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Abstract

In this paper, we present several methods of judging shape of the solitary wave and s
formulae for some nonlinear evolution equations by means of Lienard equations. Then,
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1. Introduction

The solitary waves of many nonlinear equations are important in theoretical phy
and applied mathematicians. In this paper, we consider some of nonlinear evo
equations with the solitary waves.

Soliton-producing nonlinear equations, which arise in a variety of physics, mech
and biology, can have solitary waves with different shape. For example, compound
equation

ut + auux + bu2ux + uxxx = 0, b �= 0, (1.1)

has the kink and bell profile solitary-wave solutions (see [1–3]). The compound K
Burgers equation

ut + auux + bu2ux + ruxx + uxxx = 0, r �= 0. (1.2)

has the kink profile solitary-wave solutions (see [3,4]). The improved Boussinesq eq

utt − uxx + a

2

(
u2)

xx
− βuxxtt = 0 (1.3)

has the bell profile solitary-wave solutions (see [5]). The generalized Fisher equatio

ut −Duxx = su(1− uα)(uα + β) (1.4)

has the kink profile solitary-wave solutions (see [6]). In [7–9], Zhang and Ma con
the exact solitory wave solutions for some evolution equations. Therefore, metho
judging shape of the solitary wave for some nonlinear evolution equations are va
and important. We will present several methods of judging shape of the solitary wa
this paper.

Moreover, we find that the problem of looking for the solitary-wave solutions for m
nonlinear evolution equations can be lead to solve the following Lienard equations:

a′′(ξ)+ ra′(ξ)+ la(ξ)+maq(ξ)+ na2q−1(ξ)= 0 (I)

or

a′′(ξ)+ la(ξ)+maq(ξ)+ na2q−1(ξ)= 0, (II)

whereq > 0. Kong gave the exact solution of a simple Lienard equation and its applic
in [10]. Now, we consider generalized modified Boussinesq equation

utt − δuxxtt + ruxxt −
(
b1u+ b2u

p+1 + b3u
2p+1)

xx
= 0, p > 0. (1.5)

Let u(x, t)= u(x − vt)≡ u(ξ) be a traveling-wave solutions for Eq. (1.5). Then, we h

v2u′′(ξ)− δv2u(4)(ξ)− rvu′′′(ξ)− (
b1u+ b2u

p+1 + b3u
2p+1)

ξξ
= 0.

Assume that the solutions of Eq. (1.5) satisfy the condition

u′(ξ), u′′(ξ), u′′′(ξ)→ 0, as|ξ | → ∞, (1.6)

and asymptotic values of the solutions

C± = lim u(ξ) (1.7)

ξ→±∞
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b1 − v2)x + b2x

p+1 + b3x
2p+1 = 0. (1.8)

Then, the solitary-wave solutions of Eq. (1.5) satisfy

u′′(ξ)+ r

δv
u′(ξ)+ b1 − v2

δv2 u(ξ)+ b2

δv2u
p+1(ξ)+ b3

δv2u
2p+1(ξ)= 0. (1.9)

For the nonlinear wave equation,

δutt − kuxx + rut + b1u+ b2u
p+1 + b3u

2p+1 = 0, p > 0, r � 0, (1.10)

its solitary-wave solutions satisfy

u′′(ξ)− rv

δv2 − k u
′(ξ)+ b1

δv2 − k u(ξ)

+ b2

δv2 − k u
p+1(ξ)+ b3

δv2 − k u
2p+1(ξ)= 0. (1.11)

Eqs. (1.9) and (1.11) are Lienard-type. They may be reduced to the Lienard equat
if r = 0.

It is easy to know that the generalized Zakharov equations{
Htt −Hxx = (|u|2p)xx,
iut + uxx =Hu+ b1|u|2pu+ b2|u|4pu, (1.12)

can be reduced to the Lienard equation (II) by means of proper transform (see Sect
In this paper, we will consider shapes of the solitary waves and the exact solutio

the nonlinear evolution equations, which can be reduced to the Lienard equation (I)
This paper is organized as follows. In Section 2, we will discuss some prop

and several methods of judging shape of the solitary wave for many nonlinear evo
equations by means of the Lienard equations (I) and (II). The methods of judging
of the solitary wave are new and valuable, since solution functions can be assum
solutions of the solitary wave are obtained more easily according their shape.
assumption of solution functions, the kink and bell profile solitary-wave solutions fo
Lienard equation (I) and (II) are found in Section 3. The explicit exact solutions of Eq
and (II) for any real parameterq > 0 are new results. Applying the results obtained
Sections 2 and 3, the kink and bell profile solitary-wave solutions for generalized mo
Boussinesq equation (1.5), generalized nonlinear wave equation (1.10), and gene
Zakharov equation (1.12) are found in Sections 4, 5 and 6. In [5], the exact solutio
Eq. (1.5) were obtained only in casesp = 1, δ = β2, b1 = 1, b2 = − a

2 , b3 = 0 andp = 1,
δ = β2, b1 = 1, b2 = 0, b3 = − a

3 . The exact solutions of Eq. (1.12) only forp = 1,b1 = 0,
b2 = 0 were found in [11,12].

In this paper, we obtain the explicit exact solutions of these equations for an
numberp > 0, which include previous results as special cases. Moreover, many new
solitary-wave solutions are found for modified improved Boussinesq equation, gener
Fisher equation and Zakharov equation.



4 W. Zhang et al. / J. Math. Anal. Appl. 287 (2003) 1–18

I) and

n

the
2. Properties of the solution functions and methods of judging shape
of the solitary wave

We consider some important properties of the solution for the Lienard equations (
(II), which satisfy the condition

a′(ξ), a′′(ξ)→ 0, as|ξ | → ∞. (2.1)

LetC± = limξ→±∞ a(ξ). Multiplying Eq. (I) bya′(ξ) and integrating once, we have

1

2

(
a′(ξ)

)2 + r
ξ∫

−∞

(
a′(ξ)

)2
dξ + l

2
a2(ξ)

+ m

(q + 1)
aq+1(ξ)+ n

2q
a2q(ξ)= c1, (2.2)

wherec1 is a integrating constant. Letξ → −∞ in (2.2), then we obtain from the conditio
(2.1) that

l

2
C2− + m

q + 1
C
q+1
− + n

2q
C

2q
− = c1. (2.3)

As ξ → +∞, substituting (2.3) into (2.2) yields

r

+∞∫
−∞

(
a′(ξ)

)2
dξ = l

2

(
C2− −C2+

)+ m

q + 1

(
C
q+1
− −Cq+1

+
)

+ n

2q

(
C

2q
− −C2q

+
)
. (2.4)

It follows from Eq. (I) that

lC+ +mCq+ + nC2q−1
+ = 0 (2.5)

and

lC− +mCq− + nC2q−1
− = 0 (2.6)

respectively. Combining the (2.5) and (2.6), we have

m
(
C
q+1
− −Cq+1

+
)= −l(C2− −C2+

)− n(C2q
− −C2q

+
)
. (2.7)

By substituting (2.7) into (2.4), the following useful formulae for the solutions of
Lienard equation (I) with the condition (2.1) are obtained

+∞∫
−∞

(
a′(ξ)

)2
dξ = q − 1

2r(q + 1)

[
l
(
C2− −C2+

)− n

q

(
C

2q
− −C2q

+
)]

(2.8)

and
+∞∫ (

a′(ξ)
)2
dξ = q − 1

2rq

[
l
(
C2− −C2+

)+ m

q + 1

(
C
q+1
− −Cq+1

+
)]
. (2.9)
−∞
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In view of (2.8) and (2.9), we have the following properties of solitary-wave solut
for some nonlinear evolution equations, solutions of which can be found by mean
Lienard equations (I) or (II).

Property 1. Let a(ξ) be a solution of Eq. (I) with the condition (2.1). Then,a′(ξ) is square
integrable in(−∞,+∞).

Property 2. Let a(ξ) be a solution of Eq. (I) with the condition (2.1). Then

r and (q − 1)

[
l
(
C2− −C2+

)− n

q

(
C

2q
− −C2q

+
)]

have the same sign.

Property 3. Let a(ξ) be a solution of Eq. (I) with the condition (2.1). Then for fixedC−
andC+, the smaller|r| is, the smaller dissipative effect is and the steeper wave sha
thea(ξ).

Property 4. Leta(ξ) be a solution of Eq. (II) with the condition (2.1). Then, the asympt
values ofa(ξ), C+ andC− satisfy

l
(
C2− −C2+

)− n

q

(
C

2q
− −C2q

+
)= 0 (2.10)

and

l
(
C2− −C2+

)+ m

q + 1

(
C
q+1
− −Cq+1

+
)= 0. (2.11)

The property is deduced from (2.4) and (2.7).

Property 5. Let q be a natural number. If the nonlinear evolution equations, which ca
reduced to Eq. (II), have a solitary-wave solution of kink profile with asymptotic va
C+ = −C− �= 0, then the following formula holds:

m
(
1− (−1)q+1)= 0. (2.12)

The property is obtained from (2.11) directly.

Using (2.8), (2.9) and above properties, the following judgement methods ca
proved:

Judgement method 1. The nonlinear evolution equations, which can be reduced to Eq(I),
only possibly have a solution of the kink profile with the asymptotic values|C+| �= |C−|,
and do not possess the solution of the bell profile with the same asymptotic values a
solution of the kink profile with the asymptotic valuesC+ = −C−.

It is obtained from (2.8).
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Judgement method 2. The nonlinear evolution equations, which can be reduced
Eq. (II) , possibly have a solution of the bell profile with the same asymptotic value
a solution of the kink profile with the asymptotic valuesC+ �= C−, which satisfy(2.10)and
(2.11).

Property 4 implies Judgement method 2.

Judgement method 3. A necessary condition of existing the solution of kink profile w
the asymptotic values|C+| �= |C−| in the nonlinear evolution equations, which can
reduced to Eq.(II) , is nl > 0 andm �= 0.

Proof. The (2.10) impliesnl > 0, since sign of(C2− − C2+) is the same as one o

(C
2q
− −C2q

+ ). It follows from the (2.11) and|C+| �= |C−| thatm �= 0. ✷
Judgement method 4. In the case ofnl � 0, or n= 0, or m= 0, the nonlinear evolution
equations, which can be reduced to Eq.(II) , possibly have a solution of the bell profile, o
solution of the kink profile with the asymptotic valuesC+ = −C− �= 0; and do not posses
the solution of the kink profile with|C+| �= |C−|.

The judgement method is given by Judgement method 3.

Judgement method 5. Assume that the nonlinear evolution equations can be reduc
the following equation:

a′′(ξ)+ la(ξ)+maq(ξ)= 0, m �= 0, (2.13)

whereq is even. Then, its solutions only possibly have a solution of the bell profile
do not possess the solution of the kink profile with the asymptotic values|C+| �= |C−|, or
C+ = −C− �= 0.

Proof. The (2.13) is a special case of Eq. (II) forn= 0 and evenq . Judgement method
shows that Eq. (2.13) only possible has solitary-wave solution of the bell profile o
kink profile withC+ = −C− �= 0. Now, assume that there exists a kink profile soliton w
C+ = −C− �= 0 in (2.13), then (2.11) implies that

m
(
1− (−1)q+1)Cq+1

− = 0.

Using C− �= 0, we havem = 0, which is contradictory with assumptionm �= 0. The
method 5 is obtained.✷

These judgement methods inform us shapes and formulae of the possible solution
solitary wave for many nonlinear evolution equations, when the solutions are unknow
the same time, the methods also are an guidance to find exact or approximation sol

Now, we consider two examples. The first one is KdV equation,

ut + auux + uxxx = 0 (a �= 0), (2.14)
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u′(ξ), u′′(ξ)→ 0, |ξ | → +∞, (2.15)

and the asymptotic valuesC± which satisfy

−vx + a

2
x2 = 0. (2.16)

It is easy to know that the solution of the problem (2.14)–(2.16) satisfies

u′′(ξ)− vu(ξ)+ a

2
u2(ξ)= 0, ξ = x − vt. (2.17)

It follows from Judgement method 5 that the problem (2.14)–(2.16) only possibly
solution of the bell profile, which has been found in [13]. Therefore, we do not ne
consider other solutions of the solitary wave for the problem.

The second example is the modified improvement Boussinesq equation

utt − uxx + a

3

(
u3)

xx
− β2uxxtt = 0, (2.18)

with condition (2.15) and the asymptotic valuesC± which satisfy(
v2 − 1

)
x + a

3
x3 = 0. (2.19)

The solution of above problem satisfies

u′′(ξ)− v2 − 1

v2β2 u(ξ)−
a

3v2β2u
3(ξ)= 0, ξ = x − vt. (2.20)

In view of Judgement method 4, the problem (2.15), (2.18) and (2.19) only possibly
solution of the bell profile, which has been found in [5], or a solution of the kink pr
with C+ = −C− �= 0. Thus, We will try to find new such solitary wave in Section 4.

3. Exact solutions of the Lienard equations (I) and (II)

We first consider the kink profile solutions of the Lienard equation (I). Let

a(ξ)= φ(ξ)1/(q−1), (3.1)

then it follows from Eq. (I) that

1

q − 1
φ(ξ)φ′′(ξ)+ 2− q

(q − 1)2
φ′2(ξ)+ r

q − 1
φ(ξ)φ′(ξ)

+ lφ2(ξ)+mφ3(ξ)+ nφ4(ξ)= 0. (3.2)

Now, we assume that solution of Eq. (3.2) has the following form:

φ(ξ)= Aeα(ξ+ξ0)
α(ξ+ξ0) = A

[
1+ tanh

α
(ξ + ξ0)

]
. (3.3)
(1+ e ) 2 2
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Substituting (3.3) into (3.2), we obtain

α2 + r(q − 1)α + (q − 1)2l = 0,

−α2 + rα+ 2(q − 1)l + (q − 1)mA= 0,

nA2 +mA+ l = 0.

(3.4)

Solve (3.4) lead to the following two groups of solutions:

A1,2 = − q

(q−1)(1+q)n
[
(q − 1)m∓ r

√
− (q−1)2n

q

]
,

α1,2 = ±
√

− (q−1)2n
q

A1,2,

l1,2 = −nA2
1,2 −mA1,2.

(3.5)

Substituting (3.5) into (3.4) implies the following

Theorem 1. Suppose thatn < 0, q �= 1.
(1) If q makesA1/(q−1)

1 meaningful andl = l1 = −nA2
1 −mA1, then Lienard equation

(I) has a kink profile solution

a1(ξ)=
(
A1

2

[
1+ tanh

1

2

√
− (q − 1)2n

q
A1(ξ + ξ0)

])1/(q−1)

. (3.6)

(2) If q makes(A2)
1/(q−1) meaningful andl = l2 = −nA2

2 − mA2, then Lienard
equation(I) has another kink profile solution

a2(ξ)=
(
A2

2

[
1− tanh

1

2

√
− (q − 1)2n

q
A2(ξ + ξ0)

])1/(q−1)

, (3.7)

whereA1 andA2 is given by(3.5).

It is easy to verify that the solutions (3.6) and (3.7) for the Lienard equation (I) sa
the condition (2.1) and their asymptotic values satisfy the algebraic equation

lx +mxq + nx2q−1 = 0. (3.8)

Direct calculation implies thata1(ξ) anda2(ξ) satisfy formulae (2.8) and (2.9).
Whenr = 0, we have that

A1 =A2 = − qm

(1+ q)n, l1 = l2 = qm2

(1+ q)2n,
α1,2 = ±|q − 1|√−l. (3.9)

Hence, the following theorem is obtained from Theorem 1.

Theorem 2. Suppose thatq makes(m)1/(q−1) meaningful andq �= 1, m �= 0, n < 0. Then
Lienard equation(II) has a kink profile solution with|C+| �= |C−|,

a(ξ)=
(

− mq

2n(1+ q)
[
1± tanh

1

2
|q − 1|√−l (ξ + ξ0)

])1/(q−1)

, (3.10)

wherel = qm2

2 .

(1+q) n
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It is clear that the solution (3.10) satisfies the conditions (2.1) and its asymptotic v
satisfy (2.10) and (2.11).

Now, we are to find the bell profile solution for Eq. (II). Substituting Eq. (3.1) into
implies that

1

q − 1
φ(ξ)φ′′(ξ)+ 2− q

(q − 1)2
(
φ′(ξ)

)2 + lφ2(ξ)+mφ3(ξ)+ nφ4(ξ)= 0. (3.11)

We assume that solution of Eq. (3.11) has the following form:

φ(ξ)= Aeα(ξ+ξ0)

(1+ eα(ξ+ξ0))2 +Beα(ξ+ξ0) = Asech2 α2(ξ + ξ0)
4+B sech2 α2(ξ + ξ0)

, (3.12)

whereA,B andα are constant to be given,ξ0 is an any parameter. Substituting (3.12) in
(3.11), we obtain



1
(q−1)2

α2 + l = 0,

− 1
q−1α

2(2+B)+ 2l(2+B)+mA= 0,

2(1−2q)
(q−1)2

α2 + [2+ (2+B)2]l +mA(2+B)+ nA2 = 0.

(3.13)

Solve (3.13) lead to the following two groups of solutions:


α = |q − 1|√−l (l < 0),

A1,2 = ± 2|l|(1+q)√q√
qm2−nl(1+q)2 ,

B1,2 = 2
(

− 1± m
√
q√

qm2−nl(1+q)2
)
.

(3.14)

Substituting (3.14) into (3.12), we get two solutions of Eq. (3.11)

φ1(ξ)=
|l|(1+q)√q√
qm2−nl(1+q)2 sech2 |q−1|

2

√−l (ξ + ξ0)
2+ (− 1+ m

√
q√

qm2−nl(1+q)2
)
sech2 |q−1|

2

√−l (ξ + ξ0)
(3.15)

and

φ2(ξ)=
− |l|(1+q)√q√

qm2−nl(1+q)2 sech2 |q−1|
2

√−l (ξ + ξ0)
2− (

1+ m
√
q√

qm2−nl(1+q)2
)
sech2 |q−1|

2

√−l (ξ + ξ0)
. (3.16)

It is easy to verify that
qm2 − nl(1+ q)2> 0, under the condition ofl < 0, q �= 1 andn� 0;
φ1(ξ) > 0, ∀ξ ∈ R, if n > 0, orn= 0 andm> 0;
φ2(ξ) < 0, ∀ξ ∈ R, if n > 0, orn= 0 andm< 0.
From the above discussion, the following theorem is obtained.

Theorem 3. Suppose thatl < 0 andq �= 1.
(1) If n > 0, or n= 0,m> 0, then Lienard equation(II) has a bell profile solution

a(ξ)= [
φ1(ξ)

]1/(q−1)
. (3.17)
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(2) If q makes(e)1/(q−1) meaningful for any negative numbere, and if the condition
n > 0, or n= 0,m< 0 holds, then Eq.(II) has another bell profile solution

a(ξ)= [
φ2(ξ)

]1/(q−1)
, (3.18)

whereφ1(ξ) andφ2(ξ) is given by(3.15)and(3.16), respectively.

It is easy to verify that the solutions (3.17) and (3.18) of the Lienard equation (II) sa
the condition (2.1) anda(ξ)→ 0, as|ξ | → ∞. Hence, the solutions have bell profile.

Using the similar deduction, the following theorem is gotten

Theorem 4. If l > 0, n < 0, Eq. (II) with m = 0, q = 2, has the following kink solutio
with C+ = −C− �= 0:

a(ξ)= ±
√

− l

n
tanh

1

2

√
2l(ξ + ξ0). (3.19)

In Theorems 1–4, the kink solutions for Eq. (I), and the bell and kink solution
Eq. (II) are found. But, it is possible to have other solutions of the bell or kink profile
Eqs. (I) and (II). For example, the equation

a′′(ξ)+ la(ξ)+ na2k+1(ξ)= 0, k = 1,2, . . . , (3.20)

is possible to have the kink profile solitons withC+ = −C− �= 0 in view of the judgments 4
We only find the soliton solution of the kink profile for Eq. (3.21) in Theorem 4 whenk = 1.
Find the kink profile soliton of (3.21) fork �= 1 is a valuable problem.

In the Sections 4–6, we will apply the results given in Sections 2 and 3 to fin
solitary-wave solutions of several nonlinear evolution equations.

4. The exact solitary-wave solutions for generalized modified Boussinesq equation

Consider solutions of the solitary wave for the generalized modified Bouss
equation

utt − δuxxtt + ruxxt −
(
b1u+ b2u

p+1 + b3u
2p+1)

xx
= 0, p > 0. (4.1)

Let p = 1, δ = β2, r = 0, b1 = 1, b2 = − a
2 , b3 = 0; andp = 1, δ = β2, r = 0, b1 = 1,

b2 = 0, b3 = − a
3 ; in (4.1), respectively, we have the improved Boussinesq equation

utt − uxx + a

2

(
u2)

xx
− β2uxxtt = 0, (4.2)

and modified improved Boussinesq equation

utt − uxx + a

3

(
u3)

xx
− β2uxxtt = 0. (4.3)

Letu(x, t)= u(x−vt)≡ u(ξ) be a traveling-wave solutions for Eq. (4.1) in the conditio
(1.6), (1.7). Then, the solitary waves satisfy the equation

u′′(ξ)+ r
u′(ξ)+ b1 − v2

u(ξ)+ b2
up+1(ξ)+ b3

u2p+1(ξ)= 0. (4.4)

δv δv2 δv2 δv2
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Now, we apply the judgments to (4.4). The judgment 1 and Theorem 1 imply that Eq
has solutions of the kink profile forr �= 0, b3δ < 0. Whenr = 0, δ(b1 − v2) < 0, b3 � 0,
Eq. (4.1) has solutions of the bell profile in view of the judgment 4 and Theorem
follows from the judgment 3 and Theorem 2 that Eq. (4.1) has solutions of the kink p
with |C+| �= |C−| for r = 0, b3δ < 0, b2 �= 0.

Comparing (4.4) with Eq. (I), Theorem 1 implies the following

Theorem 5. Suppose thatb3δ < 0,

A1,2 = − p+ 1

b3(p+ 2)

[
b2 ∓ r

√
− b3

δ(p+ 1)

]
,

v1,2 =
√
b1 + b2A1,2 + b3A

2
1,2.

(1) If pmakesA1/p
1 meaningful andb1+b2A1+b3A

2
1> 0, then Eq.(4.1)has a solution

of the kink profile with|C+| �= |C−|,

u(x, t)=
(
A1

2

[
1+ tanh

p

2v1

√
− b3

δ(p+ 1)
A1(x ± v1t + ξ0)

])1/p

. (4.5)

(2) If pmakesA1/p
2 meaningful andb1+b2A2+b3A

2
2> 0, then Eq.(4.1)has a solution

of the kink profile with|C+| �= |C−|,

u(x, t)=
(
A2

2

[
1− tanh

p

2v2

√
− b3

δ(p+ 1)
A2(x ± v2t + ξ0)

])1/p

. (4.6)

For the generalized modified Boussinesq equation without dissipative term(r = 0),

utt − δuxxtt −
(
b1u+ b2u

p+1 + b3u
2p+1)

xx
= 0, p > 0, (4.7)

and the conditions (1.6), (1.7), its solitary-wave solutions satisfy

u′′(ξ)+ b1 − v2

δv2 u(ξ)+ b2

δv2u
p+1(ξ)+ b3

δv2u
2p+1(ξ)= 0. (4.8)

Comparing (4.8) with Eq. (II), Theorems 2–4 imply that

Theorem 6. Suppose thatv is traveling wave velocity.
(1) Assume thatδ(b1 − v2) < 0. If δb3> 0; or b3 = 0, δb2> 0, then Eq.(4.7)has a bell

profile solitary-wave solution

u(x, t)=
( |b1−v2|(p+2)

√
p+1√

(p+1)b22−b3(b1−v2)(p+2)2
sech2 p2

√
− b1−v2

δv2
(x−vt+ξ0)

2+
(
−1+ b2|δ|√p+1

δ
√
(p+1)b22−b3(b1−v2)(p+2)2

)
sech2 p2

√
− b1−v2

δv2
(x−vt+ξ0)

)1/p

. (4.9)

(2) Assume thatδ(b1 − v2) < 0, and p makese1/p meaningful for any negativ
numbere. If b3δ > 0; or b3 = 0, b2δ < 0, then Eq.(4.7) has a bell profile solitary-wave
solution
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le

ll

(4.3).

Fisher
-
ation
u(x, t)=
( − |b1−v2|(p+2)

√
p+1√

(p+1)b22−b3(b1−v2)(p+2)2
sech2 p2

√
− b1−v2

δv2
(x−vt+ξ0)

2−
(
1+ b2|δ|√p+1

δ
√
(p+1)b22−b3(b1−v2)(p+2)2

)
sech2 p2

√
− b1−v2

δv2
(x−vt+ξ0)

)1/p

. (4.10)

(3) Assume thatδb3< 0 andp makes(−b2b3)
1/p meaningful. Then Eq.(4.7)has a kink

profile solitary-wave solution with|C+| �= |C−|,

u(x, t)=
(

− b2(p+ 1)

2b3(p+ 2)

[
1± tanh

p

2

√
−b1 − v2

δv2
(x − vt + ξ0)

])1/p

, (4.11)

where wave velocity

v2 = b1 − b2
2(p+ 1)

b3(p+ 2)2
.

(4) Assume thatp = 1 andb2 = 0. If b3δ < 0 andδ(b1 − v2) > 0, then Eq.(4.7)has a
kink profile solitary-wave solution with|C+| = |C−|,

u(x, t)= ±
√

−b1 − v2

b3
tanh

1

2

√
2(b1 − v2)

δv2
(x − vt + ξ0). (4.12)

Let p = 1, δ = β2, b1 = 1, b2 = − a
2 andb3 = 0, then Theorem 6 implies a bell profi

solution of the improved Boussinesq equation (4.2),

u(x, t)= 3(1− v2)

a
sech2

√
v2 − 1

2vβ
(x − vt + ξ0). (4.13)

Let p = 1, δ = β2, b1 = 1, b2 = 0 andb3 = − a
3 in (4.9), (4.10) and (4.12), we get a be

profile solution of the modified improved Boussinesq equation (4.3),

u(x, t)= ±
√

6(1− v2)

a
sech2

√
v2 − 1

vβ
(x − vt + ξ0) (4.14)

and a kink profile solution of Eq. (4.3) withC+ = −C−,

u(x, t)= ±
√

3(1− v2)

a
tanh

1

2

√
2(1− v2)

v2β2
(x − vt + ξ0). (4.15)

The solution (4.15) is a new soliton for the modified improved Boussinesq equation

5. The solitary-wave solutions for generalized nonlinear wave equation

Consider generalized nonlinear wave equation

δutt − kuxx + rut + b1u+ b2u
p+1 + b3u

2p+1 = 0, p > 0, r � 0. (5.1)

Equation (5.1) includes many important model problems, for example, generalized
equation, approximation equation for the Sinh–Gordon equation,φ4 equation, one
dimensional Klein–Gordon equation, Landau–Ginzburg–Higgs equation, Duffing equ
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linear

ua-

n
f the

f

and nonlinear telegram equation. Therefore, find solutions of the generalized non
wave equation (5.1) is valuable. Letδ = 0, r = 1, k = D, b1 = −sβ , b2 = −s(1 − β),
b3 = s andα = p in (5.1), we have the generalized Fisher equation,

ut −Duxx − sβu− s(1− β)uα+1 + su2α+1 = 0. (5.2)

Take r = 0, δ = 1 in (5.1) implies generalized one-dimensional Klein–Gordon eq
tion [14]

utt − kuxx + b1u+ b2u
p+1 + b3u

2p+1 = 0. (5.3)

It is easy to get that the traveling-wave solutionsu(x, t)= u(x − vt) ≡ u(ξ) for Eq. (5.1)
satisfy

u′′(ξ)− rv

δv2 − k u
′(ξ)+ b1

δv2 − k u(ξ)

+ b2

δv2 − k u
p+1(ξ)+ b3

δv2 − k u
2p+1(ξ)= 0, (5.4)

which is a Lienard-type equation. Thus, ifr > 0, b3(δv
2 − k) < 0, Eq. (5.1) has solutio

of the kink profile in view of the judgments 1 and Theorem 1. Eq. (5.1) has solution o
bell profile in view of the judgments 4 and Theorem 3 whenr = 0,b1b3< 0. In the case o
r = 0, b3(δv

2 − k) < 0, b2 �= 0, Eq. (5.1) has solution of the kink profile with|C+| �= |C−|
in view of the judgments 3 and Theorem 2.

Comparing (5.4) with Eq. (I), Theorem 1 implies the following

Theorem 7. Suppose thatb2
2 − 4b1b3 � 0,

A1,2 =
−b2 ±

√
b2

2 − 4b1b3

2b3
,

v1,2 = |k|((p+ 1)b1 − b3A
2
1,2)√

k[δ((p+ 1)b1 − b3A
2
1,2)

2 + (p+ 1)r2b3A
2
1,2]

.

(1) If p makesA1/p
1 meaningful andk[δ((p + 1)b1 − b3A

2
1)

2 + (p + 1)r2b3A
2
1] > 0,

then Eq.(5.1)has solutions of the kink profile

u(x, t)=
(
A1

2

[
1± tanh

p

2

√
− b3A

2
1

(δv2 − k)(p+ 1)
(x ∓ v1t + ξ0)

])1/p

. (5.5)

(2) If p makesA1/p
2 meaningful andk[δ((p + 1)b1 − b3A

2
2)

2 + (p + 1)r2b3A
2
2] > 0,

then Eq.(5.1)has solutions of the kink profile

u(x, t)=
(
A2

2

[
1± tanh

p

2

√
− b3A

2
2

(δv2 − k)(p+ 1)
(x ∓ v2t + ξ0)

])1/p

. (5.6)
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s for

e

e

Let δ = 0, r = 1,k =D, b1 = −sβ , b2 = −s(1−β), b3 = s, α = p, then above theorem
implies the solitary-wave solutions for the generalized Fisher equation (5.2),

u(x, t)=
(

1

2

[
1± tanh

α

2

√
s

D(α + 1)

×
(
x ±

√
Ds

α + 1

(
(α + 1)β + 1

)
t + ξ0

)])1/α

(5.7)

and

u(x, t)=
(

−β
2

[
1± tanh

α

2

√
s

D(α + 1)
β

×
(
x ±

√
Ds

α + 1

(
(α + 1)+ β)t + ξ0

)])1/α

, (5.8)

where the solution (5.7) was given in [6] and the solution (5.8) is new solitary wave
the Fisher equation (5.2).

Let δ = 0, r = 1, k = 1, b1 = a, b2 = −(a + 1), b3 = 1, p = 1 in Theorem 7, then w
have Diffusion equation

ut − uxx = u(u− a)(1− u) (−1 � a < 1), (5.9)

and its solitary-wave solutions

u(x, t)= 1

2

[
1± tanh

√
2

4

(
x ± 1− 2a√

2
t + ξ0

)]
(5.10)

and

u(x, t)= a

2

[
1± tanh

√
2a

4

(
x ± a − 2√

2
t + ξ0

)]
, (5.11)

which are the same as the solutions given in [15].
Let δ = 0, r = 1, k = 1, b1 = −1, b2 = 0, b3 = 1, p = α

2 in Theorem 7, then we hav
another generalized Fisher equation

ut − uxx = u− uα+1, α ∈ (0,+∞), (5.12)

and its solitary-wave solutions

u(x, t)=
{

1

2

[
1− tanh

α

2
√

2α + 4

(
x − α + 4√

2α+ 4
t + ξ0

)]}2/α

(5.13)

and

u(x, t)=
{

1

2

[
1+ tanh

α

2
√

2α + 4

(
x + α + 4√

2α+ 4
t + ξ0

)]}2/α

, (5.14)

where (5.13) has been given in [16] and the solution (5.14) is our new result.
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Whenr = 0, we can assumeδ = 1 without generality. Thus, Eq. (5.1) is reduced to
one-dimensional Klein–Gordon equation (5.3). Its solitary-wave solutions satisfy

u′′(ξ)+ b1

v2 − k u(ξ)+
b2

v2 − k u
p+1(ξ)+ b3

v2 − k u
2p+1(ξ)= 0. (5.15)

Comparing (5.15) with Eq. (II) and takingq = p + 1, l = b1
v2−k , m = b2

v2−k , n = b3
v2−k

Theorems 2–4 imply that

Theorem 8. Suppose thatv is traveling wave velocity.
(1) Assume thatb1(v

2 − k) < 0. If b3(v
2 − k) > 0; or b3 = 0, b2(v

2 − k) > 0, then
Eq. (5.3)has a bell profile solitary-wave solution

u(x, t)=
( |b1|(p+2)

√
p+1√

(p+1)b22−b3b1(p+2)2
sech2 p2

√
− b1
v2−k (x−vt+ξ0)

2+
(
−1+ b2|v2−k|√p+1

(v2−k)
√
(p+1)b22−b3b1(p+2)2

)
sech2 p2

√
− b1
v2−k (x−vt+ξ0)

)1/p

. (5.16)

(2) Assume thatb1(v
2 − k) < 0, and p makese1/p meaningful for any negativ

numbere. If b3(v
2 − k) > 0; or b3 = 0, b2(v

2 − k) < 0, then Eq.(5.3) has another bel
profile solitary-wave solution

u(x, t)=
( − |b1|(p+2)

√
p+1√

(p+1)b22−b3b1(p+2)2
sech2 p2

√
− b1
v2−k (x−vt+ξ0)

2−
(
1+ b2|v2−k|√p+1

(v2−k)
√
(p+1)b22−b3b1(p+2)2

)
sech2 p2

√
− b1
v2−k (x−vt+ξ0)

)1/p

. (5.17)

(3) Assume thatb3(v
2 − k) < 0, b2 �= 0, p makes(−b2b3)

1/p meaningful andb1 =
(p+1)b2

2
(p+2)2b3

holds. Then Eq.(5.3)has a kink profile solitary-wave solution with|C+| �= |C−|,

u(x, t)=
(

− b2(p+ 1)

2b3(p+ 2)

[
1± tanh

p

2

√
− b1

v2 − k (x − vt + ξ0)
])1/p

. (5.18)

(4) Assume thatp = 1 andb2 = 0. If b1(v
2 − k) > 0 andb3(v

2 − k) < 0, then Eq.(5.3)
has a kink profile solitary-wave solution with|C+| = |C−|,

u(x, t)= ±
√

−b1

b3
tanh

1

2

√
2b1

v2 − k (x − vt + ξ0). (5.19)

6. The exact solitary-wave solutions for generalized Zakharov equations

Consider the generalized Zakharov equations{
Htt −Hxx = (|u|2p)xx,
iut + uxx =Hu+ b1|u|2pu+ b2|u|4pu, (6.1)

which are reduced to the famous Zakharov equations (see [11,12]){
Htt −Hxx = (|u|2)xx, (6.1′)

iut + uxx =Hu,
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s
tions
en
if p = 1, b1 = 0, b2 = 0. We will find solutions of the following form for (6.1):

{
u(x, t)= ei[kx−(kv+ω)t ]a(x − vt),
H(x, t)=H(x − vt). (6.2)

Assume that

a′(ξ),H ′(ξ)→ 0, |ξ | → ∞, (6.3)

and

(
v2 − 1

)
CH− = C2p

− ,
(
v2 − 1

)
CH+ = C2p

+ , (6.4)

whereξ = x − vt , CH± = lim|ξ |→±∞H(ξ), C± = lim|ξ |→±∞ a(ξ). Let k = v
2. Substitute

(6.2) into (6.1) implies

H(ξ)= 1

v2 − 1
a2p(ξ), (6.5)

anda(ξ) satisfies

a′′(ξ)+ v2 + 4ω

4
a(ξ)− b1(v

2 − 1)+ 1

v2 − 1
a2p+1(ξ)− b2a

4p+1(ξ)= 0. (6.6)

Equation (6.6) is Lienard (II)-type. Thus, ifv2 +4ω < 0,b2 � 0, Eq. (6.1) has solution
of the bell profile in view of the judgments 4 and Theorem 3. Equation (6.1) has solu
of the kink profile with |C+| �= |C−| in view of the judgments 3 and Theorem 2 wh
b2(v

2 + 4ω)< 0, b1(v
2 − 1)+ 1 �= 0.

Comparing (6.6) with Eq. (II), Theorems 2–4 imply:

Theorem 9. Suppose thatv is traveling wave velocity and

G=
√

2p+ 1

2
√
(2p+ 1)(b1(v2 − 1)+ 1)2 + b2(p+ 1)2(v2 − 1)2(v2 + 4ω)

.

(1) Assume thatv2 + 4ω < 0. If b2< 0; or b2 = 0, (b1(v
2 − 1)+ 1)(v2 − 1) < 0, then

Eq. (6.1)has bell profile solitary-wave solutions




u(x, t)= ei[ v2x−( v22 +ω)t ]

×
(

(p+1)G|(v2−1)(v2+4ω)|sech2p
√

− v2+4ω
4 (x−vt+ξ0)

2−
(
1+ 2|v2−1|(b1(v2−1)+1)G

(v2−1)

)
sech2p

√
− v2+4ω

4 (x−vt+ξ0)

)1/(2p)

,

H(x, t)= 1
v2−1

(
(p+1)G|(v2−1)(v2+4ω)|sech2p

√
− v2+4ω

4 (x−vt+ξ0)
2−

(
1+ 2|v2−1|(b1(v2−1)+1)G)

sech2p
√

− v2+4ω (x−vt+ξ0)

)
.

(6.7)
(v2−1) 4
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ov
(2) Assume thatv2 +4ω < 0, andp makese1/2p meaningful for any negative numbere.
If b2< 0; or b2 = 0, (b1(v

2 − 1)+ 1)(v2 − 1) > 0, then Eq.(6.1)has bell profile solitary-
wave solutions



u(x, t)= ei[ v2x−( v
2
2 +ω)t ]

×
(

−(p+1)G|(v2−1)(v2+4ω)|sech2p
√

− v2+4ω
4 (x−vt+ξ0)

2−
(
1− 2|v2−1|(b1(v2−1)+1)G

(v2−1)

)
sech2p

√
− v2+4ω

4 (x−vt+ξ0)

)1/(2p)

,

H(x, t)= 1
v2−1

(
−(p+1)G|(v2−1)(v2+4ω)|sech2p

√
− v2+4ω

4 (x−vt+ξ0)
2−

(
1− 2|v2−1|(b1(v2−1)+1)G

(v2−1)

)
sech2p

√
− v2+4ω

4 (x−vt+ξ0)

)
.

(6.8)

(3) Assume thatb2> 0, p makes(−(b1(v
2 − 1)+ 1)(v2 − 1))1/(2p) meaningful. Let the

wave velocityv satisfyb2(p+1)2(v2 +4ω)(v2 −1)2 = −(2p+1)(b1(v
2 −1)+1)2. Then

Eq. (6.1)has a kink profile solitary-wave solution with|C+| �= |C−|,


u(x, t)= ei[ v2x−( v
2
2 +ω)t ]

×
(−(2p+1)(b1(v

2−1)+1)
4b2(p+1)(v2−1)

[
1± tanhp

√
− v2+4ω

4 (x − vt + ξ0)
])1/(2p)

,

H(x, t)= − (2p+1)(b1(v
2−1)+1)

4b2(p+1)(v2−1)2

(
1± tanhp

√
− v2+4ω

4 (x − vt + ξ0)
)
.

(6.9)

(4) Assume thatp = 1 andb2 = 0. If v2 + 4ω > 0, b1 + 1
v2−1

> 0, then Eq.(6.1)has a
kink profile solitary-wave solution with|C+| = |C−|,


u(x, t)= ±ei[ v2x−( v22 +ω)t ]

√
(v2+4ω)(v2−1)
4(b1(v

2−1)+1)
tanh1

2

√
v2+4ω

2 (x − vt + ξ0),

H(x, t)= 1
v2−1

(
±
√
(v2+4ω)(v2−1)
4(b1(v

2−1)+1)
tanh1

2

√
v2+4ω

2 (x − vt + ξ0)
)2
.

(6.10)

Let p = 1, b1 = 0, b2 = 0 in the (6.7), we have solutions of the bell profile for Zakhar
equation(6.1′),


u(x, t)= ei[ v2x−( v22 +ω)t ]

√
(v2+4ω)(v2−1)

2 sech
√

− v2+4ω
4 (x − vt + ξ0),

H(x, t)= v2+4ω
2 sech2

√
− v2+4ω

4 (x − vt + ξ0),
which are the same as solutions given in[11] and [12].

Takingb1 = 0 in (6.10), we have that

Theorem 10. Assume thatv2 + 4ω> 0, v2 − 1> 0. Then the Zakharov equation(6.1′) has
solitary-wave solutions


u(x, t)= ±ei[ v2x−( v22 +ω)t ]

√
(v2+4ω)(v2−1)

4 tanh1
2

√
v2+4ω

2 (x − vt + ξ0),

H(x, t)= v2+4ω
4

(
1− sech2 1

2

√
v2+4ω

2 (x − vt + ξ0)
)
,

(6.11)

which are a new solitary-wave solutions.
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7. Remark

By means of proper transform, some of other nonlinear evolution equations can
to the Lienard equation (I) or (II), for instance, generalized BBM equation

ut + aupux + bu2pux + δuxxt = 0, δ �= 0, p > 0;
and generalized kP equation

∂

∂x

{
ut + aupux + bu2pux + ruxx + δUxxx

}+ 3k2uyy = 0, δ �= 0, p > 0.

Hence, we can apply the approaches and formulae given in this paper to look for the e
exact solitary-wave solutions of these equations.
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