
Journal of Computational and Applied Mathematics 222 (2008) 333–350
www.elsevier.com/locate/cam

A Chebyshev spectral collocation method for solving
Burgers’-type equations

A.H. Khatera,∗, R.S. Temsaha, M.M. Hassanb

a Mathematics Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
b Mathematics Department, Faculty of Science, Minia University, EL-Minia, Egypt

Received 20 May 2007; received in revised form 1 September 2007

Abstract

In this paper, we elaborated a spectral collocation method based on differentiated Chebyshev polynomials to obtain numerical
solutions for some different kinds of nonlinear partial differential equations. The problem is reduced to a system of ordinary
differential equations that are solved by Runge–Kutta method of order four. Numerical results for the nonlinear evolution equations
such as 1D Burgers’, KdV–Burgers’, coupled Burgers’, 2D Burgers’ and system of 2D Burgers’ equations are obtained. The
numerical results are found to be in good agreement with the exact solutions. Numerical computations for a wide range of values
of Reynolds’ number, show that the present method offers better accuracy in comparison with other previous methods. Moreover
the method can be applied to a wide class of nonlinear partial differential equations.
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1. Introduction

Nonlinear partial differential equations (NLPDEs) arise in many fields of science, particularly in physics,
engineering, chemistry and finance, and are fundamental for the mathematical formulation of continuum models.
Systems of NLPDEs have attracted much attention in studying evolution equations describing wave propagation,
in investigating the shallow water waves [7,37], and in examining the chemical reaction-diffusion model of
Brusselator [2]. While the Burgers’ equation has been found to describe various kinds of phenomena such as a
mathematical model of turbulence [4] and the approximate theory of flow through a shock wave traveling in a
viscous fluid [6]. Fletcher using the Hopf–Cole transformation [10], gave an analytical solution for the system of
2D Burgers’ equations. Several numerical methods to solve this system have been given such as algorithms based
on cubic spline function technique [14], the explicit–implicit method [49], Adomian’s decomposition method [10].
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High-order accurate schemes for solving the 2D Burgers’ equations have been used [39], several multilevel schemes
with alternating direction implicit (ADI) method [11] and implicit finite-difference scheme [3].

Many researchers have used various methods to seek exact solutions to NLPDEs [17–35,41–43]. The variational
iteration method was used to solve the 1D Burgers’ and coupled Burgers’ equations [1]; the solution was obtained
under a series of initial conditions and was transformed into a closed form one.

The KdV–Burgers’ equation is a 1D generalization of the model description of the density and velocity fields
that takes into account pressure forces as well as the viscosity and the dispersion. It may be a more flexible tool
for physicists than the Burgers’ equation. Several numerical methods to solve this equation and NLPDEs have been
given such as algorithms based on Adomian’s decomposition method [12,15,16,44–48], finite-difference method [12],
Galerkin quadratic B-spline finite element method [38] and spectral collocation method have been used to obtain
numerical solutions of some nonlinear evolution equations [36].

The purpose of this paper is to present a numerical method for the solution of the following NLPDEs defined on a
bounded domain as:
(P1) 1D Burgers’ equation [1,41]

ut + αuux − νuxx = 0, (1)

where α and ν are arbitrary constants.
(P2) KdV–Burgers’ equation [1,16,41]

ut + αuux − νuxx + µuxxx = 0, (2)

where α, ν and µ are arbitrary constants.
(P3) Coupled Burgers’ equations [16,41]

ut − uxx + 2uux + α(uv)x = 0,

vt − vxx + 2vvx + β(uv)x = 0,
(3)

where α and β are arbitrary constants.
(P4) The 2D Burgers’ equation [39,41]

ut + uux + uu y = ν(uxx + u yy), (4)

where ν is an arbitrary constant.
(P5) The system of 2D Burgers’ equations [3,9,41]

ut + uux + vu y = ν(uxx + u yy),

vt + uvx + vvy = ν(vxx + vyy),
(5)

where ν is an arbitrary constant.
This method will be referred to as the Chebyshev spectral collocation (ChSC) method. The ChSC method

is accomplished through, starting with Chebyshev approximation for the approximate solution and generating
approximations for the higher-order derivatives through successive differentiation of the approximate solution.

Chebyshev polynomials [40] are well-known family of orthogonal polynomials on the interval [−1, 1] of the real
line. These polynomials present, among others, very good properties in the approximation of functions. Therefore,
Chebyshev polynomials appear frequently in several fields of Mathematics, Physics and Engineering. Spectral
methods based on Chebyshev polynomials as basis functions for solving numerically differential equations have been
used by many authors, (see for example [8,13,36]).

The paper is organized as follows: In Section 2, the Chebyshev spectral collocation method is used to obtain the
numerical solutions of the problems (P1)–(P5), the fourth-order Runge–Kutta method is used for solving the obtained
system of ordinary differential equations. In Section 3, numerical experiments are performed to test the accuracy and
efficiency of the ChSC method and compared with the finite-difference method and Galerkin quadratic B-spline finite
element method, the numerical results show that the ChSC method is more accurate in comparison with [3,12,38].
Conclusions are given in Section 4.
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2. Numerical solutions by the Chebyshev spectral collocation method

To illustrate the procedure, five examples related to the 1D Burgers’, KdV–Burgers’, coupled Burgers’, 2D Burgers
and system of 2D Burgers’ equations are given in the following.

2.1. 1D Burgers’ equation

Let us first consider the 1D Burgers’ equation which has the form [1,41]

ut + αuux − νuxx = 0, (x, t) ∈ D × [0, T ], (6)

with the initial condition

u(x, 0) = f (x), x ∈ D (7)

and the boundary conditions

u(x, t) = g(t), (x, t) ∈ δD × [0, T ] (8)

where D = {x : a < x < b} and δD is its boundary; α and ν are arbitrary constants.
The solution u is approximated as [5,8]

u(x, t) =
N∑

j=0

′′a j

∗

T j (x) (9)

and the collocation points are given by

xn =
1
2

(
(a + b)− (b − a) cos

(πn

N

))
, n = 0, 1, . . . , N , (10)

where
∗

T j (xn) = T j ((2xn− (b+a))/(b−a)) is the j th Chebyshev polynomial of the first kind. A summation symbol
with double primes denotes a sum with the first and last term halved.

Using the discrete orthogonality relation

N∑
n=0

′′
∗

T i (xn)
∗

T j (xn) = αiδi j

with

αi =

{
N/2, i 6= 0, N ;
N , i = 0, N .

We can invert (9) and find

a j =
2
N

N∑
n=0

′′
∗

T j (xn)u(xn, t). (11)

Derivatives ux (x, t) and uxx (x, t) can be computed at the collocation points (10) by using the expansion (9) and the
Chebyshev coefficients (11). The derivative ux (x, t) is approximated as

ux (xi , t) =
N∑

j=0

′′a j

∗

T ′ j (xi )

=

N∑
n=0

′′ (
2
N

N∑
j=0

′′
∗

T ′ j (xi )
∗

T j (xn)

)
u(xn, t)

=

N∑
n=0

[Ax ]inu(xn, t), (12)
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where

[Ax ]in =
2cn

N

N∑
j=0

′′
∗

T ′ j (xi )
∗

T j (xn), i, n = 0, 1, . . . , N ,

c0 = cN = 1/2 and cn = 1 for n = 1, 2, . . . , N − 1.

The first derivative of the Chebyshev functions is formed as follows [8]:

∗

T ′ j (xi ) = 2 jλ
j−1∑

n=0,n+ j odd

cn
∗

T n(xi ), (13)

where λ = 2
b−a , c0 = cN = 1/2 and cn = 1 for n = 1, 2, . . . , N − 1.

Similarly, the derivative uxx (x, t) is approximated as

uxx (xi , t) =
N∑

n=0

[Ax ]inux (xn, t)

=

N∑
j=0

(
N∑

n=0

[Ax ]in[Ax ]nj

)
u(x j , t)

=

N∑
j=0

[Bx ]i j u(x j , t), (14)

where Bx = A2
x and the elements of the matrix Bx are given by

[Bx ]i j =

N∑
n=0

[Ax ]in[Ax ]nj , i, j = 0, 1, . . . , N .

If we denote u(x, t) and ut (x, t) at the point xn by un(t) and
.
un(t) respectively, and using the boundary conditions

(8), then it is not difficult to show that

ux (xi , t) = di (t)+
N−1∑
n=1

[Ax ]inun(t), (15)

uxx (xi , t) = d̄i (t)+
N−1∑
n=1

[Bx ]inun(t), (16)

where di (t) = [Ax ]i0u0(t)+ [Ax ]i N uN (t) and d̄i (t) = [Bx ]i0u0(t)+ [Bx ]i N uN (t).
Substituting (15) and (16) into (6), we obtain

.
ui (t)+ αui (t)

N−1∑
n=1

[Ax ]inun(t)− ν
N−1∑
n=1

[Bx ]inun(t)+ αui (t)di (t)− νd̄i (t) = 0,

ui (0) = f (xi ).

(17)

Then system (17) can be written in the following form
.
u(t) = F(t, u(t)),

u(0) = u0,
(18)

where

u(t) = [u1(t), u2(t), . . . , uN−1(t)]
T,

.
u(t) = [

.
u1(t),

.
u2(t), . . . ,

.
uN−1(t)]

T,

u0 = [u1(0), u2(0), . . . , uN−1(0)]T,

F(t, u(t)) = [F1(t, u(t)), F2(t, u(t)), . . . , FN−1(t, u(t))]T
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and

Fi (t, u(t)) = −αui (t)
N−1∑
n=1

[Ax ]inun(t)+ ν
N−1∑
n=1

[Bx ]inun(t)− αui (t)di (t)+ νd̄i (t).

Eq. (18) forms a system of ordinary differential equations (ODEs) in time. Therefore to advance the solution in time,
we use ODE solver such as the Runge–Kutta method of order four because it is an explicit method which gives a good
accuracy and extends trivially to nonlinear. The Runge–Kutta method of order four is given by

u(1) = u(tn)+
1
2

F(tn, u(tn))

u(2) = u(tn)+
1
2

F(tn+1t/2, u(1))

u(3) = u(tn)+ F(tn+1t/2, u(2))

u(tn+1) = u(tn)+
1t

6
[F(tn, u(tn))+ 2F(tn+1t/2, u(1))+ 2F(tn+1t/2, u(2))+ F(tn+1t , u(3))].

2.2. KdV–Burgers’ equation

A second important example is the KdV–Burgers’ equation [1,15,41]:

ut + αuux − νuxx + µuxxx = 0, (x, t) ∈ D × [0, T ], (19)

with the initial condition

u(x, 0) = f̄ (x), x ∈ D (20)

and the boundary conditions

u(x, t) = ḡ(t),

ux (x, t) = h̄(t), (x, t) ∈ δD × [0, T ],
(21)

where D = {x : a < x < b} and δD is its boundary ; α, ν and µ are arbitrary constants.
Applying the Chebyshev spectral collocation method to the problem (19)–(21), we get

.
ui (t)+ αui (t)

N−1∑
n=1

[Ax ]inun(t)− ν
N−1∑
n=1

[B̄x ]inun(t)+ µ
N−1∑
n=1

[Cx ]inun(t)

+αui (t)di (t)− νd̂i (t)+ µ
¯̄d i (t) = 0,

ui (0) = f̄ (xi ),

(22)

where

[B̄x ]i j =

N−1∑
n=1

[Ax ]in[Ax ]nj , [Cx ]i j =

N∑
n=0

[Ax ]in[B̄x ]nj ,

d̂i (t) = [Ax ]i0
∗
u0(t)+ [Ax ]i N

∗
uN (t)+ [B̄x ]i0u0(t)+ [B̄x ]i N uN (t),

¯̄d i (t) = [Bx ]i0
∗
u0(t)+ [Bx ]i N

∗
uN (t)+ [Cx ]i0u0(t)+ [Cx ]i N uN (t),

and
∗
un(t) denotes ux (x, t) at the point xn .

Then the system (22) can be written in the following form

.
u(t) = F̄(t, u(t)),

u(0) = u0,
(23)
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where

F̄(t, u(t)) = [F̄1(t, u(t)), F̄2(t, u(t)), . . . , F̄N−1(t, u(t))]T

and

F̄i (t, u(t)) = −αui (t)
N−1∑
n=1

[Ax ]inun(t)+ ν
N−1∑
n=1

[B̄x ]inun(t)− µ
N−1∑
n=1

[Cx ]inun(t)

−αui (t)di (t)+ νd̂i (t)− µ
¯̄d i (t), i = 1, 2, . . . , N − 1.

Again the system (23) is solved by using the Runge–Kutta method of order four.

2.3. Coupled Burgers’ equations

The third instructive example to illustrate the Chebyshev spectral collocation method is the homogeneous form of
a coupled Burgers equation [16]. We will consider the following system of equations:

ut − uxx + 2uux + α(uv)x = 0,

vt − vxx + 2vvx + β(uv)x = 0,
(24)

with the initial conditions

u(x, 0) = f1(x), v(x, 0) = f2(x), x ∈ D (25)

and the boundary conditions

u(x, t) = g1(t), v(x, t) = g2(t), (x, t) ∈ δD × [0, T ], (26)

where D = {x : a < x < b} and δD is its boundary; α and β are arbitrary constants.
Applying the Chebyshev spectral collocation method to the problem (24)–(26), we get

.
ui (t) =

N−1∑
n=1

[Bx ]inun(t)− 2ui (t)
N−1∑
n=1

[Ax ]inun(t)− αui (t)
N−1∑
n=1

[Ax ]invn(t)

−αvi (t)
N−1∑
n=1

[Ax ]inun(t)+ d̄i (t)− 2ui (t)di (t)− αui (t)ri (t)− αvi (t)di (t),

ui (0) = f1(xi )

(27)

and

.
vi (t) =

N−1∑
n=1

[Bx ]invn(t)− 2vi (t)
N−1∑
n=1

[Ax ]invn(t)− βui (t)
N−1∑
n=1

[Ax ]invn(t)

−βvi (t)
N−1∑
n=1

[Ax ]inun(t)+ r̄i (t)− 2vi (t)ri (t)− βui (t)ri (t)− βvi (t)di (t),

vi (0) = f2(xi ),

(28)

where

ri (t) = [Ax ]i0v0(t)+ [Ax ]i NvN (t), r̄i (t) = [Bx ]i0v0(t)+ [Bx ]i NvN (t),

vi (t) = v(xi , t) and
.
vi (t) = vt (xi , t).

Put wi (t) = ui (t),
.
wi (t) =

.
ui (t), wi+N+1(t) = vi (t), i = 0(1)N and

.
wi+N+1(t) =

.
vi (t), i = 0(1)N . Then the

systems (27) and (28) can be written in the following form
.
w(t) = L(t, w(t)),

w(0) = w0,
(29)
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where

w(t) = [w1(t), . . . , wN−1(t), wN+2(t), . . . , w2N (t)]
T,

.
w(t) = [

.
w1(t), . . . ,

.
wN−1(t),

.
wN+2(t), . . . ,

.
w2N (t)]

T,

w0 = [w1(0), . . . , wN−1(0), wN+2(0), . . . , w2N (0)]T,

L(t, w(t)) = [L1(t, w(t)), . . . , L N−1(t, w(t)), L N+2(t, w(t)), . . . , L2N (t, w(t))]
T,

and

L i (t, w(t)) =
N−1∑
n=1

[Bx ]inwn(t)− 2wi (t)
N−1∑
n=1

[Ax ]inwn(t)

−αwi (t)
N−1∑
n=1

[Ax ]inwn+N+1(t)− αwi+N+1(t)
N−1∑
n=1

[Ax ]inwn(t)

+ d̄i (t)− 2wi (t)di (t)− αwi (t)ri (t)− αwi+N+1(t)di (t); i = 1, 2, . . . , N − 1,

L i+N+1(t, w(t)) =
N−1∑
n=1

[Bx ]inwn+N+1(t)− 2wi+N+1(t)
N−1∑
n=1

[Ax ]inwn+N+1(t)

−βwi (t)
N−1∑
n=1

[Ax ]inwn+N+1(t)− βwi+N+1(t)
N−1∑
n=1

[Ax ]inwn(t)

+ r̄i (t)− 2wi+N+1(t)ri (t)− βwi (t)ri (t)− βwi+N+1(t)di (t); i = 1, 2, . . . , N − 1.

Again the system (29) is solved by using the Runge–Kutta method of order four.

2.4. The 2D Burgers’ equation

A fourth example is the 2D Burgers’ equation [39,41]:

ut + uux + uu y = ν(uxx + u yy), (30)

where ν is an arbitrary constant.
With the initial condition

u(x, y, 0) = h(x, y), (x, y) ∈ D, (31)

and the boundary conditions

u(x, y, t) = p(x, y, t), (x, y) ∈ δD, t ∈ [0, T ], (32)

where D = {(x, y) : a < x, y < b} and δD is its boundary; ν = 1/R and R is the Reynolds’ number.
The solution u is sought to be in the form

u(x, y, t) =
M∑

m=0

N∑
n=0

∗

T n(x)
∗

T m(y)unm(t), (33)

where unm(t) is the approximate solution at the point (xn, ym) and the collocation points (xn, ym) are given by (10)
and

ym =
1
2

(
(a + b)− (b − a) cos

(πm

M

))
, m = 0, 1, . . . ,M. (34)

If we denote ut at the point (xn, ym) by
.
unm(t) and using boundary conditions (32), then it is not difficult to show that

ux (xi , y j , t) = zi j (t)+
N−1∑
n=1

[Ax ]inunj (t), (35)
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uxx (xi , y j , t) = z̄i j (t)+
N−1∑
n=1

[Bx ]inunj (t), (36)

u y(xi , y j , t) = qi j (t)+
M−1∑
m=1

[Ay] jmuim(t), (37)

and

u yy(xi , y j , t) = q̄i j (t)+
M−1∑
m=1

[By] jmuim(t), (38)

where Ay and By are matrices obtained in the same way as Ax and Bx respectively but using the points ym instead of
the points xn ,

zi j (t) = [Ax ]i0u0 j (t)+ [Ax ]i N uN j (t), z̄i j (t) = [Bx ]i0u0 j (t)+ [Bx ]i N uN j (t),

qi j (t) = [Ay] j0ui0(t)+ [Ay] j M ui M (t) and q̄i j (t) = [By] j0ui0(t)+ [By] j M ui M (t).

Substituting (35)–(38) into (30), we obtain

.
ui j (t) = −ui j (t)

(
zi j (t)+

N−1∑
n=1

[Ax ]inunj (t)

)
− ui j (t)

(
qi j (t)+

M−1∑
m=1

[Ay] jmuim(t)

)

+ ν

(
z̄i j (t)+

N−1∑
n=1

[Bx ]inunj (t)

)
+ ν

(
q̄i j (t)+

M−1∑
m=1

[By] jmuim(t)

)
,

ui j (0) = h(xi , y j ).

(39)

Then system (39) can be written in the following form
.

φ(t) = E(t, φ(t)),

φ(0) = φ0,
(40)

where

φ(t) = [a1(t), . . . , aN−1(t)]
T,

.

φ(t) = [
.
a1(t), . . . ,

.
aN−1(t)]

T,

φ0 = [a1(0), . . . , aN−1(0)]T, ai (t) = [ui1(t), . . . , ui M−1(t)]
T,

.
ai (t) = [

.
ui1(t), . . . ,

.
ui M−1(t)]

T, E(t, φ(t)) = [E1(t, φ(t)), . . . , EN−1(t, φ(t))]
T,

Ei (t, φ(t)) = [ηi1, . . . , ηi M−1]
T
; i = 1, 2, . . . , N − 1

and

ηi j = −ui j (t)

(
zi j (t)+

N−1∑
n=1

[Ax ]inunj (t)

)
− ui j (t)

(
qi j (t)+

M−1∑
m=1

[Ay] jmuim(t)

)

+ ν

(
z̄i j (t)+

N−1∑
n=1

[Bx ]inunj (t)

)
+ ν

(
q̄i j (t)+

M−1∑
m=1

[By] jmuim(t)

)
;

i = 1, 2, . . . , N − 1, j = 1, 2, . . . ,M − 1.

Again system (40) is solved by using the Runge–Kutta method of order four.

2.5. The system of 2D Burgers’ equations

Our last example is a system of 2D Burgers’ equations [3,9,41]:

ut + uux + vu y = ν(uxx + u yy),

vt + uvx + vvy = ν(vxx + vyy),
(41)
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with the initial conditions

u(x, y, 0) = h1(x, y), v(x, y, 0) = h2(x, y), (x, y) ∈ D (42)

and the boundary conditions

u(x, y, t) = p1(x, y, t), v(x, y, t) = p2(x, y, t), (x, y) ∈ δD, t ∈ [0, T ], (43)

where D = {(x, y) : a < x, y < b} and δD is its boundary; ν = 1/R and R is the Reynolds’ number.
Applying the Chebyshev spectral collocation method to problems (41)–(43), we get

.
ui j (t) = −ui j (t)

(
zi j (t)+

N−1∑
n=1

[Ax ]inunj (t)

)
− vi j (t)

(
qi j (t)+

M−1∑
m=1

[Ay] jmuim(t)

)

+ ν

(
z̄i j (t)+

N−1∑
n=1

[Bx ]inunj (t)

)
+ ν

(
q̄i j (t)+

M−1∑
m=1

[By] jmuim(t)

)
,

ui j (0) = h1(xi , y j )

(44)

and

.
vi j (t) = −ui j (t)

(
wi j (t)+

N−1∑
n=1

[Ax ]invnj (t)

)
− vi j (t)

(
ki j (t)+

M−1∑
m=1

[Ay] jmvim(t)

)

+ ν(w̄i j (t)+
N−1∑
n=1

[Bx ]invnj (t))+ ν

(
k̄i j (t)+

M−1∑
m=1

[By] jmvim(t)

)
,

vi j (0) = h2(xi , y j ),

(45)

where

wi j (t) = [Ax ]i0v0 j (t)+ [Ax ]i NvN j (t), w̄i j (t) = [Bx ]i0v0 j (t)+ [Bx ]i NvN j (t),

ki j (t) = [Ay] j0vi0(t)+ [Ay] j Mvi M (t) and k̄i j (t) = [By] j0vi0(t)+ [By] j Mvi M (t).

Put

ai (t) = [ui1(t), . . . , ui M−1(t)]
T, bi (t) = [vi1(t), . . . , vi M−1(t)]

T,
.
ai (t) = [

.
ui1(t), . . . ,

.
ui M−1(t)]

T,
.

bi (t) = [
.
vi1(t), . . . ,

.
vi M−1(t)]

T,

ψi (t) = ai (t),
.

ψ i (t) =
.
ai (t), ψi+N+1(t) = bi (t), i = 1(1)N − 1

and
.

ψ i+N+1(t) =
.

bi (t), i = 1(1)N − 1.
Then systems (44) and (45) can be written in the following form

.

ψ(t) = K (t, ψ(t)),

ψ(0) = ψ0,
(46)

where

ψ(t) = [ψ1(t), . . . , ψN−1(t), ψN+2(t), . . . , ψ2N (t)]
T,

.

ψ(t) = [
.

ψ1(t), . . . ,
.

ψN−1(t),
.

ψN+2(t), . . . ,
.

ψ2N (t)]
T,

Ψ0 = [ψ1(0), . . . , ψN−1(0), ψN+2(0), . . . , ψ2N (0)]T,

K (t,Ψ(t)) = [ψ1(t,Ψ(t)), . . . , ψN−1(t,Ψ(t)), ψN+2(t,Ψ(t)), . . . , ψ2N (t,Ψ(t))]T,
ψi (t, ψ(t)) = [ηi1, . . . , ηi M−1]

T, i = 1(1)N − 1,

ψi+N+1(t, ψ(t)) = [ξi1, . . . , ξi M−1]
T, i = 1(1)N − 1,
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ηi j = −ui j (t)

(
zi j (t)+

N−1∑
n=1

[Ax ]inunj (t)

)

− vi j (t)

(
qi j (t)+

M−1∑
m=1

[Ay] jmuim(t)

)
+ ν

(
z̄i j (t)+

N−1∑
n=1

[Bx ]inunj (t)

)

+ ν

(
q̄i j (t)+

M−1∑
m=1

[By] jmuim(t)

)
; i = 1, 2, . . . , N − 1, j = 1, 2, . . . ,M − 1,

and

ξi j = −ui j (t)

(
wi j (t)+

N−1∑
n=1

[Ax ]invnj (t)

)
− vi j (t)

(
ki j (t)+

M−1∑
m=1

[Ay] jmvim(t)

)

+ ν

(
w̄i j (t)+

N−1∑
n=1

[Bx ]invnj (t)

)

+ ν

(
k̄i j (t)+

M−1∑
m=1

[By] jmvim(t)

)
; i = 1, 2, . . . , N − 1, j = 1, 2, . . . ,M − 1.

Again system (46) is solved by using the Runge–Kutta method of order four.

3. Numerical results

In this section we apply the Chebyshev spectral collocation (ChSC) method to different examples. To show the
efficiency of the present method for our problems in comparison with the exact solution, we report norm infinity and
the norm of relative errors of the solution which are defined by

‖E‖∞ = max
1<i<ni p

|ui − ūi | (47)

and

‖E‖ =

√√√√√√√√
ni p∑
i=1
(ui − ūi )2

ni p∑
i=1
(ūi )2

, (48)

where ni p is the number of interior points, ūi and ui are the exact and computed values of the solution u at point i. In
all the examples the initial and boundary conditions are taken from the exact solutions.

Example 1. Consider a 1D Burgers’ equation:

ut + αuux − νuxx = 0, x ∈ Dx[0, T ], (49)

with the solitary wave solutions [41],

u(x, t) = c/α + (2ν/α)tanh(x − ct), (50)

in the region D = {x : a < x < b}; α and ν are arbitrary constants.

Table 1, shows norm infinity and norm relative of errors for various values of α and ν with N = 10, c = 0.1,
1t = 0.01, a = 0 and b = 1.

Example 2. Consider a 1D Burgers’ equation [38]:

ut + uux − νuxx = 0, 0 ≤ x ≤ 1, t > 0, (51)
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Table 1
Norm infinity and norm relative of errors for various values of α and ν

α ν ‖E‖∞ ‖E‖
t = 0.1 t = 0.2 t = 0.25 t = 0.1 t = 0.2 t = 0.25

1 0.01 3.06, −5 6.11, −5 7.62, −5 2.08, −4 4.07, −4 5.04, −4
0.001 3.06, −7 6.18, −7 7.82, −7 2.37, −6 4.69, −6 5.85, −6
0.0001 2.24, −8 5.22, −8 8.94, −8 1.31, −7 3.60, −7 4.31, −7

0.1 0.01 3.06, −4 6.11, −4 7.62, −4 2.08, −4 4.06, −4 5.04, −4
0.001 3.10, −6 6.32, −6 7.99, −6 2.32, −6 4.70, −6 5.88, −6
0.0001 7.15, −7 1.31, −6 1.67, −6 3.68, −7 6.99, −7 8.88, −7

Table 2
Comparison of numerical solutions of Example 2 with results from [38]

x ν = 1.0 ν = 0.1
t [38] ChSC Exact t [38] ChSC Exact

0.25 0.40 0.31760 0.31752 0.31752 0.10 0.26149 0.26148 0.26148
0.60 0.24618 0.24614 0.24614 0.15 0.16149 0.16148 0.16148
0.80 0.19959 0.19956 0.19956 0.20 0.09948 0.09947 0.09947
1.00 0.16562 0.16560 0.16560 0.25 0.06109 0.06108 0.06108
3.00 0.02776 0.02776 0.02775

0.75 0.40 0.64558 0.64561 0.64562 0.10 0.28159 0.28157 0.28157
0.60 0.50269 0.50268 0.50268 0.15 0.16976 0.16974 0.16974
0.80 0.38536 0.38534 0.38534 0.20 0.10267 0.10266 0.10266
1.00 0.29589 0.29586 0.29586 0.25 0.06230 0.06229 0.06229
3.00 0.03044 0.03044 0.03044

with the initial condition

u(x, 0) = 4x(1− x), 0 ≤ x ≤ 1 (52)

and the boundary conditions

u(0, t) = u(1, t) = 0, t > 0. (53)

The numerical solutions of Example 2 are obtained by the ChSC method (N = 15, 1t = 0.001 for ν = 0.1
and 1t = 0.0001 for ν = 1.0) have been compared with results from Galerkin quadratic B-spline finite element
method [38](N = 80, 1t = 0.00001) and the analytic solution in Table 2 for ν = 1.0 and 0.1 at different times. It is
clearly seen that the present solutions are in very good agreement with the exact. The ChSC method produced slightly
better results in little computer time than the Galerkin quadratic B-spline finite element method [38]. Fig. 1, illustrates
the graph of the numerical results of Example 2 at different times t = 0.1, 0.3 and 0.5 for ν = 0.01, N = 15 and
1t = 0.001.

Example 3. Consider the KdV–Burgers’ equation:

ut + εuux − νuxx + µuxxx = 0 (54)

with the solitary wave solutions [41],

u(x, t) = A[9− 6tanh(B(x − Ct))− 3tanh2(B(x − Ct))], (55)

in the region D = {x : a < x < b};A = ν2/(25εµ), B = ν/(10µ), C = 6ν2/(25µ), α, ν and µ are arbitrary
constants.

Table 3, shows norm infinity and norm relative of errors for various values of ε, ν and µ with N = 10, a = −10,
b = 10 and 1t = 0.1.
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Fig. 1. Solutions of Example 2 at different times for N = 15, ν = 0.01, 1t = 0.001.

Fig. 2. The numerical and the exact solutions of Example 3 for N = 10, ε = 0.1, ν = 0.03, µ = 0.01, 1t = 0.1 and t = 1 (— Exact, · · ·
Numerical).

Table 3
Norm infinity and norm relative of errors for various values of ε, ν and µ

ε ν µ ‖E‖∞ ‖E‖
t = 0.3 t = 0.9 t = 0.3 t = 0.9

1 0.1 0.1 8.20, −8 2.26, −7 8.60, −7 2.36, −6
0.1 1.0 1.07, −8 6.31, −8 1.39, −6 6.82, −6

0.1 0.1 0.1 8.27, −7 2.27, −6 8.61, −7 2.36, −6
0.1 1.0 1.01, −7 5.92, −7 1.34, −6 6.42, −6

In Fig. 2, we display the numerical and exact solutions of Example 3 for N = 10, ε = 0.1, ν = 0.03, µ = 0.01,
1t = 0.1 and t = 1.

Example 4. Consider the modified KdV–Burgers’ equation:

ut + 2(u3)x + uxx − uxxx = 0 (56)

with the traveling wave solutions [12],

u(x, t) = A[1+ tanh(A(x − Ct))], (57)

in the region D = {x : a < x < b}; A = 1/6 and C = 2/9.
In Table 4, we give the absolute errors between the exact and numerical results obtained by the present method

(ChSC method) (N = 15) compared with the results given by the finite-difference method (h = 0.1) [12] given
between brackets, at different values of x and t . We can observe from the table, that the ChSC method is more
accurate as compared with the finite-difference method [12].

In Fig. 3, we display the numerical and exact solutions of Example 4 for N = 10, 1t = 0.001 and t = 0.1.
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Table 4
Absolute errors with N = 15, 1t = 0.0005, a = −10 and b = 10

x t
0.001 0.002 0.006 0.02 0.03 0.04 0.05

1.04529 3.58, −7 9.98, −7 2.76, −6 1.97, −6 1.65, −6 5.16, −6 7.05, −6
3.09017 3.58, −7 1.01, −6 2.83, −6 1.73, −6 4.19, −6 1.37, −5 2.74, −5
5.00000 3.58, −7 1.07, −6 2.80, −6 2.89, −6 1.94, −5 4.97, −5 9.97, −5

(1.78, −6)

Fig. 3. The numerical and the exact solutions of Example 4 for N = 10, 1t = 0.001 and t = 0.1 (— Exact, · · · Numerical).

Table 5
Norm infinity and norm relative of errors of the solution u with a0 = 0.05

N a b 1t α β ‖E‖∞ ‖E‖
t = 0.5 t = 1.0 t = 0.5 t = 1.0

10 0 1 0.001 1.0 0.3 8.81, −6 8.82, −6 4.84, −5 4.92, −5
0.3 0.03 4.46, −5 4.52, −5 1.46, −4 1.46, −4

10 −10 10 0.1 0.1 0.3 4.16, −5 8.23, −5 6.45, −4 1.25, −3
0.3 0.03 4.59, −5 9.16, −5 6.90, −4 1.34, −3

20 −10 10 0.01 0.1 0.3 4.38, −5 8.66, −5 1.44, −3 1.27, −3
0.3 0.03 4.58, −5 9.16, −5 6.68, −4 1.30, −3

Example 5. Consider the coupled Burgers’ equations:

ut − uxx + 2uux + α(uv)x = 0,

vt − vxx + 2vvx + β(uv)x = 0
(58)

with the solitary wave solutions [41],

u(x, t) = a0 − 2A

(
2α − 1

4αβ − 1

)
tanh[A(x − 2At)],

v(x, t) = a0

(
2β − 1
2α − 1

)
− 2A

(
2α − 1

4αβ − 1

)
tanh[A(x − 2At)]

(59)

in the region D = {x : a < x < b} with A = (1/2)(a0(4αβ − 1))/(2α − 1), a0, α and β are arbitrary constants.

Tables 5 and 6, show norm infinity and norm relative of errors with a0 = 0.05 at time levels t = 0.5 and 1.0. The
results from the present study are in good agreement with the exact solutions.

In Fig. 4, we display the exact solutions of Example 5: (a), (b) when α = 1, β = 2 and a0 = 0.1.
In Fig. 5, we display the numerical and the exact solutions of Example 5: (a), (b) for N = 10, 1t = 0.1, t = 1,

α = 1, β = 2, and a0 = 0.1.
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Table 6
Norm infinity and norm relative of errors of the solution v with a0 = 0.05

N a b 1t α β ‖E‖∞ ‖E‖
t = 0.5 t = 1.0 t = 0.5 t = 1.0

10 0 1 0.001 1.0 0.3 2.86, −6 2.86, −6 4.22, −5 4.25, −5
0.3 0.03 1.11, −5 1.13, −5 2.48, −4 2.51, −4

10 −10 10 0.1 0.1 0.3 2.19, −5 4.10, −5 4.90, −4 9.36, −4
0.3 0.03 1.80, −4 3.59, −4 1.24, −3 2.42, −3

20 −10 10 0.01 0.1 0.3 4.99, −5 9.92, −5 5.42, −4 1.29, −3
0.3 0.03 1.81, −4 3.62, −4 1.20, −3 2.35, −3

Fig. 4. The exact solutions of Example 5: (a), (b) when α = 1, β = 2 and a0 = 0.1.

Fig. 5. The numerical and the exact solutions of Example 5: (a), (b) for N = 10, 1t = 0.1, t = 1, α = 1, β = 2, and a0 = 0.1 (— Exact, · · ·
Numerical).

Example 6. Consider the 2D unsteady Burgers’ equation:

ut + uux + uu y = ν(uxx + u yy) (60)

with the exact solutions [11],

u(x, y, t) =
1

1+ e(x+y−t)/2ν
(61)

in the region D = {x : a < x < b}, ν = 1/R and R is the Reynolds’ number.

Table 7, shows norm infinity and norm relative of errors for various values of N ,M , 1t and ν with a = 0, b = 1.
In Fig. 6, we display the numerical and the exact solutions of Example 6 for N = M = 30, ν = 0.01,1t = 0.0005,

t = 0.25 and y = 0.25.
In Fig. 7, we display Error (|Numerical − Exact|) of Example 6 at time t = 0.1 for N = M = 30, ν = 0.005,

y = 0.25, 1t = 0.0005.
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Table 7
Norm infinity and norm relative of errors for various values of N ,M , 1t and ν

N M 1t ν ‖E‖∞ ‖E‖
t = 0.05 t = 0.25 t = 0.05 t = 0.25

5 5 0.0050 1.00 8.94, −8 1.19, −7 1.50, −7 1.70, −7
10 10 0.0005 1.00 7.45, −7 8.05, −7 8.50, −7 9.82, −7
10 10 0.0050 0.10 1.28, −6 5.84, −6 2.49, −6 4.02, −6
10 10 0.0010 0.10 1.37, −6 2.09, −6 2.15, −6 2.63, −6
30 30 0.0005 0.01 4.14, −5 4.32, −3 4.65, −5 2.26, −3

Fig. 6. The numerical and the exact solutions of Example 6 for N = M = 30, ν = 0.01, 1t = 0.0005, t = 0.25 and y = 0.25 (— Exact, · · ·
Numerical).

Fig. 7. Error(|Numerical− Exact|) of Example 6 at time t = 0.1 for N = M = 30, ν = 0.005, y = 0.25, 1t = 0.0005.

Example 7. Consider the system of 2D Burgers’ equations:

ut + uux + vu y = ν(uxx + u yy)

vt + uvx + vvy = ν(vxx + vyy)
(62)

with the exact solutions [3,10],

u(x, t) =
3
4
−

1
4[1+ exp((−4x + 4y − t)/32ν)]

v(x, t) =
3
4
+

1
4[1+ exp((−4x + 4y − t)/32ν)]

(63)

in the region D = {(x, y) : a < x, y < b}, ν = 1/R and R is the Reynolds’ number.

Tables 8 and 9, show norm infinity and norm relative of errors for various values of N ,M , 1t and ν with a = 0,
b = 1 at time levels t = 0.01, 0.5 and 2.0. The results from the present study are in good agreement with the exact
solutions.

In Table 10, we give the exact and numerical values of u and v at the point (0.5, 0.5) for ν = 0.01, N = 20 and
1t = 0.001 at time levels t = 0.01, 0.5 and 2.0 compared with the results given by [3] with ν = 0.01, N = 20 and
1t = 0.0001. It is seen that the present method offers better accuracy in comparison with [3].
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Table 8
Norm infinity and norm relative of errors of the solution u for various values of N ,M , 1t and ν

N M 1t ν ‖E‖∞ ‖E‖
t = 0.01 t = 2.0 t = 0.01 t = 2.0

10 10 0.0005 1.000 1.31, −6 1.61, −6 7.97, −7 1.18, −6
10 10 0.0050 0.100 4.77, −7 1.13, −6 3.10, −7 7.89, −7
20 20 0.0010 0.010 3.22, −6 1.49, −5 1.71, −6 8.23, −6
30 30 0.0010 0.005 2.25, −5 9.99, −5 7.34, −6 3.54, −5

Table 9
Norm infinity and norm relative of errors of the solution v for various values of N ,M , 1t and ν

N M 1t ν ‖E‖∞ ‖E‖
t = 0.01 t = 2.0 t = 0.01 t = 2.0

10 10 0.0005 1.000 1.91, −6 1.91, −6 7.92, −7 8.94, −7
10 10 0.0050 0.100 5.96, −6 1.97, −6 2.96, −7 8.42, −7
20 20 0.0010 0.010 4.53, −6 1.03, −5 1.55, −6 4.35, −6
30 30 0.0010 0.005 2.19, −5 1.06, −4 5.48, −6 2.05, −5

Table 10
Comparison of numerical values of u and v with results from [3] for v = 0.01

t Values of u Values of v
ChSC Exact [3] ChSC Exact [3]

0.01 0.62305 0.62305 0.62311 0.87695 0.87695 0.87689
0.50 0.54332 0.54332 0.54222 0.95668 0.95668 0.95685
2.00 0.50049 0.50048 0.49931 0.99952 0.99952 0.99821

Fig. 8. The exact solutions of Example 7: (a), (b) when ν = 0.01 and y = 0.5.

In Fig. 8, we display the exact solutions of Example 7: (a), (b) when ν = 0.01 and y = 0.5.
In Fig. 9, we display the numerical and the exact solutions of Example 7: (a), (b) for N = M = 20, ν = 0.01,

1t = 0.001, t = 0.5 and y = 0.5.
In Fig. 10, we display Error (|Numerical − Exact|) of Example 7 at time t = 0.5: (a), (b) for N = M = 20,

ν = 0.005, y = 0.5 and 1t = 0.001.

4. Conclusions

In this paper the Chebyshev spectral collocation methods are elaborated to obtain numerical solutions of some
NLPDEs. The problem is reduced to a system of ODES that are solved by the Runge–Kutta method of order
four. Numerical results of 1D Burgers’, KdV–Burgers’, coupled Burgers’, 2D Burgers’ and system of 2D Burgers’
equations are obtained. The obtained approximate numerical solution maintains a good accuracy in little computer
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Fig. 9. The numerical and the exact solutions of Example 7: (a), (b) for N = M = 20, ν = 0.01, 1t = 0.001, t = 0.5 and y = 0.5 (— Exact, · · ·
Numerical).

Fig. 10. Error(|Numerical− Exact|) of Example 7 at time t = 0.5: (a), (b) for N = M = 20, ν = 0.005, y = 0.5, 1t = 0.001.

time compared with exact solution and the finite-difference method [3,12] and Galerkin quadratic B-spline finite
element method [38]. In addition the results are very useful not only for its numerical value but also for its physical
value in fluid mechanics, plasma physics, field theory, solid state physics and engineering science. Moreover the
method is applicable to a wide class of NLPDEs.
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