −
z∫

r0

P2(u)exp
(

Q 2(u)
)

du =
∞∫

z

P2(u)exp
(

Q 2(u)
)

du ∼ − P2(z)

Q ′
2(z)

exp
(

Q 2(z)
)
,

and have

Q ′
2(z)

P2(z)
exp

(−Q 2(z)
)(

a2 −
z∫

r0

P2(u)exp
(

Q 2(u)
)

du

)
∀⇒ −1 in Sε.

Consider now the domain

S+
ε := V

(
0,

π

m2
,

π

2m2
− ε

)
for 0 < ε <

π

2m2
.

Integrating the o(1) function gives

a2 −
z∫

r0

P2(u)exp
(

Q 2(u)
)

du

= a2 − P2(z)

Q ′
2(z)

exp
(

Q 2(z)
) + P2(r0)

Q ′
2(r0)

exp
(

Q 2(r0)
) +

∫
Γz

Q ′
2(u)P ′

2(u) − P2(u)Q ′′
2 (u)

Q ′
2(u)2

exp
(

Q 2(u)
)

du, (33)

where Γz is the curve from r0 to r0
z
|z| , counterclockwise on the arc{|u| = r0} and then on the segment from r0

z
|z| to z in S+

ε .

Integrating by parts, we obtain

z∫
r0

(
Q ′

2(u)P ′
2(u) − P2(u)Q ′′

2 (u)

Q ′
2(u)2

)
exp

(
Q 2(u)

)
du

= Q ′
2(z)P ′

2(z) − P2(z)Q ′′
2 (z)

Q ′
2(z)3

exp
(

Q 2(z)
) − Q ′

2(r0)P ′
2(r0) − P2(r0)Q ′′

2 (r0)

Q ′
2(r0)3

exp
(

Q 2(r0)
)

−
z∫

r0

exp
(

Q 2(u)
) d

du

(
Q ′

2(u)P ′
2(u) − P2(u)Q ′′

2 (u)

Q ′
2(u)3

)
du. (34)

We have by Lemma 4, for z ∈ S+
ε ,∣∣∣∣

∫
Γz

exp
(

Q 2(u)
) d

du

(
Q ′

2(u)P ′
2(u) − P2(u)Q ′′

2 (u)

Q ′
2(u)3

)
du

∣∣∣∣ � k

∫
Γz

∣∣∣∣ P2(u)

u2 Q ′
2(u)2

exp
(

Q 2(u)
)∣∣∣∣du (35)

for some k > 0.

Fix 0 < δ < 1, and apply Lemma 5 to 1
hz(t)

in S+
ε . We then have that there exists k̃ > 0 such that for large enough z,

there is

k

∫
Γz

∣∣∣∣ P2(u)

u2 Q ′
2(u)2

exp
(

Q 2(u)
)∣∣∣∣du � k̃

|z|1−δ

∣∣∣∣ P2(z)

Q ′
2(z)2

exp
(

Q 2(z)
)∣∣∣∣ ·

z∫
r0

z
|z|

|du|
|u|1+δ

= k̃

|z|1−δ

∣∣∣∣ P2(z)

Q ′
2(z)2

exp
(

Q 2(z)
)∣∣∣∣

|z|∫
r0

dt

t1+δ

= o(1)

∣∣∣∣ P2(z)

Q ′
2(z)

exp
(

Q 2(z)
)∣∣∣∣. (36)

By (33)–(36), we have

Q ′
2(z)

P2(z)
exp

(−Q 2(z)
)(

a2 −
z∫

r0

P2(u)exp
(

Q 2(u)
)

du

)
∀⇒ −1 (37)

in S+
ε .

In the same fashion we have that (37) holds also in

S−
ε := V

(
0,

−π

m2
,

π

2m2
− ε

)

for every 0 < ε < π . (In fact, (37) holds for both S+
ε and S−

ε with any constant from C instead of a2.)
2m2
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Now, for a given 0 < ε < π
2m2

, applying Theorems PL1 and PL2 for the two angular domains, emanating from r0, S+
ε′,r0

:=
V (r0,

π
m2

− ε′, π
2m2

) and S+
ε′,r0

:= V (r0,
−π
m2

+ ε′, π
2m2

), where 0 < ε′ < ε. Consider that (37) is true for every 0 < ε < π
2m2

. We

get by geometrical considerations, that when m2 � 2, then for every 0 < δ < 3π
2m2

, if r0 is sufficiently large, then

Q ′
2(z)

P2(z)
exp

(−Q 2(z)
)(

a2 −
z∫

r0

P2(u)exp
(

Q 2(u)
)

du

)
∀⇒ −1 in Ŝδ, (38)

where

Ŝδ := V

(
0,0,

3π

2m2
− δ

)
.

When m2 = 1, then (38) occurs in

Ŝδ := V (0,0,π − δ), (39)

where δ > 0 can be arbitrary small if r0 is large enough.
The reason for making the domains S+

ε′,r0
and S−

ε,r0
emanating from r0 is to avoid the poles of the function in the left-

hand side of (38), in order to use Theorems PL1 and PL2. Note that in (38), if r0 is large enough, then it is good for every
0 < δ < 3π

2m2
, while in (39) r0 → ∞ as δ → 0+.

Now, if Q 1(z) �≡ const, then we can similarly show that there exists a1 ∈ C, such that for every 0 < δ < π
2m1

,∫ z
r0

P1(u)exp(Q 1(u))du
∀⇒ a1 in Tδ := V (0, θ0,

π
2m1

− δ). Here θ0 depends on the argument of the coefficient of zm1 in Q 1(z).

Estimating a1 − ∫ z
r0

P1(u)exp(Q 1(u))du gives as in (38) that when m1 � 2 and r0 is sufficiently large, then

Q ′
1(z)

P1(z)
exp

(−Q 1(z)
)(

a1 −
z∫

r0

P1(u)exp
(

Q 1(u)
)

du

)
∀⇒ −1 in T̂δ := V

(
0, θ0,

3π

2m1
− δ

)
(40)

for every 0 < δ < 3π
2m1

− δ.

When m1 = 1, then (40) occurs in

T̂δ := V (0, θ0,π − δ), (41)

when δ can be arbitrarily small if r0 is sufficiently large. Now, since m1 < m2, we can in any case choose θ0 and δ, such
that T̂δ contains S∗ := V (0,0, π

2m2
+ ε0) for small ε0 (0 < ε0 < π

2m1
− π

2m2
). Thus, we have for i = 1,2,

Q ′
i (z)

Pi(z)
exp

(−Q i(z)
)(

ai −
z∫

r0

Pi(u)exp
(

Q i(u)
)

du

)
∀⇒ −1 in S∗. (42)

Integrating f (k)(u) from r0 to z in S∗ and considering (28) and (42), we have

f (k−1)(z) − f (k−1)(r0) = a1 + (
1 + r1(z)

) P1(z)

Q ′
1(z)

exp
(

Q 1(z)
) + a2 + (

1 + r2(z)
) P2(z)

Q ′′
2 (z)

exp
(

Q 2(z)
)
, (43)

where r2(z) is analytic in Ŝδ and converges there uniformly to 0 as z → ∞, and r1(z) has the same properties in T̂δ.

Integrating (43) from r0 to z gives

f (k−2)(z) = (
a1 + a2 + f (k−1)(r0)

)
z + b0 +

z∫
r0

(
1 + r1(u)

) P1(u)

Q ′
1(u)

exp
(

Q 1(u)
)

du

+
z∫

r0

(
1 + r2(u)

) P2(u)

Q ′
2(u)

exp
(

Q 2(u)
)

du, (44)

where b0 ∈ C.

We shall now estimate the integrals in (44). We have

z∫ (
1 + r2(u)

) P2(u)

Q ′
2(u)

exp
(

Q 2(u)
)

du
∀⇒ b2
r0
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in Sε , where b2 ∈ C. Now we use integration by parts to estimate the difference

b2 −
z∫

r0

(
1 + r2(u)

) P2(u)

Q ′
2(u)

exp
(

Q 2(u)
)

du

=
∞∫

z

P2(u)

Q ′
2(u)

exp
(

Q 2(u)
)(

1 + r2(u)
)

du

= −exp
(

Q 2(z)
)(

1 + r2(z)
) P2(z)

Q ′
2(z)2

−
∞∫

z

exp
(

Q 2(u)
) d

du

[
P2(u)

Q ′
2(u)2

(
1 + r2(u)

)]
du

= −exp
(

Q 2(z)
)(

1 + r2(z)
) P2(z)

Q ′
2(z)2

+ T (z), (45)

where

T (z) = −
∞∫

z

exp
(

Q 2(u)
)[ P ′

2(u)Q ′
2(u)2 − 2Q ′

2(u)Q ′′
2 (u)P2(u)

Q ′
2(u)4

(
1 + r2(u)

) + r′
2(u)

P2(u)

Q ′
2(u)2

]
du.

We will show that

T (z) = o(1)exp
(

Q 2(z)
) P2(z)

Q ′
2(z)2

as z → ∞ uniformly in Sε. (46)

We have

T (z) = exp
(

Q 2(u)
)[ P ′

2(u)Q ′
2(u)2 − 2Q ′

2(u)Q ′′
2 (u)P2(u)

Q ′
2(u)5

(
1 + r2(u)

) + r′
2(u)

P2(u)

Q ′
2(u)3

]∣∣∣∣
∞

z

−
∞∫

z

exp
(

Q 2(u)
) d

du

[
P ′

2(u)Q ′
2(u)2 − 2Q ′

2(u)Q ′′
2 (u)P2(u)

Q ′
2(u)5

(
1 + r2(u)

) + r′
2(u)

P2(u)

Q ′
2(u)3

]
du. (47)

The left term in the right-hand side of (47) is obviously o(1)
exp(Q 2(z))P2(z)

Q ′
2(z)2 . By Lemmas 4 and 7, and similarly to (31)

and (32), the right term in the right-hand side of (47) is O ( 1
|z| )

exp(Q 2(z))P2(z)
Q ′

2(z)2 , so (46) is proved. Thus we conclude by (45)

that (
b2 −

z∫
r0

(
1 + r2(u)

) P2(u)

Q ′
2(u)

exp
(

Q 2(u)
)

du

)
exp(−Q 2(z))Q ′

2(z)2

P2(z)
∀⇒ −1 in Sε. (48)

Now, in S+
ε ,

b2 −
z∫

r0

(
1 + r2(u)

) P2(u)

Q ′
2(u)

exp
(

Q 2(u)
)

du = b2 − exp(Q 2(z))

Q ′
2(z)2

P2(z)
(
1 + r2(z)

) + exp(Q 2(r0))P2(r0)(1 + r2(r0))

Q ′
2(r0)2

+
z∫

r0

d

du

[(
1 + r2(u)

) P2(u)

Q ′
2(u)2

]
exp

(
Q 2(u)

)
du. (49)

We wish to show that (48) holds also in S+
ε . Since exp(Q 2(z))

Q ′
2(z)2 P2(z)

∀⇒ 0 in S+
ε , we need to show that the integral on the

right-hand side of (49) is o(1)
exp(Q 2(z))

Q ′
2(z)2 P2(z) as z → ∞, uniformly in S+

ε .

Indeed,

z∫
r0

d

du

[(
1 + r2(u)

) P2(u)

Q ′
2(u)2

]
exp

(
Q 2(u)

)
du

=
z∫

r′
2(u)P2(u)

Q ′
2(u)2

exp
(

Q 2(u)
)

du +
z∫

P ′
2(u)Q ′

2(u)2 − 2Q ′
2(u)Q ′′

2 (u)P2(u)

Q ′
2(u)4

exp
(

Q 2(u)
)

du.
r0 r0
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By Lemma 7,

z∫
r0

r′
2(u)P2(u)

Q ′
2(u)2

exp
(

Q 2(u)
)

du = o(1)
P2(z)

Q ′
2(z)2

exp
(

Q 2(z)
)

and
z∫

r0

P ′
2(u)Q ′

2(u)2 − 2Q ′
2(u)Q ′′

2 (u)P2(u)

Q ′
2(u)4

exp
(

Q 2(u)
)

du

= P ′
2(u)Q ′

2(u)2 − 2Q ′
2(u)Q ′′

2 (u)P2(u)

Q ′
2(u)5

exp
(

Q 2(u)
)∣∣∣∣

z

r0

−
z∫

r0

exp
(

Q 2(u)
) d

du

[
P ′

2(u)Q ′
2(u)2 − 2Q ′

2(u)Q ′′
2 (u)P2(u)

Q ′
2(u)5

]
du. (50)

The left term in the right-hand side of (50) is o(1)
P2(z)

Q ′
2(z)2 exp(Q 2(z)) as z → ∞, uniformly in S+

ε . The right term is shown

to be so, similarly to the discussion after (33). Thus, (48) holds also in S+
ε and similarly it holds in S−

ε .

Again, by applying Theorems PL1 and PL2, (48) holds in Ŝδ (see (38), (39)). In the same way, it can be shown that there
exists b1 ∈ C, such that(

b1 −
z∫

r0

(
1 + r1(u)

) P1(u)

Q ′
1(u)

exp
(

Q 1(u)
)

du

)
exp(−Q 1(z))Q ′

1(z)2

P1(z)
→

z→∞ −1 uniformly in T̂δ (51)

(see (40), (41)). By (48) and (51),

f (k−2)(z) = Az + B + (
1 + S1(z)

) P1(z)

Q ′
1(z)2

exp
(

Q 1(z)
) + (

1 + S2(z)
) P2(z)

Q ′
2(z)2

exp
(

Q 2(z)
)
, (52)

where A = a1 + a2 + f (k−1)(r0), B ∈ C and Si(z)
∀⇒ 0 in S∗ , for i = 1,2.

Now, for n � N0, all the zeros zn are in S∗. From (27), (28), (43) and (52), we have the following relations:

P1(zn)exp
(

Q 1(zn)
) + P2(zn)exp

(
Q 2(zn)

) = 0,(
1 + r1(zn)

) P1(zn)

Q ′
1(zn)

exp
(

Q 1(zn)
) + (

1 + r2(zn)
) P2(zn)

Q ′
2(zn)

exp
(

Q 2(zn)
) + A = 0,

(
1 + S1(zn)

) P1(zn)

Q ′
1(zn)2

exp
(

Q 1(zn)
) + (

1 + S2(zn)
) P2(zn)exp(Q 2(zn))

Q ′
2(zn)2

+ Azn + B0 = 0. (53)

From (53), we get

A

[
(1 + o(1))

Q ′
1(zn)2

− (1 + o(1))

Q ′
2(zn)2

]
+ (Azn + B)

[
(1 + o(1))

Q ′
2(zn)

− (1 + o(1))

Q ′
1(zn)

]
= 0,

and this implies

−A

[
1

Q ′
1(zn)2

− 1

Q ′
2(zn)2

]
− (Azn + B)

[
1

Q ′
2(zn)

− 1

Q ′
1(zn)

]

= A

[
o(1)

Q ′
1(zn)2

− o(1)

Q ′
2(zn)2

]
+ (Azn + B)

[
o(1)

Q ′
2(zn)

− o(1)

Q ′
1(zn)

]
. (54)

We claim that

A

(
1

Q ′
1(z)2

− 1

Q ′
2(z)2

)
+ (Az + B)

[
1

Q ′
2(z)

− 1

Q ′
1(z)

]
≡ 0. (55)

If not, then Az + B �≡ 0, so we multiply (54) in
Q ′

1(zn)

Azn+B and get

−A

Azn + B

(
1

Q ′
1(zn)

− Q ′
1(zn)

Q ′
2(zn)2

)
−

(
Q ′

1(zn)

Q ′
2(zn)

− 1

)
= A

Azn + B

(
o(1)

Q ′
1(zn)

− o(1)Q ′
1(zn)

Q ′
2(zn)2

)
+

(
o(1)

Q ′
1(zn)

Q ′
2(zn)

+ o(1)

)
.

Let now n → ∞ and we get that 1 = 0, a contradiction.
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Now multiply (55) in Q ′
1

2(z)Q ′
2

2(z) and get

A
(

Q ′
2(z)2 − Q ′

1(z)2) + (Az + B)
(

Q ′
1(z)2 Q ′

2(z) − Q ′
2(z)2 Q ′

1(z)
) = 0.

Since Az + B �≡ 0 and m2 > m1 � 1, we have Q ′
1 = Q ′

2, a contradiction.
Now consider the case where Q 1(z) ≡ const, i.e., a(z) is a polynomial. In the case where a(z) is a nonzero constant, the

theorem follows from [9, Theorem 3] or [4, p. 18]. If a(z) is a general polynomial, then we integrate (19) in S∗ (only once!)
and get similarly to (43)

f (k−1)(z) − a1(z) = P2(z)

Q ′
2(z)

(
1 + r2(z)

)
exp

(
Q 2(z)

)
, (56)

where a1(z) is a polynomial such that a′
1(z) = a(z), and r2(z)

∀�⇒
z→∞ 0 in S∗. We divide (56) by (19), and get a1(zn)

a(zn)
= 1+r2(zn)

Q 2(zn)
.

Letting n → ∞, we get ∞ = 0, a contradiction.
This completes treating the case (iii) of Case (BII) which completes the proof of Theorem 2.
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