On the k th derivative of meromorphic functions with zeros of multiplicity at least $k+1$

Xiaojun Liu ${ }^{\mathrm{a}, 1}$, Shahar Nevo ${ }^{\mathrm{b}, *, 2}$, Xuecheng Pang ${ }^{\mathrm{a}, 3}$
${ }^{\text {a }}$ Department of Mathematics, East China Normal University, Shanghai 200062, PR China
${ }^{\text {b }}$ Department of Mathematics, Bar-Ilan University, 52900 Ramat-Gan, Israel

A R T I C L E I N F O

Article history:

Received 6 April 2008
Available online 15 July 2008
Submitted by D. Khavinson

Keywords:

Normal family
Transcendental meromorphic function Value distribution theory

Abstract

In this paper, we prove the following Theorem. Let $f(z)$ be a transcendental meromorphic function on \mathbb{C}, all of whose zeros have multiplicity at least $k+1(k \geqslant 2)$, except possibly finitely many, and all of whose poles are multiple, except possibly finitely many, and let the function $a(z)=P(z) \exp (Q(z)) \not \equiv 0$, where P and Q are polynomials such that $\overline{\lim }_{r \rightarrow \infty}\left(\frac{T(r, a)}{T(r, f)}+\frac{T(r, f)}{T(r, a)}\right)=\infty$. Then the function $f^{(k)}(z)-a(z)$ has infinitely many zeros.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

In his excellent paper [2], W.K. Hayman studied the value distribution of certain meromorphic functions and their derivatives under various conditions. Among other important results, he proved that if $f(z)$ is a transcendental meromorphic function in the plane, then either $f(z)$ assumes every finite value infinitely often, or every derivative of $f(z)$ assumes every finite nonzero value infinitely often. This result is known as "Hayman's alternative." Thereafter, the value distribution of derivatives of transcendental functions continued to be studied.

In [9], Wang and Fang proved the following result.
Theorem WF. Let $f(z)$ be a transcendental meromorphic function on \mathbb{C}, all of whose zeros have multiplicity at least 3 , then for all integer numbers $k \geqslant 1, f^{(k)}$ assumes every finite nonzero value infinitely often.

Then, in [1], Bergweiler and Pang proved
Theorem BP. Let f be a transcendental meromorphic function and $R \not \equiv 0$ be a rational function. If all zeros and poles of f are multiple, except possibly finitely many, then $f^{\prime}-R$ has infinitely many zeros.

In this paper, we continue to study omitted functions of derivatives of meromorphic functions. As a result, we have the following theorem for functions of infinite order.

[^0]Theorem 1. Let $f(z)$ be a transcendental meromorphic function on \mathbb{C} of infinite order $\rho(f)$, and $a(z)=P(z) \exp (Q(z)) \not \equiv 0$, where P and Q are polynomials. Let also $k \geqslant 2$ be an integer. Suppose that
$\left(\mathrm{C}_{1}\right)$ all zeros of f have multiplicity at least $k+1$, except possibly finitely many, and
$\left(\mathrm{C}_{2}\right)$ all poles of f are multiple, except possibly finitely many.
Then the function $f^{(k)}(z)-a(z)$ has infinitely many zeros.

For functions of finite order, we have the following result.

Theorem 2. Let $f(z)$ be a transcendental meromorphic function on \mathbb{C} of finite order $\rho(f)$, and $a(z)=P(z) \exp (Q(z)) \not \equiv 0$, where P and Q are polynomials. Let also $k \geqslant 2$ be an integer. Suppose that
$\left(\mathrm{C}_{1}\right)$ all zeros of f have multiplicity at least $k+1$, except possibly finitely many, and
$\left(\mathrm{C}_{2}\right) \overline{\lim }_{r \rightarrow \infty}\left(\frac{T(r, a)}{T(r, f)}+\frac{T(r, f)}{T(r, a)}\right)=\infty$.
Then the function $f^{(k)}(z)-a(z)$ has infinitely many zeros. Moreover, in the case that $\rho(f) \notin N$, then the result holds with condition (C_{2}) only.

Remarks. (i) Note that condition (C_{2}) of Theorem 2 is equivalent to the following condition:
$\left(\tilde{C}_{2}\right)$ There are no $M_{1}, M_{2}>0$, such that $M_{1} T(r, a) \leqslant T(r, f) \leqslant M_{2}(T(r, a)$ for large enough r.
(ii) Condition $\left(C_{2}\right)$ of Theorem 2 is sharp; for example, $f(z)=\exp \left(z^{2}\right), a(z)=\exp \left(z^{2}\right)^{(k)}+e^{z^{2}}$.
(iii) Condition (C_{2}) of Theorem 2 is automatically fulfilled if $\rho(f)=\infty$.

Notation. Let $\Delta\left(z_{0}, r\right):=\left\{z:\left|z-z_{0}\right|<r\right\}, C\left(z_{0}, r\right):=\left\{z:\left|z-z_{0}\right|=r\right\}, V\left(z_{0}, \theta_{0}, A\right):=\left\{z:\left|\arg \left(z-z_{0}\right)-\theta_{0}\right|<A\right\}$. Let D be a domain in \mathbb{C} and let $\left\{f_{n}\right\}$ be a sequence of meromorphic functions in D. We write $f_{n}(z) \stackrel{\chi}{\Rightarrow} f(z)$ in D to indicate that $\left\{f_{n}\right\}$ converges spherically uniformly to the limit function f on compact subsets of D. If $\left\{f_{n}\right\}$ is analytic in D, we write $f_{n} \Rightarrow f$ in D. If S is the angular domain $V\left(z_{0}, \theta_{0}, A\right), C \in \widehat{\mathbb{C}}$ and $f(z)$ is analytic in S for large enough $|z|$, we write $f(z) \stackrel{\forall}{\Rightarrow} C$ in S to indicate that $f(z)$ tends uniformly to the constant $C \in \hat{\mathbb{C}}$ as $z \rightarrow \infty$ in S.

2. Auxiliary results for the proof of Theorem 1

Lemma 1. Let $k \geqslant 1$ be an integer and let $\left\{f_{n}\right\}$ be a family of functions meromorphic on Δ, all of whose zeros have multiplicity at least $k+1$. If $a_{n} \rightarrow a,|a|<1$, and $f_{n}^{\#}\left(a_{n}\right) \rightarrow \infty$, then there exist
(i) a subsequence of $\left\{f_{n}\right\}$ (which we still write as $\left\{f_{n}\right\}$);
(ii) points $z_{n} \rightarrow z_{0},\left|z_{0}\right|<1$;
(iii) positive numbers $\rho_{n} \rightarrow 0$ such that
(iv) $g_{n}(\zeta):=\frac{f_{n}\left(z_{n}+\rho_{n} \zeta\right)}{\rho_{n}^{k}} \xlongequal{\Rightarrow} g(\zeta)$ in \mathbb{C},
where g is a nonconstant meromorphic function on \mathbb{C}, such that $g^{\#}(\zeta) \leqslant g^{\#}(0)=k+1$, and $\rho_{n} \leqslant \frac{M}{\sqrt[k+1]{f_{n}^{\#(}\left(a_{n}\right)}}$, where M is a constant which is independent on n.

The innovation of this lemma, comparing it to Lemma 2 of [6], Lemma 1 of [5] (or comparing it to the original Zalcman Lemma, see [11] or [12]) is that given information about the rate of growth of the spherical derivatives of the members of the sequence $\left\{f_{n}\right\}$ on some compact subset of the unit disc, we get an estimation to the size of the ρ_{n} 's in the vicinity of some point of nonnormality, and this helps to estimate $f_{n}\left(z_{n}+\rho_{n} \zeta\right)$ when the f_{n} 's are known. For related issues, the reader is referred also to [7].

Proof. There exists $0<r^{*}<1$ such that $\left|a_{n}\right|<r^{*}, \forall n$. Take $r, r^{*}<r<1$. Since $f_{n}^{\#}\left(a_{n}\right) \rightarrow \infty$, then

$$
S_{n}:=\frac{\left(1-\left(\frac{\left|a_{n}\right|}{r}\right)^{2}\right)^{k+1}\left|f_{n}^{\prime}\left(a_{n}\right)\right|}{\left(1-\left|\frac{a_{n}}{r}\right|^{2}\right)^{2 k}+\left|f_{n}\left(a_{n}\right)\right|^{2}} \geqslant\left(1-\left|\frac{a_{n}}{r}\right|^{2}\right)^{k+1} f_{n}^{\#}\left(a_{n}\right) \rightarrow \infty,
$$

and thus $S_{n}>k+1$ (for large enough n, without loss of generality, for every n). By Lemma 1 in [6], there exists for each n a point $z_{n},\left|z_{n}\right|<r$ and $0<t_{n}<1$ such that

$$
\begin{equation*}
\sup _{|z|<r} \frac{\left(1-\left|\frac{z}{r}\right|^{2}\right)^{k+1} t_{n}^{k+1}\left|f_{n}^{\prime}(z)\right|}{\left(1-\left|\frac{z}{r}\right|^{2}\right)^{2 k} t_{n}^{2 k}+\left|f_{n}(z)\right|^{2}}=\frac{\left(1-\left|\frac{z_{n}}{r}\right|^{2}\right)^{k+1} t_{n}^{k+1}\left|f_{n}^{\prime}\left(z_{n}\right)\right|}{\left(1-\left|\frac{z_{n}}{r}\right|^{2}\right)^{2 k} t_{n}^{2 k}+\left|f_{n}\left(z_{n}\right)\right|^{2}}=k+1 \tag{1}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
k+1 \geqslant \frac{\left(1-\left|\frac{a_{n}}{r}\right|^{2}\right)^{k+1} t_{n}^{k+1}\left|f_{n}^{\prime}\left(a_{n}\right)\right|}{\left(1-\left|\frac{a_{n}}{r}\right|^{2}\right)^{k+1} t_{n}^{2 k}+\left|f_{n}\left(a_{n}\right)\right|^{2}} \geqslant\left(1-\left|\frac{a_{n}}{r}\right|^{2}\right)^{k+1} t_{n}^{k+1} f_{n}^{\#}\left(a_{n}\right) \tag{2}
\end{equation*}
$$

and thus $t_{n} \rightarrow 0$.
Set $\rho_{n}=\left(1-\left|\frac{z_{n}}{r}\right|^{2}\right) t_{n}$, then $\rho_{n}=\frac{1-\left|\frac{z_{n}}{r}\right|^{2}}{1-\left|\frac{a_{n}}{r}\right|^{2}}\left(1-\left|\frac{a_{n}}{r}\right|^{2}\right) t_{n}$. By (2) we have $\rho_{n} \leqslant \frac{1}{1-\left(\frac{r^{*}}{r}\right)^{2}} \frac{\sqrt[k+1]{\sqrt[k+1]{k+1}} \sqrt{f_{n}^{\#}\left(a_{n}\right)}}{\sqrt[3]{\sqrt[k+1]{f_{n}^{\#}\left(a_{n}\right)}} \text {, where } \mu=}$ $\frac{\sqrt[3]{3}}{1-\left(\frac{r^{*}}{r}\right)^{2}}$. Now we continue by following the proof of Lemma 2 in [6].

We have

$$
\begin{equation*}
\frac{\rho_{n}}{r-\left|z_{n}\right|} \rightarrow 0 \tag{3}
\end{equation*}
$$

and then the functions $g_{n}(\zeta):=f_{n}\left(z_{n}+\rho_{n} \zeta\right) / \rho_{n}^{k}$ are defined for $|\zeta| \leqslant R_{n}$, where $R_{n}=\frac{r-\left|z_{n}\right|}{\rho_{n}} \rightarrow \infty$. A calculation yields

$$
\begin{equation*}
\frac{\left|g_{n}^{\prime}(\zeta)\right|}{1+\left|g_{n}(\zeta)\right|^{2}}=\frac{\left(1-\left|z_{n} / r\right|^{2}\right)^{k+1} t_{n}^{k+1}\left|f_{n}^{\prime}\left(z_{n}+\rho_{n} \zeta\right)\right|}{\left(1-\left|z_{n} / r\right|^{2}\right)^{2 k} t_{n}^{2 k}+\left|f_{n}\left(z_{n}+\rho_{n} \zeta\right)\right|^{2}} \tag{4}
\end{equation*}
$$

so by (1)

$$
\begin{equation*}
g_{n}^{\#}(0)=\frac{\left|g_{n}^{\prime}(0)\right|}{1+\left|g_{n}(0)\right|^{2}}=k+1 \tag{5}
\end{equation*}
$$

For $|\zeta| \leqslant R<R_{n}$, we have

$$
\left|z_{n}\right|^{2}-2 \rho_{n} R-\rho_{n}^{2} R^{2} \leqslant\left|z_{n}+\rho_{n} \zeta\right|^{2} \leqslant\left|z_{n}\right|^{2}+2 \rho_{n} R+\rho_{n}^{2} R^{2} .
$$

It follows from (3) that $\left(r^{2}-\left|z_{n}\right|^{2}\right) /\left(r^{2}-\left|z_{n}+\rho_{n} \zeta\right|^{2}\right)$ tends uniformly to 1 on compact subsets of \mathbb{C}.
Now fix R and let $\varepsilon>0$. Then for n sufficiently large, we have by (1) and (4)

$$
\begin{equation*}
g_{n}^{\#}(\zeta)=\frac{\left|g_{n}^{\prime}(\zeta)\right|}{1+\left|g_{n}(\zeta)\right|^{2}} \leqslant \frac{(1+\varepsilon)\left(1-\left|\left(z_{n}+\rho_{n} \zeta\right) / r\right|^{2}\right)^{k+1} t_{n}^{k+1}\left|f_{n}^{\prime}\left(z_{n}+\rho_{n} \zeta\right)\right|}{\left(1-\left|\left(z_{n}+\rho_{n} \zeta\right) / r\right|^{2}\right)^{2 \alpha} t_{n}^{2 \alpha}+\left|f_{n}\left(z_{n}+\rho_{n} \zeta\right)\right|^{2}} \leqslant(1+\varepsilon)(k+1) \tag{6}
\end{equation*}
$$

Thus, by Marty's Theorem, $\left\{g_{n}\right\}$ is a normal family in \mathbb{C}. Taking a subsequence and renumbering, we may assume that the g_{n} converge locally uniformly on compacta to a limit function g. It is evident from (5) and (6) that $g^{\#}(0):=k+1$ (so that g is nonconstant) and $g^{\#}(\zeta) \leqslant k+1$ for all ζ. This completes the proof.

Lemma 2. Let f be a meromorphic function of infinite order on \mathbb{C}. Then there exist points $z_{n} \rightarrow \infty$, such that for every $N>0$, $g^{\#}\left(z_{n}\right)>\left|z_{n}\right|^{N}$ if n is sufficiently large.

Proof. Suppose this were not the case. Then there exist $N>0$ and $R>0$ such that for all $z,|z| \geqslant R$, we have $f^{\#}(z)<|z|^{N}$. So

$$
\begin{aligned}
S(r, f) & =\frac{1}{\pi} \iint_{|z|<r} f^{\#}(z)^{2} d \sigma=\frac{1}{\pi} \iint_{R \leqslant|z|<r} f^{\#}(z)^{2} d \sigma+O(1) \leqslant \frac{1}{\pi} \iint_{R \leqslant|z|<r}|z|^{2 N} d \sigma+O(1)=\frac{1}{\pi} \int_{0}^{2 \pi} d \theta \int_{0}^{2 \pi} \int_{R}^{r} t \cdot t^{2 N} d t+O(1) \\
& =\frac{1}{N+1}\left(r^{2 N+2}-R^{2 N+2}\right)+O(1)=\frac{1}{N+1} r^{2 N+2}+O(1)
\end{aligned}
$$

By the definition of Ahlfors characteristic of g, we have

$$
T(r, f)=\int_{0}^{r} \frac{S(t, f)}{t} d t \leqslant \frac{1}{(N+1)(2 N+2)} r^{2 N+2}+O(\log r)
$$

Thus, $\rho(f)=\overline{\lim }_{r \rightarrow \infty} \frac{\log T(r, f)}{\log r} \leqslant 2 N+2$, which contradicts the fact that f is of infinite order.
Lemma 3. Let f be a nonconstant meromorphic function of finite order on \mathbb{C}, all of whose zeros have multiplicity at least $k+1$. If $f^{(k)}(z) \neq 1$ on \mathbb{C}, then

$$
f(z)=\frac{1}{k!} \frac{(z-a)^{k+1}}{z-b} \quad \text { for some } a, b \in \mathbb{C}, a \neq b
$$

This lemma follows easily from Lemmas 6 and 8 in [9]; see also [4, Lemma 4].

Lemma 4. Let $R(z) \not \equiv 0$ be a rational function. Then there exists $k>0$, such that for large enough $z,\left|z R^{\prime}(z)\right| \leqslant k|R(z)|$.

This lemma is obvious.

3. Proof of Theorem 1

We assume by negation that the equation $f^{(k)}(z)=a(z)$ has finitely many zeros. This means that

$$
\begin{equation*}
\frac{f^{(k)}(z)}{a(z)} \neq 1 \tag{7}
\end{equation*}
$$

for large enough z.
Set $F(z)=\frac{f(z)}{a(z)}$, and write $b(z)=\frac{1}{a(z)}=\frac{1}{P(z)} e^{-Q(z)}=P_{1}(z) e^{Q_{1}(z)}$, we have

$$
F^{(j)}(z)=(f(z) b(z))^{(j)}=\sum_{i=0}^{j} C_{j}^{i} f^{i}(z) b^{(j-i)}(z)
$$

Computation yields

$$
\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & b(z) \tag{8}\\
0 & 0 & \ldots & b(z) & b^{\prime}(z) \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
b(z) & C_{k}^{1} b^{\prime}(z) & \ldots & C_{k}^{k-1} b^{(k-1)}(z) & b^{(k)}(z)
\end{array}\right)\left(\begin{array}{c}
f^{(k)}(z) \\
f^{(k-1)}(z) \\
\vdots \\
f(z)
\end{array}\right)=\left(\begin{array}{c}
F(z) \\
F^{\prime}(z) \\
\vdots \\
F^{(k)}(z)
\end{array}\right)
$$

and

$$
\begin{align*}
\left(\begin{array}{c}
f^{(k)}(z) \\
f^{(k-1)}(z) \\
\vdots \\
f(z)
\end{array}\right) & =\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & b(z) \\
0 & 0 & \ldots & b(z) & b^{\prime}(z) \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
b(z) & C_{k}^{1} b^{\prime}(z) & \ldots & C_{k}^{k-1} b^{(k-1)}(z) & b^{(k)}(z)
\end{array}\right)^{-1}\left(\begin{array}{c}
F(z) \\
F^{\prime}(z) \\
\vdots \\
F^{(k)}(z)
\end{array}\right) \\
& =\frac{(-1)^{\left[\frac{k+1}{2}\right]}}{b^{k+1}}\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & b(z) \\
0 & 0 & \ldots & b(z) & b^{\prime}(z) \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
b(z) & C_{k}^{1} b^{\prime}(z) & \ldots & C_{k}^{k-1} b^{(k-1)}(z) & b^{(k)}(z)
\end{array}\right)\left(\begin{array}{c}
F(z) \\
F^{\prime}(z) \\
\vdots \\
F^{(k)}(z)
\end{array}\right) \tag{9}
\end{align*}
$$

So we obtain

$$
\begin{equation*}
f^{(k)}(z) b(z)=\sum_{j=0}^{k} L_{j}(z) F^{(k-j)}(z), \tag{10}
\end{equation*}
$$

where $L_{0}(z) \equiv 1$.
Observe that the $(1, k+1)$ element in the adjoint matrix in the right-hand side of (9) is $(-1)^{k+\left[\frac{k}{2}\right]}$, but $L_{0}(z) \equiv 1$ is also obvious from (8) and $L_{j}(z)$ is a polynomial of $b^{\prime}(z) / b(z), \ldots, b^{(j)}(z) / b(z)(1 \leqslant j \leqslant k)$. Next we should calculate $b^{(j)}(z) / b(z)$. Since $b(z)=P_{1}(z) \exp \left(Q_{1}(z)\right)$, we have $b^{(j)}(z)=\sum_{\ell=0}^{j} C_{j}^{\ell} P_{1}^{(\ell)}(z)\left(\exp \left(Q_{1}(z)\right)\right)^{(j-\ell)}$, and $b^{(j)}(z) / b(z)$ is a polynomial of $P_{1}^{(\ell)}(z) / P_{1}(z)$ and $Q_{1}^{(\ell)}(z)(\ell=1,2, \ldots, j)$. Since $\rho(f)=\rho(F)=\infty$, then by Lemma 2 , there exist points $\left\{z_{n}\right\}$, $z_{n} \rightarrow \infty$ such that for every $N>0$,

$$
\begin{equation*}
F^{\#}\left(z_{n}\right)>\left|z_{n}\right|^{N} \quad \text { if } n \text { is large enough. } \tag{11}
\end{equation*}
$$

By Marty's Theorem, the family of meromorphic functions $\left\{F\left(z+z_{n}\right)\right\}$ is not normal at $z=0$, hence it is not normal in Δ. Also, since $a(z)$ has only finitely many zeros and poles, all the zeros of $F\left(z+z_{n}\right)$ in Δ have multiplicity at least $k+1$, and poles of which are multiple if n is sufficiently large. Thus, by Lemma 1 there exist points $\left\{z_{n}^{\prime}\right\},\left|z_{n}^{\prime}\right|<r<1$; positive numbers $\rho_{n} \rightarrow 0^{+}$,

$$
\begin{equation*}
\rho_{n} \leqslant \frac{M}{\sqrt[k+1]{F^{\#}\left(z_{n}\right)}} \tag{12}
\end{equation*}
$$

such that

$$
\begin{equation*}
g_{n}(\zeta):=\frac{F\left(z_{n}+z_{n}^{\prime}+\rho_{n} \zeta\right)}{\rho_{n}^{k}} \stackrel{\chi}{\Rightarrow} g(\zeta) \quad \text { in } \mathbb{C}, \tag{13}
\end{equation*}
$$

where g is a nonconstant meromorphic function on \mathbb{C}, all zeros of which have multiplicity at least $k+1$ and all poles of which are multiple.
(In fact, we can also ensure that $z_{n}^{\prime} \rightarrow 0$, but this is not needed.)
Given K, a compact subset of \mathbb{C}, by (7), (10) and (13), we have for $\zeta \in K$,

$$
\begin{align*}
1 & \neq \frac{f^{(k)}\left(z_{n}+z_{n}^{\prime}+\rho_{n} \zeta\right)}{a\left(z_{n}+z_{n}^{\prime}+\rho_{n} \zeta\right)} \\
& =F^{(k)}\left(z_{n}+z_{n}^{\prime}+\rho_{n} \zeta\right)+L_{1}\left(z_{n}+z_{n}^{\prime}+\rho_{n} \zeta\right) F^{(k-1)}\left(z_{n}+z_{n}^{\prime}+\rho_{n} \zeta\right)+\cdots+L_{k}\left(z_{n}+z_{n}^{\prime}+\rho_{n} \zeta\right) F\left(z_{n}+z_{n}^{\prime}+\rho_{n} \zeta\right) \\
& =g_{n}^{(k)}(\zeta)+\rho_{n} L_{1}\left(z_{n}+z_{n}^{\prime}+\rho_{n} \zeta\right) g_{n}^{(k-1)}(\zeta)+\cdots+\rho_{n}^{k} L_{k}\left(z_{n}+z_{n}^{\prime}+\rho_{n} \zeta\right) g_{n}(\zeta) \tag{14}
\end{align*}
$$

for sufficiently large n.
We show now that for $1 \leqslant j \leqslant k$,

$$
\begin{equation*}
\rho_{n}^{j} L_{j}\left(z_{n}+z_{n}^{\prime}+\rho_{n} \zeta\right) \rightarrow 0 \quad \text { uniformly as } \zeta \rightarrow \infty \text { in } \mathbb{C} . \tag{15}
\end{equation*}
$$

We have by Lemma 4

$$
\begin{align*}
\frac{P_{1}^{(j)}\left(z_{n}+z_{n}^{\prime}+\rho_{n} \zeta\right)}{P_{1}\left(z_{n}+z_{n}^{\prime}+\rho_{n} \zeta\right)} & =O\left(\frac{1}{z_{n}^{j}}\right) \\
Q_{1}^{(j)}\left(z_{n}+z_{n}^{\prime}+\rho_{n} \zeta\right) & =O\left(z_{n}^{|Q|-j}\right) \tag{16}
\end{align*}
$$

It follows by the structure of $L_{j}(z)$ and (16) that it suffices if

$$
\begin{equation*}
\rho_{n}^{j}\left|z_{n}\right|^{|Q|-j} \underset{n \rightarrow \infty}{\Longrightarrow} 0 \text { for } 1 \leqslant j \leqslant k \tag{17}
\end{equation*}
$$

By (11) and (12), we have for every $N>0$,

$$
\begin{equation*}
\rho_{n}^{j}\left|z_{n}\right|^{|Q|-j} \leqslant M\left|z_{n}\right|^{|Q|-j-\frac{j N}{k+1}} \quad(1 \leqslant j \leqslant k) \tag{18}
\end{equation*}
$$

for large enough n.
On the other hand,

$$
\max _{1 \leqslant j \leqslant k}\left(|Q|-j-\frac{j N}{k+1}\right)=|Q|-1-\frac{N}{k+1},
$$

so (18) implies that (17) holds and so (15) holds. Thus, we have

$$
g_{n}^{(k)}(\zeta)+C_{n} L_{1}\left(z_{n}+z_{n}^{\prime}+\rho_{n} \zeta\right) g_{n}^{(k-1)}(\zeta)+\cdots+\rho_{n}^{k} L_{k}\left(z_{n}+z_{n}^{\prime}+\rho_{n} \zeta\right) g_{n}(\zeta) \Rightarrow g^{(k)}(\zeta)
$$

in $\mathbb{C} \backslash \mathbb{P}$, where \mathbb{P} is the set of poles of $g(\zeta)$ in \mathbb{C}. Now, if $g^{(k)}\left(\zeta_{0}\right)=1$ for some $\zeta_{0} \in \mathbb{C}$, then by (14), $g^{(k)}(\zeta) \equiv 1$, and so g is a polynomial of degree k, but this contradicts the fact that the zeros of g are of multiplicity at least $k+1$. Thus we have $g^{(k)}(\zeta) \neq 1$, and by Lemma 3, $g(\zeta)=\frac{1}{k!} \frac{(\zeta-a)^{k+1}}{\zeta-b}$, where $a \neq b$ are two complex numbers. But this contradicts the fact that all poles of g are multiple. This completes the proof of Theorem 1.

4. Auxiliary results for the proof of Theorem 2

Lemma 5. Let $R(z) \not \equiv 0$ be a rational function and let $Q(z)=-z^{n}+C_{n-1}+\cdots+C_{0}$ be a polynomial ($n \geqslant 1$). Then for every $0<$ $\varepsilon<\frac{\pi}{2 n}$, the function $h_{z}(t)=|R(t z) \exp (Q(t z))|$ is decreasing in $\{t \geqslant 1\}$ for every $|z|>L=L(\varepsilon)$ in the domain $S=V\left(0,0, \frac{\pi}{2 n}-\varepsilon\right)$.

Proof. Denote $z=r e^{i \theta}$. Let $R(z)=\frac{z^{\ell}+a_{\ell-1} z^{\ell-1}+\cdots+a_{0}}{b_{m} z^{m}+\cdots+b_{0}}, b_{m} \neq 0$. Then

$$
\begin{aligned}
h_{z}(t) & =|R(t z)| \cdot \exp (\operatorname{Re} Q(t z)) \\
& =|R(t z)| \exp \left\{\operatorname{Re}\left[-r^{n} t^{n}(\cos (n \theta)+i \sin (n \theta))+C_{n-1} r^{n-1} t^{n-1}(\cos ((n-1) \theta)+i \sin ((n-1) \theta))+\cdots+C_{0}\right]\right\}
\end{aligned}
$$

It is enough to prove that for sufficiently large z in $S, \frac{h_{z}(t+\Delta t)}{h_{z}(t)}<1$ for small enough positive Δt. There are $d_{1}, \ldots, d_{n-1} \in \mathbb{R}$ such that

$$
\begin{aligned}
\frac{h_{z}(t+\Delta t)}{h_{z}(t)}= & \left|\frac{R((t+\Delta t) z)}{R(t z)}\right| \cdot \exp \left[-r^{n}\left((t+\Delta t)^{n}-t^{n}\right) \cos (n \theta)+d_{n-1} r^{n-1}\left((t+\Delta t)^{n-1}-t^{n-1}\right)+\cdots\right. \\
& \left.+d_{1} r((t+\Delta t)-t)\right] \\
= & \left|\frac{R((t+\Delta t) z)}{R(t z)}\right| \cdot \exp \left[-n \cos (n \theta) r^{n} t^{n-1} \Delta t+r^{n} \sum_{k=2}^{n} e_{k, n} t^{n-k} \Delta t^{k}+r^{n-1} \sum_{k=1}^{n-1} e_{k, n-1}(\Delta t)^{k} t^{n-1+k}+\cdots\right. \\
& \left.+e_{1,1} r \Delta t\right]
\end{aligned}
$$

where $e_{k, n}=C_{n}^{k}, 2 \leqslant k \leqslant n, e_{1,1}=d_{1}$ and $\left\{e_{j, \ell}: 2 \leqslant \ell \leqslant n-1,1 \leqslant j \leqslant \ell\right\}$ are real numbers. Set $A:=A(\varepsilon)=\cos \left(\frac{\pi}{2}-n \varepsilon\right)>0$, then the last expression is

$$
\begin{aligned}
& \frac{R((t+\Delta t) z)}{R(t z)} \exp \left[-A r^{n} t^{n-1} \Delta t\left(1+O(\Delta t)+O\left(\frac{1}{r}\right)\right)\right] \quad(\Delta t \rightarrow 0, r \rightarrow \infty) \\
& \quad<\left|\frac{R((t+\Delta t) z)}{R(t z)}\right| \exp \left(-\frac{A}{2} r^{n} t^{n-1} \Delta t\right)
\end{aligned}
$$

Claim. There exists $k>0$ such that for $t \geqslant 1$ and large enough $z,\left|\frac{R((t+\Delta t) z)}{R(t z)}\right|<1+k \Delta t$, for small enough Δt.
Proof. Obviously, it is enough to consider the case when $R(z)$ is a polynomial. So assume $R(z)=a_{n} z^{n}+\cdots+a_{0}$. We have

$$
\frac{R((t+\Delta t) z)}{R(t z)}=\frac{a_{n}((t+\Delta t) z)^{n}\left[1+\frac{a_{n-1}}{(t+\Delta t) z}+\cdots+\frac{a_{0}}{((t+\Delta t) z)^{n}}\right]}{a_{n} t^{n} z^{n}\left[1+\frac{a_{n-1}}{t z}+\cdots+\frac{a_{0}}{(t z)^{n}}\right]}=\left(1+\frac{\Delta t}{t}\right)^{n} \cdot \frac{1+\sum_{k=0}^{n-1} \frac{a_{k}}{((t+\Delta t) z)^{n-k}}}{1+\sum_{k=0}^{n-1} \frac{a_{k}}{(t z)^{n-k}}}
$$

For each $0 \leqslant k \leqslant n-1$, when $\Delta t \rightarrow 0$ (since $t \geqslant 1$ and $|z|$ is big), we have

$$
\frac{a_{k}}{((t+\Delta t) z)^{n-k}}=\frac{a_{k}}{(t z)^{n-k}\left(1+\frac{\Delta t}{t}\right)^{n-k}}=\frac{a_{k}}{(t z)^{n-k}}(1+O(\Delta t))
$$

Thus,

$$
\frac{R((t+\Delta t) z)}{R(t z)}=\left(1+\frac{\Delta t}{t}\right)^{n}(1+O(\Delta t))
$$

and the claim is proved.
Thus, if r is such that $\frac{A}{2} r^{n}>2 k$, then for small enough Δt,

$$
\left|\frac{R((t+\Delta t) z)}{R(t z)}\right| \exp \left(-\frac{A}{2} r^{n} t^{n-1} \Delta t\right)<(1+k \Delta t) \exp (-2 k \Delta t)<(1+k \Delta t)(1-k \Delta t)<1
$$

and Lemma 5 is proved.
Lemma 6. If $f(z)$ is a meromorphic function in the finite plane, then

$$
T(r, f)<O\left\{T\left(2 r, f^{\prime}\right)+\log r\right\}, \quad r \rightarrow \infty
$$

This lemma is a corollary to Chuang Chi-Tai's inequality [10, pp. 95-96].
Lemma 7. Let $h(z)$ be analytic in $S=V\left(z_{0}, \theta_{0}, A\right)$ for large enough $|z|$. Suppose that $h(z) \stackrel{\forall}{\Rightarrow} k \in \mathbb{C}$ in S_{ε}, for every $0<\varepsilon<A$, where $S_{\varepsilon}:=V\left(z_{0}, \theta_{0}, A-\varepsilon\right)$. Then $z h^{\prime}(z) \stackrel{\forall}{\Rightarrow} 0$ in S_{ε} for every $0<\varepsilon<A$.

Proof. Without loss of generality, assume that $k=0$. Let $0<\varepsilon<A$. Then $h(z) \stackrel{\forall}{\Rightarrow} 0$ in $S_{\varepsilon / 2}$. Let $z \in S_{\varepsilon / 2}$ and denote $c=$ $c\left(\zeta_{1},|z| \operatorname{tg} \frac{\varepsilon}{2}\right)$. Then

$$
\left|h^{\prime}(z)\right|=\left|\frac{1}{2 \pi i} \int_{C} \frac{h(\zeta)}{(\zeta-z)^{2}} d \zeta\right| \leqslant \frac{|z| \operatorname{tg} \frac{\varepsilon}{2} \max _{\zeta \in C}|h(\zeta)|}{|z|^{2} \operatorname{tg}^{2} \frac{\varepsilon}{2}}
$$

So $\left|z h^{\prime}(z)\right| \leqslant \frac{\max _{\zeta \in \mathbb{C}}|h(\zeta)|}{\operatorname{tg} \frac{\varepsilon}{2}}$, and the lemma is proved.
We also need the following lemma.

Lemma 8. (See [10, p. 25].) If $f(z)$ is a transcendental meromorphic function in \mathbb{C}, then $\underline{\lim }_{r \rightarrow \infty} \frac{T(r, f)}{\log r}=\infty$.
The following lemma is due to H. King-lai.

Lemma 9. (See [10, p. 99].) Let $f(z)$ be a meromorphic function in $\{|z|<R\}, R \leqslant \infty$. If $f(0) \neq 0, \infty$, then for every $k \in \mathbb{N}$,

$$
m\left(r, \frac{f^{(k)}}{f}\right)<C_{k}\left\{1+\log ^{+} \log ^{+} \frac{1}{|f(0)|}+\log +\frac{1}{r}+\log +\frac{1}{\rho-r}+\log ^{+} \rho+\log ^{+} T(\rho, f)\right\},
$$

where $0<r<\rho<R$ and C_{k} is a constant depending only on k.

We shall also use the following result.

Theorem L. (See J.K. Langley [3].) Let f be a meromorphic function of finite order in \mathbb{C} and let $k \geqslant 2$ be an integer, such that the kth derivative $f^{(k)}$ has finitely many zeros. Then f has finitely many poles.

The Phragmen-Lindelöf Principle, presented in the following two theorems, will play a central role in our proof.

Theorem PL1. (See [8, p. 177].) Let f be analytic in $D=V\left(0,0, \frac{\pi}{2 \lambda}\right)$. Suppose that $\log \mu(r, f) \stackrel{a s}{<} r^{\rho}$ for some $\rho<\lambda$. If for every $\zeta \in \partial D, \overline{\lim }_{z \rightarrow \zeta, z \in D}|f(z)| \leqslant M$, then $|f(z)| \leqslant M$ in D.

Here $\mu(r, f)=\sup _{-\frac{\pi}{2 \lambda}<\theta<\frac{\pi}{2 \lambda}}\left|f\left(r e^{i \theta}\right)\right|$.
Theorem PL2. (See [8, p. 179].) If $f(z) \rightarrow$ a along two rays and f is bounded and analytic in the angle between them, then $f(z) \underset{z \rightarrow \infty}{ } a$ uniformly in the whole angle.

5. Proof of Theorem 2

We divide into two cases.
Case (A). f has infinitely many poles. There exists a holomorphic function $T(z)$ such that $T^{(k)}(z)=a(z)$ and since the poles of f are exactly the poles of $f-T$, we have by Theorem L that the equation $(f(z)-T(z))^{(k)}=0$ has infinitely many roots, so $f^{(k)}(z)-a(z)$ takes the value 0 infinitely many times.

Case (B). f has finitely many poles. If, to the contrary, $f^{(k)}(z)-a(z)$ has only finitely many zeros, then we have

$$
\begin{equation*}
f^{(k)}(z)=P_{1}(z) \exp \left(Q_{1}(z)\right)+P_{2}(z) \exp \left(Q_{2}(z)\right) \tag{19}
\end{equation*}
$$

where $P_{1}=P, Q_{1}=Q, P_{2}$ is a rational function and Q_{2} is a polynomial.
Case (B) is now divided into two subcases.
Case (BI). Suppose that $\rho(f)$ is a fraction. Since $\rho(a)$ is an integer, $\rho(f) \neq \rho(a)$. If $\rho(f)<\rho(a)$, then if $\left|Q_{1}\right| \neq\left|Q_{2}\right|$, we have a contradiction to (19). If $\left|Q_{1}\right|=\left|Q_{2}\right|$, then they must be positive integers. In this case, also the leading coefficients in Q_{1} and in Q_{2} must be equal, because otherwise, the order of the right-hand side of (19) is $\left|Q_{1}\right|$, a contradiction. So assume that the leading coefficient in Q_{1} and in Q_{2} is a_{1}. Then by multiplying (19) in $\exp \left(-a_{1} z^{\left|Q_{1}\right|}\right)$, we get a contradiction by comparing the order of both sides of the resulting identity. If $\rho(f)>\rho(a)$, then we get by (19) that $\rho(f)=\rho\left(P_{2} \exp \left(Q_{2}\right)\right)$, and this is impossible since $\rho\left(P_{2} \exp \left(Q_{2}\right)\right)$ is an integer.

Case (BII). Suppose now that $\rho(f)$ is an integer. Separate into cases.
(i) $\left|Q_{1}\right|>\left|Q_{2},\right|$. Then

$$
\begin{equation*}
T(r, a) \sim M_{1} r^{\left|Q_{1}\right|} \quad \text { for some } M_{1}>0, \tag{20}
\end{equation*}
$$

and by (19) also

$$
\begin{equation*}
T\left(r, f^{(k)}\right) \sim M_{1} r^{\left|Q_{1}\right|} \quad \text { as } r \rightarrow \infty \tag{21}
\end{equation*}
$$

Now, by Lemma 6, for all $r>0$, we have

$$
\begin{equation*}
T(r, f)<C_{k} T\left(2^{k} r, f^{(k)}\right)+D_{k} \log r+E_{k} \quad \text { for some positive constants } C_{k}, D_{k}, E_{k} . \tag{22}
\end{equation*}
$$

By (21), we have $T\left(2^{k} r, f^{(k)}\right)=O\left(r^{\left|Q_{1}\right|}\right)$ and then by (20) and (22), we get

$$
\begin{equation*}
T(r, f)=O(T(r, a)) \tag{23}
\end{equation*}
$$

Also by Lemmas 8 and 9,

$$
\begin{equation*}
T\left(r, f^{(k)}\right)=O(T(r, f)) \tag{24}
\end{equation*}
$$

So from (20), (21) and (24), we have

$$
\begin{equation*}
T(r, a)=O(T(r, f)) \tag{25}
\end{equation*}
$$

By (23) and (25), we get a contradiction to condition $\left(C_{2}\right)$ of Theorem 2.
(ii) $\left|Q_{1}\right|=\left|Q_{2}\right|$. If $\left|Q_{1}\right|=\left|Q_{2}\right|=0$, then $f^{(k)}(z)$ is a rational function and so is $f(z)$. (The theorem holds then if and only if $f(z) \equiv C,|C|>1$ and $a(z) \equiv 0$.) If $\left|Q_{1}\right|=\left|Q_{2}\right|>0$, then if $\rho(f)=\rho\left(f^{(k)}\right)<\left|Q_{1}\right|$, then the leading coefficients of $Q_{1}(z)$ and $Q_{2}(z)$ must be equal, say a_{1}, and we get a contradiction by multiplying (19) in $\exp \left(-a_{1} z^{\left|Q_{1}\right|}\right)$. The case $\rho(f)>\left|Q_{1}\right|$ is impossible by (19). Suppose $\rho(f)=\left|Q_{1}\right|$, then if the leading coefficients of $Q_{1}(z)$ and $Q_{2}(z)$ were not equal, we would deduce that $r^{\left|Q_{1}\right|}=O(T(r, f))$.

Hence (25) holds (and also (23)), and we have again a contradiction to condition (C_{2}). So the leading coefficients of $Q_{1}(z)$ and $Q_{2}(z)$ must be equal. In this case we have again that (23) and (25) hold and we get a contradiction. (The possibility of $f^{(k)}(z)=0$ is of course excluded.)

Observe that running over Case (BI) and on the case $\left|Q_{1}\right|=\left|Q_{2}\right|=0$ in (ii) of Case (BII), show that in the case $\rho(f)=0$, the theorem holds under condition $\left(C_{2}\right)$ alone.

So we are left with the case
(iii) $\left|Q_{2}\right|>\left|Q_{1}\right|$. Let $m_{1}=\left|Q_{1}\right|, m_{2}=\left|Q_{2}\right|$.

Without loss of generality, we may assume that $Q_{2}(z)=-z^{m_{2}}+\cdots$. Suppose first that f has finitely many zeros. Then $f(z)=R(z) \exp (\tilde{Q}(z))$, where $R(z)$ is a rational function and $\tilde{Q}(z)$ is a polynomial, with $|\tilde{Q}|=m_{2}$. Then $f^{(k)}(z)=$ $\tilde{R}(z) \exp (\tilde{Q}(z))$, where $\tilde{R}(z)$ is a rational function. If $f^{(k)}(z)-a(z)$ has only finitely many zeros in \mathbb{C}, then

$$
\begin{equation*}
\tilde{R}(z) \exp (\tilde{Q}(z))-P_{1}(z) \exp \left(Q_{1}(z)\right)=P_{2}(z) \exp \left(Q_{2}(z)\right) \tag{26}
\end{equation*}
$$

We must have that $|\tilde{Q}|=m_{2}$ and that the leading coefficient in \tilde{Q} must be -1 . Multiply now (26) in $\exp \left(z^{m_{2}}\right)$ and by comparing the order of both sides of the resulting equation, we get a contradiction.

Thus we can assume that f has infinitely many zeros $\left\{z_{n}\right\}$, and since all of them are of multiplicity at least $k+1$, we get

$$
\begin{equation*}
f\left(z_{n}\right)=f^{\prime}\left(z_{n}\right)=\cdots=f^{(k)}\left(z_{n}\right)=0 . \tag{27}
\end{equation*}
$$

Let S be a subsequence of $\left\{z_{n}\right\}$ (denote it also by $\left\{z_{n}\right\}$), such that $\arg \left(z_{n}\right)$ converges to α. By (19) and (27), we have

$$
\alpha=\frac{\pi}{2 m_{2}}+\frac{\pi}{m_{2}} \ell, \quad 0 \leqslant \ell \leqslant 2 m_{2}-1 .
$$

Without loss of generality, assume that $\alpha=\frac{\pi}{2 m_{2}}$. Denote $f(z)=f_{1}(z)+f_{2}(z)$, where

$$
\begin{equation*}
f_{i}^{(k)}(z)=P_{i}(z) \exp \left(Q_{i}(z)\right) \quad(i=1,2) \tag{28}
\end{equation*}
$$

Take r_{0} sufficiently large such that there are no zeros or poles of $P_{2}(z)$ in $\left\{|z| \geqslant r_{0}\right\}$ and also no zeros of $P_{1}(z)$ there. For all $m \in \mathbb{Z}$ and for every $0<\varepsilon<\frac{\pi}{2 m_{2}}$, we have $z^{m} \exp \left(Q_{2}(z)\right) \stackrel{\forall}{\Rightarrow} 0$ in S_{ε}, where $S_{\varepsilon}:=V\left(0,0, \frac{\pi}{2 m_{2}}-\varepsilon\right)$.

There exists $a_{2} \in \mathbb{C}$ such that

$$
\begin{equation*}
\int_{r_{0}}^{z} P_{2}(u) \exp \left(Q_{2}(u)\right) d u \stackrel{\forall}{\Rightarrow} a_{2} \quad \text { in } S_{\varepsilon} . \tag{29}
\end{equation*}
$$

The integral path can be taken to be the segment from r_{0} to $|z|$ and then the arc γ_{z} on $C(0,|z|)$ from $|z|$ to z counterclockwise. This limit exists uniformly in S_{ε}. To justify (29), first note that the limit exists when z is positive and then observe that $\int_{\gamma_{z}} P_{2}(u) \exp \left(Q_{2}(u)\right) d u \stackrel{\forall}{\Rightarrow} 0$ in S_{ε}. Thus we have

$$
\int_{r_{0}}^{z} P_{2}(u) \exp \left(Q_{2}(u)\right) d u=a_{2}+o(1)
$$

uniformly in S_{ε}.
Next we estimate the $o(1)$. We write

$$
a_{2}-\int_{r_{0}}^{z} P_{2}(u) \exp \left(Q_{2}(u)\right) d u=\int_{z}^{\infty} P_{2}(u) \exp \left(Q_{2}(u)\right) d u
$$

For the right-hand side of this equation, we can take the path as the ray from z to ∞, in the direction of $\arg (z)$. Integrating by parts, we have

$$
\begin{aligned}
\int_{z}^{\infty} P_{2}(u) \exp \left(Q_{2}(u)\right) d u & =\int_{z}^{\infty} \frac{P_{2}(u)}{Q_{2}^{\prime}(u)} Q_{2}^{\prime}(u) \exp \left(Q_{2}(u)\right) d u=-\frac{P_{2}(z)}{Q_{2}^{\prime}(z)} \exp \left(Q_{2}(z)\right)-\int_{z}^{\infty} \exp \left(Q_{2}(u)\right) \frac{d}{d u}\left(\frac{P_{2}(u)}{Q_{2}^{\prime}(u)}\right) d u \\
& =-\frac{P_{2}(z)}{Q_{2}^{\prime}(z)} \exp \left(Q_{2}(z)\right)-\int_{z}^{\infty} \frac{Q_{2}^{\prime}(u) P_{2}^{\prime}(u)-P_{2}(u) Q_{2}^{\prime \prime}(u)}{Q_{2}^{\prime 2}(u)} \exp \left(Q_{2}(u)\right) d u .
\end{aligned}
$$

We shall prove now that

$$
\int_{z}^{\infty}\left(\frac{Q_{2}^{\prime}(u) P_{2}^{\prime}(u)-P_{2}(u) Q_{2}^{\prime \prime}(u)}{Q_{i}^{\prime}(u)^{2}}\right) \exp \left(Q_{2}(u)\right) d u=o\left(\frac{P_{2}(z)}{Q_{2}^{\prime}(z)} \exp \left(Q_{2}(z)\right)\right)
$$

as $z \rightarrow \infty$ uniformly in S_{ε}. Again we integrate by parts and obtain

$$
\begin{aligned}
& \int_{z}^{\infty}\left(\frac{Q_{2}^{\prime}(u) P_{2}^{\prime}(u)-P_{2}(u) Q_{2}^{\prime \prime}(u)}{Q_{2}^{\prime}(u)^{2}}\right) \exp \left(Q_{2}(u)\right) d u \\
& \quad=-\frac{Q_{2}^{\prime}(z) P_{2}^{\prime}(z)-P_{2}(z) Q_{2}^{\prime \prime}(z)}{Q_{2}^{\prime}(z)^{3}} \exp \left(Q_{2}(z)\right)-\int_{z}^{\infty} \exp \left(Q_{2}(u)\right) \frac{d}{d u}\left(\frac{Q_{2}^{\prime}(u) P_{2}^{\prime}(u)-P_{2}(u) Q_{2}^{\prime \prime}(u)}{Q_{2}^{\prime}(u)^{3}}\right) d u .
\end{aligned}
$$

Applying Lemma 4 twice, there exists $k>0$, such that for sufficiently large u in S_{ε},

$$
\left|u^{2} \frac{d}{d u}\left(\frac{Q_{2}^{\prime}(u) P_{2}^{\prime}(u)-P_{2}(u) Q_{2}^{\prime \prime}(u)}{Q_{2}^{\prime 3}(u)}\right) \exp \left(Q_{2}(u)\right)\right| \leqslant\left|\frac{k P_{2}(u)}{Q_{2}^{\prime}(u)^{2}} \exp \left(Q_{2}(u)\right)\right| .
$$

Thus, for large enough z in S_{ε},

$$
\begin{align*}
\left|\int_{z}^{\infty} \exp \left(Q_{2}(u)\right) \frac{d}{d u}\left(\frac{Q_{2}^{\prime}(u) P_{2}^{\prime}(u)-P_{2}(u) Q_{2}^{\prime \prime}(u)}{Q_{2}^{\prime}(u)^{3}}\right) d u\right| & \leqslant k \int_{z}^{\infty}\left|\frac{P_{2}(u)}{u^{2} Q_{2}^{\prime}(u)^{2}} \exp \left(Q_{2}(u)\right)\right| d u \\
& =\frac{k}{|z|} \int_{1}^{\infty} \frac{1}{t^{2}}\left|\frac{P_{2}(t z)}{Q_{2}^{\prime}(t z)^{2}} \exp \left(Q_{2}(t z)\right)\right| d t . \tag{30}
\end{align*}
$$

By Lemma 5, there is $L_{\varepsilon}>0$, such that for every $z \in S_{\varepsilon},|z|>L_{\varepsilon}$, the function $h_{z}(t):=\left|\frac{P_{2}(t z)}{Q_{2}^{\prime}(t z)^{2}} \exp \left(Q_{2}(t z)\right)\right|$ is decreasing in $\{t \geqslant 1\}$. Thus we have by (30) that for z in $S_{\varepsilon},|z|>L_{\varepsilon}$,

$$
\begin{align*}
\left|\int_{z}^{\infty} \exp \left(Q_{2}(u)\right) \frac{d}{d u}\left(\frac{Q_{2}^{\prime}(u) P_{2}^{\prime}(u)-P_{2}(u) Q_{2}^{\prime \prime}(u)}{Q_{2}^{\prime}(u)^{3}}\right) d u\right| & \leqslant \frac{k}{|z|}\left|\frac{P_{2}(z)}{Q_{2}^{\prime}(z)^{2}} \exp \left(Q_{2}(z)\right)\right| \int_{1}^{\infty} \frac{d t}{t^{2}} \\
& =\frac{k}{|z|}\left|\frac{P_{2}(z)}{Q_{2}^{\prime}(z)^{2}} \exp \left(Q_{2}(z)\right)\right| . \tag{31}
\end{align*}
$$

By Lemma 4, we also have that for large enough z in S_{ε},

$$
\begin{equation*}
\left|\frac{Q_{2}^{\prime}(z) P_{2}^{\prime}(z)-P_{2}(z) Q_{2}^{\prime \prime}(z)}{Q_{2}^{\prime}(z)^{3}} \exp \left(Q_{2}(z)\right)\right| \leqslant \frac{k^{\prime}}{|z|}\left|\frac{P_{2}(z)}{Q_{2}^{\prime}(z)^{2}} \exp \left(Q_{2}(z)\right)\right| \tag{32}
\end{equation*}
$$

for some $k^{\prime}>0$.
From (31) and (32), we have

$$
\left|\int_{z}^{\infty}\left(\frac{Q_{2}^{\prime}(u) P_{2}^{\prime}(u)-P_{2}(u) Q_{2}^{\prime \prime}(u)}{Q_{2}^{\prime}(u)^{2}}\right) \exp \left(Q_{2}(u)\right) d u\right| \leqslant \frac{k+k^{\prime}}{|z|}\left|\frac{P_{2}(z)}{Q_{2}^{\prime}(z)^{2}} \exp \left(Q_{2}(z)\right)\right|
$$

and thus

$$
\int_{z}^{\infty}\left(\frac{Q_{2}^{\prime}(u) P_{2}^{\prime}(u)-P_{2}(u) Q_{2}^{\prime \prime}(u)}{Q_{2}^{\prime}(u)^{2}}\right) \exp \left(Q_{2}(u)\right) d u=o\left(\frac{P_{2}(z)}{Q_{2}^{\prime}(z)} \exp \left(Q_{2}(z)\right)\right) \text { as } z \rightarrow \infty \text { uniformly in } S_{\varepsilon} .
$$

So we can write

$$
a_{2}-\int_{r_{0}}^{z} P_{2}(u) \exp \left(Q_{2}(u)\right) d u=\int_{z}^{\infty} P_{2}(u) \exp \left(Q_{2}(u)\right) d u \sim-\frac{P_{2}(z)}{Q_{2}^{\prime}(z)} \exp \left(Q_{2}(z)\right)
$$

and have

$$
\frac{Q_{2}^{\prime}(z)}{P_{2}(z)} \exp \left(-Q_{2}(z)\right)\left(a_{2}-\int_{r_{0}}^{z} P_{2}(u) \exp \left(Q_{2}(u)\right) d u\right) \stackrel{\forall}{\Rightarrow}-1 \text { in } S_{\varepsilon} .
$$

Consider now the domain

$$
S_{\varepsilon}^{+}:=V\left(0, \frac{\pi}{m_{2}}, \frac{\pi}{2 m_{2}}-\varepsilon\right) \quad \text { for } 0<\varepsilon<\frac{\pi}{2 m_{2}}
$$

Integrating the $o(1)$ function gives

$$
\begin{align*}
a_{2} & -\int_{r_{0}}^{z} P_{2}(u) \exp \left(Q_{2}(u)\right) d u \\
& =a_{2}-\frac{P_{2}(z)}{Q_{2}^{\prime}(z)} \exp \left(Q_{2}(z)\right)+\frac{P_{2}\left(r_{0}\right)}{Q_{2}^{\prime}\left(r_{0}\right)} \exp \left(Q_{2}\left(r_{0}\right)\right)+\int_{\Gamma_{z}} \frac{Q_{2}^{\prime}(u) P_{2}^{\prime}(u)-P_{2}(u) Q_{2}^{\prime \prime}(u)}{Q_{2}^{\prime}(u)^{2}} \exp \left(Q_{2}(u)\right) d u, \tag{33}
\end{align*}
$$

where Γ_{z} is the curve from r_{0} to $r_{0} \frac{z}{|z|}$, counterclockwise on the $\operatorname{arc}\left\{|u|=r_{0}\right\}$ and then on the segment from $r_{0} \frac{z}{|z|}$ to z in S_{ε}^{+}.
Integrating by parts, we obtain

$$
\begin{align*}
\int_{r_{0}}^{z} & \left(\frac{Q_{2}^{\prime}(u) P_{2}^{\prime}(u)-P_{2}(u) Q_{2}^{\prime \prime}(u)}{Q_{2}^{\prime}(u)^{2}}\right) \exp \left(Q_{2}(u)\right) d u \\
= & \frac{Q_{2}^{\prime}(z) P_{2}^{\prime}(z)-P_{2}(z) Q_{2}^{\prime \prime}(z)}{Q_{2}^{\prime}(z)^{3}} \exp \left(Q_{2}(z)\right)-\frac{Q_{2}^{\prime}\left(r_{0}\right) P_{2}^{\prime}\left(r_{0}\right)-P_{2}\left(r_{0}\right) Q_{2}^{\prime \prime}\left(r_{0}\right)}{Q_{2}^{\prime}\left(r_{0}\right)^{3}} \exp \left(Q_{2}\left(r_{0}\right)\right) \\
& -\int_{r_{0}}^{z} \exp \left(Q_{2}(u)\right) \frac{d}{d u}\left(\frac{Q_{2}^{\prime}(u) P_{2}^{\prime}(u)-P_{2}(u) Q_{2}^{\prime \prime}(u)}{Q_{2}^{\prime}(u)^{3}}\right) d u . \tag{34}
\end{align*}
$$

We have by Lemma 4, for $z \in S_{\varepsilon}^{+}$,

$$
\begin{equation*}
\left|\int_{\Gamma_{z}} \exp \left(Q_{2}(u)\right) \frac{d}{d u}\left(\frac{Q_{2}^{\prime}(u) P_{2}^{\prime}(u)-P_{2}(u) Q_{2}^{\prime \prime}(u)}{Q_{2}^{\prime}(u)^{3}}\right) d u\right| \leqslant k \int_{\Gamma_{z}}\left|\frac{P_{2}(u)}{u^{2} Q_{2}^{\prime}(u)^{2}} \exp \left(Q_{2}(u)\right)\right| d u \tag{35}
\end{equation*}
$$

for some $k>0$.
Fix $0<\delta<1$, and apply Lemma 5 to $\frac{1}{h_{z}(t)}$ in S_{ε}^{+}. We then have that there exists $\tilde{k}>0$ such that for large enough z, there is

$$
\begin{align*}
k \int_{\Gamma_{z}}\left|\frac{P_{2}(u)}{u^{2} Q_{2}^{\prime}(u)^{2}} \exp \left(Q_{2}(u)\right)\right| d u & \leqslant \frac{\tilde{k}}{|z|^{1-\delta}}\left|\frac{P_{2}(z)}{Q_{2}^{\prime}(z)^{2}} \exp \left(Q_{2}(z)\right)\right| \cdot \int_{r_{0} \frac{z}{|z|}}^{z} \frac{|d u|}{|u|^{1+\delta}}=\frac{\tilde{k}}{|z|^{1-\delta}}\left|\frac{P_{2}(z)}{Q_{2}^{\prime}(z)^{2}} \exp \left(Q_{2}(z)\right)\right| \int_{r_{0}}^{|z|} \frac{d t}{t^{1+\delta}} \\
& =o(1)\left|\frac{P_{2}(z)}{Q_{2}^{\prime}(z)} \exp \left(Q_{2}(z)\right)\right| \tag{36}
\end{align*}
$$

By (33)-(36), we have

$$
\begin{equation*}
\frac{Q_{2}^{\prime}(z)}{P_{2}(z)} \exp \left(-Q_{2}(z)\right)\left(a_{2}-\int_{r_{0}}^{z} P_{2}(u) \exp \left(Q_{2}(u)\right) d u\right) \stackrel{\forall}{\Rightarrow}-1 \tag{37}
\end{equation*}
$$

in S_{ε}^{+}.
In the same fashion we have that (37) holds also in

$$
S_{\varepsilon}^{-}:=V\left(0, \frac{-\pi}{m_{2}}, \frac{\pi}{2 m_{2}}-\varepsilon\right)
$$

for every $0<\varepsilon<\frac{\pi}{2 m_{2}}$. (In fact, (37) holds for both S_{ε}^{+}and S_{ε}^{-}with any constant from \mathbb{C} instead of a_{2}.)

Now, for a given $0<\varepsilon<\frac{\pi}{2 m_{2}}$, applying Theorems PL1 and PL2 for the two angular domains, emanating from $r_{0}, S_{\varepsilon^{\prime}, r_{0}}^{+}:=$ $V\left(r_{0}, \frac{\pi}{m_{2}}-\varepsilon^{\prime}, \frac{\pi}{2 m_{2}}\right)$ and $S_{\varepsilon^{\prime}, r_{0}}^{+}:=V\left(r_{0}, \frac{-\pi}{m_{2}}+\varepsilon^{\prime}, \frac{\pi}{2 m_{2}}\right)$, where $0<\varepsilon^{\prime}<\varepsilon$. Consider that (37) is true for every $0<\varepsilon<\frac{\pi}{2 m_{2}}$. We get by geometrical considerations, that when $m_{2} \geqslant 2$, then for every $0<\delta<\frac{3 \pi}{2 m_{2}}$, if r_{0} is sufficiently large, then

$$
\begin{equation*}
\frac{Q_{2}^{\prime}(z)}{P_{2}(z)} \exp \left(-Q_{2}(z)\right)\left(a_{2}-\int_{r_{0}}^{z} P_{2}(u) \exp \left(Q_{2}(u)\right) d u\right) \stackrel{\forall}{\Rightarrow}-1 \text { in } \hat{S}_{\delta}, \tag{38}
\end{equation*}
$$

where

$$
\hat{S}_{\delta}:=V\left(0,0, \frac{3 \pi}{2 m_{2}}-\delta\right)
$$

When $m_{2}=1$, then (38) occurs in

$$
\begin{equation*}
\hat{S}_{\delta}:=V(0,0, \pi-\delta) \tag{39}
\end{equation*}
$$

where $\delta>0$ can be arbitrary small if r_{0} is large enough.
The reason for making the domains $S_{\varepsilon^{\prime}, r_{0}}^{+}$and $S_{\varepsilon, r_{0}}^{-}$emanating from r_{0} is to avoid the poles of the function in the lefthand side of (38), in order to use Theorems PL1 and PL2. Note that in (38), if r_{0} is large enough, then it is good for every $0<\delta<\frac{3 \pi}{2 m_{2}}$, while in (39) $r_{0} \rightarrow \infty$ as $\delta \rightarrow 0^{+}$.

Now, if $Q_{1}(z) \not \equiv$ const, then we can similarly show that there exists $a_{1} \in \mathbb{C}$, such that for every $0<\delta<\frac{\pi}{2 m_{1}}$, $\int_{r_{0}}^{z} P_{1}(u) \exp \left(Q_{1}(u)\right) d u \stackrel{\forall}{\Rightarrow} a_{1}$ in $T_{\delta}:=V\left(0, \theta_{0}, \frac{\pi}{2 m_{1}}-\delta\right)$. Here θ_{0} depends on the argument of the coefficient of $z^{m_{1}}$ in $Q_{1}(z)$. Estimating $a_{1}-\int_{r_{0}}^{z} P_{1}(u) \exp \left(Q_{1}(u)\right) d u$ gives as in (38) that when $m_{1} \geqslant 2$ and r_{0} is sufficiently large, then

$$
\begin{equation*}
\frac{Q_{1}^{\prime}(z)}{P_{1}(z)} \exp \left(-Q_{1}(z)\right)\left(a_{1}-\int_{r_{0}}^{z} P_{1}(u) \exp \left(Q_{1}(u)\right) d u\right) \stackrel{\forall}{\Rightarrow}-1 \quad \text { in } \hat{T}_{\delta}:=V\left(0, \theta_{0}, \frac{3 \pi}{2 m_{1}}-\delta\right) \tag{40}
\end{equation*}
$$

for every $0<\delta<\frac{3 \pi}{2 m_{1}}-\delta$.
When $m_{1}=1$, then (40) occurs in

$$
\begin{equation*}
\hat{T}_{\delta}:=V\left(0, \theta_{0}, \pi-\delta\right), \tag{41}
\end{equation*}
$$

when δ can be arbitrarily small if r_{0} is sufficiently large. Now, since $m_{1}<m_{2}$, we can in any case choose θ_{0} and δ, such that \hat{T}_{δ} contains $S^{*}:=V\left(0,0, \frac{\pi}{2 m_{2}}+\varepsilon_{0}\right)$ for small $\varepsilon_{0}\left(0<\varepsilon_{0}<\frac{\pi}{2 m_{1}}-\frac{\pi}{2 m_{2}}\right)$. Thus, we have for $i=1,2$,

$$
\begin{equation*}
\frac{Q_{i}^{\prime}(z)}{P_{i}(z)} \exp \left(-Q_{i}(z)\right)\left(a_{i}-\int_{r_{0}}^{z} P_{i}(u) \exp \left(Q_{i}(u)\right) d u\right) \stackrel{\forall}{\Rightarrow}-1 \quad \text { in } S^{*} \tag{42}
\end{equation*}
$$

Integrating $f^{(k)}(u)$ from r_{0} to z in S^{*} and considering (28) and (42), we have

$$
\begin{equation*}
f^{(k-1)}(z)-f^{(k-1)}\left(r_{0}\right)=a_{1}+\left(1+r_{1}(z)\right) \frac{P_{1}(z)}{Q_{1}^{\prime}(z)} \exp \left(Q_{1}(z)\right)+a_{2}+\left(1+r_{2}(z)\right) \frac{P_{2}(z)}{Q_{2}^{\prime \prime}(z)} \exp \left(Q_{2}(z)\right) \tag{43}
\end{equation*}
$$

where $r_{2}(z)$ is analytic in \hat{S}_{δ} and converges there uniformly to 0 as $z \rightarrow \infty$, and $r_{1}(z)$ has the same properties in \hat{T}_{δ}.
Integrating (43) from r_{0} to z gives

$$
\begin{align*}
f^{(k-2)}(z)= & \left(a_{1}+a_{2}+f^{(k-1)}\left(r_{0}\right)\right) z+b_{0}+\int_{r_{0}}^{z}\left(1+r_{1}(u)\right) \frac{P_{1}(u)}{Q_{1}^{\prime}(u)} \exp \left(Q_{1}(u)\right) d u \\
& +\int_{r_{0}}^{z}\left(1+r_{2}(u)\right) \frac{P_{2}(u)}{Q_{2}^{\prime}(u)} \exp \left(Q_{2}(u)\right) d u, \tag{44}
\end{align*}
$$

where $b_{0} \in \mathbb{C}$.
We shall now estimate the integrals in (44). We have

$$
\int_{r_{0}}^{z}\left(1+r_{2}(u)\right) \frac{P_{2}(u)}{Q_{2}^{\prime}(u)} \exp \left(Q_{2}(u)\right) d u \stackrel{\forall}{\Rightarrow} b_{2}
$$

in S_{ε}, where $b_{2} \in \mathbb{C}$. Now we use integration by parts to estimate the difference

$$
\begin{align*}
b_{2} & -\int_{r_{0}}^{z}\left(1+r_{2}(u)\right) \frac{P_{2}(u)}{Q_{2}^{\prime}(u)} \exp \left(Q_{2}(u)\right) d u \\
& =\int_{z}^{\infty} \frac{P_{2}(u)}{Q_{2}^{\prime}(u)} \exp \left(Q_{2}(u)\right)\left(1+r_{2}(u)\right) d u \\
& =-\exp \left(Q_{2}(z)\right)\left(1+r_{2}(z)\right) \frac{P_{2}(z)}{Q_{2}^{\prime}(z)^{2}}-\int_{z}^{\infty} \exp \left(Q_{2}(u)\right) \frac{d}{d u}\left[\frac{P_{2}(u)}{Q_{2}^{\prime}(u)^{2}}\left(1+r_{2}(u)\right)\right] d u \\
& =-\exp \left(Q_{2}(z)\right)\left(1+r_{2}(z)\right) \frac{P_{2}(z)}{Q_{2}^{\prime}(z)^{2}}+T(z) \tag{45}
\end{align*}
$$

where

$$
T(z)=-\int_{z}^{\infty} \exp \left(Q_{2}(u)\right)\left[\frac{P_{2}^{\prime}(u) Q_{2}^{\prime}(u)^{2}-2 Q_{2}^{\prime}(u) Q_{2}^{\prime \prime}(u) P_{2}(u)}{Q_{2}^{\prime}(u)^{4}}\left(1+r_{2}(u)\right)+r_{2}^{\prime}(u) \frac{P_{2}(u)}{Q_{2}^{\prime}(u)^{2}}\right] d u
$$

We will show that

$$
\begin{equation*}
T(z)=o(1) \exp \left(Q_{2}(z)\right) \frac{P_{2}(z)}{Q_{2}^{\prime}(z)^{2}} \quad \text { as } z \rightarrow \infty \text { uniformly in } S_{\varepsilon} \tag{46}
\end{equation*}
$$

We have

$$
\begin{align*}
T(z)= & \left.\exp \left(Q_{2}(u)\right)\left[\frac{P_{2}^{\prime}(u) Q_{2}^{\prime}(u)^{2}-2 Q_{2}^{\prime}(u) Q_{2}^{\prime \prime}(u) P_{2}(u)}{Q_{2}^{\prime}(u)^{5}}\left(1+r_{2}(u)\right)+r_{2}^{\prime}(u) \frac{P_{2}(u)}{Q_{2}^{\prime}(u)^{3}}\right]\right|_{z} ^{\infty} \\
& -\int_{z}^{\infty} \exp \left(Q_{2}(u)\right) \frac{d}{d u}\left[\frac{P_{2}^{\prime}(u) Q_{2}^{\prime}(u)^{2}-2 Q_{2}^{\prime}(u) Q_{2}^{\prime \prime}(u) P_{2}(u)}{Q_{2}^{\prime}(u)^{5}}\left(1+r_{2}(u)\right)+r_{2}^{\prime}(u) \frac{P_{2}(u)}{Q_{2}^{\prime}(u)^{3}}\right] d u . \tag{47}
\end{align*}
$$

The left term in the right-hand side of (47) is obviously $o(1) \frac{\exp \left(Q_{2}(z)\right) P_{2}(z)}{Q_{2}^{\prime}(z)^{2}}$. By Lemmas 4 and 7, and similarly to (31) and (32), the right term in the right-hand side of (47) is $O\left(\frac{1}{|z|}\right) \frac{\exp \left(Q_{2}(z)\right) P_{2}(z)}{Q_{2}^{\prime}(z)^{2}}$, so (46) is proved. Thus we conclude by (45) that

$$
\begin{equation*}
\left(b_{2}-\int_{r_{0}}^{z}\left(1+r_{2}(u)\right) \frac{P_{2}(u)}{Q_{2}^{\prime}(u)} \exp \left(Q_{2}(u)\right) d u\right) \frac{\exp \left(-Q_{2}(z)\right) Q_{2}^{\prime}(z)^{2}}{P_{2}(z)} \stackrel{\forall}{\Rightarrow}-1 \text { in } S_{\varepsilon} . \tag{48}
\end{equation*}
$$

Now, in S_{ε}^{+},

$$
\begin{align*}
b_{2}-\int_{r_{0}}^{z}\left(1+r_{2}(u)\right) \frac{P_{2}(u)}{Q_{2}^{\prime}(u)} \exp \left(Q_{2}(u)\right) d u= & b_{2}-\frac{\exp \left(Q_{2}(z)\right)}{Q_{2}^{\prime}(z)^{2}} P_{2}(z)\left(1+r_{2}(z)\right)+\frac{\exp \left(Q_{2}\left(r_{0}\right)\right) P_{2}\left(r_{0}\right)\left(1+r_{2}\left(r_{0}\right)\right)}{Q_{2}^{\prime}\left(r_{0}\right)^{2}} \\
& +\int_{r_{0}}^{z} \frac{d}{d u}\left[\left(1+r_{2}(u)\right) \frac{P_{2}(u)}{Q_{2}^{\prime}(u)^{2}}\right] \exp \left(Q_{2}(u)\right) d u \tag{49}
\end{align*}
$$

We wish to show that (48) holds also in S_{ε}^{+}. Since $\frac{\exp \left(Q_{2}(z)\right)}{Q_{2}^{\prime}(z)^{2}} P_{2}(z) \stackrel{\forall}{\Rightarrow} 0$ in S_{ε}^{+}, we need to show that the integral on the right-hand side of (49) is $o(1) \frac{\exp \left(Q_{2}(z)\right)}{Q_{2}^{\prime}(z)^{2}} P_{2}(z)$ as $z \rightarrow \infty$, uniformly in S_{ε}^{+}.

Indeed,

$$
\begin{aligned}
& \int_{r_{0}}^{z} \frac{d}{d u}\left[\left(1+r_{2}(u)\right) \frac{P_{2}(u)}{Q_{2}^{\prime}(u)^{2}}\right] \exp \left(Q_{2}(u)\right) d u \\
& \quad=\int_{r_{0}}^{z} \frac{r_{2}^{\prime}(u) P_{2}(u)}{Q_{2}^{\prime}(u)^{2}} \exp \left(Q_{2}(u)\right) d u+\int_{r_{0}}^{z} \frac{P_{2}^{\prime}(u) Q_{2}^{\prime}(u)^{2}-2 Q_{2}^{\prime}(u) Q_{2}^{\prime \prime}(u) P_{2}(u)}{Q_{2}^{\prime}(u)^{4}} \exp \left(Q_{2}(u)\right) d u .
\end{aligned}
$$

By Lemma 7,

$$
\int_{r_{0}}^{z} \frac{r_{2}^{\prime}(u) P_{2}(u)}{Q_{2}^{\prime}(u)^{2}} \exp \left(Q_{2}(u)\right) d u=o(1) \frac{P_{2}(z)}{Q_{2}^{\prime}(z)^{2}} \exp \left(Q_{2}(z)\right)
$$

and

$$
\begin{align*}
\int_{r_{0}}^{z} & \frac{P_{2}^{\prime}(u) Q_{2}^{\prime}(u)^{2}-2 Q_{2}^{\prime}(u) Q_{2}^{\prime \prime}(u) P_{2}(u)}{Q_{2}^{\prime}(u)^{4}} \exp \left(Q_{2}(u)\right) d u \\
= & \left.\frac{P_{2}^{\prime}(u) Q_{2}^{\prime}(u)^{2}-2 Q_{2}^{\prime}(u) Q_{2}^{\prime \prime}(u) P_{2}(u)}{Q_{2}^{\prime}(u)^{5}} \exp \left(Q_{2}(u)\right)\right|_{r_{0}} ^{z} \\
& -\int_{r_{0}}^{z} \exp \left(Q_{2}(u)\right) \frac{d}{d u}\left[\frac{P_{2}^{\prime}(u) Q_{2}^{\prime}(u)^{2}-2 Q_{2}^{\prime}(u) Q_{2}^{\prime \prime}(u) P_{2}(u)}{Q_{2}^{\prime}(u)^{5}}\right] d u . \tag{50}
\end{align*}
$$

The left term in the right-hand side of (50) is $o(1) \frac{P_{2}(z)}{Q_{2}^{\prime}(z)^{2}} \exp \left(Q_{2}(z)\right)$ as $z \rightarrow \infty$, uniformly in S_{ε}^{+}. The right term is shown to be so, similarly to the discussion after (33). Thus, (48) holds also in S_{ε}^{+}and similarly it holds in S_{ε}^{-}.

Again, by applying Theorems PL1 and PL2, (48) holds in \hat{S}_{δ} (see (38), (39)). In the same way, it can be shown that there exists $b_{1} \in \mathbb{C}$, such that

$$
\begin{equation*}
\left(b_{1}-\int_{r_{0}}^{z}\left(1+r_{1}(u)\right) \frac{P_{1}(u)}{Q_{1}^{\prime}(u)} \exp \left(Q_{1}(u)\right) d u\right) \frac{\exp \left(-Q_{1}(z)\right) Q_{1}^{\prime}(z)^{2}}{P_{1}(z)} \underset{z \rightarrow \infty}{ }-1 \text { uniformly in } \hat{T}_{\delta} \tag{51}
\end{equation*}
$$

(see (40), (41)). By (48) and (51),

$$
\begin{equation*}
f^{(k-2)}(z)=A z+B+\left(1+S_{1}(z)\right) \frac{P_{1}(z)}{Q_{1}^{\prime}(z)^{2}} \exp \left(Q_{1}(z)\right)+\left(1+S_{2}(z)\right) \frac{P_{2}(z)}{Q_{2}^{\prime}(z)^{2}} \exp \left(Q_{2}(z)\right) \tag{52}
\end{equation*}
$$

where $A=a_{1}+a_{2}+f^{(k-1)}\left(r_{0}\right), B \in \mathbb{C}$ and $S_{i}(z) \stackrel{\forall}{\Rightarrow} 0$ in S^{*}, for $i=1,2$.
Now, for $n \geqslant N_{0}$, all the zeros z_{n} are in S^{*}. From (27), (28), (43) and (52), we have the following relations:

$$
\begin{align*}
& P_{1}\left(z_{n}\right) \exp \left(Q_{1}\left(z_{n}\right)\right)+P_{2}\left(z_{n}\right) \exp \left(Q_{2}\left(z_{n}\right)\right)=0 \\
& \left(1+r_{1}\left(z_{n}\right)\right) \frac{P_{1}\left(z_{n}\right)}{Q_{1}^{\prime}\left(z_{n}\right)} \exp \left(Q_{1}\left(z_{n}\right)\right)+\left(1+r_{2}\left(z_{n}\right)\right) \frac{P_{2}\left(z_{n}\right)}{Q_{2}^{\prime}\left(z_{n}\right)} \exp \left(Q_{2}\left(z_{n}\right)\right)+A=0 \\
& \left(1+S_{1}\left(z_{n}\right)\right) \frac{P_{1}\left(z_{n}\right)}{Q_{1}^{\prime}\left(z_{n}\right)^{2}} \exp \left(Q_{1}\left(z_{n}\right)\right)+\left(1+S_{2}\left(z_{n}\right)\right) \frac{P_{2}\left(z_{n}\right) \exp \left(Q_{2}\left(z_{n}\right)\right)}{Q_{2}^{\prime}\left(z_{n}\right)^{2}}+A z_{n}+B_{0}=0 \tag{53}
\end{align*}
$$

From (53), we get

$$
A\left[\frac{(1+o(1))}{Q_{1}^{\prime}\left(z_{n}\right)^{2}}-\frac{(1+o(1))}{Q_{2}^{\prime}\left(z_{n}\right)^{2}}\right]+\left(A z_{n}+B\right)\left[\frac{(1+o(1))}{Q_{2}^{\prime}\left(z_{n}\right)}-\frac{(1+o(1))}{Q_{1}^{\prime}\left(z_{n}\right)}\right]=0
$$

and this implies

$$
\begin{align*}
& -A\left[\frac{1}{Q_{1}^{\prime}\left(z_{n}\right)^{2}}-\frac{1}{Q_{2}^{\prime}\left(z_{n}\right)^{2}}\right]-\left(A z_{n}+B\right)\left[\frac{1}{Q_{2}^{\prime}\left(z_{n}\right)}-\frac{1}{Q_{1}^{\prime}\left(z_{n}\right)}\right] \\
& \quad=A\left[\frac{o(1)}{Q_{1}^{\prime}\left(z_{n}\right)^{2}}-\frac{o(1)}{Q_{2}^{\prime}\left(z_{n}\right)^{2}}\right]+\left(A z_{n}+B\right)\left[\frac{o(1)}{Q_{2}^{\prime}\left(z_{n}\right)}-\frac{o(1)}{Q_{1}^{\prime}\left(z_{n}\right)}\right] . \tag{54}
\end{align*}
$$

We claim that

$$
\begin{equation*}
A\left(\frac{1}{Q_{1}^{\prime}(z)^{2}}-\frac{1}{Q_{2}^{\prime}(z)^{2}}\right)+(A z+B)\left[\frac{1}{Q_{2}^{\prime}(z)}-\frac{1}{Q_{1}^{\prime}(z)}\right] \equiv 0 . \tag{55}
\end{equation*}
$$

If not, then $A z+B \neq 0$, so we multiply (54) in $\frac{Q_{1}^{\prime}\left(z_{n}\right)}{A z_{n}+B}$ and get

$$
\frac{-A}{A z_{n}+B}\left(\frac{1}{Q_{1}^{\prime}\left(z_{n}\right)}-\frac{Q_{1}^{\prime}\left(z_{n}\right)}{Q_{2}^{\prime}\left(z_{n}\right)^{2}}\right)-\left(\frac{Q_{1}^{\prime}\left(z_{n}\right)}{Q_{2}^{\prime}\left(z_{n}\right)}-1\right)=\frac{A}{A z_{n}+B}\left(\frac{o(1)}{Q_{1}^{\prime}\left(z_{n}\right)}-\frac{o(1) Q_{1}^{\prime}\left(z_{n}\right)}{Q_{2}^{\prime}\left(z_{n}\right)^{2}}\right)+\left(o(1) \frac{Q_{1}^{\prime}\left(z_{n}\right)}{Q_{2}^{\prime}\left(z_{n}\right)}+o(1)\right)
$$

Let now $n \rightarrow \infty$ and we get that $1=0$, a contradiction.

Now multiply (55) in $Q_{1}^{\prime 2}(z) Q_{2}^{\prime 2}(z)$ and get

$$
A\left(Q_{2}^{\prime}(z)^{2}-Q_{1}^{\prime}(z)^{2}\right)+(A z+B)\left(Q_{1}^{\prime}(z)^{2} Q_{2}^{\prime}(z)-Q_{2}^{\prime}(z)^{2} Q_{1}^{\prime}(z)\right)=0
$$

Since $A z+B \not \equiv 0$ and $m_{2}>m_{1} \geqslant 1$, we have $Q_{1}^{\prime}=Q_{2}^{\prime}$, a contradiction.
Now consider the case where $Q_{1}(z) \equiv$ const, i.e., $a(z)$ is a polynomial. In the case where $a(z)$ is a nonzero constant, the theorem follows from [9, Theorem 3] or [4, p. 18]. If $a(z)$ is a general polynomial, then we integrate (19) in S^{*} (only once!) and get similarly to (43)

$$
\begin{equation*}
f^{(k-1)}(z)-a_{1}(z)=\frac{P_{2}(z)}{Q_{2}^{\prime}(z)}\left(1+r_{2}(z)\right) \exp \left(Q_{2}(z)\right) \tag{56}
\end{equation*}
$$

where $a_{1}(z)$ is a polynomial such that $a_{1}^{\prime}(z)=a(z)$, and $r_{2}(z) \underset{z \rightarrow \infty}{\forall} 0$ in S^{*}. We divide (56) by (19), and get $\frac{a_{1}\left(z_{n}\right)}{a\left(z_{n}\right)}=\frac{1+r_{2}\left(z_{n}\right)}{Q_{2}\left(z_{n}\right)}$. Letting $n \rightarrow \infty$, we get $\infty=0$, a contradiction.

This completes treating the case (iii) of Case (BII) which completes the proof of Theorem 2.

Acknowledgments

The authors would like to thank Professor Walter Bergweiler for his advice. They also would like to thank the referee for his important comments and advice.

References

[1] W. Bergweiler, X.-C. Pang, On the derivatives of meromorphic functions with multiple zeros, J. Math. Anal. Appl. 278 (2003) $285-292$.
[2] W.K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. of Math. (2) 70 (1959) 9-42.
[3] J.K. Langley, The second derivative of a meromorphic function of finite order, Bull. London Math. Soc. 35 (2003) 97-108.
[4] S. Nevo, X.-C. Pang, L. Zalcman, Quasinormality and meromorphic functions with multiple zeros, J. Anal. Math. 101 (2007) 1-23.
[5] X.-C. Pang, Bloch's principle and normal criterion, Sci. China Ser. A 32 (1989) 782-791.
[6] X.-C. Pang, L. Zalcman, Normal families and shared values, Bull. London Math. Soc. 32 (2000) 325-331.
[7] X.-C. Pang, L. Zalcman, Normal families of meromorphic functions with multiple zeros and poles, Israel J. Math. 136 (2003) 1-9.
[8] E.C. Titchmarsh, The Theory of Functions, Oxford Univ. Press, 1939.
[9] Yuefei Wang, Mingliang Fang, Picard values and normal families of meromorphic functions with multiple zeros, Acta Math. Sinica (N.S.) 14 (1998) 17-26.
[10] L. Yang, Value Distribution Theory, Springer-Verlag, 1993.
[11] L. Zalcman, A heuristic principle in complex function theory, Amer. Math. Monthly 82 (1975) 813-817.
[12] L. Zalcman, Normal families: New perspectives, Bull. Amer. Math. Soc. (N.S.) 35 (1998) 215-230.

[^0]: * Corresponding author.

 E-mail addresses: xiaojunliu2007@hotmail.com (X. Liu), nevosh@macs.biu.ac.il (S. Nevo), xcpang@euler.math.ecnu.edu.cn (X. Pang).
 1 Supported by the German-Israeli Foundation for Scientific Research and Development (Grant G-809-234.6/2003) and by the NSSF of China (Grant No. 10671067).
 2 Supported by the Israel Science Foundation, Grant No. 395/2007.
 ${ }^{3}$ Supported by the NSSF of China (Grant No. 10671067).

