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1. Introduction

Let G be a connected, reductive Lie group acting algebraically on a smooth variety X. Throughout this paper, our base
field will always be C. The ring D(X)® of invariant differential operators on X has been much studied in recent years. In
the case where X is the homogeneous space G/K, O (X)© was originally studied by Harish-Chandra in order to understand
the various function spaces attached to X [8,9]. In general, D (X) is not a homomorphic image of the universal enveloping
algebra of a Lie algebra, but it is believed that £ (X)© shares many properties of enveloping algebras. For example, the center
of D(X)C is always a polynomial ring [ 12]. In the case where G s a torus, the structure and representation theory of the rings
D(X)® were studied extensively in [16], but much less is known about £ (X)® when G is nonabelian. The first step in this
direction was taken by Schwarz in [17], in which he considered the special but nontrivial case where G = SL(3) and X is the
adjoint representation. In this case, he found generators for D (X)¢, showed that O (X)® is an FCR algebra, and classified its
finite-dimensional modules.

1.1. Avertex algebra analogue of D (X)°

In [15], Malikov-Schechtman-Vaintrob introduced a sheaf of vertex algebras on any smooth variety X known as the
chiral de Rham complex. For an affine open set V' C X, the algebra of sections over V is just a copy of the bc8y-system
8(V) ® &(V), localized over the function ring @ (V). A natural question is whether there exists a subsheaf of “chiral
differential operators” on X, whose space of sections over V is just the (localized) By -system & (V). For general X, there
is a cohomological obstruction to the existence of such a sheaf, but it does exist in certain special cases such as affine spaces
and certain homogeneous spaces [15,7].

In this paper, we focus on the case where X is the affine space V = C", and we take (V) to be our algebra of chiral
differential operators on V. $(V) is related to £D (V) via the Zhu functor, which attaches to every vertex algebra V an
associative algebra A('V) known as the Zhu algebra of 'V, together with a surjective linear map 7z, : V — A(V).
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If V carries a linear action of a group G with Lie algebra g, the corresponding representation p : ¢ — End(V) induces a
vertex algebra homomorphism

O(g, B) — 8(V). (1.1)

Here O (g, B) is the current algebra of g associated to the bilinear form B(§, n) = —Tr(p(£)p(n)) on g. Letting @ denote the
image of O (g, B) inside 8(V), the commutant Com(®, §(V)), which we denote by §(V)®+, is just the invariant space §(V)?!l.
Accordingly, we call 8(V)®+ the algebra of invariant chiral differential operators on V. There is a commutative diagram

s(V)O+ < S(V)
T Tz 4 (1.2)
DV S D(V).

Here the horizontal maps are inclusions, and the map 7 on the left is the restriction of the Zhu map on 4§ (V) to the subalgebra
$(V)®+. In general, 7 is not surjective, and O (V) need not be the Zhu algebra of §(V)®+.

For a general vertex algebra 'V and subalgebra 4, the commutant Com(-, V) was introduced by Frenkel-Zhu in [4],
generalizing a previous construction in representation theory [10] and conformal field theory [6] known as the coset
construction. We regard V as a module over + via the left regular action, and we regard Com(, V), which we often denote
by V*+, as the invariant subalgebra. Finding a set of generators for V*+, or even determining when it is finitely generated
as a vertex algebra, is generally a non-trivial problem. It is also natural to study the double commutant Com(V*+, V), which
always contains . If A = Com('V*+, V), we say that s and V*+ form a Howe pair inside V. Since

Com(Com(V*+, V), V) = v*+,

a subalgebra 8 is a member of a Howe pair if and only if 8 = V*+ for some s.
Here are some natural questions one can ask about §(V)®+ and its relationship to D (V)°.

Question 1.1. When is 8(V)®+ finitely generated as a vertex algebra? Can we find a set of generators?

Question 1.2. When do 8(V)®+ and © form a Howe pair inside 8(V)? In the case where G = SL(2) and V is the adjoint module,
this question was answered affirmatively in [13].

Question 1.3. What are the vertex algebra ideals in 8(V)®+, and when is 8(V)®+ a simple vertex algebra?
Question 1.4. When is 8(V)®+ a conformal vertex algebra?

Question 1.5. Whenis 7 : 8(V)®+ — D(V) surjective? More generally, describe Im(rr) and Coker(r).

These questions are somewhat outside the realm of classical invariant theory because the Lie algebra g[t] is both infinite-
dimensional and non-reductive. Moreover, when G is nonabelian, $(V) need not decompose into a sum of irreducible
O (g, B)-modules. The case where G is simple and V is the adjoint module is of particular interest to us, since in this case
8(V)®+ is a subalgebra of the complex (W(g)pas, d) which computes the chiral equivariant cohomology of a point [14].

In this paper, we focus on the case where G is an abelian group acting faithfully and diagonalizably on V. This is much
easier than the general case because O (g, B) is then a tensor product of Heisenberg vertex algebras, which act completely
reducibly on $(V). For any such action, we find a finite set of generators for §(V)®+, and show that §(V)®+ is a simple vertex
algebra. Moreover, $(V)®+ and © always form a Howe pair inside $(V). For generic actions, we show that §(V)®+ admits
a k-parameter family of conformal structures where k = dimV — dim g, and we find a finite set of generators for Im(s).
Finally, we show that Coker(sr) is always a finitely generated module over Im(s;r) with generators corresponding to central
elements of D (V)C. The Zamolodchikov W; algebra of central charge ¢ = —2 plays an important role in the structure of
$(V)®+. Our description relies on the fundamental papers [ 18,19] of W. Wang, in which he classified the irreducible modules
of W3,_2.

In the case where G is nonabelian, very little is known about the structure of §(V)®+, and the representation-theoretic
techniques used in the abelian case cannot be expected to work. In a separate paper, we will use tools from commutative
algebra to describe 8(V)®+ in the special cases where G is one of the classical Lie groups SL(n), SO(n), or Sp(2n), and V is a
direct sum of copies of the standard representation.

One hopes that the vertex algebra point of view can also shed some light on the classical algebras D (V)°. For example, the
vertex algebra products on $(V) induce a family of bilinear operations #, k > —1 on D (V), which coincide with classical
operations known as transvectants. 9 (V)¢ is generally not simple as an associative algebra, but in the case where G is an
abelian group acting diagonalizably on V, D (V)¢ is always simple as a x-algebra in the obvious sense.
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2. Invariant differential operators

Fix a basis {x, ..., x,} for V and a corresponding dual basis {x], ..., x,} for V*. The Weyl algebra D (V) is generated
by the linear functions x; and the first-order differential operators % which satisfy [% x;] = 8;;. Equip O (V) with the
Bernstein filtration l l

DV)o CDV)a)y C -+, (2.1)
defined by ()1 - - - (x)kn () -+ () € DV) ) ifky++ - - +kn+ L ++ -+l < 7.Givenw € D(V)(yandv € D(V)g),
1 n
[w, V] € °(D(V)(r+s—2)- so that

gro(V) = P DWV)r)/DV) -1y = Sym(V & V). (2.2)
r>0
We say that deg(o) = difa € D(V) @ anda & D(V)g—1).

Let G be a connected Lie group with Lie algebra g, and let V be a linear representation of G via p : G — Aut(V). Then G
acts on D (V) by algebra automorphisms, and induces an action p* : g — Der(£D(V)) by derivations of degree zero. Since G
is connected, the invariant ring D (V) coincides with D (V)¢, where

D) ={w e DV) | p*()(w) =0, V& € g}.

We will usually work with the action of g rather than G, and for greater flexibility, we do not assume that the g-action comes
from an action of a reductive group G.
The action of g on D (V) can be realized by inner derivations: there is a Lie algebra homomorphism

n 9
T:g—> DV), & -— ZX§p*(€) (@> . (2.3)
i=1 i

(&) is just the linear vector field on V generated by &, so & € g acts on D (V) by [t(§), —]. Clearly T extends to a map
g — D(V), and

D(V)* = Com(t(Ug), D(V)).
Since g acts on D (V) by derivations of degree zero, (2.1) restricts to a filtration i)(V)’gO) - :D(V)?U C ---onPD(V)9, and
gr(DV)F) =gr(D(V))* = Sym(V & V*)L.

2.1. The case where g is abelian

Our main focus is on the case where g is the abelian Lie algebra C" = gl(1) @ - - - @ gl(1), acting diagonally on V. Let R(V)
be the C-vector space of all diagonal representations of g. Given p € R(V) and & € g, p(£) is a diagonal matrix with entries
af, - aﬁ, which we regard as a vector af = (a‘f, R aﬁ) € C". Let A(p) C C" be the subspace spanned by {p(£) | &£ € g}.

The action of GL(m) on g induces a natural action of GL(m) on R(V), defined by

€ -p)E =pE &) (24)
for all g € GL(m). Clearly A(p) = A(g - p) for allg € GL(m). Note that dim Ker(p) = dim Ker(g - p) for allg € GL(m), so
in particular GL(m) acts on the dense open set R°(V) = {p € R(V) | Ker(p) = 0}. The correspondence p — A(p) identifies
R°(V)/GL(m) with the Grassmannian Gr(m, n) of m-dimensional subspaces of C".

Givenp € R(V),D(V)? = i)(V)Q, where g’ = g/Ker(p), so we may assume without loss of generality that p € R%(V). We
denote D(V)*® by D (V)% when we need to emphasize the dependence on p. Given w € D(V), the condition p*(§)(w) = 0
for all & € gis equivalent to the condition that p*(g - £)(w) = O for all £ € g, so it follows that DV, = D(V)g., forall
g € GL(m). Hence the family of algebras D(V)§is parametrized by the points A(p) € Gr(m, n).

Fix o € R%(V), and choose a basis {&', ..., £™} for g. Let a' = (a"], ey a;) € C" be the vectors corresponding to the
diagonal matrices p (&%), and let A = A(p) be the subspace spanned by these vectors. The map 7 : g — D(V) is defined by

; nod
T(E) =) axi—. (2.5)
. oxX;
j=1 J
The Euler operators {e; = ;% |j=1,...,n}liein D(V)?, and we denote the polynomial algebra C[eq, ..., e;] by E.
'

Foreachj=1,...,nandd € Z define v € D(V) by

9 —d
</> d <0
ol = 1\ (2.6)

1 d=0
*)? d> 0.
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Let Z" C C" denote the lattice generated by the standard basis, and for each lattice pointl = (I, ..., ;) € Z", define
n I
W = 1_[ v} (2.7)
j=1
As a module over E,
D(V) = PM. (28)
lez™

where M, is the free E-module generated by w,. Moreover, we have
lej, ] = Loy, (2.9)

so the Z"-grading (2.8) is just the eigenspace decomposition of D (V) under the family of diagonalizable operators [e;, —].
In particular, (2.9) shows that

P (EN (@) = [1(§), @] = —(I, d)ay, (2.10)
where (, ) denotes the standard inner product on C". Hence « lies in D(V)? precisely when I € At, so
o= P M. (2.11)
leAtnz?

For generic actions, the lattice A* N Z" has rank zero, so D (V)? = My = E.
Consider the double commutant Com(D(V)?, H(V)), which always contains T = t(g) = C[t(&;)..., 1(&n)]. Since
Com(E, D(V)) = E, we have Com(D(V)?, D(V)) = E for generic actions.

Suppose next that AL NZ" hasrank r forsome 0 < r < n—m.Fori=1,...,rlet{l' = (I, ..., )} be abasis for At NZ",
and let L be the C-vector space spanned by {I', ..., I'}.If r < n — m, we can choose vectors s* = (sk, ..., sk) € [* N AL, so
that {I',...,I",s"t!, ..., s" ™}isabasisforA*.Fori=1,...,randk =r + 1, ..., n — m, define differential operators

n n
o' =D L vi=D s
= =
Note that Cles, ..., e, =T Q¥ ® &, where & = C[¢',...¢"]and ¥ = C[y"*, ... " ™).

Theorem 2.1. Com(D(V)?, D(V)) = T ® ¥. Hence H(V)? and T form a pair of mutual commutants inside D (V) precisely
when ¥ = C, which occurs when A* N Z" has rank n — m.
Proof. By (2.9), for any lattice pointl € AL NZ", and fork =r +1,...,n — m we have
[V, @l = (s, oy = 0
since s* € L*. It follows that ¥ C Com(D(V)¢, D(V)). Hence T ® ¥ C Com(D(V)?, D(V)). Moreover, since [¢', wy] =

(I, Dewyand {I', ..., I'} form a basis for A*NZ", it follows that the variables ¢’ cannot appear in any element w € Com(D(V)?,
DWV)). O
In the case ¥ = C, we can recover the action p (up to GL(m)-equivalence) from the algebra £D(V)?® by taking its

commutant inside O (V), but otherwise D (V)¢ does not determine the action.

3. Vertex algebras

We will assume that the reader is familiar with the basic notions in vertex algebra theory. For a list of references, see
page 117 of [13]. We briefly describe the examples and constructions that we need, following the notation in [13].

Given a Lie algebra g equipped with a symmetric g-invariant bilinear form B, the current algebra ©(g, B) is the universal
vertex algebra with generators X¢ (2), £ € g, which satisfy the OPE relations

XE@)X"(w) ~ BE, )z — w) 2 + XEN(w)(z — w)™"

Given a finite-dimensional vector space V, the Sy -system, or algebra of chiral differential operators $(V), was introduced
in [5]. It is the unique vertex algebra with generators 8*(z), y"/ (z) forx € V,x' € V*, which satisfy

B @)y* (w) ~ X, )z —w)', Y @B w) ~ =K, x)(z —w) !,
@) w) ~0, ¥ @y’ (w) ~0. (3.1)
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Givena = (aq, ..., a,) € C", 8(V) has a Virasoro element
n
@) =) (= 1) : 9B @y"(@) : +ai : @IV (2) : (3.2)
i=1
of central charge Z?:l (12011'2 — 1205 + 2). Here {x;, ..., x,} is any basis for V and {x}, ..., x,} is the corresponding dual

basis for V*. An OPE calculation shows that 8% (z), y"§ (z) are primary of conformal weights «;, 1 — «;, respectively.
4(V) has an additional Z-grading which we call the 8y -charge. Define

n
v@) =) F@YN@ (33)
i=1
The zeroth Fourier mode v(0) acts diagonalizably on §(V); the 8y -charge grading is just the eigenspace decomposition of
4(V) under v(0). Forx € V and x' € V*, B*(z) and y"/ (z) have By-charges —1 and 1, respectively.
There is also an odd vertex algebra &(V) known as a bc-system, or a semi-infinite exterior algebra, which is generated
by b*(z), ¢* (z) for x € V and x' € V*, which satisfy

@) w) ~ (K, 0z —w), K @b w) ~ K, x)E—w) T,
PP w) ~0, @) (w) ~ 0.

& (V) has an analogous conformal structure L*(z) for any « € C", and an analogous Z-grading which we call the bc-charge.
Define

@) ==Y :b"@)cN@) ;. (3.4)
i=1

The zeroth Fourier mode q(0) acts diagonalizably on $(V), and the bc-charge grading is just the eigenspace decomposition
of &(V) under q(0). Clearly b*(z) and o (z) have bc-charges —1 and 1, respectively.

3.1. The commutant construction

Definition 3.1. Let 'V be a vertex algebra, and let 4 be a subalgebra. The commutant of 4 in V, denoted by Com(+4, V) or
Y4+, is the subalgebra of vertex operators v € V such that [a(z), v(w)] = 0 for all a € 4. Equivalently, a(z) o, v(z) = 0
foralla € A andn > 0.

We regard 'V as a module over «4, and we regard V*+ as the invariant subalgebra. If 4 is a homomorphic image of a
current algebra ©(g, B), V*+ is just the invariant space V1, We will always assume that 'V is equipped with a weight
grading, and that + is a graded subalgebra, so that V*+ is also a graded subalgebra of V.

Our main example of this construction comes from a representation p : g — End(V) of a Lie algebra g. There is an
induced vertex algebra homomorphism 7 : @(g, B) — 4(V), which is analogous to the map 7 : Ug — D(V) given by (2.3).
Here B is the bilinear form B(§, ) = —Tr(o(§)(n)) on g. In terms of a basis {x4, ..., x,} for V and dual basis {x, ... x}
for V*, T is defined by

n

tXE@) =05 ==Y yN@prON (@) (35)

i=1

Definition 3.2. Let © denote the subalgebra 7(0O(g, B)) C $(V). The commutant algebra §(V)®+ will be called the algebra
of invariant chiral differential operators on V.

If (V) is equipped with the conformal structure L* given by (3.2), ® is not a graded subalgebra of §(V) in general. For
example, if g = gl(n) and V = C", ® is graded by weight precisely when oy = o = - - - = «,,. However, when g is abelian
and its action on V is diagonal, 6% (z) will be homogeneous of weight one for any .. Hence §(V)®+ is also graded by weight,
but this grading will depend on the choice of .

3.2. The Zhu functor

Let V be a vertex algebra with weight grading Vv = @, ; V. In [21], Zhu introduced a functor that attaches to V an
associative algebra A('V), together with a surjective linear map 7z, : V — A(V).Fora € V,, and b € V, we define

a* b = Res, (a(z)ﬂb) , (3.6)
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and extend * by linearity to a bilinear operation V ® V — V. Let O('V) denote the subspace of V spanned by elements of
the form

aob =Res, (a(z)(z—’_zl)mb) (3.7)
z

where a € 'V, and let A('V) be the quotient V/O('V), with projection 7z : V — A(V).Fora,b € V,a ~ b means
a — b € 0(V), and [a] denotes the image of a in A('V). A useful fact which is immediate from (3.6) and (3.7) is that for
ae€ Vy,

da ~ ma. (3.8)

Theorem 3.3 (Zhu). O(V) is a two-sided ideal in V under the product *, and (A('V), ) is an associative algebra with unit [1].
The assignment 'V +— A(V) is functorial. If 1 is a vertex algebra ideal of 'V, we have

AV =AW/, | = mz(d). (3.9)

The main application of the Zhu functor is to study the representation theory of 'V, or at least reduce it to a more classical
problem. Let M = €P, .., M, be a module over V such that for a € Vi, a(n)My C My yx—n—1 foralln € Z. Given a € Vp, the
Fourier mode a(m — 1) acts on each My. The subspace My is then a module over A('V) with action [a] = a(m—1) € End(Mp).
In fact, M — M, provides a one-to-one correspondence between irreducible Z,-graded V-modules and irreducible A('V)-
modules.

A vertex algebra V is said to be strongly generated by a subset {v;(z) | i € I} if V is spanned by collection of iterated Wick
products

{0 9", 2) - - - 3"y, (2) 2 ke, - ooy ke > O}

Lemma 3.4. Suppose that 'V is strongly generated by {v;(z) | i € I}, which are homogeneous of weights d; > 0. Then A('V) is
generated as an associative algebra by the collection {rtz,(v;) | i € I}.

Proof. Let C be the algebra generated by {7, (v;)|i € I}. We need to show that for any vertex operator w € V, we have
7z (w) € C. By strong generation, it suffices to prove this when w is a monomial of the form
. 8"11),-1 s akrv,'r M-
We proceed by induction on weight. Suppose first that w has weight zero, so thatk; = --- =k, = 0and v;,, ..., v;, all have
weight zero. Note that v;, o,(: vj, - - - v;, :) has weight —n — 1, and hence vanishes for all n > 0. It follows from (3.6) that
i I * [ viy - vy, 2] = [@].
Continuing in this way, we see that [w] = [v;, ] * [vi,] * - - - % [v;. ] € C. Next, assume that 7z;(w) € € whenever wt(w) < n,
and suppose that w = : 8%1y;--- 8% v, : has weight n. We calculate
[0%1v; 1% [: 82uy, --- 8% vy ] = [@] + ...,
where - - - is a linear combination of terms of the form [9*! vy, ok(: gk Vjy - gk v, :)] for k > 0. The vertex operators
a1, o (: 32wy, - - d%rv;, ) all have weight n — k — 1, so by our inductive assumption, [9%1v;, o (: d*2vy, - - - 9%y )] € C.
Applying the same argument to the vertex operator : 9*2v;, --- 9% v; : and proceeding by induction on r, we see that
[w] = [9% v e % [9%n v;,] modulo €. Finally, by applying (3.8) repeatedly, we see that [w] € C, as claimed. O

Example 3.5. V = O(g, B) where each generator X¢ has weight 1. Then A(O (g, B)) is generated by {[X¢] | £ € g}, and is
isomorphic to the universal enveloping algebra tig via [X¢] — £.

Example 3.6. Let V = $(V) where V = C", and §(V) is equipped with the conformal structure L% given by (3.2). Then
A(4(V)) is generated by {[y*], [8*]} and is isomorphic to the Weyl algebra £ (V) with generators x;, ﬁ via

e e
v X,

Even though the structure of A($(V)) is independent of the choice of «, the Zhu map 7z, : §(V) — A(8(V)) does depend
on «. For example, (3.6) shows that

X, px; / 0
T yipY ) =X +1—a. (3.10)
i
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We will be particularly concerned with the interaction between the commutant construction and the Zhu functor. If
a,b € V are (super)commuting vertex operators, [a] and [b] are (super)commuting elements of A('V). Hence for any
subalgebra 8 C V, we have a commutative diagram

Com(B,V) <> v
T T 4 (3.11)
Com(B,A(V)) <> A(V).

Here B denotes the subalgebra 7z (8) C A(V), and Com(B, A(V)) denotes the (super)commutant of B inside A('V). The
horizontal maps are inclusions, and  is the restriction of the Zhu map on 'V to Com(&8, V). Clearly Im(sr) is a subalgebra of
Com(B, A('V)). A natural problem is to describe Im(sr) and Coker(sr). In our main example V = $(V) and A = ®, we have
(@) = t(Ug) C H(V) and Com(r (Ug), D(V)) = D(V)?, so (3.11) specializes to (1.2).

4. The Friedan-Martinec-Shenker bosonization
4.1. Bosonization of fermions

First we describe the bosonization of fermions and the well-known boson-fermion correspondence due to [3]. Let A be
the Heisenberg algebra with generators j(n),n € Z, and «, satisfying [j(n), j(m)] = né,4m.ox. The fieldj(z) = Znezj(n)z‘”‘1
satisfies the OPE

J@jw) ~ @ —w)~?,

and generates a Heisenberg vertex algebra # of central charge 1. Define the free bosonic scalar field
j(n
6@ =q+jO Iz — 3 Wy,
n#0

where q satisfies [q, j(n)] = &p,0. Clearly d¢(z) = j(z), and we have the OPE

¢@)p(w) ~ In(z — w).
Given « € C, let #, denote the irreducible representation of A generated by the vacuum vector v, satisfying

jMmvy = abpovy, n>0. (4.1)

Given 7 € C, the operator €"(vy) = Vg4, SO €7 maps #, — H,,. Define the vertex operator

X, (2) = e"*@ = "z exp (n Zj(—n)z:> exp (n Zj(—n)znn> .

n>0 n<0

The X, satisfy the OPEs
. _ 1
J@Xy(w) = nX, () —w)™" + ;8X,,(w),

X, @)X, (w) = (z — w)" : X, (@)X, (w) : .

If we take n = =1, the pair of (fermionic) fields X;, X_; generate the lattice vertex algebra V| associated to the one-
dimensional lattice L = Z. The state space of V; is just ) _, _, #, = # ®c L. It follows that

XX~ z—w), Xa@Xi(w) ~ (z—w) ",

Xi@Xi(w) ~0, X 1(@)X_1(w) ~0,
so the map & — V, sending b — X_1, ¢ — Xj is a vertex algebra isomorphism. Here & denotes the bc-system & (V) in the
case where V is one-dimensional.

4.2. Bosonization of bosons

Next, we describe the bosonization of bosons, following [2]. Recall that & has the grading & = @,z &' by bc-charge. As
in [2], define N(s) = > ., ¢'® His+1, which is a module over the vertex algebra & ® Vy/. Here L is the one-dimensional
lattice iZ, and Vy/ is generated by X.;. We defineamape : § - & ® V/ by

B db®X_j, y = ¢ ®X. (4.2)

It is straightforward to check that (4.2) is a vertex algebra homomorphism, which is injective since 4§ is simple. Moreover
Proposition 3 of [2] shows that the image of (4.2) coincides with the kernel of c(0) : N(s) — N(s — 1). Let & be the
subalgebra of & generated by c and db, which coincides with the kernel of c(0) : & — &. It follows that

€8 C & V. (4.3)
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5. ‘W algebras

The W algebras are vertex algebras which arise as extended symmetry algebras of two-dimensional conformal field
theories. For each integer n > 2 and c € C, the algebra W, . of central charge c is generated by fields of conformal weights
2,3,...,n.Inthe case n = 2, W, is just the Virasoro algebra of central charge c. In contrast to the Virasoro algebra, the
generating fields for W, . for n > 3 have nonlinear terms in their OPEs, which makes the representation theory of these
algebras highly nontrivial. One also considers various limits of ‘W algebras denoted by W;., . which may be defined as
modules over the universal central extension D of the Lie algebra D of differential operators on the circle [11].

We will be particularly concerned with the Ws algebra, which was introduced by Zamolodchikov in [20] and studied
extensively in [1]. Our discussion is taken directly from [18,19]. First, let ¥ ('W3) denote the free associative algebra with
generators L, Wy, m € Z. Let ﬁ(Wg) be the completion of # (Ws) consisting of (possibly) infinite sums of monomials in
F ('Ws3) such that for each N > 0, only finitely many terms depend only on the variables L,,, W, for n < N. For a fixed central
charge c € C, let U'W; . be the quotient of f(”Wg) by the ideal generated by

C
[Lin, Ly] = (M — n)Lypyn + E(m3 - m)am,—na (5.1)

[Lm, Wn] = 2m — m)Winyn, (5.2)

c
+ m(m — M) Apin + %m(mz — 1)(m* — 48, —n. (5.3)

Here

3
Ay = HZZ LoLm—n + Z Lin—nLy — E(m +2)(m + 3)Ly,.

n>-2
Let
Ws e+ = {Ln, Wy, &£n > 0}, Ws .0 = {Lo, Wo}.
The Verma module M, (t, w) of highest weight (t, w) is the induced module
UWs c ®w, . oWs o Ctows
where C; ,, is the one-dimensional W5 . . @ Ws . o-module generated by the vector v; ,, such that

W3,C,+(U[,w) = 07 LO(Ut,w) = tvt,un WO(v[,w) = WVt -
Avector v € M. (t, w) is called singular if W5 . . (v) = 0.In the case t = w = 0, the vectors
L_1(vo,0), W_1(vo,0), W_3(vo,0) (5.4)

are singular vectors in M. (0, 0). The vacuum module 'V'Ws . is defined to be the quotient of M. (0, 0) by the £{'W; .-submodule
generated by the vectors (5.4). V'Wj; . has the structure of a vertex algebra which is freely generated by the vertex operators

L(z) = Zan’”’z, W(2) = Z Woz "3,

nez nez
In particular, the vertex operators

(8"L@) - d"L@)P W (@) - W@ |0 < iy < - Sim, 0 <j1 < -+ <ja)
which correspond to iy!---inlji! - jull_y—2 - Lo, —2W_j,_3-- - W_j,_3v00 under the state-operator correspondence,
form a basis for VW; .. By Lemma 4.1 of [19], the Zhu algebra A(VW; ) is just the polynomial algebra C[I, w] where
I = mz(L) and w = mz(W).

Let 4. denote the maximal proper 4'W; .-submodule of V'W; ., which is a vertex algebra ideal. The quotient VWs /4.
is a simple vertex algebra which we denote by Ws .. Let I. = 7z (d.), which is an ideal of C[l, w]. By (3.9), we have
A(W;) = C[l, w]/I.. Generically, {; = 0, so that VW3 . = W5 .. We will be primarily concerned with the non-generic
case c = —2,in which {_, # 0. The generators L(z), W(z) € VW;__; satisfy the following OPEs:

L@)L(w) ~ —(z — w) ™ * + 2L(w)(z — w) ? 4+ L(w)(z — w) ", (5.5)

LW (w) ~ 3W W) (z — w) "2 + dW(w)(z — w) ", (5.6)
WE@W(w) ~ —%(z —w) S+ 2L(w)(z — w) "+ IL(w)(z — w) >
8 1, L, (4 1., .
+15 s L(w)L(w) : —53 Lw) )z —w) %+ 5a(: L(w)L(w) ;) — 58 Lw))z—w)' (57)

The simple vertex algebra ‘W5 _, also has generators L(z), W (z) satisfying (5.5)-(5.7), but ‘W5 _, is no longer freely generated.
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In order to avoid introducing extra notation, we will not use the change of variables \7\/(2) = %\/ESW () given by Eq. 3.13
of [19]. By Lemma 4.3 of [19], the ideal I_, C C[I, w] is generated (in our variables) by the polynomial

w? — 312(81+ 1) (5.8)
= . )

5.1. The representation theory of W5 _;

In [19], Wang gave a complete classification of the irreducible modules over the simple vertex algebra ‘W; _,. An
important ingredient in his classification is the following realization of ‘W5 _, as a subalgebra of the Heisenberg algebra
J¢ with generator j(z) satisfying j(z)j(w) ~ (z — w) 2. Define

1, .
= 5(:1 D+, Wy=

¢ )+—(181)+6 (5.9)

3f NG f

The map W; _, — J¢ sendingL — Ly and W +— Wy is a vertex algebra homomorphism, so we may regard any #-module
as a 'W; _;-module. Given « € C, consider the irreducible #-module #, defined by (4.1), and let V,, denote the irreducible
quotient of the W5 _,-submodule of #,, generated by v,. It is easily checked that the generator v,, is a highest weight vector
of Ws _, with highest weight

(%a(a -1, ﬁa((x —1)QRa — 1)) . (5.10)

The main result of [19] is that the modules {V,, | « € C} account for all the irreducible modules of W _,.

6. The commutant algebra $(V)®+ for g = gl(1) and V = C

In this section, we describe $(V)®+ in the case where g = gl(1) and V = C, where the action p : g — End V is by
multiplication. Fix a basis & of g and a basis x of V, such that p(&)(x) = x. Then 8 = $(V) is generated by 8(z) = 8*(z) and
y(z) = y"/ (2), and the map (2.5) is given by

d
g5 D=DV), Er —X—.

dx’
In this case, O (g, B) is just the Heisenberg algebra #¢ of central charge —1, and the action of J¢ on 4§ given by (3.5) is
0(@)=—:1v@B@ (6.1)
which clearly satisfies
0(2)0(w) ~ —(z —w) % (6.2)

As usual, ® will denote the subalgebra of 8 generated by 6(z). Since —8(0) is the 8y -charge operator, $°+ must lie in the
subalgebra £° of By -charge zero.

Let : 6" : denote the n-fold iterated Wick product of # with itself. It is clear from (6.2) that each : 8" : lies in 8° but not
in 8°+. A natural place to look for elements in §%+ is to begin with the operators : " : and try to “quantum correct” them
so that they lie in 8%+, As a polynomial in 8, 38, ..., v, dy, ..., note that

L0 = (=1 + v,
where v, has degree at most 2n — 2. By a quantum correction, we mean an element w, € 4§ of polynomial degree at most
2n — 2,sothat: 0" : +w, € $°+.

Clearly 6 has no such correction w1, because w1 would have to be a scalar, in which case 8 01(6 4+ w1) = 0016 = —1.
However, the next lemma shows that we can find such w, foralln > 2.

Lemma 6.1. Let
wy =: BOy):—: 0By :,
9 2 9 2 3 2 3 2
Wy ==z By @y): +5 BBy : —3¢ B@°y): —3¢ (0°B)y : +6: (38)(dy) : .

Then: 6% : 4w, € 8%+ and : 03 : +w; € $9+. Since : (") :and : (: 6 :)(: & :) : have the same leading term as polynomials
inB,dB,...,y,dy,...fori+j=n, it follows that for any n > 2 we can find w, such that : 8" : +w, € 8§°+.

Proof. This is a straightforward OPE calculation. O
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Next, define vertex operators Ly, W5 € $°+ as follows:

L_1(92+ _1 22'—'8 . . 9 . 6.3
s =500 602)—2(~,3V D= @By 1+ BOY) 1, (6.3)

2 3
Wy = =[2G +an)
_ 20— ﬁ(- BB )+ ﬁc By (9y) )
JZ ey - e e .
1, 8 1
+SC @B 9= \[5C 0B@N )+ |2 B@) ). (64)

Let W C 89+ be the vertex algebra generated by Ly, Wj. An OPE calculation shows that the map
VW3 _y — 89+, L+ Ly, W > Wy (6.5)
is a vertex algebra homomorphism. Moreover, the ideal {_, is annihilated by (6.5), so this map descends to a map
Wy _y > 89%. (6.6)

In fact, (6.6) is related to the realization of ‘W5 _, as a subalgebra of # defined earlier. First, under the boson-fermion
correspondence,

Ly +— Lg = :0bc:, (6.7)
1
Wy > We = %(: (3%b)c : — : (3b)(3c) ). (6.8)

Next, under the map € : § — & ® J given by (4.2), we have
Li>Le®1, Wi We®1. (6.9)
The subalgebra 4° of 8y -charge zero has a natural set of generators
U'=:p@y) iz0}

and it is well known that $° is isomorphic to Wi _; [11]. One of the main results of [18] is that € : § — & ® H restricts
to an isomorphism

0= A H, (6.10)

where 4 = W; _, is the subalgebra of &€ generated by L and W¢. By (6.9), ¢ maps ‘W onto 4 ® 1. Similarly, € (0) = i(1®}]),
soemaps ®onto 1 ® #,and 8° = W ® 6.
For each d € Z, the subspace $¢ of By -charge d is a module over 8%, which is in fact irreducible [11,19]. Define v (z) € $¢

by

B d<o0
viz)y =11 d=0 (6.11)
y(z)d d> 0.

Here B(z)% and y(z)¢ denote the d-fold iterated Wick products : 8(z) --- B(z) :and : y(z) - - - y(2) :, respectively. Each
v%(2) is a highest weight vector for the action of W5 _5, and the highest weight of v¢(z) is given by (5.10) with

(6.12)

a=d d<o0
a=d+1 d=>O0.

Moreover, v¢(z) is also a highest weight vector for the action of #, so 49 is generated by v¢(z) as a module over W3 o ® H.

Theorem 6.2. The map f : ‘W3 _, <> 89+ given by (6.6) is an isomorphism of vertex algebras. Moreover, Com(8°+, 8) = ©.
Hence © and 8°+ form a Howe pair inside 8.
Proof. Clearly §°+ C 49, and since 8° = W ® ©, we have
894 = Com(@, W ® ) = W ® Com(0, ©) = W.
This proves the first statement. As for the second statement, it is clear from (5.10) and (6.12) that Com($°+, 8) C 4° Hence

Com($°+, 8) = Com(W, W® ®) = O ® Com(W, W) =60. O
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6.1. Themap  : 8+ — D¢

Equip 4 with the conformal structure [* = (¢ — 1) : d8(z)y(z) : + « : B(z)dy(z) : and consider the map

7 : 89+ — D9 given by (1.2). In this case, D? is just the polynomial algebra C[e], where e is the Euler operator x/%.

Lemma 6.3. We have

2 o, Lo 1
——e —e —e.
3v6 V6 3/6

In particular, w (Lg) and 7w (Wy) are independent of the choice of «.

nL) = @0, W) = (6.13)

Proof. This is a straightforward computation using (3.6) and the fact that 77, (y (z)) = ¥’ and 7z(8(2)) = & Note that
| =m(Ls) and w = w(Wjy) satisfy (5.8). O

Corollary 6.4. For any conformal structure L* on $ as above, Im(sr) is the subalgebra of C[e] generated by 7 (Ls) and 7w (Wy).
Moreover, Coker(wr) = C[e]/Im(sr) has dimension one, and is spanned by the image of e in Coker (7).

Proof. The first statement is immediate from Lemma 3.4, since 8%+ is strongly generated by Ls and W which have weights
2 and 3 respectively. The second statement follows from (3.10) and (6.13), because any polynomial in C[e] is equivalent to
an element which is homogeneous of degree 1 modulo Im(xr). O

7. $(V)®+ for abelian Lie algebra actions

Fix a basis {x1, ..., x,} for V and dual basis {x], ..., x;} for V*. We regard §(V) as §; ® - - - ® 4,, where 4; is the copy
of § generated by 8% (z), ny{ (2). Let fj : 8 — 8(V) be the obvious map onto the jth factor. The subspace 5]9 of By-charge
zero is isomorphic to W ® #’, where #’ is generated by 6#/(z) = f;(6(z)), and W’ is generated by I’ = f;(Ls), W’ = fj(Wy).
Moreover, as a module over W ® 3¢/, the space ' of 8y -charge d is generated by the highest weight vector v (z) = f;(v(2)),
which is given by

Bz~ d<0
vl@) =1 / d=0 (7.1)
i)  d>o0.

We denote by JJT the linear span of the vectors {vf(z) | d € Z}. Note that for any conformal structure L* on §(V), the
differential operators vf’ € D(V) defined by (2.6) correspond to vf (z) under the Zhu map. Let 8 denote the vertex algebra

90 -8 =(WOHH® - ® (W' H").

Clearly the space $(V)’ consisting of highest-weight vectors for the action of B is just 8] ® - - - ® 4. As usual, let 2" C C"
denote the standard lattice. For each lattice point | = (I, ..., I,) € Z", define

wi(2) = v (@) (2) (7.2)
where vjd(z) is given by (7.1). For example, in the case n = 2 and | = (2, —3) € Z?, we have

wi(2) = v}@);°(2) =1 Y @)y 2) B @) B2 () @) : .

For any conformal structure L* on §(V), w;(z) corresponds under the Zhu map to the element w; € D (V) given by (2.7).

Lemma 7.1. Foreach | € Z", the 8-module M, generated by w,(z) is irreducible. Moreover, as a module over B,

s(V) =P M. (7.3)

lez™
Proof. This is immediate from the description of 8¢ as the irreducible $°-module generated by v4(z), and the fact that
V)Y =4®---®34,. O

Note that 6/(z) og wi(z) = —ljw(z), so the Z"-grading on $(V) above is just the eigenspace decomposition of (V) under
the family of diagonalizable operators —6’(z) oq.
For the remainder of this section, g will denote the abelian Lie algebra

=gl @ ®gl),
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and p : g — End(V) will be a faithful, diagonal action. Let A(p) C C" be the subspace spanned by {0(£) | & € g}. As in the
classical setting, we denote $(V)®+ by § (V);)+ when we need to emphasize the dependence on p. Clearly 4§ (V);)Jr = 5(V)g;

for all g € GL(m), so the family of algebras /S(V)g)+ is parametrized by the points A(p) € Gr(m, n).
Choose a basis {€1, ..., €™} for g such that the corresponding vectors

pEY=d =(d,....,d)eC"

form an orthonormal basis for A = A(p). Let 8% (z) be the vertex operator corresponding to p (&), and let ® be the subalgebra
of B generated by {#%(z) | i=1, ..., m}. By (3.5), we have

i)=Y 0@ =~ a: i@ ;.
=1 j=1

Clearly 0% (2)0% (w) ~ —(d', d)(z — w) ™% = 8§ j(z — w) 2.
If m < n, extend the set {a', ..., @™} to an orthonormal basis for C" by adjoining vectors b’ = (b', ..., bﬁl) e C", for
i=m+1,...,n. Let

'@ =D b@) =) b: @@ :
j=1 j=1

be the corresponding vertex operators, and let @ be the subalgebra of B generated by {¢(z) | i = m+1, ..., n}. The OPEs
' @¢ (w) ~ — (b, V)z—w)?, @) (w) ~ —(d, )z —w)?

show that the ¢(z) pairwise commute and each generates a Heisenberg algebra of central charge —1, and that & C $(V)%+.
In particular, we have the decomposition

H'QR - QH'"=ORD.

Next, let W denote the subalgebra of B generated by {I/(z), Wi(z) | j = 1, ..., n}. Theorem 6.2 shows that W commutes
with both ® and @, so we have the decomposition
B=WRORQP. (7.4)

In particular, the subalgebra 8’ = ‘W ® & lies in the commutant 8(V)®+. Let M; denote the B’-submodule of M, generated
by wy(z), which is clearly irreducible as a 8’-module.

In order to describe §(V)®+, we first describe the larger space $(V)®> which is annihilated by 6% (k) fori = 1,...,m
and k > 0.Then 8(V)®+ is just the subspace of 8(V)®> which is annihilated by #%(0), fori = 1, ..., m.Itis clear from (7.4)
and the irreducibility of M; as a B-module that $(V)?> N M; = M], SO

s =P M. (7.5)

lez

Theorem 7.2. As a module over B’,

s> = P M. (7.6)

leALnz"

Proof. Let w(z) € 8(V)®+. Since w lies in the larger space §(V)®> which is a direct sum of irreducible, cyclic 8’-modules
M| with generators w;(z), we may assume without loss of generality that w(z) = w;(z) for some . An OPE calculation shows
that

0% @)1 (w) ~ —(d, hoy(w)(z —w)~". (7.7)
Hence w; € $(V)®+ if and only if [ lies in the sublattice A* NZ". O

Our next step is to find a finite generating set for §(V)®+. Generically, At N Z" has rank zero, so 8(V)®+ = B’, which is
(strongly) generated by the set

'@, l@),W@li=m+1,...,n, j=1,...,n}.

If A* N Z" has rank r for some 0 < r < n — m, choose a basis {I', ..., I'} for A~ N Z". We claim that for any | € A* N Z",
w(z) lies in the vertex subalgebra generated by

{opn@),...,0r@2),0_n2),...,0_r@))}.

It suffices to prove that given lattice points [ = (I3, ..., ) and ' = (I}, ..., ) InZ", wiy (z2) = kwi(2) oq wy (z) for some
k#0andd e Z.
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First, consider the special case where | = (I3,0,...,0)and I' = ({,0,...,0).If jI; > 0, we have w(z) o wy(z) =
w1y (2). Suppose next that l; < 0and I} > 0, so that w(z) = g (z)~" and wy (z) = y"/l (z)’/l. Let
di = min{—I, I}}, e; = max{—h, [}}, d=d; —1.

An OPE calculation shows that

w((2) og wy (z) = wr(2), (7.8)

eq!
(e1 —dy)!

where as usual 0! = 1. Similarly, if l; > 0and I} < 0, we take d; = min{l;, —I1}, ey = max{ly, —I}},and d = d; — 1. We
have

eq!
(@) 0q 1 (2) = = ———— w11 (2). (79)
(ey —dy)!
Now consider the general case | = (I3, ..., l;)and ' = (I}, ..., I}).Forj=1,...,n, define
& 0 >0 _Jo Ll >0
9= {minglgl, 101}, 4 <0, & {maxlyl, 151}, L <o,

_ 0 1150 _ -
k,-_{dj =0, d_—1+2dj.
j=

Using (7.8) and (7.9) repeatedly, we calculate

n

1
w(2) o wy (2) = <1—[(_1)qu> w1 (2),

=1 (Ej — dj)‘

which shows that w,y(z) lies in the vertex algebra generated by w;(z) and wy (z). Thus we have proved

Theorem 7.3. Let {I', ..., I"} be a basis for the lattice AL N Z", as above. Then 8(V)®+ is generated as a vertex algebra by B’
together with the additional vertex operators

wp(2), ..., 0r(2), w_pn(2), ..., 0_r(2).
In particular, $(V)®+ is finitely generated as a vertex algebra.

In the generic case where A* NZ" = 0 and 8(V)?+ = B’, we claim that §(V)®+ has a natural (n — m)-parameter family
of conformal structures for which the generators ¢'(z), I/(z), W/(z) are primary of conformal weights 1, 2, 3, respectively.
Note first that ‘W has the conformal structure Ly (z) = 2}1:1 I)(2) of central charge —2n.

It is well known that for k % 0 and ¢ € C, the Heisenberg algebra J¢ of central charge k admits a Virasoro element
[f(z) = zlk j(2)j(z) + cdj(z) of central charge 1 — 12c%k, under which the generator j(z) is primary of weight one. Hence
given L = (Am1, - - ., An) € C""™ the Heisenberg algebra generated by ¢'(z) has a conformal structure

1 : : .
1(z) = -3 ?'(2)¢'(2) : +2i0¢'(2)

of central charge 1 + 12kl-2. Since ¢'(z) and ¢/(z) commute for i # j, it follows that h(2) = Z,.:mH L% (z) is a conformal
structure on @ of central charge ) 1+ 1222 Finally,

n
i=m+1

Lp@) =Lly(@) @1+1QLLZ) e WRd =8

is a conformal structure on B’ of central charge —2n + Y .| 1+ 1217 with the desired properties.

When the lattice A~ N Z" has positive rank, the vertex algebras 8(V)®+ have a very rich structure which depends
sensitively on AL NZ". In general, the set of generators for 8(V)®+ given by Theorem 7.3 will not be a set of strong generators,
and the conformal structure Lg on B’ will not extend to a conformal structure on all of 8(V)®+.

Theorem 7.4. For any action of g on V, Com(8(V)®+, 8(V)) = ©. Hence $(V)®+ and © form a Howe pair inside $(V).

Proof. Since 8 C 4$(V)®+, we have ® C Com(8(V)®+, 8(V)) C Com(&’, 4(V)), so it suffices to show that
Com(B’, 8(V)) = @.Recallthat B’ = W ®and® ® & = #! ® --- ® #H". Since Com(W', §;) = F' by Theorem 6.2, it
follows that Com('W, §(V)) = ® ® &.Then

Com(B’, 8(V)) = Com (&, Com(W, 8(V))) = Com(®,O @ &) =60 ® Com(P, d) =6. O
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This result shows that we can always recover the action of g (up to GL(m)-equivalence) from §(V)®+, by taking its
commutant inside 8 (V). This stands in contrast to Theorem 2.1, which shows that we can reconstruct the action from £ (V)?
only when At N Z" has rank n — m.

Theorem 7.5. For any action of gon V, 8(V)®+ is a simple vertex algebra.

Proof. Given a non-zero ideal 4 C $(V)®+, we need to show that 1 € J. Let w(z) be a non-zero element of 4. Since each
M| is irreducible as a module over B’, we may assume without loss of generality that

w@) =) qw() (7.10)
lez™
for constants ¢; € C, such that ¢; # 0 for only finitely many values of .

For each lattice point I = (I, ...,1l,) € Z", both w;(z) and w_;(z) have degree d = Z]'?:] lj] as polynomials in the

variables 8% (z) and yXJ/' (z). Let d be the maximal degree of terms w;(z) appearing in (7.10) with non-zero coefficient ¢;, and
let [ be such a lattice point for which w;(z) has degree d. An OPE calculation shows that

0 I #1
1@ og10r@ = (T, 1% , (7.11)
vl )1 r=1

where k; = min{0, [;}, for all lattice points I’ appearing in (7.10) with non-zero coefficient. It follows from (7.11) that

I
¢ (ﬁ(—l)"fum)
j=1

7.1. Themap  : 8(V)%+ — D(V)?

Ct),[(Z) Od—1 Q)(Z) =1 0O

Equip $(V) with the conformal structure L% given by (3.2), for some & = (@1, ..., an) € C". Suppose first that A* N Z"
has rank zero, so that $(V)®+ = 8’,and D(V)? = Cley, ..., e,] = E.Let 7 : 8(V)®+ — D(V)? be the map given by (1.2).
By Lemma 6.3, forj = 1, ..., n we have

n((z) = 1(e.2 +e), TWi(2)= 2 eorler e
2 W6’ V6 36’
Moreover, (3.10) shows that 7 (¢'(2)) = (b', @) — Y [, bi(ej; 4 1). Since B’ is strongly generated by {¢'(2), I/(z), W/(2) |
i=m+1,...,n,j=1,...,n},itfollows from Lemma 3.4 that Im(;r) is generated by the collection
(T @), nU@), T W () |i=m+1,....,n, j=1,....n}.
The map 7 is not surjective, but Coker(r) is generated as a module over Im(rr) by the collection {t% | i = 1, ..., m}, where

téi is the image of
n
Tm(®%(2) = (@, @) = Y di(ej+ 1)
j=1

in Coker(s) = E /7 (B'). Unlike the case where V is one-dimensional, 7 depends on the choice of c.

Suppose next that the lattice A~ N Z" = 0 has positive rank. Clearly 7z (M;) = M; for all I, so 7 (M[) C M. This map
need not be surjective, but since M; is the free E-module generated by w, and E /7 (B’) is generated as a 77 (8’)-module by
{t5i |i=1,..., m),it follows that each M, /7 (M) is generated as a 77 (8’)-module by {tf" |i=1,...,m}, where tf" is the
image of 7,(6% (z))wy in My/7 (M)).

Theorem 7.6. For any action of g on V, Coker(:) is generated as a module over Im () by the collection {t5 | i=1,...,m}.In
particular, Coker(sr) is a finitely generated module over Im(sr) with generators corresponding to central elements of D(V)®.

Proof. First, since 7 (w;(z)) = wj for all |, it is clear that the generators t;' of M;/m (M) lie in the Im(;7)-module generated
by {t5 | i =1, ..., m}, which proves the first statement. Finally, the fact that the elements 77,(9% (z)) corresponding to téi
each lie in the center of D (V)? is immediate from (2.10). O
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7.2. Avertex algebra bundle over the Grassmannian Gr(m, n)

As p varies over the space R°(V) of effective actions, recall that J(V),("f+ is uniquely determined by the point A(p) €

Gr(m, n). The algebras zi(V),(S)Jr do not form a fiber bundle over Gr(m, n). However, the subspace of zi(V),(S)Jr of degree zero
in the A(p)* N Z"-grading (7.6) is just i;’;) = B’, and the algebras :B; form a bundle of vertex algebras & over Gr(m, n). The
classical analogue of € is not interesting; it is just the trivial bundle whose fiber over each point is the polynomial algebra E.

For each p, recall that i:’;) =W, ® &,, where ‘W, is generated by {(U(@z),Wi(z) |j=1,...,n},and @, is generated by

{¢i(z) |i=m+1,...,n)}.Since W, is independent of p, it gives rise to a trivial subbundle of &. As a vector space, note that

@, = Sym (P, A(p)i ). where A(p);; is the copy of A(p)* spanned by the vectors 3*¢'(z) fori = m+1, ..., n.It follows
that the factor &, in the fiber over A(p) gives rise to the following subbundle of &:

Sym (EB ﬂ) , (7.12)

k>1

where F; is the quotient of the rank n trivial bundle over Gr(m, n) by the tautological bundle. Since each F; has weight k,
the weighted components of the bundle (7.12) are all finite-dimensional. The non-triviality of this bundle is closely related
to Theorem 7.4.

8. Vertex algebra operations and transvectants on D (V)?

Ifwe fix abasis {x1, ..., x,} for V and adual basis {x], ..., x},} for V*, 8(V) has a basis consisting of iterated Wick products
of the form

u(@) = 319" @) -85y 209" B (2) - 35 (2) -
Define gradings degree and level on §(V) as follows:

T N
deg(w) =r+s,  lev(w) =Y ki+ > I
i=1 j=1

and let $(V)™[d] denote the subspace of level n and degree d. The gradings
sV =P s = P sv)™1dl = P sv)ld] (8.1)

n=0 n,d>0 d>0

are clearly independent of our choice of basis on V, since an automorphism of V has the effect of replacing 8* and y"r{ with
linear combinations of the 8%’s and y"x“s, respectively.
Leto : D(V) — grD (V) = Sym(V @ V*) be the map
, , 0 ad
XH ...Xir P ..
J1

o KX Xy X (8.2)
X} 1

which is a linear isomorphism. Any bilinear product * on Sym(V & V*) corresponds to a bilinear product on £ (V), which

we also denote by , as follows:

wxv=0""(o()*0o()),
for w, v € D(V), Moreover, wy, ..., w, generate D (V) as aring if and only if o (w1), ..., o (wy) generate Sym(V & V*) as
aring. Themap f : Sym(V & V*) — $(V)© given by
X, X Xy X, Vi) -y (@) @) - B (2) (8.3)

I

is a linear isomorphism, so that f o o : D(V) — 8(V)© is a linear isomorphism as well.
8(V)© has a family of bilinear products %, which are induced by the circle products on §(V). Given w(z), v(z) € 8(V)©,
define

@(2) *,v(2) = p(w(z) o v(2)), (8.4)

where p : 8(V) — $(V)© is the projection onto the subspace of level zero. Clearly w(z) s v(z) = 0 whenever k < —1
because p o 9 acts by zero on $(V)©@, For k > —1, %, is homogeneous of degree —2k — 2.

Via (8.3), we may pull back the products =, k > —1 to obtain a family of bilinear products on Sym(V & V*), which we
also denote by . In fact, these products have a classical description. Let

r:ii@»a 3 9

2 _ e 8.5
—0x;  Ox;  Ox;  0x (8:3)
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and define the kth transvectant! on Sym(V @ V*) by
[ 1k :Sym(V & V*) @ Sym(V ® V*) — Sym(V & V*), [w, vk =mo I'(w @ v).
Here m is the multiplication map sending w ® v > wv.
Theorem 8.1. The product *, on Sym(V & V*) given by (8.4) coincides with the transvectant [, Jx+1 for k > —1.

Proof. First consider the case k = —1. In this case [, ] is just ordinary multiplication. Recall the formula

(. N e — 1 . rak+1 o . _anlallbl . qk+1 o .
D (:abo)c: .abc._§(1(+1)!(.(a a)(borc) : +(—=DM: @by (aoke) 1),

which holds for any vertex operators a, b, c in a vertex algebra . It follows that the associator ideal in 8(V) under the Wick
product is annihilated by the projection p. Similarly, the commutator ideal in §(V) under the Wick product is annihilated
by p, so 8(V)© is a polynomial algebra with product _;, and f : Sym(V & V*) — (V)@ is an isomorphism of polynomial
algebras. Hence given w, v € Sym(V @ V*), we have [w, v]p = wv = w*_1 v.

Next, ifk > 0, it is clear from the definition of the vertex algebra products oy that given w(z), v(z) € $(V)©@, w(z) %, v(z)
is just the sum of all possible contractions of k + 1 factors of the form 8% (z) or y"r{ (z) appearing in w(z) with k + 1 factors of
the form 8% (z) or y"z{ (z) appearing in v(z). Here the contraction of 8% (z) with % (z) is §; ;, and the contraction of y* (z) with
BY(z) is —6; ;. Similarly, it follows from (8.5) that given w, v € Sym(V @ V*), [, v]i41 is the sum of all possible contractions
of k + 1 factors of the form x; or x; appearing in w with k + 1 factors of the form x; or x; appearing in v. The contraction of x;
with xJ/- is 8; j and the contraction of x; with x; is —§; ;. Since f : Sym(V @ V*) — $(V)© is the algebra isomorphism sending

> B%(z) and x| > y*(2), the claim follows. O

Viao : D(V) — Sym(V @ V*) the products %, on Sym(V @ V*) pull back to bilinear products on £(V), which we
also denote by ;. These products satisfy w ;v € D(V)(4s5-2k—2) forw € D(V)y and s € D(V)s). It is immediate from
Theorem 8.1 that *_; and % correspond to the ordinary associative product and bracket on £ (V), respectively. Since the
circle product og is a derivation of every oy, it follows that w *g is a derivation of x; for allw € H(V) and k > —1.

We call D (V) equipped with the products {x, | k > —1} a x-algebra. A similar construction goes through in other
settings as well. For example, given a Lie algebra g equipped with a symmetric, invariant bilinear form B, {lg has a *x-algebra
structure (which depends on B). Given a x-algebra -+, we can define *-subalgebras, x-ideals, quotients, and homomorphisms
in the obvious way. If V is a module over a Lie algebra g, £ (V)? is a *-subalgebra of £ (V) because the action of £ € g is
given by [t(§), —] = t(£) %o which is a derivation of all the other products.

Given elements wy, ..., w; € D(V)?, examples are known where wy, ..., w; do not generate D (V)9 as a ring, but do
generate D (V)¢ as a x-algebra.? This phenomenon occurs in our main example, in which g is the abelian Lie algebra C™
acting diagonally on V = C". Recall that D(V)® = @, ~z» M), where M; is the free E-module generated by w;. Suppose
that A* NZ" hasrankr,and let {I' = (I}, ..., [}) | i=1,...,r} be a basis for A* N Z". In general, the collection

€1, ..., €n, wp, ..., o, W_f, ..., 0 (8.6)

is too small to generate D (V)9 as a ring.

Theorem 8.2. D (V)9 is generated as a x-algebra by the collection (8.6). Moreover, D (V)? is simple as a x-algebra.

Proof. To prove the first statement, it suffices to show that given lattice points [ = (Iy, ..., ;) and ' = (I}, ..., ), our
lies in the x-algebra generated by w; and wy. Forj =1, ..., n, define
. Y Lil; >0 _Jo Ll >0
min{|f], [}, Ll <O, P max{lyl, 15y, Ll <o,

_[o =0 _ o
kj_{dj I>o, d_—1+z;dj.
j:

The same calculation as in the proof of Theorem 7.3 shows that

W) *q Wy = (H( Dk — d)‘) oL,

which shows that w;;y lies in the x-algebra generated by w; and wy.

1 thank N. Wallach for explaining this construction to me.
2| thank N. Wallach for pointing this out to me.
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As for the second statement, the argument is analogous to the proof of Theorem 7.5. Given a non-zero *-ideal I C D(V)?,

we need to show that 1 € I. Let w be a non-zero element of I. It is easy to check that fori,j=1,...,n,and Il € AL NZ", we
have
e %16 = —(Siyj, ej*x1w; = 0.
By applying the operators e; %1 fori = 1, ..., n, we can reduce w to the form
Z Clwy (8.7)
lez"

for constants ¢; € C, such that ¢; # 0 for only finitely many values of . We may assume without loss of generality that  is
already of this form. Let d be the maximal degree (in the Bernstein filtration) of terms w; appearing in (8.7) with non-zero
coefficient ¢, and let I be such a lattice point for which w; has degree d. We have

0 I #1
n
@ =ATTEn5 ) =1
j=1

where k; = min{0, /;}, for all ' appearing in (8.7). Hence

1
w_1¥¢g_1w=1. O

al [T=05)!
j=1
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