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Abstract

In this paper, we present several methods of judging shape of the solitary wave and solution
formulae for some nonlinear evolution equations by means of Lienard equations. Then, using
the judgement methods and solution formulae, we obtain solutions of the solitary wave for
some of important nonlinear evolution equations, which include generalized modified Boussinesq,
generalized nonlinear wave, generalized Fisher, generalized Klein—Gordon and generalized Zakharov
equations. Some new solitary-wave solutions are found for the equations.
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1. Introduction

The solitary waves of many nonlinear equations are important in theoretical physicists
and applied mathematicians. In this paper, we consider some of nonlinear evolution
equations with the solitary waves.

Soliton-producing nonlinear equations, which arise in a variety of physics, mechanics
and biology, can have solitary waves with different shape. For example, compound KdV
equation

u,—i—auux—i—buzux—i—uxxx:O, b#0, (1.2)
has the kink and bell profile solitary-wave solutions (see [1-3]). The compound KdV-
Burgers equation

Uy + auity + buluy + rigy + tigey =0, r=#0. (1.2)

has the kink profile solitary-wave solutions (see [3,4]). The improved Boussinesq equation

a
Uy — Uxx + E(uz)xx — Buxxr =0 (2.3)

has the bell profile solitary-wave solutions (see [5]). The generalized Fisher equation
up — Duyy = su(1—u®)(u® + B) 1.4)

has the kink profile solitary-wave solutions (see [6]). In [7-9], Zhang and Ma consider
the exact solitory wave solutions for some evolution equations. Therefore, methods of
judging shape of the solitary wave for some nonlinear evolution equations are valuable
and important. We will present several methods of judging shape of the solitary wave in
this paper.

Moreover, we find that the problem of looking for the solitary-wave solutions for many
nonlinear evolution equations can be lead to solve the following Lienard equations:

a" (&) +rd'¢) +1aE) +mal(E) +na®~1E) =0 (1)
or
a”" (&) +1a€) + mal(€) +na®~1(E) =0, an

whereg > 0. Kong gave the exact solution of a simple Lienard equation and its application
in [10]. Now, we consider generalized modified Boussinesqg equation

=0, p=>0. (1.5)
Letu(x,t) =u(x —vt) =u(€) be atraveling-wave solutions for Eq. (1.5). Then, we have
v2u" (&) — v2u P (&) — rou (€) — (biu + bouPt 4 b3u2p+1)55 =0.

1 2p+1
et — Stxxrr + Pty — (b1 + bouP ™ + bau®P+)

Assume that the solutions of Eg. (1.5) satisfy the condition
u'(€),u”" (&), u"(E) -0, as|g|— oo, (1.6)
and asymptotic values of the solutions
= i 1.7
Ce=lim u) (1.7)
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satisfy
(bl— vz)x + box Pt 4 pax?Ptl = 0. (1.8)

Then, the solitary-wave solutions of Eq. (1.5) satisfy

by —v? b b
() + 5 (€) + T u(®) + 55" §) + S 5P E) =0, (1.9)

For the nonlinear wave equation,
Suyy — kuyy +rus + bru + bzup+l + b3u2p+l =0, p>0,r=0, (1.10)

its solitary-wave solutions satisfy

” rv / b1
b b
e e o axs

Egs. (1.9) and (1.11) are Lienard-type. They may be reduced to the Lienard equation (ll)
if r=0.
Itis easy to know that the generalized Zakharov equations

Hy — xx=(|u|2p)xx, 1.12
{iu,+u“:Hu+b1|u|2pu+b2|u|4pu, (1.12)

can be reduced to the Lienard equation (Il) by means of proper transform (see Section 6).
In this paper, we will consider shapes of the solitary waves and the exact solutions for
the nonlinear evolution equations, which can be reduced to the Lienard equation (1) or (I1).
This paper is organized as follows. In Section 2, we will discuss some properties
and several methods of judging shape of the solitary wave for many nonlinear evolution
equations by means of the Lienard equations (I) and (Il). The methods of judging shape
of the solitary wave are new and valuable, since solution functions can be assumed and
solutions of the solitary wave are obtained more easily according their shape. Using
assumption of solution functions, the kink and bell profile solitary-wave solutions for the
Lienard equation (1) and () are found in Section 3. The explicit exact solutions of Eqs. (1)
and (ll) for any real parameter > 0 are new results. Applying the results obtained in
Sections 2 and 3, the kink and bell profile solitary-wave solutions for generalized modified
Boussinesq equation (1.5), generalized nonlinear wave equation (1.10), and generalized
Zakharov equation (1.12) are found in Sections 4, 5 and 6. In [5], the exact solutions of
Eq. (1.5) were obtained only in casps=1,8 =82, b1 =1,bp = —5,b3=0andp =1,
§=p2b1=1,bp=0,b3= —3. The exact solutions of Eq. (1.12) only fpr= 1,51 =0,
by = 0 were found in [11,12].

In this paper, we obtain the explicit exact solutions of these equations for any real
numberp > 0, which include previous results as special cases. Moreover, many new exact
solitary-wave solutions are found for modified improved Boussinesq equation, generalized
Fisher equation and Zakharov equation.
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2. Propertiesof the solution functions and methods of judging shape
of the solitary wave

We consider some important properties of the solution for the Lienard equations (I) and
(1), which satisfy the condition

a(&),a’(&)— 0, as|é|— oo. (2.2)
Let C+ =limg 100 a(&). Multiplying Eq. (1) by a’(¢) and integrating once, we have
1 g l
E(a’(é))2 +r / (a’(é))zdé + Eaz(é)
a9t g8y = 2.2
( +1) (é)+ qa () =c1, (2.2)

wherec; is aintegrating constant. Lét— —oo in (2.2), then we obtain from the condition
(2.1) that

[

1
5CE S 1CZ+ + 27 T (2.3)
As & — +00, substituting (2.3) into (2.2) yields
+00
r / (a/(f)) dt = (C2 _ C+) + qT(Cq+l Cq+1)
—00
+ ;—q(ch — 2, (2.4)

It follows from Eq. (1) that

IC; +mCl +nC¥ =0 (2.5)
and

1IC_+mC? +nc® =0 (2.6)
respectively. Combining the (2.5) and (2.6), we have

m(CI — M) = —1(C? — c?) —n(C¥ - %), 2.7)

By substituting (2.7) into (2.4), the following useful formulae for the solutions of the
Lienard equation (1) with the condition (2.1) are obtained

+00

~1

[ weyas=gisliet —ct) = Her - )| 29
and

+00 L

/ (a'(8))%de = % [z(c2 —c?)+ qLH(CZH - ci“)] (2.9)

—00



W. Zhang et al. / J. Math. Anal. Appl. 287 (2003) 1-18 5

In view of (2.8) and (2.9), we have the following properties of solitary-wave solutions
for some nonlinear evolution equations, solutions of which can be found by means the
Lienard equations (1) or (ll).

Property 1. Leta (&) be a solution of Eq. (1) with the condition (2.1). Then(¢) is square
integrable in(—oo, +00).

Property 2. Leta (&) be a solution of Eq. (I) with the condition (2.1). Then
r and (q—1) [J(CE —c?) - Z(qu - Cf’)]
have the same sign.
Property 3. Let a(&) be a solution of Eq. (I) with the condition (2.1). Then for fix€d
andC, the smallerr| is, the smaller dissipative effect is and the steeper wave shape of

thea(§).

Property 4. Leta (&) be a solution of Eq. (I1) with the condition (2.1). Then, the asymptotic
values ofa(¢), C+ andC_ satisfy

1(c? - c?) - Z(Ci‘f — %) =0 (2.10)
and
1(C2-c2) + qu(CZ“ — ¢ =o. (2.11)

The property is deduced from (2.4) and (2.7).

Property 5. Let ¢ be a natural number. If the nonlinear evolution equations, which can be
reduced to Eq. (I), have a solitary-wave solution of kink profile with asymptotic values
C, = —C_ #0, then the following formula holds:

m(1l— (=17 =o0. (2.12)
The property is obtained from (2.11) directly.

Using (2.8), (2.9) and above properties, the following judgement methods can be
proved:

Judgement method 1. The nonlinear evolution equations, which can be reduced tglEq.

only possibly have a solution of the kink profile with the asymptotic valties# |C_]|,

and do not possess the solution of the bell profile with the same asymptotic values and the
solution of the kink profile with the asymptotic values= —C_.

It is obtained from (2.8).
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Judgement method 2. The nonlinear evolution equations, which can be reduced to
Eq. (1), possibly have a solution of the bell profile with the same asymptotic values, or
a solution of the kink profile with the asymptotic valdgs# C_, which satisfy(2.10)and
(2.11)

Property 4 implies Judgement method 2.

Judgement method 3. A necessary condition of existing the solution of kink profile with
the asymptotic valueRC, | # |C_| in the nonlinear evolution equations, which can be
reduced to Eq(ll), isnl > 0 andm # 0.

Proof. The (2.10) impliesn/ > 0, since sign of(C2 — C2) is the same as one of
(¥ — Ci"). It follows from the (2.11) andiC| # |C_| thatm #0. O

Judgement method 4. In the case ofil <0, orn =0, or m = 0, the nonlinear evolution
equations, which can be reduced to B¢t)., possibly have a solution of the bell profile, or a
solution of the kink profile with the asymptotic values= —C_ # 0; and do not possess
the solution of the kink profile withC | £ |C_|.

The judgement method is given by Judgement method 3.

Judgement method 5. Assume that the nonlinear evolution equations can be reduced to
the following equation

a"(€) +1laE) +mal(E) =0, m#0, (2.13)

wheregq is even. Then, its solutions only possibly have a solution of the bell profile, and
do not possess the solution of the kink profile with the asymptotic vidugs# |C_|, or
Cy=—-C_#0.

Proof. The (2.13) is a special case of Eq. (ll) foe= 0 and every. Judgement method 4
shows that Eq. (2.13) only possible has solitary-wave solution of the bell profile or the
kink profile with C; = —C_ # 0. Now, assume that there exists a kink profile soliton with
Ci=—-C_#0in(2.13), then (2.11) implies that

m(1— (-1 it =o.
Using C_ # 0, we havem = 0, which is contradictory with assumption # 0. The

method 5 is obtained. O

These judgement methods inform us shapes and formulae of the possible solutions of the
solitary wave for many nonlinear evolution equations, when the solutions are unknown. At
the same time, the methods also are an guidance to find exact or approximation solutions.

Now, we consider two examples. The first one is KdV equation,

Uy +auuy +uyy =0 (a#0), (2.14)
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with conditions

u'(€),u"(E) =0, [§]— oo, (2.15)
and the asymptotic valued, which satisfy
—vx + %xz =0. (2.16)

It is easy to know that the solution of the problem (2.14)—(2.16) satisfies
' (€) — vu(€) + %uZ(E) =0, E£=x—ur. (2.17)

It follows from Judgement method 5 that the problem (2.14)—(2.16) only possibly has a
solution of the bell profile, which has been found in [13]. Therefore, we do not need to
consider other solutions of the solitary wave for the problem.

The second example is the modified improvement Boussinesq equation

a
Upp — Uxx + 5(143)” — BPuxt =0, (2.18)
with condition (2.15) and the asymptotic valués which satisfy
(12— 1)x + %x3 —0. (2.19)
The solution of above problem satisfies
" v2 -1 a 3
u (E)_ Uzﬁz ”(5)— 3U2ﬁ2u (5)207 E:X—U[. (220)

In view of Judgement method 4, the problem (2.15), (2.18) and (2.19) only possibly has a
solution of the bell profile, which has been found in [5], or a solution of the kink profile
with C; = —C_ # 0. Thus, We will try to find new such solitary wave in Section 4.

3. Exact solutions of the Lienard equations (1) and (1)

We first consider the kink profile solutions of the Lienard equation (1). Let

a®) =¢&Y, (3.1)
then it follows from Eq. (I) that

1 s©0"® + 2L 62+ — ) €)
g—1 (g —1)? g—1
+1¢%(&) + mp3(€) + ng* (&) =0. 3.2)

Now, we assume that solution of Eq. (3.2) has the following form:

Ae¥G+E0)

A o
¢) = m = EI:l—FtanhE(é +§0)i|' (3.3)
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Substituting (3.3) into (3.2), we obtain
a?+r(g—Da+ (g —1A=0,
—a?+ra+ 20—+ (g—1mA =0, (3.4)

nA?4+mA+1=0.
Solve (3.4) lead to the following two groups of solutions:

—1)2
A12= _((;—].)c(Iil-i-q)nl:(q —Dmxry —% ]
—_1)2
a12= :l:‘/ ——(q ql) nA]_’Z, (35)

l12= —I’lAi2 —mAq .

Substituting (3.5) into (3.4) implies the following

Theorem 1. Suppose that <0, ¢ # 1.
Q) If g makesAi/(q’l) meaningful and =11 = —nA% — mAj, then Lienard equation
(I) has a kink profile solution

Ay 1 [ (g1 e

(2) If ¢ makes(A2)Y@~Y meaningful and/ = I = —nA3 — mA», then Lienard
equation(l) has another kink profile solution

A t a1 1/(g-1)
az(&) = (7 |:1—tanh§‘/—TA2(§+§0):|> ) (3.7)

whereA1 and Az is given by(3.5).

It is easy to verify that the solutions (3.6) and (3.7) for the Lienard equation (1) satisfy
the condition (2.1) and their asymptotic values satisfy the algebraic equation
Ix + mx? +nx%1=0. (3.8)
Direct calculation implies that; (&) andaz (&) satisfy formulae (2.8) and (2.9).
Whenr = 0, we have that
2

gm gm
A :A = — s :l =,
S T 2= A+ )
o2 =*[q —1v~L (3.9)

Hence, the following theorem is obtained from Theorem 1.

Theorem 2. Suppose thag makes(m)Y/@~D meaningful and; # 1, m # 0, n < 0. Then
Lienard equatior(ll) has a kink profile solution withC | # |C_|,

g L V(g1
a) = (—m |:1:|: tanh§|q =1Vl (E+ 50)i|) ) (3.10)

qm?
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It is clear that the solution (3.10) satisfies the conditions (2.1) and its asymptotic values

satisfy (2.10) and (2.11).

Now, we are to find the bell profile solution for Eq. (II). Substituting Eq. (3.1) into (II)

implies that

2—q
(g —1)?

1
q—_1¢(s>¢”(5) + (¢/(8)) +16%E) + md3(E) +ngE) =0.  (3.11)

We assume that solution of Eq. (3.11) has the following form:

Ae@(E+E0) Asecl §(& + o)
(14 ¢x6+50)2 4 BexE+50 — 44 Bsecl (& +£o)

$(E) = (3.12)

whereA, B anda are constant to be giveg; is an any parameter. Substituting (3.12) into
(3.11), we obtain

1
(q—l)zOl2 +1=0,

—270%2+B) + 22+ B)+mA=0, (3.13)

202002 4 [2+ 2+ BN +mA@+ B) +nA% =0,

Solve (3.13) lead to the following two groups of solutions:

a=lqg—1v=l (<0),
_ 2A0A+9)vq
Arz=:+ am2—nl(1+¢)?’ (3.14)

Bio— 2( 14 miﬁ)
12 N am?—ni(1+¢)?

Substituting (3.14) into (3.12), we get two solutions of Eq. (3.11)

111(A+¢) /g lg—1] /—
T secht Y52/ (& + &) 615

_ myq lg=1 /—
2+ ( 1+m)secﬁ >= /=1 (€ + &0)

$1(8) =

and

__ d+9)Va Rla=1 /=
N qm?—nl(1+q)? sec 2 HE +%0)

2—(1+ m/q ) sech? ‘qgllJ—_l(é —l—éo)'

\/qmz—nl(1+q)2

$2(8) = (3.16)

It is easy to verify that

gm? —nl(1+ ¢)? > 0, under the condition df< 0, ¢ # 1 andn > 0;
¢1(6) >0,VE e R, if n >0,0rn=0andm > 0;

¢2(8) <0,VE e R,if n>0,0rn=0andm < 0.

From the above discussion, the following theorem is obtained.

Theorem 3. Suppose that< 0 andg # 1.

(1) If n > 0, 0orn =0, m > 0, then Lienard equatio(ll) has a bell profile solution

a) =[er®]Y . (3.17)
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(2) If ¢ makes(e)Y/@—D meaningful for any negative numberand if the condition
n > 0,0rn =0, m < 0holds, then Eq(ll) has another bell profile solution

a€) = [¢2&)]" 7", (3.18)
whereg1 (&) andgz (&) is given by(3.15)and (3.16) respectively.

Itis easy to verify that the solutions (3.17) and (3.18) of the Lienard equation (ll) satisfy
the condition (2.1) and (&) — 0, as|é| — oo. Hence, the solutions have bell profile.
Using the similar deduction, the following theorem is gotten

Theorem 4. If I > 0, n < 0, Eq. (Il) with m =0, ¢ = 2, has the following kink solution
with C = —C_ #0:

a(é)::l:,/—% tanh%@(é—l—éo). (3.19)

In Theorems 1-4, the kink solutions for Eq. (1), and the bell and kink solutions for
Eq. (II) are found. But, it is possible to have other solutions of the bell or kink profile for
Egs. (1) and (). For example, the equation

a" () +la€) +na®*tE) =0, k=12,..., (3.20)

is possible to have the kink profile solitons with. = —C_ # 0 in view of the judgments 4.
We only find the soliton solution of the kink profile for Eq. (3.21) in Theorem 4 whenl.
Find the kink profile soliton of (3.21) fat # 1 is a valuable problem.
In the Sections 4-6, we will apply the results given in Sections 2 and 3 to find the
solitary-wave solutions of several nonlinear evolution equations.

4. The exact solitary-wave solutionsfor generalized modified Boussinesg equation

Consider solutions of the solitary wave for the generalized modified Boussinesq
equation

Upe — Sxrs + Pitxxe — (b + bou? ™ + bgu?™) =0, p>o0. (4.1)

XX

Letp=1,8=8%r=0,b1=1,by=-%,b3=0;andp=1,8=p2%r=0,b1=1,
bz =0, b3 = —3;in (4.1), respectively, we have the improved Boussinesq equation

a
Urr — Uxx + E(“Z)xx - ,Bzuxxtt =0, (4.2)
and modified improved Boussinesq equation
a
Uy — Uxx + E(us)“ - ,32Mxxtt =0. (4.3)

Letu(x,t) =u(x —vt) =u(&) be atraveling-wave solutions for Eq. (4.1) in the conditions

(1.6), (1.7). Then, the solitary waves satisfy the equation

by —v? by
2

W'(E) + —u' () + uPtE) + b—g’zuzl’“(s) =0. (4.4)
Sv v
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Now, we apply the judgments to (4.4). The judgment 1 and Theorem 1 imply that Eq. (4.1)
has solutions of the kink profile for+# 0, b36 < 0. Whenr =0, (b1 — v2) <0,b3>0,
Eq. (4.1) has solutions of the bell profile in view of the judgment 4 and Theorem 3. It
follows from the judgment 3 and Theorem 2 that Eq. (4.1) has solutions of the kink profile
with |C| # |C_| for r =0, b38 <0, by # 0.

Comparing (4.4) with Eq. (1), Theorem 1 implies the following

Theorem 5. Suppose thatzé < 0,

p+1 b3
Alpo=————|b2Fr |——— |,
L b3<p+2>[ Ty 5<p+1)}

V2= \/bl +b2A12+ b3Ai2.

DIfp makesAi/” meaningful an®1+b2A1+b3Af > 0, then Eq(4.1)has a solution
of the kink profile witiC| # |C_]|,

A1 p b3 e
u(x,t)=<7[1+tanh2—vl —8(p+1)A1(xiv1t+$o)D . (4.5)

)Ifp makesA%/” meaningful an®1+b2A2+b3A§ > 0, then Eq(4.1)has a solution
of the kink profile withC | # |C_]|,

Az p b3 e
u(x,t)=<7|:l—tanh2—v2 —8(p+1)A2(xiv2t+$o)D . (4.6)

For the generalized modified Boussinesq equation without dissipative(teend),

Upp — OUxxrr — (blu + bouPtt 4 b3“2p+l) =0, p>0, (4.7)

and the conditions (1.6), (1.7), its solitary-wave solutions satisfy
2
v

X

")+
u
Sv2

Comparing (4.8) with Eq. (II), Theorems 2—4 imply that

bo b3
u(®) + mu"“(«s) + Wuzl’”@) =0. (4.8)

Theorem 6. Suppose that is traveling wave velocity.
(1) Assume that (b1 — v2) < 0. If 8b3 > 0: 0r b3 =0, 5b> > 0, then Eq(4.7)has a bell
profile solitary-wave solution

c (x—vt+£0)
(P +Db3—b3(b1—v2) (p+2)2 2Vl

u(x,r)=

/ _2

(2+(—1+ bolélypid )secﬁ%\/— b o (x—vt+&0)
84/ (p+DB3—b3(b1—v2)(p+2)2 dv

(4.9

b —v2|(p+2)/p+1 secR 2 b2 )1/p

(2) Assume that (b1 — v?) < 0, and p makesel/? meaningful for any negative
numbere. If b3 > 0; or b3 =0, b2d < 0, then Eq.(4.7) has a bell profile solitary-wave
solution
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by —v? 2)V/p+1 bq—v2
7\/< Li)b; ';1’:;) 1;:’( +2)2 secﬁ% N %SUZU (x—vt+£o) Yp
p - —ve)(p
u(x, 1) = AR — (4.10)
27(1+ e )seCﬁ%\/* 1= (x—vt+&o)
6'\/(17+1)b%—h3(bl—1J2)(p+2)2 Sv

(3) Assume thathz < 0 and p makes —bob3)Y? meaningful. Then Eq4.7)has a kink
profile solitary-wave solution withC.| # |C_]|,

i/p
[ bap+D p | bi—v?
u(x, t) = (—m [1i tanhE — 8U2 (X — vt + EO):|) , (411)

where wave velocity
2
02 = 1— bz(P"'l) '
b3(p +2)?

(4) Assume thap = 1 andby = 0. If b38 < 0 ands(by — v?) > 0, then Eq(4.7)has a
kink profile solitary-wave solution witfC | = |C_|,

by —v? 1 [2(by— 2
ulx,t)==+/— 1Y tanh— w(x—vt+$o). (4.12)
b3 2 8v2

Let p=1,8 =82 b1=1,br=—% andbz =0, then Theorem 6 implies a bell profile
solution of the improved Boussinesq equation (4.2),

2 Jv2 —
u(x,t) = 3d—v) sech ;vﬂ - (x — vt 4+ &p). (4.13)
a

Letp=1,8=p2 b1=1,by=0andbs = —% in (4.9), (4.10) and (4.12), we get a bell
profile solution of the modified improved Boussinesq equation (4.3),

_ 2 /12 _
ux, 1) =, 6= cecR Uvﬂ L vt (4.14)
a

and a kink profile solution of Eq. (4.3) with = —C_,

/3(1—v?) 1 /2(1-?)
u(x, l) =+ T tanhi Tﬁz (.X — vt + 50) (415)

The solution (4.15) is a new soliton for the modified improved Boussinesq equation (4.3).

5. The solitary-wave solutionsfor generalized nonlinear wave equation

Consider generalized nonlinear wave equation
Sty — Kty + rug + byu + bou? T+ bgu?t1=0, p>0,r>0. (5.1)

Equation (5.1) includes many important model problems, for example, generalized Fisher
equation, approximation equation for the Sinh—Gordon equatidngequation, one-
dimensional Klein—Gordon equation, Landau—Ginzburg—Higgs equation, Duffing equation
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and nonlinear telegram equation. Therefore, find solutions of the generalized nonlinear
wave equation (5.1) is valuable. Lét=0,r =1, k = D, b1 = —sB, bo = —s(1 — B),
b3 =s anda = p in (5.1), we have the generalized Fisher equation,

ur — Duyy — spu — s(L— Bu® + su®1 =0. (5.2)

Taker =0, § =1 in (5.1) implies generalized one-dimensional Klein—Gordon equa-
tion [14]

sy — kitgx + biu + bouP 1 4 bau?P+1 = 0. (5.3)

It is easy to get that the traveling-wave solutiofs, 1) = u(x — vt) = u(&) for Eq. (5.1)
satisfy

W& — — )+ —2 e
Sv2 —k Sv2 —k
b b
+ 8v22—kup+l(§) + ﬁuzlﬂ_l(é) =0, (5.4)

which is a Lienard-type equation. Thusyit- 0, b3(§v? — k) < 0, Eq. (5.1) has solution
of the kink profile in view of the judgments 1 and Theorem 1. Eq. (5.1) has solution of the
bell profile in view of the judgments 4 and Theorem 3 when 0, b1b3 < 0. In the case of
r=0,b3(8v? —k) <0,bp # 0, Eq. (5.1) has solution of the kink profile witd, | # |C_|
in view of the judgments 3 and Theorem 2.

Comparing (5.4) with Eq. (1), Theorem 1 implies the following

Theorem 7. Suppose tha3 — 4b1b3 > 0,

—by £ /b3 — 4b1b3

2b3 ’
kI((p + 1b1 — b3AZ ,)

JKIB((p + b1 — b3A2 )2 + (p + 1)r2b3A2 ]

A1o=

V1,2=

(1) If p makesA7’” meaningful anck[8((p + 1)b1 — b3A2)2 + (p + 1)r2b3A2] > 0,
then Eq.(5.1) has solutions of the kink profile

1/p
(A p____baAl
u(x,t) = ( > [H:tanhz\/ (1D (x F ot +$0)j|> . (5.5)

(2) If p makesA}/” meaningful andk[8((p + )by — b3AD2 + (p + 1)r2bgA3] > 0,
then Eq.(5.1) has solutions of the kink profile

2 1/p
ulx,t) = (% |:1:|:tanh£\/ L(x:f:vztﬁ-éo)}) . (5.6)

2\ v -k (p+1)
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Lets =0,r=1,k=D,b1=—sB,bp=—s(1—B),bz=s,a = p, then above theorem
implies the solitary-wave solutions for the generalized Fisher equation (5.2),

1 a | s
D 1/a
/ N

_(_B Ly
u(x,r) = (—2[1itanh2 D(a+1)ﬂ
D 1/a
x(x:l:1/a—_i_szl_((ot+1)+ﬂ)t+§0>j|) , (5.8)

where the solution (5.7) was given in [6] and the solution (5.8) is new solitary waves for
the Fisher equation (5.2).

Lets=0,r=21,k=1,b1=a,bo=—(a+1),b3=1, p=1in Theorem 7, then we
have Diffusion equation

and

Uy —uxyy=uw—a)yl—u) (-1<a<l), (5.9)
and its solitary-wave solutions
1T NZ) 1-2a
u(x,t):i_lzl:tanhj(x:t 7 t+$o):| (5.10)
and
al V2a a—2
u(x,t)_z_litanhT<xi WH_SO)} (5.11)

which are the same as the solutions given in [15].
Lets§=0,r=1,k=1,b1=-1,b2=0,b3=1, p= 75 in Theorem 7, then we have
another generalized Fisher equation

Uy — iy =u —u®tt, @ e (0, +00), (5.12)

and its solitary-wave solutions

il o oa+4 1%/«
,)=1—=|1—tanh — t+ 5.13
u(x. 1) {2_ 2¢2a+4(x V2o + 4 §°>_} ©19
and
ir o a+4 1%/«
,H)=1{=|1+tanh + t+ , 5.14
ue {2_ 2\/2a+4(x V2o +4 §0>_} (5-14)

where (5.13) has been given in [16] and the solution (5.14) is our new result.
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Whenr = 0, we can assum&= 1 without generality. Thus, Eq. (5.1) is reduced to the
one-dimensional Klein—Gordon equation (5.3). Its solitary-wave solutions satisfy

b1 by .4 bz 5,11
u'(§) + —3 = u(®) + = uHE) + U (E) =0, (5.15)
Comparing (5.15) with Eq. (Il) and taking = p + 1,1 = 22, m = 2, n = 2%

Theorems 2—4 imply that

Theorem 8. Suppose that is traveling wave velocity.
(1) Assume thaby(v? — k) < 0. If b3(v2 — k) > 0; or b3 = 0, bo(v? — k) > 0, then
Eq. (5.3)has a bell profile solitary-wave solution

% vp+l secﬁ 14 7b71 (X*Uf+$()) l/p
/ (p+1>b22—b3h1(p+2)2 2y vk

u(x,t)=

’ 2 1l 1

(2+(l+ bplv” Mvpid )secl? 123\/75—1 (x—vi+£)
2K/ (p+1)b3—bgby (p+2)2 vek

(5.16)

(2) Assume thab1(v? — k) < 0, and p makesel/? meaningful for any negative
numbere. If b3(v? — k) > 0; or b3 =0, bo(v® — k) < 0, then Eq.(5.3) has another bell
profile solitary-wave solution

- 2 2_
/ (p+1>b22—b3h1(p+2)2 ve—k

u(x,t)=
’ 2_
(2_(1+ bplv2—k|/pF1 )secﬁ%\/— 51 (x—vi+Eo)
20/ (p+D)b3—bgby (p+2)2 ve—k

(5.17)

bW +2AVPHL  secR 2 [P (x_yitég) ) 1/p

(3) Assume thabs(vZ — k) < 0, by # 0, p makes(—bob3)Y/? meaningful andh; =
(p+1)b3
(p+2)2b3

1/p
_ [ _b2p+D r| b 3
u(x,t) = ( 72]93(1) 2 |:1itanh2 - (x — vt +$0):|) . (5.18)

(4) Assume thap = 1 andb, = 0. If b1 (v2 — k) > 0 andbz(v2 — k) < 0, then Eq(5.3)
has a kink profile solitary-wave solution witd, | = |C_|,

[ b1 1/ 2by

6. Theexact solitary-wave solutionsfor generalized Zakharov equations

holds. Then Eq5.3) has a kink profile solitary-wave solution witdy | # |C_],

Consider the generalized Zakharov equations

Hy — Hey = (|M|2p)xx, (6.1)
ity + tyy = Hu + b1|u|?Pu + bolu|* u,
which are reduced to the famous Zakharov equations (see [11,12])

Hyy — Hyx = (] (6.1
iuy +uxy =Hu,
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if p=1,b1=0,b2=0.We will find solutions of the following form for (6.1):

u(x,t) = ei[kxf(kv+w)t]a(x —t), (6 2)
H(x,t)=H(x —vt). '

Assume that

a'(€),H'(§) -0, [§]— oo, (6.3)
and

(W -1cl=c®,  (WP-1ct=c?, (6.4)

where¢ = x — vt, Cf = |im|g|_>:|:oo HE), Cy = |im‘g‘_>:|:oo a(§). Letk = % Substitute
(6.2) into (6.1) implies

_ 1 2p
H(E) = ——a*(®), (6.5)
anda (&) satisfies

v2 + 4w b1 =1 +1 5 4y

a"(§) + ——a(§) = ——5———a¥E) — ba" () =0, (6.6)

Equation (6.6) is Lienard (1l)-type. Thus,if + 4w < 0, b2 < 0, Eq. (6.1) has solutions
of the bell profile in view of the judgments 4 and Theorem 3. Equation (6.1) has solutions
of the kink profile with|C| # |C_| in view of the judgments 3 and Theorem 2 when
bo(v2 + 4w) < 0,b1(v2 — 1)+ 1#£0.

Comparing (6.6) with Eg. (Il), Theorems 2—4 imply:

Theorem 9. Suppose that is traveling wave velocity and

_ J2p+1
2/ 2p+ 1 (b1(v?> — 1) + D2+ ba(p + 122 — 1)2(12 + 4w)

(1) Assume that? + 4w < 0. If by < 0; or b =0, (b1(v2 — 1) + 1)(v2 — 1) < 0, then
Eq. (6.1) has bell profile solitary-wave solutions

u(x, 1) = eilzx- S+
( (P+D)GI(v2—1)(v2+4w) | sech py/— 244 (x—v1+0) )1/(2”)
1+2'”2 1|wl“’z) 1>+1)G)secr? \/—” 40 (v _ys+&) (6.7)
R e )
27(1+%) sech p\/f 2440 (x _yr+Eg)
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(2) Assume that? + 4w < 0, and p makesY/2? meaningful for any negative number
If b <0;0r by =0, (b1(v?2 — 1) + 1)(v?2 — 1) > 0, then Eq(6.1) has bell profile solitary-
wave solutions

u(x,t) =é€

y < —(p+DGIWP=D (P +4w) sech py =254 (r—vr+o) )1/ @)

(4 2v2-1(b; (2-D)+1)G ~ Pido
2 (1 R A )secﬁp\/ VA0 (x —yr+£g)

( —(PHDGIP—D) (P +4o) | sech py/ — 25 (x—vi+o) )

(1 202-1(b (2 -D)+1)G \/7U2+4w _
2 (1 B AT )secﬁp Voo (x—vr+Eo)

(45— +o)1]

(6.8)

H()C, t) = l)2—1

(3) Assume thab > 0, p makes—(b1(v? — 1) + 1)(v? — 1))¥/2P) meaningful. Let the
wave velocity satisfybo(p + 1)2(v2 + 4w) (V2 — 1)%2 = —(2p + 1) (b1 (v2 — 1) + 1)2. Then
Eq.(6.1) has a kink profile solitary-wave solution wit | £ |C_],

u(x. 1) = eil3r—C5 +o]

—@p+1D(by(v?=D+1) 2140 1/@p)
x ( 4by(p+1) (v2—1) [1:l:tanhp vt SO)D ’ (6.9)

— _ @pD (1P =D+ 2440

(4) Assume thap = 1andby = 0. If v2 + 4w > 0, b1 + 15 > 0, then Eq(6.1)has a
kink profile solitary-wave solution witfC | = |C_|,

T2 (22 21 Aw) (v2—1 2
u(x,t) = tellox—(z +oil /%tanh% v '54‘“ (x — vt + &),

— 1 [0%+40) =D (onnd (12140 2

Letp =1, b1 =0, b = 0in the (6.7), we have solutions of the bell profile for Zakharov
equation(6.1),

TV 1)2
u(x, 1) = ellsr—Cz ol /% sech /_1)2%4«» (x — vt + &),

H(x,t)= ”2+T4‘“secﬁ —”2+T4‘“ (x — vt + &),

(6.10)

which are the same as solutions giverjii] and[12].
Takingb1 =0 in (6.10), we have that

Theorem 10. Assume that? 4+ 4w > 0, v2 — 1 > 0. Then the Zakharov equati¢6.1') has
solitary-wave solutions

Ty 1)2
u(x’t)::tet[gx—(T-i-w)f] /%tanh% /UZ%%(X—U[-F%'O),

H(x,0)= "2+T4‘“<1—secﬁ%,/l’2%4‘*’(x—vt+go)),

which are a new solitary-wave solutions.

(6.11)
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7. Remark

By means of proper transform, some of other nonlinear evolution equations can be led
to the Lienard equation (1) or (I1), for instance, generalized BBM equation

ur +auPuy +buPuy + Sty =0, 8 #0, p>0;
and generalized kP equation

d
8_{Mt +auPuy +buPuy + ruy, +5Uxxx} +3k2uyy =0, §#0, p>0.
X

Hence, we can apply the approaches and formulae given in this paper to look for the explicit
exact solitary-wave solutions of these equations.
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