Invariant chiral differential operators and the \mathcal{W}_{3} algebra

Andrew R. Linshaw
Department of Mathematics, University of California, San Diego, La Jolla, CA 92093, United States

ARTICLE INFO

Article history:

Received 13 November 2007
Received in revised form 24 July 2008
Available online 19 September 2008
Communicated by E.M. Friedlander

MSC:

Primary: 17B69
secondary: 16S32

Abstract

Attached to a vector space V is a vertex algebra $s(V)$ known as the $\beta \gamma$-system or algebra of chiral differential operators on V. It is analogous to the Weyl algebra $\mathscr{D}(V)$, and is related to $\mathscr{D}(V)$ via the Zhu functor. If G is a connected Lie group with Lie algebra \mathfrak{g}, and V is a linear G-representation, there is an action of the corresponding affine algebra on $\varsigma(V)$. The invariant space $s(V)^{\mathfrak{g}[t]}$ is a commutant subalgebra of $s(V)$, and plays the role of the classical invariant ring $\mathscr{D}(V)^{G}$. When G is an abelian Lie group acting diagonally on V, we find a finite set of generators for $\delta(V)^{\mathfrak{g}[t]}$, and show that $\delta(V)^{\mathfrak{g}[t]}$ is a simple vertex algebra and a member of a Howe pair. The Zamolodchikov W_{3} algebra with $c=-2$ plays a fundamental role in the structure of $s(V)^{\mathfrak{g}[t]}$.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a connected, reductive Lie group acting algebraically on a smooth variety X. Throughout this paper, our base field will always be \mathbf{C}. The ring $\mathscr{D}(X)^{G}$ of invariant differential operators on X has been much studied in recent years. In the case where X is the homogeneous space $G / K, \mathscr{D}(X)^{G}$ was originally studied by Harish-Chandra in order to understand the various function spaces attached to $X[8,9]$. In general, $\mathscr{D}(X)^{G}$ is not a homomorphic image of the universal enveloping algebra of a Lie algebra, but it is believed that $\mathscr{D}(X)^{G}$ shares many properties of enveloping algebras. For example, the center of $\mathscr{D}(X)^{G}$ is always a polynomial ring [12]. In the case where G is a torus, the structure and representation theory of the rings $\mathscr{D}(X)^{G}$ were studied extensively in [16], but much less is known about $\mathscr{D}(X)^{G}$ when G is nonabelian. The first step in this direction was taken by Schwarz in [17], in which he considered the special but nontrivial case where $G=S L(3)$ and X is the adjoint representation. In this case, he found generators for $\mathscr{D}(X)^{G}$, showed that $\mathscr{D}(X)^{G}$ is an FCR algebra, and classified its finite-dimensional modules.

1.1. A vertex algebra analogue of $\mathcal{D}(X)^{G}$

In [15], Malikov-Schechtman-Vaintrob introduced a sheaf of vertex algebras on any smooth variety X known as the chiral de Rham complex. For an affine open set $V \subset X$, the algebra of sections over V is just a copy of the $b c \beta \gamma$-system $\delta(V) \otimes \mathscr{E}(V)$, localized over the function ring $\mathcal{O}(V)$. A natural question is whether there exists a subsheaf of "chiral differential operators" on X, whose space of sections over V is just the (localized) $\beta \gamma$-system $\delta(V)$. For general X, there is a cohomological obstruction to the existence of such a sheaf, but it does exist in certain special cases such as affine spaces and certain homogeneous spaces [15,7].

In this paper, we focus on the case where X is the affine space $V=\mathbf{C}^{n}$, and we take $s(V)$ to be our algebra of chiral differential operators on $V . s(V)$ is related to $\mathscr{D}(V)$ via the Zhu functor, which attaches to every vertex algebra \mathcal{V} an associative algebra $A(\mathcal{V})$ known as the Zhu algebra of \mathcal{V}, together with a surjective linear map $\pi_{Z h}: \mathcal{V} \rightarrow A(\mathcal{V})$.

[^0]If V carries a linear action of a group G with Lie algebra \mathfrak{g}, the corresponding representation $\rho: \mathfrak{g} \rightarrow$ End (V) induces a vertex algebra homomorphism

$$
\begin{equation*}
\mathcal{O}(\mathfrak{g}, B) \rightarrow \ell(V) . \tag{1.1}
\end{equation*}
$$

Here $\mathcal{O}(\mathfrak{g}, B)$ is the current algebra of \mathfrak{g} associated to the bilinear form $B(\xi, \eta)=-\operatorname{Tr}(\rho(\xi) \rho(\eta))$ on \mathfrak{g}. Letting Θ denote the image of $\mathcal{O}(\mathfrak{g}, B)$ inside $s(V)$, the commutant $\operatorname{Com}(\Theta, s(V))$, which we denote by $s(V)^{\Theta_{+}}$, is just the invariant space $s(V)^{\mathfrak{g}[t]}$. Accordingly, we call $s(V)^{\Theta_{+}}$the algebra of invariant chiral differential operators on V. There is a commutative diagram

$$
\begin{array}{ccc}
s(V)^{\Theta_{+}} & \stackrel{\hookrightarrow}{\hookrightarrow} & \begin{array}{l}
\\
\pi \downarrow \\
\\
\\
\mathscr{D}(V)^{G}
\end{array} \tag{1.2}\\
\stackrel{\hookrightarrow}{\hookrightarrow} & \pi_{Z h} \downarrow \\
& \mathscr{D}(V) .
\end{array}
$$

Here the horizontal maps are inclusions, and the map π on the left is the restriction of the Zhu map on $\delta(V)$ to the subalgebra $s(V)^{\Theta_{+}}$. In general, π is not surjective, and $\mathscr{D}(V)^{G}$ need not be the Zhu algebra of $s(V)^{\Theta_{+}}$.

For a general vertex algebra \mathcal{V} and subalgebra \mathcal{A}, the commutant $\operatorname{Com}(\mathcal{A}, \mathcal{V})$ was introduced by Frenkel-Zhu in [4], generalizing a previous construction in representation theory [10] and conformal field theory [6] known as the coset construction. We regard \mathcal{V} as a module over \mathcal{A} via the left regular action, and we regard $\operatorname{Com}(\mathcal{A}, \mathcal{V})$, which we often denote by $\mathcal{V}^{\mathcal{A}+}$, as the invariant subalgebra. Finding a set of generators for \mathcal{V}^{A+}, or even determining when it is finitely generated as a vertex algebra, is generally a non-trivial problem. It is also natural to study the double commutant $\operatorname{Com}\left(\mathcal{V}^{\mathscr{A}+}, \mathcal{V}\right)$, which always contains \mathcal{A}. If $\mathcal{A}=\operatorname{Com}\left(\mathcal{V}^{\mathcal{A}+}, \mathcal{V}\right)$, we say that \mathcal{A} and $\mathcal{V}^{\mathcal{A}+}$ form a Howe pair inside \mathcal{V}. Since

$$
\operatorname{Com}\left(\operatorname{Com}\left(\mathcal{V}^{\mathcal{A}_{+}}, \mathcal{V}\right), \mathcal{V}\right)=\mathcal{V}^{\mathcal{A}_{+}}
$$

a subalgebra \mathscr{B} is a member of a Howe pair if and only if $\mathscr{B}=\mathcal{V}^{\mathcal{A}+}$ for some \mathcal{A}.
Here are some natural questions one can ask about $s(V)^{\Theta_{+}}$and its relationship to $\mathscr{D}(V)^{G}$.

Question 1.1. When is $s(V)^{\Theta_{+}}$finitely generated as a vertex algebra? Can we find a set of generators?
Question 1.2. When do $s(V)^{\Theta_{+}}$and Θ form a Howe pair inside $s(V)$? In the case where $G=S L(2)$ and V is the adjoint module, this question was answered affirmatively in [13].

Question 1.3. What are the vertex algebra ideals in $s(V)^{\Theta_{+}}$, and when is $s(V)^{\Theta_{+}}$a simple vertex algebra?
Question 1.4. When is $s(V)^{\Theta_{+}}$a conformal vertex algebra?

Question 1.5. When is $\pi: \delta(V)^{\Theta_{+}} \rightarrow \mathscr{D}(V)^{G}$ surjective? More generally, describe $\operatorname{Im}(\pi)$ and Coker (π).
These questions are somewhat outside the realm of classical invariant theory because the Lie algebra $\mathfrak{g}[t]$ is both infinitedimensional and non-reductive. Moreover, when G is nonabelian, $s(V)$ need not decompose into a sum of irreducible $\mathcal{O}(\mathfrak{g}, B)$-modules. The case where G is simple and V is the adjoint module is of particular interest to us, since in this case $s(V)^{\Theta_{+}}$is a subalgebra of the complex $\left(\mathcal{W}(\mathfrak{g})_{b a s}, d\right)$ which computes the chiral equivariant cohomology of a point [14].

In this paper, we focus on the case where G is an abelian group acting faithfully and diagonalizably on V. This is much easier than the general case because $\mathcal{O}(\mathfrak{g}, B)$ is then a tensor product of Heisenberg vertex algebras, which act completely reducibly on $s(V)$. For any such action, we find a finite set of generators for $s(V)^{\Theta_{+}}$, and show that $\delta(V)^{\Theta+}$ is a simple vertex algebra. Moreover, $s(V)^{\Theta_{+}}$and Θ always form a Howe pair inside $s(V)$. For generic actions, we show that $s(V)^{\Theta_{+}}$admits a k-parameter family of conformal structures where $k=\operatorname{dim} V-\operatorname{dim} \mathfrak{g}$, and we find a finite set of generators for $\operatorname{Im}(\pi)$. Finally, we show that $\operatorname{Coker}(\pi)$ is always a finitely generated module over $\operatorname{Im}(\pi)$ with generators corresponding to central elements of $\mathscr{D}(V)^{G}$. The Zamolodchikov \mathcal{W}_{3} algebra of central charge $c=-2$ plays an important role in the structure of $s(V)^{\Theta+}$. Our description relies on the fundamental papers [18,19] of W. Wang, in which he classified the irreducible modules of $\mathcal{W}_{3,-2}$.

In the case where G is nonabelian, very little is known about the structure of $\ell(V)^{\Theta_{+}}$, and the representation-theoretic techniques used in the abelian case cannot be expected to work. In a separate paper, we will use tools from commutative algebra to describe $s(V)^{\Theta_{+}}$in the special cases where G is one of the classical Lie groups $S L(n), S O(n)$, or $S p(2 n)$, and V is a direct sum of copies of the standard representation.

One hopes that the vertex algebra point of view can also shed some light on the classical algebras $\mathscr{D}(V)^{G}$. For example, the vertex algebra products on $s(V)$ induce a family of bilinear operations $*_{k}, k \geq-1$ on $\mathscr{D}(V)^{G}$, which coincide with classical operations known as transvectants. $\mathscr{D}(V)^{G}$ is generally not simple as an associative algebra, but in the case where G is an abelian group acting diagonalizably on $V, \mathscr{D}(V)^{G}$ is always simple as a $*$-algebra in the obvious sense.

2. Invariant differential operators

Fix a basis $\left\{x_{1}, \ldots, x_{n}\right\}$ for V and a corresponding dual basis $\left\{x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right\}$ for V^{*}. The Weyl algebra $\mathscr{D}(V)$ is generated by the linear functions x_{i}^{\prime} and the first-order differential operators $\frac{\partial}{\partial x_{i}}$, which satisfy $\left[\frac{\partial}{\partial x_{i}}, x_{j}^{\prime}\right]=\delta_{i, j}$. Equip $\mathscr{D}(V)$ with the Bernstein filtration

$$
\begin{equation*}
\mathscr{D}(V)_{(0)} \subset \mathscr{D}(V)_{(1)} \subset \cdots, \tag{2.1}
\end{equation*}
$$

defined by $\left(x_{1}^{\prime}\right)^{k_{1}} \cdots\left(x_{n}^{\prime}\right)^{k_{n}}\left(\frac{\partial}{\partial x_{1}^{\prime}}\right)^{l_{1}} \cdots\left(\frac{\partial}{\partial x_{n}^{\prime}}\right)^{l_{n}} \in \mathscr{D}(V)_{(r)}$ if $k_{1}+\cdots+k_{n}+l_{1}+\cdots+l_{n} \leq r$. Given $\omega \in \mathscr{D}(V)_{(r)}$ and $v \in \mathscr{D}(V)_{(s)}$, $[\omega, \nu] \in \mathscr{D}(V)_{(r+s-2)}$, so that

$$
\begin{equation*}
\operatorname{gr} \mathscr{D}(V)=\bigoplus_{r>0} \mathscr{D}(V)_{(r)} / \mathcal{D}(V)_{(r-1)} \cong \operatorname{Sym}\left(V \oplus V^{*}\right) . \tag{2.2}
\end{equation*}
$$

We say that $\operatorname{deg}(\alpha)=d$ if $\alpha \in \mathscr{D}(V)_{(d)}$ and $\alpha \notin \mathscr{D}(V)_{(d-1)}$.
Let G be a connected Lie group with Lie algebra \mathfrak{g}, and let V be a linear representation of G via $\rho: G \rightarrow \operatorname{Aut}(V)$. Then G acts on $\mathscr{D}(V)$ by algebra automorphisms, and induces an action $\rho^{*}: \mathfrak{g} \rightarrow \operatorname{Der}(\mathscr{D}(V))$ by derivations of degree zero. Since G is connected, the invariant ring $\mathscr{D}(V)^{G}$ coincides with $\mathscr{D}(V)^{\mathfrak{g}}$, where

$$
\mathscr{D}(V)^{\mathfrak{g}}=\left\{\omega \in \mathscr{D}(V) \mid \rho^{*}(\xi)(\omega)=0, \forall \xi \in \mathfrak{g}\right\} .
$$

We will usually work with the action of \mathfrak{g} rather than G, and for greater flexibility, we do not assume that the \mathfrak{g}-action comes from an action of a reductive group G.

The action of \mathfrak{g} on $\mathscr{D}(V)$ can be realized by inner derivations: there is a Lie algebra homomorphism

$$
\begin{equation*}
\tau: \mathfrak{g} \rightarrow \mathcal{D}(V), \quad \xi \mapsto-\sum_{i=1}^{n} x_{i}^{\prime} \rho^{*}(\xi)\left(\frac{\partial}{\partial x_{i}^{\prime}}\right) . \tag{2.3}
\end{equation*}
$$

$\tau(\xi)$ is just the linear vector field on V generated by ξ, so $\xi \in \mathfrak{g}$ acts on $\mathscr{D}(V)$ by $[\tau(\xi)$, -]. Clearly τ extends to a map $\mathfrak{U} \mathfrak{g} \rightarrow \mathscr{D}(V)$, and

$$
\mathscr{D}(V)^{\mathfrak{g}}=\operatorname{Com}(\tau(\mathfrak{U g}), \mathscr{D}(V)) .
$$

Since \mathfrak{g} acts on $\mathscr{D}(V)$ by derivations of degree zero, (2.1) restricts to a filtration $\mathscr{D}(V)_{(0)}^{\mathfrak{g}} \subset \mathscr{D}(V)_{(1)}^{\mathfrak{g}} \subset \cdots$ on $\mathscr{D}(V)^{\mathfrak{g}}$, and $\operatorname{gr}\left(\mathscr{D}(V)^{\mathfrak{g}}\right) \cong \operatorname{gr}(\mathscr{D}(V))^{\mathfrak{g}} \cong \operatorname{Sym}\left(V \oplus V^{*}\right)^{\mathfrak{g}}$.

2.1. The case where \mathfrak{g} is abelian

Our main focus is on the case where \mathfrak{g} is the abelian Lie algebra $\mathbf{C}^{m}=g l(1) \oplus \cdots \oplus g l(1)$, acting diagonally on V. Let $R(V)$ be the \mathbf{C}-vector space of all diagonal representations of \mathfrak{g}. Given $\rho \in R(V)$ and $\xi \in \mathfrak{g}, \rho(\xi)$ is a diagonal matrix with entries $a_{1}^{\xi}, \ldots, a_{n}^{\xi}$, which we regard as a vector $a^{\xi}=\left(a_{1}^{\xi}, \ldots, a_{n}^{\xi}\right) \in \mathbf{C}^{n}$. Let $A(\rho) \subset \mathbf{C}^{n}$ be the subspace spanned by $\{\rho(\xi) \mid \xi \in \mathfrak{g}\}$.

The action of $G L(m)$ on \mathfrak{g} induces a natural action of $G L(m)$ on $R(V)$, defined by

$$
\begin{equation*}
(g \cdot \rho)(\xi)=\rho\left(g^{-1} \cdot \xi\right) \tag{2.4}
\end{equation*}
$$

for all $g \in G L(m)$. Clearly $A(\rho)=A(g \cdot \rho)$ for all $g \in G L(m)$. Note that $\operatorname{dim} \operatorname{Ker}(\rho)=\operatorname{dim} \operatorname{Ker}(g \cdot \rho)$ for all $g \in G L(m)$, so in particular $G L(m)$ acts on the dense open set $R^{0}(V)=\{\rho \in R(V) \mid \operatorname{Ker}(\rho)=0\}$. The correspondence $\rho \mapsto A(\rho)$ identifies $R^{0}(V) / G L(m)$ with the $\operatorname{Grassmannian~} \operatorname{Gr}(m, n)$ of m-dimensional subspaces of \mathbf{C}^{n}.

Given $\rho \in R(V), \mathscr{D}(V)^{\mathfrak{g}}=\mathscr{D}(V)^{\mathfrak{g}^{\prime}}$ where $\mathfrak{g}^{\prime}=\mathfrak{g} / \operatorname{Ker}(\rho)$, so we may assume without loss of generality that $\rho \in R^{0}(V)$. We denote $\mathscr{D}(V)^{\mathfrak{g}}$ by $\mathscr{D}(V)_{\rho}^{\mathfrak{g}}$ when we need to emphasize the dependence on ρ. Given $\omega \in \mathscr{D}(V)$, the condition $\rho^{*}(\xi)(\omega)=0$ for all $\xi \in \mathfrak{g}$ is equivalent to the condition that $\rho^{*}(g \cdot \xi)(\omega)=0$ for all $\xi \in \mathfrak{g}$, so it follows that $\mathscr{D}(V)_{\rho}^{\mathfrak{g}}=\mathscr{D}(V)_{g}^{\mathfrak{g}} \cdot \rho$ for all $g \in G L(m)$. Hence the family of algebras $\mathscr{D}(V)_{\rho}^{\mathfrak{g}}$ is parametrized by the points $A(\rho) \in \operatorname{Gr}(m, n)$.

Fix $\rho \in R^{0}(V)$, and choose a basis $\left\{\xi^{1}, \ldots, \xi^{m}\right\}$ for \mathfrak{g}. Let $a^{i}=\left(a_{1}^{i}, \ldots, a_{n}^{i}\right) \in \mathbf{C}^{n}$ be the vectors corresponding to the diagonal matrices $\rho\left(\xi^{i}\right)$, and let $A=A(\rho)$ be the subspace spanned by these vectors. The map $\tau: \mathfrak{g} \rightarrow \mathscr{D}(V)$ is defined by

$$
\begin{equation*}
\tau\left(\xi^{i}\right)=-\sum_{j=1}^{n} a_{j}^{i} x_{j}^{\prime} \frac{\partial}{\partial x_{j}^{\prime}} . \tag{2.5}
\end{equation*}
$$

The Euler operators $\left\{\left.e_{j}=x_{j}^{\prime} \frac{\partial}{\partial x_{j}^{\prime}} \right\rvert\, j=1, \ldots, n\right\}$ lie in $\mathscr{D}(V)^{\mathfrak{g}}$, and we denote the polynomial algebra $\mathbf{C}\left[e_{1}, \ldots, e_{n}\right]$ by E.
For each $j=1, \ldots, n$ and $d \in \mathbf{Z}$, define $v_{j}^{d} \in \mathscr{D}(V)$ by

$$
v_{j}^{d}= \begin{cases}\left(\frac{\partial}{\partial x_{j}^{\prime}}\right)^{-d} & d<0 \tag{2.6}\\ 1 & d=0 \\ \left(x_{j}^{\prime}\right)^{d} & d>0\end{cases}
$$

Let $\mathbf{Z}^{n} \subset \mathbf{C}^{n}$ denote the lattice generated by the standard basis, and for each lattice point $l=\left(l_{1}, \ldots, l_{n}\right) \in \mathbf{Z}^{n}$, define

$$
\begin{equation*}
\omega_{l}=\prod_{j=1}^{n} v_{j}^{l_{j}} \tag{2.7}
\end{equation*}
$$

As a module over E,

$$
\begin{equation*}
\mathscr{D}(V)=\bigoplus_{l \in \mathbf{Z}^{n}} M_{l}, \tag{2.8}
\end{equation*}
$$

where M_{l} is the free E-module generated by ω_{l}. Moreover, we have

$$
\begin{equation*}
\left[e_{j}, \omega_{l}\right]=l_{j} \omega_{l} \tag{2.9}
\end{equation*}
$$

so the \mathbf{Z}^{n}-grading (2.8) is just the eigenspace decomposition of $\mathscr{D}(V)$ under the family of diagonalizable operators [$\left.e_{j},-\right]$. In particular, (2.9) shows that

$$
\begin{equation*}
\rho^{*}\left(\xi^{i}\right)\left(\omega_{l}\right)=\left[\tau\left(\xi^{i}\right), \omega_{l}\right]=-\left\langle l, a^{i}\right\rangle \omega_{l} \tag{2.10}
\end{equation*}
$$

where \langle,$\rangle denotes the standard inner product on \mathbf{C}^{n}$. Hence ω_{l} lies in $\mathscr{D}(V)^{\mathfrak{g}}$ precisely when $l \in A^{\perp}$, so

$$
\begin{equation*}
\mathscr{D}(V)^{\mathfrak{g}}=\bigoplus_{l \in A^{\perp} \cap \mathrm{Z}^{n}} M_{l} . \tag{2.11}
\end{equation*}
$$

For generic actions, the lattice $A^{\perp} \cap \mathbf{Z}^{n}$ has rank zero, so $\mathscr{D}(V)^{\mathfrak{g}}=M_{0}=E$.
Consider the double commutant $\operatorname{Com}\left(\mathscr{D}(V)^{\mathfrak{g}}, \mathscr{D}(V)\right)$, which always contains $T=\tau(\mathfrak{U g})=\mathbf{C}\left[\tau\left(\xi_{1}\right) \ldots, \tau\left(\xi_{m}\right)\right]$. Since $\operatorname{Com}(E, \mathscr{D}(V))=E$, we have $\operatorname{Com}\left(\mathscr{D}(V)^{\mathfrak{g}}, \mathscr{D}(V)\right)=E$ for generic actions.

Suppose next that $A^{\perp} \cap \mathbf{Z}^{n}$ has rank r for some $0<r \leq n-m$. For $i=1, \ldots, r$ let $\left\{l^{i}=\left(l_{1}^{i}, \ldots, l_{n}^{i}\right)\right\}$ be a basis for $A^{\perp} \cap \mathbf{Z}^{n}$, and let L be the \mathbf{C}-vector space spanned by $\left\{l^{1}, \ldots, l^{r}\right\}$. If $r<n-m$, we can choose vectors $s^{k}=\left(s_{1}^{k}, \ldots, s_{n}^{k}\right) \in L^{\perp} \cap A^{\perp}$, so that $\left\{l^{1}, \ldots, l^{r}, s^{r+1}, \ldots, s^{n-m}\right\}$ is a basis for A^{\perp}. For $i=1, \ldots, r$ and $k=r+1, \ldots, n-m$, define differential operators

$$
\phi^{i}=\sum_{j=1}^{n} l_{j}^{i} e_{j}, \quad \psi^{k}=\sum_{j=1}^{n} s_{j}^{k} e_{j} .
$$

Note that $\mathbf{C}\left[e_{1}, \ldots, e_{n}\right]=T \otimes \Psi \otimes \Phi$, where $\Phi=\mathbf{C}\left[\phi^{1}, \ldots \phi^{r}\right]$ and $\Psi=\mathbf{C}\left[\psi^{r+1}, \ldots, \psi^{n-m}\right]$.
Theorem 2.1. $\operatorname{Com}\left(\mathscr{D}(V)^{\mathfrak{g}}, \mathscr{D}(V)\right)=T \otimes \Psi$. Hence $\mathscr{D}(V)^{\mathfrak{g}}$ and T form a pair of mutual commutants inside $\mathscr{D}(V)$ precisely when $\Psi=\mathbf{C}$, which occurs when $A^{\perp} \cap \mathbf{Z}^{n}$ has rank $n-m$.
Proof. By (2.9), for any lattice point $l \in A^{\perp} \cap \mathbf{Z}^{n}$, and for $k=r+1, \ldots, n-m$ we have

$$
\left[\psi^{k}, \omega_{l}\right]=\left\langle s^{k}, l\right\rangle \omega_{l}=0
$$

since $s^{k} \in L^{\perp}$. It follows that $\Psi \subset \operatorname{Com}\left(\mathscr{D}(V)^{\mathfrak{g}}, \mathscr{D}(V)\right)$. Hence $T \otimes \Psi \subset \operatorname{Com}\left(\mathscr{D}(V)^{\mathfrak{g}}, \mathscr{D}(V)\right)$. Moreover, since $\left[\phi^{i}, \omega_{l}\right]=$ $\left\langle l^{i}, l\right\rangle \omega_{l}$ and $\left\{l^{1}, \ldots, l^{r}\right\}$ form a basis for $A^{\perp} \cap \mathbf{Z}^{n}$, it follows that the variables ϕ^{i} cannot appear in any element $\omega \in \operatorname{Com}\left(\mathscr{D}(V)^{\mathfrak{g}}\right.$, $\mathcal{D}(V))$.

In the case $\Psi=\mathbf{C}$, we can recover the action ρ (up to $G L(m)$-equivalence) from the algebra $\mathscr{D}(V)^{\mathfrak{g}}$ by taking its commutant inside $\mathscr{D}(V)$, but otherwise $\mathscr{D}(V)^{\mathfrak{g}}$ does not determine the action.

3. Vertex algebras

We will assume that the reader is familiar with the basic notions in vertex algebra theory. For a list of references, see page 117 of [13]. We briefly describe the examples and constructions that we need, following the notation in [13].

Given a Lie algebra \mathfrak{g} equipped with a symmetric \mathfrak{g}-invariant bilinear form B, the current algebra $\mathcal{O}(\mathfrak{g}, B)$ is the universal vertex algebra with generators $X^{\xi}(z), \xi \in \mathfrak{g}$, which satisfy the OPE relations

$$
X^{\xi}(z) X^{\eta}(w) \sim B(\xi, \eta)(z-w)^{-2}+X^{[\xi, \eta]}(w)(z-w)^{-1}
$$

Given a finite-dimensional vector space V, the $\beta \gamma$-system, or algebra of chiral differential operators $s(V)$, was introduced in [5]. It is the unique vertex algebra with generators $\beta^{x}(z), \gamma^{x^{\prime}}(z)$ for $x \in V, x^{\prime} \in V^{*}$, which satisfy

$$
\begin{align*}
& \beta^{x}(z) \gamma^{x^{\prime}}(w) \sim\left\langle x^{\prime}, x\right\rangle(z-w)^{-1}, \quad \gamma^{x^{\prime}}(z) \beta^{x}(w) \sim-\left\langle x^{\prime}, x\right\rangle(z-w)^{-1}, \\
& \beta^{x}(z) \beta^{y}(w) \sim 0, \quad \gamma^{x^{\prime}}(z) \gamma^{y^{\prime}}(w) \sim 0 . \tag{3.1}
\end{align*}
$$

Given $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbf{C}^{n}, \delta(V)$ has a Virasoro element

$$
\begin{equation*}
L^{\alpha}(z)=\sum_{i=1}^{n}\left(\alpha_{i}-1\right): \partial \beta^{x_{i}}(z) \gamma^{x_{i}^{\prime}}(z):+\alpha_{i}: \beta^{x_{i}}(z) \partial \gamma^{x_{i}^{\prime}}(z): \tag{3.2}
\end{equation*}
$$

of central charge $\sum_{i=1}^{n}\left(12 \alpha_{i}^{2}-12 \alpha_{i}+2\right)$. Here $\left\{x_{1}, \ldots, x_{n}\right\}$ is any basis for V and $\left\{x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right\}$ is the corresponding dual basis for V^{*}. An OPE calculation shows that $\beta^{x_{i}}(z), \gamma^{\chi_{i}^{\prime}}(z)$ are primary of conformal weights $\alpha_{i}, 1-\alpha_{i}$, respectively.
$\delta(V)$ has an additional \mathbf{Z}-grading which we call the $\beta \gamma$-charge. Define

$$
\begin{equation*}
v(z)=\sum_{i=1}^{n}: \beta^{x_{i}}(z) \gamma^{x_{i}^{\prime}}(z): . \tag{3.3}
\end{equation*}
$$

The zeroth Fourier mode $v(0)$ acts diagonalizably on $\delta(V)$; the $\beta \gamma$-charge grading is just the eigenspace decomposition of $s(V)$ under $v(0)$. For $x \in V$ and $x^{\prime} \in V^{*}, \beta^{x}(z)$ and $\gamma^{\chi^{\prime}}(z)$ have $\beta \gamma$-charges -1 and 1 , respectively.

There is also an odd vertex algebra $\varepsilon(V)$ known as a $b c$-system, or a semi-infinite exterior algebra, which is generated by $b^{x}(z), c^{x^{\prime}}(z)$ for $x \in V$ and $x^{\prime} \in V^{*}$, which satisfy

$$
\begin{aligned}
& b^{x}(z) c^{x^{\prime}}(w) \sim\left\langle x^{\prime}, x\right\rangle(z-w)^{-1}, \quad c^{x^{\prime}}(z) b^{x}(w) \sim\left\langle x^{\prime}, x\right\rangle(z-w)^{-1}, \\
& b^{x}(z) b^{y}(w) \sim 0, \quad c^{x^{\prime}}(z) c^{y^{\prime}}(w) \sim 0 .
\end{aligned}
$$

$\mathscr{E}(V)$ has an analogous conformal structure $L^{\alpha}(z)$ for any $\alpha \in \mathbf{C}^{n}$, and an analogous \mathbf{Z}-grading which we call the bc-charge. Define

$$
\begin{equation*}
q(z)=-\sum_{i=1}^{n}: b^{x_{i}}(z) c^{x_{i}^{\prime}}(z): . \tag{3.4}
\end{equation*}
$$

The zeroth Fourier mode $q(0)$ acts diagonalizably on $f(V)$, and the $b c$-charge grading is just the eigenspace decomposition of $\mathcal{E}(V)$ under $q(0)$. Clearly $b^{x}(z)$ and $c^{x^{\prime}}(z)$ have $b c$-charges -1 and 1 , respectively.

3.1. The commutant construction

Definition 3.1. Let \mathcal{V} be a vertex algebra, and let \mathcal{A} be a subalgebra. The commutant of \mathcal{A} in \mathcal{V}, denoted by $\operatorname{Com}(\mathcal{A}, \mathcal{V})$ or $\mathcal{V}^{\mathcal{A}+}$, is the subalgebra of vertex operators $v \in \mathcal{V}$ such that $[a(z), v(w)]=0$ for all $a \in \mathcal{A}$. Equivalently, $a(z) \circ_{n} v(z)=0$ for all $a \in \mathcal{A}$ and $n \geq 0$.

We regard \mathcal{V} as a module over \mathcal{A}, and we regard $\mathcal{V}^{\mathcal{A}+}$ as the invariant subalgebra. If \mathcal{A} is a homomorphic image of a current algebra $\mathcal{O}(\mathfrak{g}, B), \mathcal{V}^{\mathcal{A}+}$ is just the invariant space $\mathcal{V}^{\mathfrak{g}[t]}$. We will always assume that \mathcal{V} is equipped with a weight grading, and that \mathcal{A} is a graded subalgebra, so that $\mathcal{V}^{\mathcal{A}+}$ is also a graded subalgebra of \mathcal{V}.

Our main example of this construction comes from a representation $\rho: \mathfrak{g} \rightarrow \operatorname{End}(V)$ of a Lie algebra \mathfrak{g}. There is an induced vertex algebra homomorphism $\hat{\tau}: \mathcal{O}(\mathfrak{g}, B) \rightarrow \delta(V)$, which is analogous to the map $\tau: \mathfrak{U} \mathfrak{g} \rightarrow \mathscr{D}(V)$ given by (2.3). Here B is the bilinear form $B(\xi, \eta)=-\operatorname{Tr}(\rho(\xi) \rho(\eta))$ on \mathfrak{g}. In terms of a basis $\left\{x_{1}, \ldots, x_{n}\right\}$ for V and dual basis $\left\{x_{1}^{\prime}, \ldots x_{n}^{\prime}\right\}$ for $V^{*}, \hat{\tau}$ is defined by

$$
\begin{equation*}
\hat{\tau}\left(X^{\xi}(z)\right)=\theta^{\xi}(z)=-\sum_{i=1}^{n}: \gamma^{\chi_{i}^{\prime}}(z) \beta^{\rho(\xi)\left(x_{i}\right)}(z): . \tag{3.5}
\end{equation*}
$$

Definition 3.2. Let Θ denote the subalgebra $\hat{\tau}(\mathcal{O}(\mathfrak{g}, B)) \subset f(V)$. The commutant algebra $s(V)^{\Theta_{+}}$will be called the algebra of invariant chiral differential operators on V.

If $f(V)$ is equipped with the conformal structure L^{α} given by (3.2), Θ is not a graded subalgebra of $f(V)$ in general. For example, if $\mathfrak{g}=g l(n)$ and $V=\mathbf{C}^{n}, \Theta$ is graded by weight precisely when $\alpha_{1}=\alpha_{2}=\cdots=\alpha_{n}$. However, when \mathfrak{g} is abelian and its action on V is diagonal, $\theta^{\xi}(z)$ will be homogeneous of weight one for any α. Hence $s(V)^{\Theta+}$ is also graded by weight, but this grading will depend on the choice of α.

3.2. The Zhu functor

Let \mathcal{V} be a vertex algebra with weight grading $\mathcal{V}=\bigoplus_{n \in \mathbf{Z}} \mathcal{V}_{n}$. In [21], Zhu introduced a functor that attaches to \mathcal{V} an associative algebra $A(\mathcal{V})$, together with a surjective linear map $\pi_{z h}: \mathcal{V} \rightarrow A(\mathcal{V})$. For $a \in \mathcal{V}_{m}$ and $b \in \mathcal{V}$, we define

$$
\begin{equation*}
a * b=\operatorname{Res}_{z}\left(a(z) \frac{(z+1)^{m}}{z} b\right), \tag{3.6}
\end{equation*}
$$

and extend $*$ by linearity to a bilinear operation $\mathcal{V} \otimes \mathcal{V} \rightarrow \mathcal{V}$. Let $O(\mathcal{V})$ denote the subspace of \mathcal{V} spanned by elements of the form

$$
\begin{equation*}
a \circ b=\operatorname{Res}_{z}\left(a(z) \frac{(z+1)^{m}}{z^{2}} b\right) \tag{3.7}
\end{equation*}
$$

where $a \in \mathcal{V}_{m}$, and let $A(\mathcal{V})$ be the quotient $\mathcal{V} / O(\mathcal{V})$, with projection $\pi_{z h}: \mathcal{V} \rightarrow A(\mathcal{V})$. For $a, b \in \mathcal{V}, a \sim b$ means $a-b \in O(\mathcal{V})$, and $[a]$ denotes the image of a in $A(\mathcal{V})$. A useful fact which is immediate from (3.6) and (3.7) is that for $a \in \mathcal{V}_{m}$,

$$
\begin{equation*}
\partial a \sim m a \tag{3.8}
\end{equation*}
$$

Theorem $3.3(Z h u) . O(\mathcal{V})$ is a two-sided ideal in V under the product $*$, and $(A(\mathcal{V}), *)$ is an associative algebra with unit [1]. The assignment $\mathcal{V} \mapsto A(\mathcal{V})$ is functorial. If ℓ is a vertex algebra ideal of \mathcal{V}, we have

$$
\begin{equation*}
A(\mathcal{V} / \ell) \cong A(\mathcal{V}) / I, \quad I=\pi_{Z h}(\ell) \tag{3.9}
\end{equation*}
$$

The main application of the Zhu functor is to study the representation theory of \mathcal{V}, or at least reduce it to a more classical problem. Let $M=\bigoplus_{n \geq 0} M_{n}$ be a module over \mathcal{V} such that for $a \in \mathcal{V}_{m}, a(n) M_{k} \subset M_{m+k-n-1}$ for all $n \in \mathbf{Z}$. Given $a \in \mathcal{V}_{m}$, the Fourier mode $a(m-1)$ acts on each M_{k}. The subspace M_{0} is then a module over $A(\mathcal{V})$ with action $[a] \mapsto a(m-1) \in \operatorname{End}\left(M_{0}\right)$. In fact, $M \mapsto M_{0}$ provides a one-to-one correspondence between irreducible $\mathbf{Z}_{\geq 0}$-graded \mathcal{V}-modules and irreducible $A(\mathcal{V})$ modules.

A vertex algebra \mathcal{V} is said to be strongly generated by a subset $\left\{v_{i}(z) \mid i \in I\right\}$ if \mathcal{V} is spanned by collection of iterated Wick products

$$
\left\{: \partial^{k_{1}} v_{i_{1}}(z) \cdots \partial^{k_{m}} v_{i_{m}}(z): \mid k_{1}, \ldots, k_{m} \geq 0\right\}
$$

Lemma 3.4. Suppose that \mathcal{V} is strongly generated by $\left\{v_{i}(z) \mid i \in I\right\}$, which are homogeneous of weights $d_{i} \geq 0$. Then $A(\mathcal{V})$ is generated as an associative algebra by the collection $\left\{\pi_{Z h}\left(v_{i}\right) \mid i \in I\right\}$.
Proof. Let \mathcal{C} be the algebra generated by $\left\{\pi_{z h}\left(v_{i}\right) \mid i \in I\right\}$. We need to show that for any vertex operator $\omega \in \mathcal{V}$, we have $\pi_{Z h}(\omega) \in \mathcal{C}$. By strong generation, it suffices to prove this when ω is a monomial of the form

$$
: \partial^{k_{1}} v_{i_{1}} \cdots \partial^{k_{r}} v_{i_{r}}:
$$

We proceed by induction on weight. Suppose first that ω has weight zero, so that $k_{1}=\cdots=k_{r}=0$ and $v_{i_{1}}, \ldots, v_{i_{r}}$ all have weight zero. Note that $v_{i_{1}} \circ_{n}\left(: v_{i_{2}} \cdots v_{i_{r}}:\right)$ has weight $-n-1$, and hence vanishes for all $n \geq 0$. It follows from (3.6) that

$$
\left[v_{i_{1}}\right] *\left[: v_{i_{2}} \cdots v_{i_{r}}:\right]=[\omega]
$$

Continuing in this way, we see that $[\omega]=\left[v_{i_{1}}\right] *\left[v_{i_{2}}\right] * \cdots *\left[v_{i_{r}}\right] \in \mathcal{C}$. Next, assume that $\pi_{Z h}(\omega) \in \mathcal{C}$ whenever $w t(\omega)<n$, and suppose that $\omega=: \partial^{k_{1}} v_{i} \cdots \partial^{k_{r}} v_{r}$: has weight n. We calculate

$$
\left[\partial^{k_{1}} v_{i_{1}}\right] *\left[: \partial^{k_{2}} v_{i_{2}} \cdots \partial^{k_{r}} v_{i_{r}}:\right]=[\omega]+\ldots
$$

where \cdots is a linear combination of terms of the form [$\left.\partial^{k_{1}} v_{i_{1}} o_{k}\left(: \partial^{k_{2}} v_{i_{2}} \cdots \partial^{k_{r}} v_{i_{r}}:\right)\right]$ for $k \geq 0$. The vertex operators $\partial^{k_{1}} v_{i_{1}} \circ_{k}\left(: \partial^{k_{2}} v_{i_{2}} \cdots \partial^{k_{r}} v_{i_{r}}:\right)$ all have weight $n-k-1$, so by our inductive assumption, $\left[\partial^{k_{1}} v_{i_{1}} \circ_{k}\left(: \partial^{k_{2}} v_{i_{2}} \cdots \partial^{k_{r}} v_{i_{r}}:\right)\right] \in \mathcal{C}$. Applying the same argument to the vertex operator : $\partial^{k_{2}} v_{i_{2}} \cdots \partial^{k_{r}} v_{i_{r}}$: and proceeding by induction on r, we see that $[\omega] \equiv\left[\partial^{k_{1}} v_{i_{1}}\right] * \cdots *\left[\partial^{k_{n}} v_{i_{n}}\right]$ modulo \mathcal{C}. Finally, by applying (3.8) repeatedly, we see that $[\omega] \in \mathcal{C}$, as claimed.

Example 3.5. $\mathcal{V}=\mathcal{O}(\mathfrak{g}, B)$ where each generator X^{ξ} has weight 1 . Then $A(\mathcal{O}(\mathfrak{g}, B))$ is generated by $\left\{\left[X^{\xi}\right] \mid \xi \in \mathfrak{g}\right\}$, and is isomorphic to the universal enveloping algebra $\mathfrak{U g}$ via $\left[X^{\xi}\right] \mapsto \xi$.

Example 3.6. Let $\mathcal{V}=s(V)$ where $V=\mathbf{C}^{n}$, and $s(V)$ is equipped with the conformal structure L^{α} given by (3.2). Then $A(f(V))$ is generated by $\left\{\left[\gamma^{x_{i}^{\prime}}\right],\left[\beta^{x_{i}}\right]\right\}$ and is isomorphic to the Weyl algebra $\mathscr{D}(V)$ with generators $x_{i}^{\prime}, \frac{\partial}{\partial x_{i}^{\prime}}$ via

$$
\left[\gamma^{x_{i}^{\prime}}\right] \mapsto x_{i}^{\prime}, \quad\left[\beta^{x_{i}}\right] \mapsto \frac{\partial}{\partial x_{i}^{\prime}}
$$

Even though the structure of $A(f(V))$ is independent of the choice of α, the Zhu map $\pi_{Z h}: \delta(V) \rightarrow A(\delta(V))$ does depend on α. For example, (3.6) shows that

$$
\begin{equation*}
\pi_{Z h}\left(: \gamma^{x_{i}^{\prime}} \beta^{x_{i}}:\right)=x_{i}^{\prime} \frac{\partial}{\partial x_{i}^{\prime}}+1-\alpha_{i} . \tag{3.10}
\end{equation*}
$$

We will be particularly concerned with the interaction between the commutant construction and the Zhu functor. If $a, b \in \mathcal{V}$ are (super)commuting vertex operators, $[a]$ and $[b]$ are (super)commuting elements of $A(\mathcal{V})$. Hence for any subalgebra $\mathscr{B} \subset \mathcal{V}$, we have a commutative diagram

Here B denotes the subalgebra $\pi_{Z h}(\mathscr{B}) \subset A(\mathcal{V})$, and $\operatorname{Com}(B, A(\mathcal{V}))$ denotes the (super)commutant of B inside $A(\mathcal{V})$. The horizontal maps are inclusions, and π is the restriction of the Zhu map on \mathcal{V} to $\operatorname{Com}(\mathscr{B}, \mathcal{V})$. Clearly $\operatorname{Im}(\pi)$ is a subalgebra of $\operatorname{Com}(B, A(\mathcal{V}))$. A natural problem is to describe $\operatorname{Im}(\pi)$ and $\operatorname{Coker}(\pi)$. In our main example $\mathcal{V}=s(V)$ and $\mathscr{A}=\Theta$, we have $\pi_{Z h}(\Theta)=\tau(\mathfrak{U} \mathfrak{g}) \subset \mathscr{D}(V)$ and $\operatorname{Com}(\tau(\mathfrak{U g}), \mathscr{D}(V))=\mathscr{D}(V)^{\mathfrak{g}}$, so (3.11) specializes to (1.2).

4. The Friedan-Martinec-Shenker bosonization

4.1. Bosonization of fermions

First we describe the bosonization of fermions and the well-known boson-fermion correspondence due to [3]. Let A be the Heisenberg algebra with generators $j(n), n \in \mathbf{Z}$, and κ, satisfying $[j(n), j(m)]=n \delta_{n+m, 0} \kappa$. The field $j(z)=\sum_{n \in \mathbf{Z}} j(n) z^{-n-1}$ satisfies the OPE

$$
j(z) j(w) \sim(z-w)^{-2}
$$

and generates a Heisenberg vertex algebra \mathscr{H} of central charge 1. Define the free bosonic scalar field

$$
\phi(z)=q+j(0) \ln z-\sum_{n \neq 0} \frac{j(n)}{n} x^{-n}
$$

where q satisfies $[q, j(n)]=\delta_{n, 0}$. Clearly $\partial \phi(z)=j(z)$, and we have the OPE

$$
\phi(z) \phi(w) \sim \ln (z-w)
$$

Given $\alpha \in \mathbf{C}$, let \mathscr{H}_{α} denote the irreducible representation of A generated by the vacuum vector v_{α} satisfying

$$
\begin{equation*}
j(n) v_{\alpha}=\alpha \delta_{n, 0} v_{\alpha}, \quad n \geq 0 \tag{4.1}
\end{equation*}
$$

Given $\eta \in \mathbf{C}$, the operator $\mathrm{e}^{\eta q}\left(v_{\alpha}\right)=v_{\alpha+\eta}$, so $\mathrm{e}^{\eta q}$ maps $\mathscr{H}_{\alpha} \rightarrow \mathscr{H}_{\alpha+\eta}$. Define the vertex operator

$$
X_{\eta}(z)=\mathrm{e}^{\eta \phi(z)}=\mathrm{e}^{\eta q} z^{\eta \alpha} \exp \left(\eta \sum_{n>0} j(-n) \frac{z^{n}}{n}\right) \exp \left(\eta \sum_{n<0} j(-n) \frac{z^{n}}{n}\right)
$$

The X_{η} satisfy the OPEs

$$
\begin{aligned}
& j(z) X_{\eta}(w)=\eta X_{\eta}(w)(z-w)^{-1}+\frac{1}{\eta} \partial X_{\eta}(w) \\
& X_{\eta}(z) X_{v}(w)=(z-w)^{\eta \nu}: X_{\eta}(z) X_{v}(w):
\end{aligned}
$$

If we take $\eta= \pm 1$, the pair of (fermionic) fields X_{1}, X_{-1} generate the lattice vertex algebra V_{L} associated to the onedimensional lattice $L=\mathbf{Z}$. The state space of V_{L} is just $\sum_{n \in \mathbf{Z}} \mathscr{H}_{n}=\mathscr{H} \otimes_{\mathbf{C}} L$. It follows that

$$
\begin{aligned}
& X_{1}(z) X_{-1}(w) \sim(z-w)^{-1}, \quad X_{-1}(z) X_{1}(w) \sim(z-w)^{-1} \\
& X_{1}(z) X_{1}(w) \sim 0, \quad X_{-1}(z) X_{-1}(w) \sim 0
\end{aligned}
$$

so the map $\mathcal{E} \rightarrow V_{L}$ sending $b \mapsto X_{-1}, c \rightarrow X_{1}$ is a vertex algebra isomorphism. Here \mathcal{E} denotes the $b c$-system $\mathcal{E}(V)$ in the case where V is one-dimensional.

4.2. Bosonization of bosons

Next, we describe the bosonization of bosons, following [2]. Recall that \mathcal{E} has the grading $\mathcal{E}=\oplus_{l \in \mathbf{Z}} \mathcal{E}^{l}$ by bc-charge. As in [2], define $N(s)=\sum_{l \in \mathbf{Z}} \varepsilon^{l} \otimes \mathscr{H}_{i(s+l)}$, which is a module over the vertex algebra $\mathcal{E} \otimes V_{L^{\prime}}$. Here L^{\prime} is the one-dimensional lattice $i \mathbf{Z}$, and $V_{L^{\prime}}$ is generated by $X_{ \pm i}$. We define a map $\epsilon: \delta \rightarrow \mathcal{E} \otimes V_{L^{\prime}}$ by

$$
\begin{equation*}
\beta \mapsto \partial b \otimes X_{-i}, \quad \gamma \mapsto c \otimes X_{i} \tag{4.2}
\end{equation*}
$$

It is straightforward to check that (4.2) is a vertex algebra homomorphism, which is injective since $\&$ is simple. Moreover Proposition 3 of [2] shows that the image of (4.2) coincides with the kernel of $c(0): N(s) \rightarrow N(s-1)$. Let \mathcal{E}^{\prime} be the subalgebra of \mathcal{E} generated by c and ∂b, which coincides with the kernel of $c(0): \mathcal{E} \rightarrow \mathcal{E}$. It follows that

$$
\begin{equation*}
\epsilon(f) \subset \varepsilon^{\prime} \otimes V_{L^{\prime}} \tag{4.3}
\end{equation*}
$$

5. W algebras

The \mathcal{W} algebras are vertex algebras which arise as extended symmetry algebras of two-dimensional conformal field theories. For each integer $n \geq 2$ and $c \in \mathbf{C}$, the algebra $\mathcal{W}_{n, c}$ of central charge c is generated by fields of conformal weights $2,3, \ldots, n$. In the case $n=\overline{2}, \mathcal{W}_{2, c}$ is just the Virasoro algebra of central charge c. In contrast to the Virasoro algebra, the generating fields for $\mathcal{W}_{n, c}$ for $n \geq 3$ have nonlinear terms in their OPEs, which makes the representation theory of these algebras highly nontrivial. One also considers various limits of \mathcal{W} algebras denoted by $\mathcal{W}_{1+\infty, c}$ which may be defined as modules over the universal central extension \hat{D} of the Lie algebra \mathscr{D} of differential operators on the circle [11].

We will be particularly concerned with the \mathcal{W}_{3} algebra, which was introduced by Zamolodchikov in [20] and studied extensively in [1]. Our discussion is taken directly from [18,19]. First, let $\mathcal{F}\left(\mathcal{W}_{3}\right)$ denote the free associative algebra with generators $L_{m}, W_{m}, m \in \mathbf{Z}$. Let $\hat{\mathcal{F}}\left(\mathcal{W}_{3}\right)$ be the completion of $\mathcal{F}\left(\mathcal{W}_{3}\right)$ consisting of (possibly) infinite sums of monomials in $\mathcal{F}\left(\mathcal{W}_{3}\right)$ such that for each $N>0$, only finitely many terms depend only on the variables L_{n}, W_{n} for $n \leq N$. For a fixed central charge $c \in \mathbf{C}$, let $\mathfrak{U} \mathcal{W}_{3, c}$ be the quotient of $\hat{\mathcal{F}}\left(\mathcal{W}_{3}\right)$ by the ideal generated by

$$
\begin{align*}
& {\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{c}{12}\left(m^{3}-m\right) \delta_{m,-n}} \tag{5.1}\\
& {\left[L_{m}, W_{n}\right]=(2 m-n) W_{m+n}} \tag{5.2}\\
& {\left[W_{m}, W_{n}\right]=(m-n)\left(\frac{1}{15}(m+n+3)(m+n+2)-\frac{1}{6}(m+2)(n+2)\right) L_{m+n}} \\
& \\
& \quad+\frac{16}{22+5 c}(m-n) \Lambda_{m+n}+\frac{c}{360} m\left(m^{2}-1\right)\left(m^{2}-4\right) \delta_{m,-n} .
\end{align*}
$$

Here

$$
\Lambda_{m}=\sum_{n \leq-2} L_{n} L_{m-n}+\sum_{n>-2} L_{m-n} L_{n}-\frac{3}{10}(m+2)(m+3) L_{m}
$$

Let

$$
\mathcal{W}_{3, c, \pm}=\left\{L_{n}, W_{n}, \pm n>0\right\}, \quad \mathcal{W}_{3, c, 0}=\left\{L_{0}, W_{0}\right\} .
$$

The Verma module $\mathcal{M}_{c}(t, w)$ of highest weight (t, w) is the induced module

$$
\mathfrak{U} \mathcal{W}_{3, c} \otimes_{W_{3, c,+} \oplus W_{3, c, 0}} \mathbf{C}_{t, w}
$$

where $\mathbf{C}_{t, w}$ is the one-dimensional $\mathcal{W}_{3, c,+} \oplus \mathcal{W}_{3, c, 0}$-module generated by the vector $v_{t, w}$ such that

$$
W_{3, c,+}\left(v_{t, w}\right)=0, \quad L_{0}\left(v_{t, w}\right)=t v_{t, w}, \quad W_{0}\left(v_{t, w}\right)=w v_{t, w}
$$

A vector $v \in \mathcal{M}_{c}(t, w)$ is called singular if $\mathcal{W}_{3, c,+}(v)=0$. In the case $t=w=0$, the vectors

$$
\begin{equation*}
L_{-1}\left(v_{0,0}\right), \quad W_{-1}\left(v_{0,0}\right), \quad W_{-2}\left(v_{0,0}\right) \tag{5.4}
\end{equation*}
$$

are singular vectors in $\mathcal{M}_{c}(0,0)$. The vacuum module $\mathcal{V} \mathcal{W}_{3, c}$ is defined to be the quotient of $\mathcal{M}_{c}(0,0)$ by the $\mathfrak{U} \mathcal{W}_{3, c}$-submodule generated by the vectors (5.4). $\mathcal{V} \mathcal{W}_{3, c}$ has the structure of a vertex algebra which is freely generated by the vertex operators

$$
L(z)=\sum_{n \in \mathbf{Z}} L_{n} z^{-n-2}, \quad W(z)=\sum_{n \in \mathbf{Z}} W_{n} z^{-n-3}
$$

In particular, the vertex operators

$$
\left\{\partial^{i_{1}} L(z) \cdots \partial^{i_{m}} L(z) \partial^{j_{1}} W(z) \cdots \partial^{j_{n}} W(z) \mid 0 \leq i_{1} \leq \cdots \leq i_{m}, 0 \leq j_{1} \leq \cdots \leq j_{n}\right\}
$$

which correspond to $i_{1}!\cdots i_{m}!j_{1}!\cdots j_{n}!L_{-i_{1}-2} \cdots L_{-i_{m}-2} W_{-j_{1}-3} \cdots W_{-j_{n}-3} v_{0,0}$ under the state-operator correspondence, form a basis for $\mathcal{V} \mathcal{W}_{3, c}$. By Lemma 4.1 of [19], the Zhu algebra $A\left(\mathcal{V} \mathcal{W}_{3, c}\right)$ is just the polynomial algebra $\mathbf{C}[l, w]$ where $l=\pi_{Z h}(L)$ and $w=\pi_{Z h}(W)$.

Let ℓ_{c} denote the maximal proper $\mathfrak{U} \mathcal{W}_{3, c}$-submodule of $\mathcal{V} \mathcal{W}_{3, c}$, which is a vertex algebra ideal. The quotient $\mathcal{V} \mathcal{W}_{3, c} / \ell_{c}$ is a simple vertex algebra which we denote by $\mathcal{W}_{3, c}$. Let $I_{c}=\pi_{Z h}\left(\ell_{c}\right)$, which is an ideal of $\mathbf{C}[l, w]$. By (3.9), we have $A\left(\mathcal{W}_{3, c}\right)=\mathbf{C}[l, w] / I_{c}$. Generically, $\ell_{c}=0$, so that $\mathcal{V} \mathcal{W}_{3, c}=\mathcal{W}_{3, c}$. We will be primarily concerned with the non-generic case $c=-2$, in which $\ell_{-2} \neq 0$. The generators $L(z), W(z) \in \mathcal{V} W_{3,-2}$ satisfy the following OPEs:

$$
\begin{align*}
& L(z) L(w) \sim-(z-w)^{-4}+2 L(w)(z-w)^{-2}+\partial L(w)(z-w)^{-1} \tag{5.5}\\
& L(z) W(w) \sim 3 W(w)(z-w)^{-2}+\partial W(w)(z-w)^{-1} \tag{5.6}\\
& \begin{aligned}
W(z) W(w) \sim & -\frac{2}{3}(z-w)^{-6}+2 L(w)(z-w)^{-4}+\partial L(w)(z-w)^{-3} \\
& \quad+\left(\frac{8}{3}: L(w) L(w):-\frac{1}{2} \partial^{2} L(w)\right)(z-w)^{-2}+\left(\frac{4}{3} \partial(: L(w) L(w):)-\frac{1}{3} \partial^{3} L(w)\right)(z-w)^{-1} .
\end{aligned}
\end{align*}
$$

The simple vertex algebra $\mathcal{W}_{3,-2}$ also has generators $L(z), W(z)$ satisfying (5.5)-(5.7), but $\mathcal{W}_{3,-2}$ is no longer freely generated.

In order to avoid introducing extra notation, we will not use the change of variables $\tilde{W}(z)=\frac{1}{2} \sqrt{6} W(z)$ given by Eq. 3.13 of [19]. By Lemma 4.3 of [19], the ideal $I_{-2} \subset \mathbf{C}[l, w]$ is generated (in our variables) by the polynomial

$$
\begin{equation*}
w^{2}-\frac{2}{27} l^{2}(8 l+1) \tag{5.8}
\end{equation*}
$$

5.1. The representation theory of $\mathcal{W}_{3,-2}$

In [19], Wang gave a complete classification of the irreducible modules over the simple vertex algebra $\mathcal{W}_{3,-2}$. An important ingredient in his classification is the following realization of $\mathcal{W}_{3,-2}$ as a subalgebra of the Heisenberg algebra \mathscr{H} with generator $j(z)$ satisfying $j(z) j(w) \sim(z-w)^{-2}$. Define

$$
\begin{equation*}
L_{\mathscr{H}}=\frac{1}{2}\left(: j^{2}:\right)+\partial j, \quad W_{\mathscr{H}}=\frac{2}{3 \sqrt{6}}\left(: j^{3}:\right)+\frac{1}{\sqrt{6}}(: j \partial j:)+\frac{1}{6 \sqrt{6}} \partial^{2} j . \tag{5.9}
\end{equation*}
$$

The map $\mathcal{W}_{3,-2} \hookrightarrow \mathscr{H}$ sending $L \mapsto L_{\mathscr{H}}$ and $W \mapsto W_{\mathscr{H}}$ is a vertex algebra homomorphism, so we may regard any \mathscr{H}-module as a $\mathcal{W}_{3,-2}$-module. Given $\alpha \in \mathbf{C}$, consider the irreducible \mathscr{H}-module \mathscr{H}_{α} defined by (4.1), and let V_{α} denote the irreducible quotient of the $\mathcal{W}_{3,-2}$-submodule of \mathscr{H}_{α} generated by v_{α}. It is easily checked that the generator v_{α} is a highest weight vector of $\mathcal{W}_{3,-2}$ with highest weight

$$
\begin{equation*}
\left(\frac{1}{2} \alpha(\alpha-1), \frac{1}{3 \sqrt{6}} \alpha(\alpha-1)(2 \alpha-1)\right) . \tag{5.10}
\end{equation*}
$$

The main result of [19] is that the modules $\left\{V_{\alpha} \mid \alpha \in \mathbf{C}\right\}$ account for all the irreducible modules of $\mathcal{W}_{3,-2}$.

6. The commutant algebra $f(V)^{\Theta+}$ for $\mathfrak{g}=g l(1)$ and $V=\mathrm{C}$

In this section, we describe $\rho(V)^{\Theta_{+}}$in the case where $\mathfrak{g}=g l(1)$ and $V=\mathbf{C}$, where the action $\rho: \mathfrak{g} \rightarrow$ End V is by multiplication. Fix a basis ξ of \mathfrak{g} and a basis x of V, such that $\rho(\xi)(x)=x$. Then $\delta=s(V)$ is generated by $\beta(z)=\beta^{x}(z)$ and $\gamma(z)=\gamma^{x^{\prime}}(z)$, and the map (2.5) is given by

$$
\mathfrak{g} \rightarrow \mathscr{D}=\mathscr{D}(V), \quad \xi \mapsto-x^{\prime} \frac{\mathrm{d}}{\mathrm{~d} x^{\prime}}
$$

In this case, $\mathcal{O}(\mathfrak{g}, B)$ is just the Heisenberg algebra \mathscr{H} of central charge -1 , and the action of \mathscr{H} on δ given by (3.5) is

$$
\begin{equation*}
\theta(z)=-: \gamma(z) \beta(z): \tag{6.1}
\end{equation*}
$$

which clearly satisfies

$$
\begin{equation*}
\theta(z) \theta(w) \sim-(z-w)^{-2} \tag{6.2}
\end{equation*}
$$

As usual, Θ will denote the subalgebra of δ generated by $\theta(z)$. Since $-\theta(0)$ is the $\beta \gamma$-charge operator, $\delta^{\Theta_{+}}$must lie in the subalgebra ς^{0} of $\beta \gamma$-charge zero.

Let : θ^{n} : denote the n-fold iterated Wick product of θ with itself. It is clear from (6.2) that each : θ^{n} : lies in s^{0} but not in $\delta^{\Theta_{+}}$. A natural place to look for elements in $\delta^{\Theta_{+}}$is to begin with the operators : $\theta^{n}:$ and try to "quantum correct" them so that they lie in $\delta^{\Theta_{+}}$. As a polynomial in $\beta, \partial \beta, \ldots, \gamma, \partial \gamma, \ldots$, note that

$$
: \theta^{n}:=(-1)^{n} \beta^{n} \gamma^{n}+v_{n}
$$

where v_{n} has degree at most $2 n-2$. By a quantum correction, we mean an element $\omega_{n} \in \&$ of polynomial degree at most $2 n-2$, so that : $\theta^{n}:+\omega_{n} \in s^{\Theta_{+}}$.

Clearly θ has no such correction ω_{1}, because ω_{1} would have to be a scalar, in which case $\theta \circ_{1}\left(\theta+\omega_{1}\right)=\theta \circ_{1} \theta=-1$. However, the next lemma shows that we can find such ω_{n} for all $n \geq 2$.

Lemma 6.1. Let

$$
\begin{aligned}
& \omega_{2}=: \beta(\partial \gamma):-(\partial \beta) \gamma:, \\
& \omega_{3}=-\frac{9}{2}: \beta^{2} \gamma(\partial \gamma):+\frac{9}{2}: \beta(\partial \beta) \gamma^{2}:-\frac{3}{2}: \beta\left(\partial^{2} \gamma\right):-\frac{3}{2}:\left(\partial^{2} \beta\right) \gamma:+6:(\partial \beta)(\partial \gamma): .
\end{aligned}
$$

Then : $\theta^{2}:+\omega_{2} \in s^{\Theta_{+}}$and $: \theta^{3}:+\omega_{3} \in s^{\Theta_{+}}$. Since $:\left(\theta^{n}\right):$ and $:\left(: \theta^{i}:\right)\left(: \theta^{j}:\right):$ have the same leading term as polynomials in $\beta, \partial \beta, \ldots, \gamma, \partial \gamma, \ldots$ for $i+j=n$, it follows that for any $n \geq 2$ we can find ω_{n} such that $: \theta^{n}:+\omega_{n} \in s^{\Theta_{+}}$.
Proof. This is a straightforward OPE calculation.

Next, define vertex operators $L_{\delta}, W_{s} \in s^{\Theta_{+}}$as follows:

$$
\begin{align*}
L_{\delta}= & \frac{1}{2}\left(: \theta^{2}:+\omega_{2}\right)=\frac{1}{2}\left(: \beta^{2} \gamma^{2}:\right)-:(\partial \beta) \gamma:+: \beta(\partial \gamma):, \tag{6.3}\\
W_{\delta}= & -\sqrt{\frac{2}{27}}\left(: \theta^{3}:+\omega_{3}\right) \\
= & \sqrt{\frac{2}{27}}\left(: \beta^{3} \gamma^{3}:\right)-\sqrt{\frac{3}{2}}\left(: \beta(\partial \beta) \gamma^{2}:\right)+\sqrt{\frac{3}{2}}\left(: \beta^{2} \gamma(\partial \gamma):\right) \\
& +\sqrt{\frac{1}{6}}\left(:\left(\partial^{2} \beta\right) \gamma:\right)-\sqrt{\frac{8}{3}}(:(\partial \beta)(\partial \gamma):)+\sqrt{\frac{1}{6}}\left(: \beta\left(\partial^{2} \gamma\right):\right) . \tag{6.4}
\end{align*}
$$

Let $\mathcal{W} \subset s^{\Theta_{+}}$be the vertex algebra generated by L_{s}, W_{s}. An OPE calculation shows that the map

$$
\begin{equation*}
\mathcal{V} \mathcal{W}_{3,-2} \rightarrow s^{\Theta+}, \quad L \mapsto L_{\delta}, \quad W \mapsto W_{8} \tag{6.5}
\end{equation*}
$$

is a vertex algebra homomorphism. Moreover, the ideal ℓ_{-2} is annihilated by (6.5), so this map descends to a map

$$
\begin{equation*}
f: \mathcal{W}_{3,-2} \hookrightarrow s^{\Theta_{+}} \tag{6.6}
\end{equation*}
$$

In fact, (6.6) is related to the realization of $\mathcal{W}_{3,-2}$ as a subalgebra of \mathscr{H} defined earlier. First, under the boson-fermion correspondence,

$$
\begin{align*}
L_{\mathcal{H}} \mapsto L_{\mathcal{E}} & =: \partial b c: \tag{6.7}\\
W_{\mathcal{H}} \mapsto W_{\mathcal{E}} & =\frac{1}{\sqrt{6}}\left(:\left(\partial^{2} b\right) c:-:(\partial b)(\partial c):\right) \tag{6.8}
\end{align*}
$$

Next, under the map $\epsilon: s \rightarrow \mathcal{E} \otimes \mathscr{H}$ given by (4.2), we have

$$
\begin{equation*}
L_{8} \mapsto L_{\mathcal{E}} \otimes 1, \quad W_{\delta} \mapsto W_{\mathcal{E}} \otimes 1 \tag{6.9}
\end{equation*}
$$

The subalgebra s^{0} of $\beta \gamma$-charge zero has a natural set of generators

$$
\left\{J^{i}=: \beta\left(\partial^{i} \gamma\right):, i \geq 0\right\}
$$

and it is well known that s^{0} is isomorphic to $\mathcal{W}_{1+\infty,-1}$ [11]. One of the main results of [18] is that $\epsilon: s \rightarrow \mathcal{E} \otimes \mathscr{H}$ restricts to an isomorphism

$$
\begin{equation*}
s^{0} \cong \mathcal{A} \otimes \mathscr{H} \tag{6.10}
\end{equation*}
$$

where $\mathcal{A} \cong \mathcal{W}_{3,-2}$ is the subalgebra of \mathcal{E} generated by $L_{\mathcal{E}}$ and $W_{\mathcal{E}}$. By (6.9), ϵ maps \mathcal{W} onto $\mathcal{A} \otimes 1$. Similarly, $\epsilon(\theta)=i(1 \otimes j)$, so ϵ maps Θ onto $1 \otimes \mathscr{H}$, and $\delta^{0}=\mathcal{W} \otimes \Theta$.

For each $d \in \mathbf{Z}$, the subspace s^{d} of $\beta \gamma$-charge d is a module over s^{0}, which is in fact irreducible [11,19]. Define $v^{d}(z) \in s^{d}$ by

$$
v^{d}(z)= \begin{cases}\beta(z)^{-d} & d<0 \tag{6.11}\\ 1 & d=0 \\ \gamma(z)^{d} & d>0\end{cases}
$$

Here $\beta(z)^{-d}$ and $\gamma(z)^{d}$ denote the d-fold iterated Wick products : $\beta(z) \cdots \beta(z):$ and : $\gamma(z) \cdots \gamma(z):$, respectively. Each $v^{d}(z)$ is a highest weight vector for the action of $W_{3,-2}$, and the highest weight of $v^{d}(z)$ is given by (5.10) with

$$
\begin{cases}\alpha=d & d \leq 0 \tag{6.12}\\ \alpha=d+1 & d>0\end{cases}
$$

Moreover, $v^{d}(z)$ is also a highest weight vector for the action of \mathscr{H}, so s^{d} is generated by $v^{d}(z)$ as a module over $\mathcal{W}_{3,-2} \otimes \mathscr{H}$.
Theorem 6.2. The map $f: \mathcal{W}_{3,-2} \hookrightarrow s^{\Theta_{+}}$given by (6.6) is an isomorphism of vertex algebras. Moreover, $\operatorname{Com}\left(f^{\Theta_{+}}, f\right)=\Theta$. Hence Θ and $s^{\Theta_{+}}$form a Howe pair inside s.
Proof. Clearly $s^{\Theta_{+}} \subset s^{0}$, and since $\delta^{0}=\mathcal{W} \otimes \Theta$, we have

$$
s^{\Theta_{+}}=\operatorname{Com}(\Theta, \mathcal{w} \otimes \Theta)=\mathcal{W} \otimes \operatorname{Com}(\Theta, \Theta)=\mathcal{W}
$$

This proves the first statement. As for the second statement, it is clear from (5.10) and (6.12) that $\operatorname{Com}\left(f^{\Theta_{+}}, \delta\right) \subset s^{0}$. Hence $\operatorname{Com}\left(s^{\Theta+}, s\right)=\operatorname{Com}(\mathcal{W}, \mathcal{w} \otimes \Theta)=\Theta \otimes \operatorname{Com}(\mathcal{W}, \mathcal{w})=\Theta$.

6.1. The map $\pi: s^{\Theta_{+}} \rightarrow D^{\mathfrak{g}}$

Equip δ with the conformal structure $L^{\alpha}=(\alpha-1): \partial \beta(z) \gamma(z):+\alpha: \beta(z) \partial \gamma(z):$, and consider the map $\pi: f^{\Theta+} \rightarrow \mathscr{D}^{\mathfrak{g}}$ given by (1.2). In this case, $\mathscr{D}^{\mathfrak{g}}$ is just the polynomial algebra $\mathbf{C}[e]$, where e is the Euler operator $x^{\prime} \frac{\mathrm{d}}{\mathrm{d} \chi^{\prime}}$.

Lemma 6.3. We have

$$
\begin{equation*}
\pi\left(L_{\ell}\right)=\frac{1}{2}\left(\mathrm{e}^{2}+e\right), \quad \pi\left(W_{\ell}\right)=\frac{2}{3 \sqrt{6}} \mathrm{e}^{3}+\frac{1}{\sqrt{6}} \mathrm{e}^{2}+\frac{1}{3 \sqrt{6}} e . \tag{6.13}
\end{equation*}
$$

In particular, $\pi\left(L_{\delta}\right)$ and $\pi\left(W_{\delta}\right)$ are independent of the choice of α.
Proof. This is a straightforward computation using (3.6) and the fact that $\pi_{Z h}(\gamma(z))=x^{\prime}$ and $\pi_{Z h}(\beta(z))=\frac{\mathrm{d}}{\mathrm{dx}}$. Note that $l=\pi\left(L_{\ell}\right)$ and $w=\pi\left(W_{\ell}\right)$ satisfy (5.8).

Corollary 6.4. For any conformal structure L^{α} on \& as above, $\operatorname{Im}(\pi)$ is the subalgebra of $\mathbf{C}[e]$ generated by $\pi\left(L_{\delta}\right)$ and $\pi\left(W_{f}\right)$. Moreover, $\operatorname{Coker}(\pi)=\mathbf{C}[e] / \operatorname{Im}(\pi)$ has dimension one, and is spanned by the image of e in $\operatorname{Coker}(\pi)$.
Proof. The first statement is immediate from Lemma 3.4, since $s^{\Theta_{+}}$is strongly generated by L_{s} and W_{s} which have weights 2 and 3 respectively. The second statement follows from (3.10) and (6.13), because any polynomial in $\mathbf{C}[e]$ is equivalent to an element which is homogeneous of degree $1 \operatorname{modulo} \operatorname{Im}(\pi)$.

7. $\delta(V)^{\Theta_{+}}$for abelian Lie algebra actions

Fix a basis $\left\{x_{1}, \ldots, x_{n}\right\}$ for V and dual basis $\left\{x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right\}$ for V^{*}. We regard $s(V)$ as $s_{1} \otimes \cdots \otimes s_{n}$, where s_{j} is the copy of s generated by $\beta^{x_{j}}(z), \gamma^{x_{j}^{\prime}}(z)$. Let $f_{j}: s \rightarrow s(V)$ be the obvious map onto the j th factor. The subspace δ_{j}^{0} of $\beta \gamma$-charge zero is isomorphic to $W^{j} \otimes \mathscr{H}^{j}$, where \mathscr{H}^{j} is generated by $\theta^{j}(z)=f_{j}(\theta(z))$, and W^{j} is generated by $L^{j}=f_{j}\left(L_{\delta}\right)$, $W^{j}=f_{j}\left(W_{\delta}\right)$. Moreover, as a module over $\mathcal{W}^{j} \otimes \mathscr{H}^{j}$, the space s_{j}^{d} of $\beta \gamma$-charge d is generated by the highest weight vector $v_{j}^{d}(z)=f_{j}\left(v^{d}(z)\right)$, which is given by

$$
v_{j}^{d}(z)= \begin{cases}\beta^{x_{j}}(z)^{-d} & d<0 \tag{7.1}\\ 1 & d=0 \\ \gamma^{x_{j}^{\prime}}(z)^{d} & d>0\end{cases}
$$

We denote by f_{j}^{\prime} the linear span of the vectors $\left\{v_{j}^{d}(z) \mid d \in \mathbf{Z}\right\}$. Note that for any conformal structure L^{α} on $s(V)$, the differential operators $v_{j}^{d} \in \mathscr{D}(V)$ defined by (2.6) correspond to $v_{j}^{d}(z)$ under the Zhu map. Let \mathfrak{B} denote the vertex algebra

$$
f_{1}^{0} \otimes \cdots \otimes f_{n}^{0} \cong\left(\mathcal{W}^{1} \otimes \mathscr{H}^{1}\right) \otimes \cdots \otimes\left(\mathcal{W}^{n} \otimes \mathscr{H}^{n}\right)
$$

Clearly the space $\delta(V)^{\prime}$ consisting of highest-weight vectors for the action of \mathscr{B} is just $s_{1}^{\prime} \otimes \cdots \otimes s_{n}^{\prime}$. As usual, let $\mathbf{Z}^{n} \subset \mathbf{C}^{n}$ denote the standard lattice. For each lattice point $l=\left(l_{1}, \ldots, l_{n}\right) \in \mathbf{Z}^{n}$, define

$$
\begin{equation*}
\omega_{l}(z)=: v_{1}^{l_{1}}(z) \cdots v_{n}^{l_{n}}(z): \tag{7.2}
\end{equation*}
$$

where $v_{j}^{d}(z)$ is given by (7.1). For example, in the case $n=2$ and $l=(2,-3) \in \mathbf{Z}^{2}$, we have

$$
\omega_{l}(z)=: v_{1}^{2}(z) v_{2}^{-3}(z):=: \gamma^{x_{1}}(z) \gamma^{x_{1}}(z) \beta^{x_{2}}(z) \beta^{x_{2}}(z) \beta^{x_{2}}(z):
$$

For any conformal structure L^{α} on $s(V), \omega_{l}(z)$ corresponds under the Zhu map to the element $\omega_{l} \in \mathscr{D}(V)$ given by (2.7).
Lemma 7.1. For each $l \in \mathbf{Z}^{n}$, the \mathfrak{B}-module \mathcal{M}_{l} generated by $\omega_{l}(z)$ is irreducible. Moreover, as a module over \mathfrak{B},

$$
\begin{equation*}
s(V)=\bigoplus_{l \in \mathbf{Z}^{n}} \mathcal{M}_{l} \tag{7.3}
\end{equation*}
$$

Proof. This is immediate from the description of s^{d} as the irreducible s^{0}-module generated by $v_{d}(z)$, and the fact that $s(V)^{\prime}=s_{1}^{\prime} \otimes \cdots \otimes s_{n}^{\prime}$.

Note that $\theta^{j}(z) \circ_{0} \omega_{l}(z)=-l_{j} \omega_{l}(z)$, so the \mathbf{Z}^{n}-grading on $f(V)$ above is just the eigenspace decomposition of $s(V)$ under the family of diagonalizable operators $-\theta^{j}(z) \circ_{0}$.

For the remainder of this section, \mathfrak{g} will denote the abelian Lie algebra

$$
\mathbf{C}^{m}=g l(1) \oplus \cdots \oplus g l(1)
$$

and $\rho: \mathfrak{g} \rightarrow \operatorname{End}(V)$ will be a faithful, diagonal action. Let $A(\rho) \subset \mathbf{C}^{n}$ be the subspace spanned by $\{\rho(\xi) \mid \xi \in \mathfrak{g}\}$. As in the classical setting, we denote $f(V)^{\Theta_{+}}$by $f(V)_{\rho}^{\Theta_{+}}$when we need to emphasize the dependence on ρ. Clearly $f(V)_{\rho}^{\Theta_{+}}=f(V)_{g . \rho}^{\Theta_{+}}$ for all $g \in G L(m)$, so the family of algebras $s(V)_{\rho}^{\Theta_{+}}$is parametrized by the points $A(\rho) \in \operatorname{Gr}(m, n)$.

Choose a basis $\left\{\xi^{1}, \ldots, \xi^{m}\right\}$ for \mathfrak{g} such that the corresponding vectors

$$
\rho\left(\xi^{i}\right)=a^{i}=\left(a_{1}^{i}, \ldots, a_{n}^{i}\right) \in \mathbf{C}^{n}
$$

form an orthonormal basis for $A=A(\rho)$. Let $\theta^{\xi_{i}}(z)$ be the vertex operator corresponding to $\rho\left(\xi^{i}\right)$, and let Θ be the subalgebra of \mathscr{B} generated by $\left\{\theta^{\xi_{i}}(z) \mid i=1, \ldots, m\right\}$. By (3.5), we have

$$
\theta^{\xi_{i}}(z)=\sum_{j=1}^{n} a_{j} \theta^{j}(z)=-\sum_{j=1}^{n} a_{j}: \gamma^{x_{j}^{\prime}}(z) \beta^{x_{j}}(z):
$$

Clearly $\theta^{\xi_{i}}(z) \theta^{\xi_{j}}(w) \sim-\left\langle a^{i}, a^{j}\right\rangle(z-w)^{-2}=\delta_{i, j}(z-w)^{-2}$.
If $m<n$, extend the set $\left\{a^{1}, \ldots, a^{m}\right\}$ to an orthonormal basis for \mathbf{C}^{n} by adjoining vectors $b^{i}=\left(b_{1}^{i}, \ldots, b_{n}^{i}\right) \in \mathbf{C}^{n}$, for $i=m+1, \ldots, n$. Let

$$
\phi^{i}(z)=\sum_{j=1}^{n} b_{j}^{i} \theta^{j}(z)=-\sum_{j=1}^{n} b_{j}^{i}: \gamma^{x_{j}^{\prime}}(z) \beta^{x_{j}}(z):
$$

be the corresponding vertex operators, and let Φ be the subalgebra of \mathcal{B} generated by $\left\{\phi^{i}(z) \mid i=m+1, \ldots, n\right\}$. The OPEs

$$
\phi^{i}(z) \phi^{j}(w) \sim-\left\langle b^{i}, b^{j}\right\rangle(z-w)^{-2}, \quad \theta^{\xi_{i}}(z) \phi^{j}(w) \sim-\left\langle a^{i}, b^{j}\right\rangle(z-w)^{-2}
$$

show that the $\phi^{i}(z)$ pairwise commute and each generates a Heisenberg algebra of central charge -1 , and that $\Phi \subset s(V)^{\Theta_{+}}$. In particular, we have the decomposition

$$
\mathscr{H}^{1} \otimes \cdots \otimes \mathscr{H}^{n}=\Theta \otimes \Phi
$$

Next, let \mathcal{W} denote the subalgebra of \mathscr{B} generated by $\left\{L^{j}(z), W^{j}(z) \mid j=1, \ldots, n\right\}$. Theorem 6.2 shows that \mathcal{W} commutes with both Θ and Φ, so we have the decomposition

$$
\begin{equation*}
\mathscr{B}=\mathcal{W} \otimes \Theta \otimes \Phi . \tag{7.4}
\end{equation*}
$$

In particular, the subalgebra $\mathscr{B}^{\prime}=\mathcal{W} \otimes \Phi$ lies in the commutant $s(V)^{\Theta_{+}}$. Let \mathcal{M}_{l}^{\prime} denote the \mathscr{B}^{\prime}-submodule of \mathcal{M}_{l} generated by $\omega_{l}(z)$, which is clearly irreducible as a \mathcal{B}^{\prime}-module.

In order to describe $\delta(V)^{\Theta_{+}}$, we first describe the larger space $\delta(V)^{\Theta_{>}}$which is annihilated by $\theta^{\xi_{i}}(k)$ for $i=1, \ldots, m$ and $k>0$. Then $s(V)^{\Theta_{+}}$is just the subspace of $s(V)^{\Theta>}$ which is annihilated by $\theta^{\xi_{i}}(0)$, for $i=1, \ldots, m$. It is clear from (7.4) and the irreducibility of \mathcal{M}_{l} as a \mathscr{B}-module that $s(V)^{\Theta>} \cap \mathcal{M}_{l}=\mathcal{M}_{l}^{\prime}$, so

$$
\begin{equation*}
s(V)^{\Theta>}=\bigoplus_{l \in \mathbf{Z}^{n}} \mathcal{M}_{l}^{\prime} \tag{7.5}
\end{equation*}
$$

Theorem 7.2. As a module over \mathcal{B}^{\prime},

$$
\begin{equation*}
s(V)^{\Theta_{+}}=\bigoplus_{l \in A^{\perp} \cap Z^{n}} \mathcal{M}_{l}^{\prime} . \tag{7.6}
\end{equation*}
$$

Proof. Let $\omega(z) \in f(V)^{\Theta+}$. Since ω lies in the larger space $s(V)^{\Theta>}$ which is a direct sum of irreducible, cyclic \mathscr{B}^{\prime}-modules \mathcal{M}_{l}^{\prime} with generators $\omega_{l}(z)$, we may assume without loss of generality that $\omega(z)=\omega_{l}(z)$ for some l. An OPE calculation shows that

$$
\begin{equation*}
\theta^{\xi_{i}}(z) \omega_{l}(w) \sim-\left\langle a^{i}, l\right\rangle \omega_{l}(w)(z-w)^{-1} \tag{7.7}
\end{equation*}
$$

Hence $\omega_{l} \in \delta(V)^{\Theta_{+}}$if and only if l lies in the sublattice $A^{\perp} \cap \mathbf{Z}^{n}$.
Our next step is to find a finite generating set for $s(V)^{\Theta_{+}}$. Generically, $A^{\perp} \cap \mathbf{Z}^{n}$ has rank zero, so $s(V)^{\Theta_{+}}=\mathcal{B}^{\prime}$, which is (strongly) generated by the set

$$
\left\{\phi^{i}(z), L^{j}(z), W^{j}(z) \mid i=m+1, \ldots, n, j=1, \ldots, n\right\} .
$$

If $A^{\perp} \cap \mathbf{Z}^{n}$ has rank r for some $0<r \leq n-m$, choose a basis $\left\{l^{1}, \ldots, l^{r}\right\}$ for $A^{\perp} \cap \mathbf{Z}^{n}$. We claim that for any $l \in A^{\perp} \cap \mathbf{Z}^{n}$, $\omega_{l}(z)$ lies in the vertex subalgebra generated by

$$
\left\{\omega_{l^{1}}(z), \ldots, \omega_{l^{r}}(z), \omega_{-l^{1}}(z), \ldots, \omega_{-l^{r}}(z)\right\}
$$

It suffices to prove that given lattice points $l=\left(l_{1}, \ldots, l_{n}\right)$ and $l^{\prime}=\left(l_{1}^{\prime}, \ldots, l_{n}^{\prime}\right)$ in $\mathbf{Z}^{n}, \omega_{l+l^{\prime}}(z)=k \omega_{l}(z) \circ_{d} \omega_{l^{\prime}}(z)$ for some $k \neq 0$ and $d \in \mathbf{Z}$.

First, consider the special case where $l=\left(l_{1}, 0, \ldots, 0\right)$ and $l^{\prime}=\left(l_{1}^{\prime}, 0, \ldots, 0\right)$. If $l_{1} l_{1}^{\prime} \geq 0$, we have $\omega_{l}(z) \circ_{-1} \omega_{l^{\prime}}(z)=$ $\omega_{l+l^{\prime}}(z)$. Suppose next that $l_{1}<0$ and $l_{1}^{\prime}>0$, so that $\omega_{l}(z)=\beta^{x_{1}}(z)^{-l_{1}}$ and $\omega_{l^{\prime}}(z)=\gamma^{x_{1}^{\prime}}(z)^{l_{1}^{\prime}}$. Let

$$
d_{1}=\min \left\{-l_{1}, l_{1}^{\prime}\right\}, \quad e_{1}=\max \left\{-l_{1}, l_{1}^{\prime}\right\}, \quad d=d_{1}-1
$$

An OPE calculation shows that

$$
\begin{equation*}
\omega_{l}(z) \circ_{d} \omega_{l^{\prime}}(z)=\frac{e_{1}!}{\left(e_{1}-d_{1}\right)!} \omega_{l+l^{\prime}}(z) \tag{7.8}
\end{equation*}
$$

where as usual $0!=1$. Similarly, if $l_{1}>0$ and $l_{1}^{\prime}<0$, we take $d_{1}=\min \left\{l_{1},-l_{1}^{\prime}\right\}, e_{1}=\max \left\{l_{1},-l_{1}^{\prime}\right\}$, and $d=d_{1}-1$. We have

$$
\begin{equation*}
\omega_{l}(z) \circ_{d} \omega_{l^{\prime}}(z)=-\frac{e_{1}!}{\left(e_{1}-d_{1}\right)!} \omega_{l+l^{\prime}}(z) \tag{7.9}
\end{equation*}
$$

Now consider the general case $l=\left(l_{1}, \ldots, l_{n}\right)$ and $l^{\prime}=\left(l_{1}^{\prime}, \ldots, l_{n}^{\prime}\right)$. For $j=1, \ldots, n$, define

$$
\begin{aligned}
& d_{j}=\left\{\begin{array}{ll}
0 & l_{j} l_{j}^{\prime} \geq 0 \\
\min \left\{\left|l_{j}\right|,\left|l_{j}^{\prime}\right|\right\}, & l_{j} l_{j}^{\prime}<0,
\end{array} \quad e_{j}= \begin{cases}0 & l_{j} l_{j}^{\prime} \geq 0 \\
\max \left\{\left|l_{j}\right|,\left|l_{j}^{\prime}\right|\right\}, & l_{j} l_{j}^{\prime}<0,\end{cases} \right. \\
& k_{j}=\left\{\begin{array}{ll}
0 & l_{j} \leq 0 \\
d_{j} & l_{j}>0,
\end{array} \quad d=-1+\sum_{j=1}^{n} d_{j} .\right.
\end{aligned}
$$

Using (7.8) and (7.9) repeatedly, we calculate

$$
\omega_{l}(z) \circ_{d} \omega_{l^{\prime}}(z)=\left(\prod_{j=1}^{n}(-1)^{k_{j}} \frac{e_{j}!}{\left(e_{j}-d_{j}\right)!}\right) \omega_{l+l^{\prime}}(z)
$$

which shows that $\omega_{l+l^{\prime}}(z)$ lies in the vertex algebra generated by $\omega_{l}(z)$ and $\omega_{l^{\prime}}(z)$. Thus we have proved
Theorem 7.3. Let $\left\{l^{1}, \ldots, l^{r}\right\}$ be a basis for the lattice $A^{\perp} \cap \mathbf{Z}^{n}$, as above. Then $s(V)^{\Theta_{+}}$is generated as a vertex algebra by \mathcal{B}^{\prime} together with the additional vertex operators

$$
\omega_{l^{1}}(z), \ldots, \omega_{l^{r}}(z), \quad \omega_{-l^{1}}(z), \ldots, \omega_{-l^{r}}(z)
$$

In particular, $s(V)^{\Theta+}$ is finitely generated as a vertex algebra.
In the generic case where $A^{\perp} \cap \mathbf{Z}^{n}=0$ and $s(V)^{\Theta_{+}}=\mathscr{B}^{\prime}$, we claim that $s(V)^{\Theta+}$ has a natural $(n-m)$-parameter family of conformal structures for which the generators $\phi^{i}(z), L^{j}(z), W^{j}(z)$ are primary of conformal weights 1,2 , 3, respectively. Note first that \mathcal{W} has the conformal structure $L_{w}(z)=\sum_{j=1}^{n} L^{j}(z)$ of central charge $-2 n$.

It is well known that for $k \neq 0$ and $c \in \mathbf{C}$, the Heisenberg algebra \mathscr{H} of central charge k admits a Virasoro element $L^{c}(z)=\frac{1}{2 k} j(z) j(z)+c \partial j(z)$ of central charge $1-12 c^{2} k$, under which the generator $j(z)$ is primary of weight one. Hence given $\lambda=\left(\lambda_{m+1}, \ldots, \lambda_{n}\right) \in \mathbf{C}^{n-m}$ the Heisenberg algebra generated by $\phi^{i}(z)$ has a conformal structure

$$
L^{\lambda_{i}}(z)=-\frac{1}{2}: \phi^{i}(z) \phi^{i}(z):+\lambda_{i} \partial \phi^{i}(z)
$$

of central charge $1+12 \lambda_{i}^{2}$. Since $\phi^{i}(z)$ and $\phi^{j}(z)$ commute for $i \neq j$, it follows that $L_{\phi}^{\lambda}(z)=\sum_{i=m+1}^{n} L^{\lambda_{i}}(z)$ is a conformal structure on Φ of central charge $\sum_{i=m+1}^{n} 1+12 \lambda_{i}^{2}$. Finally,

$$
L_{\mathcal{B}^{\prime}}(z)=L_{\mathcal{W}}(z) \otimes 1+1 \otimes L_{\Phi}^{\lambda}(z) \in \mathcal{W} \otimes \Phi=\mathscr{B}^{\prime}
$$

is a conformal structure on \mathscr{B}^{\prime} of central charge $-2 n+\sum_{i=m+1}^{n} 1+12 \lambda_{i}^{2}$ with the desired properties.
When the lattice $A^{\perp} \cap \mathbf{Z}^{n}$ has positive rank, the vertex algebras $s(V)^{\Theta_{+}}$have a very rich structure which depends sensitively on $A^{\perp} \cap \mathbf{Z}^{n}$. In general, the set of generators for $s(V)^{\Theta_{+}}$given by Theorem 7.3 will not be a set of strong generators, and the conformal structure $L_{\mathcal{B}^{\prime}}$ on \mathscr{B}^{\prime} will not extend to a conformal structure on all of $s(V)^{\Theta_{+}}$.

Theorem 7.4. For any action of \mathfrak{g} on $V, \operatorname{Com}\left(s(V)^{\Theta_{+}}, s(V)\right)=\Theta$. Hence $s(V)^{\Theta_{+}}$and Θ form a Howe pair inside $s(V)$.
Proof. Since $\mathscr{B}^{\prime} \subset s(V)^{\Theta+}$, we have $\Theta \subset \operatorname{Com}\left(s(V)^{\Theta_{+}}, s(V)\right) \subset \operatorname{Com}\left(\mathcal{B}^{\prime}, s(V)\right)$, so it suffices to show that $\operatorname{Com}\left(\mathscr{B}^{\prime}, f(V)\right)=\Theta$. Recall that $\mathcal{B}^{\prime}=\mathcal{W} \otimes \Phi$ and $\Theta \otimes \Phi=\mathscr{H}^{1} \otimes \cdots \otimes \mathscr{H}^{n}$. Since $\operatorname{Com}\left(\mathcal{W}^{i}, f_{i}\right)=\mathscr{H}^{i}$ by Theorem 6.2, it follows that $\operatorname{Com}(\mathcal{W}, \ell(V))=\Theta \otimes \Phi$. Then

$$
\operatorname{Com}\left(\mathscr{B}^{\prime}, s(V)\right)=\operatorname{Com}(\Phi, \operatorname{Com}(\mathcal{W}, s(V)))=\operatorname{Com}(\Phi, \Theta \otimes \Phi)=\Theta \otimes \operatorname{Com}(\Phi, \Phi)=\Theta
$$

This result shows that we can always recover the action of \mathfrak{g} (up to $G L(m)$-equivalence) from $s(V)^{\Theta_{+}}$, by taking its commutant inside $s(V)$. This stands in contrast to Theorem 2.1 , which shows that we can reconstruct the action from $\mathscr{D}(V)^{\mathfrak{g}}$ only when $A^{\perp} \cap \mathbf{Z}^{n}$ has rank $n-m$.

Theorem 7.5. For any action of \mathfrak{g} on $V, s(V)^{\Theta_{+}}$is a simple vertex algebra.
Proof. Given a non-zero ideal $\ell \subset s(V)^{\Theta+}$, we need to show that $1 \in \ell$. Let $\omega(z)$ be a non-zero element of ℓ. Since each \mathcal{M}_{l}^{\prime} is irreducible as a module over \mathscr{B}^{\prime}, we may assume without loss of generality that

$$
\begin{equation*}
\omega(z)=\sum_{l \in \mathbf{Z}^{n}} c_{l} \omega_{l}(z) \tag{7.10}
\end{equation*}
$$

for constants $c_{l} \in \mathbf{C}$, such that $c_{l} \neq 0$ for only finitely many values of l.
For each lattice point $l=\left(l_{1}, \ldots, l_{n}\right) \in \mathbf{Z}^{n}$, both $\omega_{l}(z)$ and $\omega_{-l}(z)$ have degree $d=\sum_{j=1}^{n}\left|l_{j}\right|$ as polynomials in the variables $\beta^{x_{j}}(z)$ and $\gamma^{x_{j}^{\prime}}(z)$. Let d be the maximal degree of terms $\omega_{l}(z)$ appearing in (7.10) with non-zero coefficient c_{l}, and let l be such a lattice point for which $\omega_{l}(z)$ has degree d. An OPE calculation shows that

$$
\omega_{-l}(z) \circ_{d-1} \omega_{l^{\prime}}(z)= \begin{cases}0 & l^{\prime} \neq l \tag{7.11}\\ \left(\prod_{j=1}^{n}(-1)^{k_{j}}\left|l_{j}\right|!\right) 1 & l^{\prime}=l\end{cases}
$$

where $k_{j}=\min \left\{0, l_{j}\right\}$, for all lattice points l^{\prime} appearing in (7.10) with non-zero coefficient. It follows from (7.11) that

$$
\frac{1}{c_{l}\left(\prod_{j=1}^{n}(-1)^{k_{j}}\left|l_{j}\right|!\right)} \omega_{-l}(z) \circ_{d-1} \omega(z)=1 .
$$

7.1. The map $\pi: \ell(V)^{\Theta_{+}} \rightarrow \mathscr{D}(V)^{\mathfrak{g}}$

Equip $f(V)$ with the conformal structure L^{α} given by (3.2), for some $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbf{C}^{n}$. Suppose first that $A^{\perp} \cap \mathbf{Z}^{n}$ has rank zero, so that $s(V)^{\Theta_{+}}=\mathscr{B}^{\prime}$, and $\mathscr{D}(V)^{\mathfrak{g}}=\mathbf{C}\left[e_{1}, \ldots, e_{n}\right]=E$. Let $\pi: s(V)^{\Theta_{+}} \rightarrow \mathscr{D}(V)^{\mathfrak{g}}$ be the map given by (1.2). By Lemma 6.3, for $j=1, \ldots, n$ we have

$$
\pi\left(L^{j}(z)\right)=\frac{1}{2}\left(e_{i}^{2}+e_{j}\right), \quad \pi\left(W^{j}(z)\right)=\frac{2}{3 \sqrt{6}} e_{j}^{3}+\frac{1}{\sqrt{6}} e_{j}^{2}+\frac{1}{3 \sqrt{6}} e_{j} .
$$

Moreover, (3.10) shows that $\pi\left(\phi^{i}(z)\right)=\left\langle b^{i}, \alpha\right\rangle-\sum_{j=1}^{n} b_{j}^{i}\left(e_{j}+1\right)$. Since \mathscr{B}^{\prime} is strongly generated by $\left\{\phi^{i}(z), L^{j}(z), W^{j}(z) \mid\right.$ $i=m+1, \ldots, n, j=1, \ldots, n\}$, it follows from Lemma 3.4 that $\operatorname{Im}(\pi)$ is generated by the collection

$$
\left\{\pi\left(\phi^{i}(z)\right), \pi\left(L^{j}(z)\right), \pi\left(W^{j}(z)\right) \mid i=m+1, \ldots, n, j=1, \ldots, n\right\} .
$$

The map π is not surjective, but $\operatorname{Coker}(\pi)$ is generated as a module over $\operatorname{Im}(\pi)$ by the collection $\left\{t^{\xi_{i}} \mid i=1, \ldots, m\right\}$, where $t^{\xi_{i}}$ is the image of

$$
\pi_{Z h}\left(\theta^{\xi_{i}}(z)\right)=\left\langle a^{i}, \alpha\right\rangle-\sum_{j=1}^{n} a_{j}^{i}\left(e_{j}+1\right)
$$

in $\operatorname{Coker}(\pi)=E / \pi\left(\mathscr{B}^{\prime}\right)$. Unlike the case where V is one-dimensional, π depends on the choice of α.
Suppose next that the lattice $A^{\perp} \cap \mathbf{Z}^{n}=0$ has positive rank. Clearly $\pi_{Z h}\left(\mathcal{M}_{l}\right)=M_{l}$ for all l, so $\pi\left(\mathcal{M}_{l}^{\prime}\right) \subset M_{l}$. This map need not be surjective, but since M_{l} is the free E-module generated by ω_{l}, and $E / \pi\left(\mathscr{B}^{\prime}\right)$ is generated as a $\pi\left(\mathscr{B}^{\prime}\right)$-module by $\left\{t^{\xi_{i}} \mid i=1, \ldots, m\right\}$, it follows that each $M_{l} / \pi\left(\mathcal{M}_{l}^{\prime}\right)$ is generated as a $\pi\left(\mathscr{B}^{\prime}\right)$-module by $\left\{t_{l}^{\xi_{i}} \mid i=1, \ldots, m\right\}$, where $t_{l}^{\xi_{i}}$ is the image of $\pi_{Z h}\left(\theta^{\xi_{i}}(z)\right) \omega_{l}$ in $M_{l} / \pi\left(\mathcal{M}_{l}^{\prime}\right)$.

Theorem 7.6. For any action of \mathfrak{g} on V, $\operatorname{Coker}(\pi)$ is generated as a module over $\operatorname{Im}(\pi)$ by the collection $\left\{t^{\xi_{i}} \mid i=1, \ldots, m\right\}$. In particular, $\operatorname{Coker}(\pi)$ is a finitely generated module over $\operatorname{Im}(\pi)$ with generators corresponding to central elements of $\mathscr{D}(V)^{\mathfrak{g}}$.

Proof. First, since $\pi\left(\omega_{l}(z)\right)=\omega_{l}$ for all l, it is clear that the generators $t_{l}^{\xi_{i}}$ of $M_{l} / \pi\left(\mathcal{M}_{l}^{\prime}\right)$ lie in the $\operatorname{Im}(\pi)$-module generated by $\left\{t^{\xi_{i}} \mid i=1, \ldots, m\right\}$, which proves the first statement. Finally, the fact that the elements $\pi_{Z h}\left(\theta^{\xi_{i}}(z)\right)$ corresponding to $t^{\xi_{i}}$ each lie in the center of $\mathscr{D}(V)^{\mathfrak{g}}$ is immediate from (2.10).

7.2. A vertex algebra bundle over the Grassmannian $\operatorname{Gr}(m, n)$

As ρ varies over the space $R^{0}(V)$ of effective actions, recall that $s(V)_{\rho}^{\Theta+}$ is uniquely determined by the point $A(\rho) \in$ $\operatorname{Gr}(m, n)$. The algebras $s(V)_{\rho}^{\Theta_{+}}$do not form a fiber bundle over $\operatorname{Gr}(m, n)$. However, the subspace of $s(V)_{\rho}^{\Theta_{+}}$of degree zero in the $A(\rho)^{\perp} \cap \mathbf{Z}^{n}$-grading (7.6) is just $\mathcal{B}_{\rho}^{\prime}=\mathcal{B}^{\prime}$, and the algebras $\mathscr{B}_{\rho}^{\prime}$ form a bundle of vertex algebras \mathcal{E} over $G r(m, n)$. The classical analogue of \mathcal{E} is not interesting; it is just the trivial bundle whose fiber over each point is the polynomial algebra E.

For each ρ, recall that $\mathscr{B}_{\rho}^{\prime}=\mathcal{W}_{\rho} \otimes \Phi_{\rho}$, where \mathcal{W}_{ρ} is generated by $\left\{L^{j}(z), W^{j}(z) \mid j=1, \ldots, n\right\}$, and Φ_{ρ} is generated by $\left\{\phi^{i}(z) \mid i=m+1, \ldots, n\right\}$. Since \mathcal{W}_{ρ} is independent of ρ, it gives rise to a trivial subbundle of \mathcal{E}. As a vector space, note that $\Phi_{\rho}=\operatorname{Sym}\left(\bigoplus_{k \geq 1} A(\rho)_{k}^{\perp}\right)$, where $A(\rho)_{k}^{\perp}$ is the copy of $A(\rho)^{\perp}$ spanned by the vectors $\partial^{k} \phi^{i}(z)$ for $i=m+1, \ldots, n$. It follows that the factor $\bar{\Phi}_{\rho}$ in the fiber over $A(\rho)$ gives rise to the following subbundle of ε :

$$
\begin{equation*}
\operatorname{Sym}\left(\bigoplus_{k \geq 1} \mathscr{F}_{k}\right) \tag{7.12}
\end{equation*}
$$

where \mathscr{F}_{k} is the quotient of the rank n trivial bundle over $\operatorname{Gr}(m, n)$ by the tautological bundle. Since each \mathscr{F}_{k} has weight k, the weighted components of the bundle (7.12) are all finite-dimensional. The non-triviality of this bundle is closely related to Theorem 7.4.

8. Vertex algebra operations and transvectants on $\mathscr{D}(V)^{\mathfrak{g}}$

If we fix a basis $\left\{x_{1}, \ldots, x_{n}\right\}$ for V and a dual basis $\left\{x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right\}$ for $V^{*}, s(V)$ has a basis consisting of iterated Wick products of the form

$$
\mu(z)=: \partial^{k_{1}} \gamma^{x_{i_{1}}^{\prime}}(z) \cdots \partial^{k_{r}} \gamma^{x_{i_{r}}^{\prime}}(z) \partial^{l_{1}} \beta^{x_{j_{1}}}(z) \cdots \partial^{l_{s}} \beta^{x_{j_{s}}}(z):
$$

Define gradings degree and level on $s(V)$ as follows:

$$
\operatorname{deg}(\mu)=r+s, \quad \operatorname{lev}(\mu)=\sum_{i=1}^{r} k_{i}+\sum_{j=1}^{s} l_{j}
$$

and let $\delta(V)^{(n)}[d]$ denote the subspace of level n and degree d. The gradings

$$
\begin{equation*}
s(V)=\bigoplus_{n \geq 0} s(V)^{(n)}=\bigoplus_{n, d \geq 0} s(V)^{(n)}[d]=\bigoplus_{d \geq 0} s(V)[d] \tag{8.1}
\end{equation*}
$$

are clearly independent of our choice of basis on V, since an automorphism of V has the effect of replacing $\beta^{x_{i}}$ and $\gamma^{x_{i}^{\prime}}$ with linear combinations of the $\beta^{x_{i}}$'s and $\gamma^{x_{i}^{\prime}}$'s, respectively.

Let $\sigma: \mathscr{D}(V) \rightarrow \operatorname{gr} \mathscr{D}(V)=\operatorname{Sym}\left(V \oplus V^{*}\right)$ be the map

$$
\begin{equation*}
x_{i_{1}}^{\prime} \cdots x_{i_{r}}^{\prime} \frac{\partial}{\partial x_{j_{1}}^{\prime}} \cdots \frac{\partial}{\partial x_{j_{s}}^{\prime}} \mapsto x_{i_{1}}^{\prime} \cdots x_{i_{r}}^{\prime} x_{j_{1}} \cdots x_{j_{s}} \tag{8.2}
\end{equation*}
$$

which is a linear isomorphism. Any bilinear product $*$ on $\operatorname{Sym}\left(V \oplus V^{*}\right)$ corresponds to a bilinear product on $\mathscr{D}(V)$, which we also denote by $*$, as follows:

$$
\omega * v=\sigma^{-1}(\sigma(\omega) * \sigma(\omega))
$$

for $\omega, v \in \mathscr{D}(V)$, Moreover, $\omega_{1}, \ldots, \omega_{k}$ generate $\mathscr{D}(V)$ as a ring if and only if $\sigma\left(\omega_{1}\right), \ldots, \sigma\left(\omega_{k}\right)$ generate $\operatorname{Sym}\left(V \oplus V^{*}\right)$ as a ring. The map $f: \operatorname{Sym}\left(V \oplus V^{*}\right) \rightarrow s(V)^{(0)}$ given by

$$
\begin{equation*}
x_{i_{1}}^{\prime} \cdots x_{i_{r}}^{\prime} x_{j_{1}} \cdots x_{j_{s}}, \mapsto: \gamma^{x_{i_{1}}^{\prime}}(z) \cdots \gamma^{x_{i_{r}}^{\prime}}(z) \beta^{x_{j_{1}}}(z) \cdots \beta^{x_{j_{s}}}(z): \tag{8.3}
\end{equation*}
$$

is a linear isomorphism, so that $f \circ \sigma: \mathscr{D}(V) \rightarrow s(V)^{(0)}$ is a linear isomorphism as well.
$s(V)^{(0)}$ has a family of bilinear products $*_{k}$ which are induced by the circle products on $s(V)$. Given $\omega(z), v(z) \in \delta(V)^{(0)}$, define

$$
\begin{equation*}
\omega(z) *_{k} v(z)=p\left(\omega(z) \circ_{k} v(z)\right) \tag{8.4}
\end{equation*}
$$

where $p: \delta(V) \rightarrow s(V)^{(0)}$ is the projection onto the subspace of level zero. Clearly $\omega(z) *_{k} \nu(z)=0$ whenever $k<-1$ because $p \circ \partial$ acts by zero on $\delta(V)^{(0)}$. For $k \geq-1, *_{k}$ is homogeneous of degree $-2 k-2$.

Via (8.3), we may pull back the products $*_{k}, k \geq-1$ to obtain a family of bilinear products on $\operatorname{Sym}\left(V \oplus V^{*}\right)$, which we also denote by $*_{k}$. In fact, these products have a classical description. Let

$$
\begin{equation*}
\Gamma=\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} \otimes \frac{\partial}{\partial x_{i}^{\prime}}-\frac{\partial}{\partial x_{i}^{\prime}} \otimes \frac{\partial}{\partial x_{i}}, \tag{8.5}
\end{equation*}
$$

and define the k th transvectant ${ }^{1}$ on $\operatorname{Sym}\left(V \oplus V^{*}\right)$ by
$[,]_{k}: \operatorname{Sym}\left(V \oplus V^{*}\right) \otimes \operatorname{Sym}\left(V \oplus V^{*}\right) \rightarrow \operatorname{Sym}\left(V \oplus V^{*}\right), \quad[\omega, v]_{k}=m \circ \Gamma^{k}(\omega \otimes v)$.
Here m is the multiplication map sending $\omega \otimes v \mapsto \omega v$.
Theorem 8.1. The product $*_{k}$ on $\operatorname{Sym}\left(V \oplus V^{*}\right)$ given by (8.4) coincides with the transvectant $[,]_{k+1}$ for $k \geq-1$.
Proof. First consider the case $k=-1$. In this case $[,]_{0}$ is just ordinary multiplication. Recall the formula

$$
:(: a b:) c:-: a b c:=\sum_{k \geq 0} \frac{1}{(k+1)!}\left(:\left(\partial^{k+1} a\right)\left(b \circ_{k} c\right):+(-1)^{|a||b|}:\left(\partial^{k+1} b\right)\left(a \circ_{k} c\right):\right)
$$

which holds for any vertex operators a, b, c in a vertex algebra \mathcal{A}. It follows that the associator ideal in $s(V)$ under the Wick product is annihilated by the projection p. Similarly, the commutator ideal in $s(V)$ under the Wick product is annihilated by p, so $s(V)^{(0)}$ is a polynomial algebra with product $*_{-1}$, and $f: \operatorname{Sym}\left(V \oplus V^{*}\right) \rightarrow s(V)^{(0)}$ is an isomorphism of polynomial algebras. Hence given $\omega, \nu \in \operatorname{Sym}\left(V \oplus V^{*}\right)$, we have $[\omega, \nu]_{0}=\omega \nu=\omega *_{-1} \nu$.

Next, if $k \geq 0$, it is clear from the definition of the vertex algebra products o_{k} that given $\omega(z), v(z) \in f(V)^{(0)}, \omega(z) *_{k} v(z)$ is just the sum of all possible contractions of $k+1$ factors of the form $\beta^{x_{i}}(z)$ or $\gamma^{x_{i}^{\prime}}(z)$ appearing in $\omega(z)$ with $k+1$ factors of the form $\beta^{x_{i}}(z)$ or $\gamma^{x_{i}^{\prime}}(z)$ appearing in $v(z)$. Here the contraction of $\beta^{x_{i}}(z)$ with $\gamma^{x_{j}}(z)$ is $\delta_{i, j}$, and the contraction of $\gamma^{x_{i}}(z)$ with $\beta^{x_{j}}(z)$ is $-\delta_{i, j}$. Similarly, it follows from (8.5) that given $\omega, v \in \operatorname{Sym}\left(V \oplus V^{*}\right),[\omega, v]_{k+1}$ is the sum of all possible contractions of $k+1$ factors of the form x_{i} or x_{i}^{\prime} appearing in ω with $k+1$ factors of the form x_{i} or x_{i}^{\prime} appearing in v. The contraction of x_{i} with x_{j}^{\prime} is $\delta_{i, j}$ and the contraction of x_{i}^{\prime} with x_{j} is $-\delta_{i, j}$. Since $f: \operatorname{Sym}\left(V \oplus V^{*}\right) \rightarrow s(V)^{(0)}$ is the algebra isomorphism sending $x_{i} \mapsto \beta^{x_{i}}(z)$ and $x_{i}^{\prime} \mapsto \gamma^{x_{i}^{\prime}}(z)$, the claim follows.

Via $\sigma: \mathscr{D}(V) \rightarrow \operatorname{Sym}\left(V \oplus V^{*}\right)$ the products $*_{k}$ on $\operatorname{Sym}\left(V \oplus V^{*}\right)$ pull back to bilinear products on $\mathscr{D}(V)$, which we also denote by $*_{k}$. These products satisfy $\omega *_{k} v \in \mathscr{D}(V)_{(r+s-2 k-2)}$ for $\omega \in \mathscr{D}(V)_{(r)}$ and $s \in \mathscr{D}(V)_{(s)}$. It is immediate from Theorem 8.1 that $*_{-1}$ and $*_{0}$ correspond to the ordinary associative product and bracket on $\mathscr{D}(V)$, respectively. Since the circle product o_{0} is a derivation of every o_{k}, it follows that $\omega *_{0}$ is a derivation of $*_{k}$ for all $\omega \in \mathscr{D}(V)$ and $k \geq-1$.

We call $\mathscr{D}(V)$ equipped with the products $\left\{*_{k} \mid k \geq-1\right\}$ a $*$-algebra. A similar construction goes through in other settings as well. For example, given a Lie algebra \mathfrak{g} equipped with a symmetric, invariant bilinear form B, $\mathfrak{U} \mathfrak{g}$ has a $*$-algebra structure (which depends on B). Given $\mathfrak{*} *$-algebra \mathcal{A}, we can define $*$-subalgebras, $*$-ideals, quotients, and homomorphisms in the obvious way. If V is a module over a Lie algebra $\mathfrak{g}, \mathscr{D}(V)^{\mathfrak{g}}$ is a $*$-subalgebra of $\mathscr{D}(V)$ because the action of $\xi \in \mathfrak{g}$ is given by $[\tau(\xi),-]=\tau(\xi) *_{0}$ which is a derivation of all the other products.

Given elements $\omega_{1}, \ldots, \omega_{k} \in \mathscr{D}(V)^{\mathfrak{g}}$, examples are known where $\omega_{1}, \ldots, \omega_{k}$ do not generate $\mathscr{D}(V)^{\mathfrak{g}}$ as a ring, but do generate $\mathscr{D}(V)^{\mathfrak{g}}$ as a $*$-algebra. ${ }^{2}$ This phenomenon occurs in our main example, in which \mathfrak{g} is the abelian Lie algebra \mathbf{C}^{m} acting diagonally on $V=\mathbf{C}^{n}$. Recall that $\mathscr{D}(V)^{\mathfrak{g}}=\bigoplus_{l \in A^{\perp} \cap \mathbb{Z}^{n}} M_{l}$, where M_{l} is the free E-module generated by ω_{l}. Suppose that $A^{\perp} \cap \mathbf{Z}^{n}$ has rank r, and let $\left\{l^{i}=\left(l_{1}^{i}, \ldots, l_{n}^{i}\right) \mid i=1, \ldots, r\right\}$ be a basis for $A^{\perp} \cap \mathbf{Z}^{n}$. In general, the collection

$$
\begin{equation*}
e_{1}, \ldots, e_{n}, \quad \omega_{l^{1}}, \ldots, \omega_{l^{r}}, \quad \omega_{-l^{1}}, \ldots, \omega_{-l^{r}} \tag{8.6}
\end{equation*}
$$

is too small to generate $\mathscr{D}(V)^{\mathfrak{g}}$ as a ring.
Theorem 8.2. $\mathscr{D}(V)^{\mathfrak{g}}$ is generated as $a *$-algebra by the collection (8.6). Moreover, $\mathscr{D}(V)^{\mathfrak{g}}$ is simple as $a *$-algebra.
Proof. To prove the first statement, it suffices to show that given lattice points $l=\left(l_{1}, \ldots, l_{n}\right)$ and $l^{\prime}=\left(l_{1}^{\prime}, \ldots, l_{n}^{\prime}\right), \omega_{l+l^{\prime}}$ lies in the $*$-algebra generated by ω_{l} and $\omega_{l^{\prime}}$. For $j=1, \ldots, n$, define

$$
\begin{aligned}
& d_{j}=\left\{\begin{array}{ll}
0 & l_{j} l_{j}^{\prime} \geq 0 \\
\min \left\{\left|l_{j}\right|,\left|l_{j}^{\prime}\right|\right\}, & l_{j} l_{j}^{\prime}<0,
\end{array} \quad e_{j}= \begin{cases}0 & l_{j} l_{j}^{\prime} \geq 0 \\
\max \left\{\left|l_{j}\right|,\left|l_{j}^{\prime}\right|\right\}, & l_{j} l_{j}^{\prime}<0\end{cases} \right. \\
& k_{j}=\left\{\begin{array}{ll}
0 & l_{j} \leq 0 \\
d_{j} & l_{j}>0,
\end{array} \quad d=-1+\sum_{j=1}^{n} d_{j} .\right.
\end{aligned}
$$

The same calculation as in the proof of Theorem 7.3 shows that

$$
\omega_{l} *_{d} \omega_{l^{\prime}}=\left(\prod_{j=1}^{n}(-1)^{k_{j}} \frac{e_{j}!}{\left(e_{j}-d_{j}\right)!}\right) \omega_{l+l^{\prime}}
$$

which shows that $\omega_{l+l^{\prime}}$ lies in the $*$-algebra generated by ω_{l} and $\omega_{l^{\prime}}$.

[^1]As for the second statement, the argument is analogous to the proof of Theorem 7.5. Given a non-zero $*$-ideal $I \subset \mathscr{D}(V)^{\mathfrak{g}}$, we need to show that $1 \in I$. Let ω be a non-zero element of I. It is easy to check that for $i, j=1, \ldots, n$, and $l \in A^{\perp} \cap \mathbf{Z}^{n}$, we have

$$
e_{i} *_{1} e_{j}=-\delta_{i, j}, \quad e_{i} *_{1} \omega_{l}=0
$$

By applying the operators $e_{i} *_{1}$ for $i=1, \ldots, n$, we can reduce ω to the form

$$
\begin{equation*}
\sum_{l \in \mathbf{Z}^{n}} c_{l} \omega_{l} \tag{8.7}
\end{equation*}
$$

for constants $c_{l} \in \mathbf{C}$, such that $c_{l} \neq 0$ for only finitely many values of l. We may assume without loss of generality that ω is already of this form. Let d be the maximal degree (in the Bernstein filtration) of terms ω_{l} appearing in (8.7) with non-zero coefficient c_{l}, and let l be such a lattice point for which ω_{l} has degree d. We have

$$
\omega_{-l} *_{d-1} \omega_{l^{\prime}}= \begin{cases}0 & l^{\prime} \neq l \\ \left(\prod_{j=1}^{n}(-1)^{k_{j}}\left|l_{j}\right|!\right) 1 & l^{\prime}=l\end{cases}
$$

where $k_{j}=\min \left\{0, l_{j}\right\}$, for all l^{\prime} appearing in (8.7). Hence

$$
\frac{1}{c_{l}\left(\prod_{j=1}^{n}(-1)^{k_{j}}\left|l_{j}\right|!\right)} \omega_{-l} *_{d-1} \omega=1
$$

Acknowledgements

I thank B. Lian for helpful conversations and for suggesting the Friedan-Martinec-Shenker bosonization as a tool in studying commutant subalgebras of $s(V)$. I also thank A. Knutson, G. Schwarz, and N. Wallach for helpful discussions about classical invariant theory, especially the theory of invariant differential operators.

References

[1] P. Bouwknegt, J. McCarthy, K. Pilch, The W_{3} Algebra: Modules, Semi-infinite Cohomology and BV-algebras, in: Lect. Notes in Phys, New Series Monographs, vol. 42, Springer-Verlag, 1996.
[2] B. Feigin, E. Frenkel, Semi-infinite Weil complex and the Virasoro algebra, Comm. Math. Phys. 137 (1991) 617-639.
[3] I. Frenkel, Two constructions of affine Lie algebras and boson-fermion correspondence in quantum field theory, J. Funct. Anal. 44 (1981) $259-327$.
[4] I.B. Frenkel, Y.C. Zhu, Vertex operator algebras associated to representations of affine and Virasoro algebras, Duke Math. J. 66 (1) (1992) $123-168$.
[5] D. Friedan, E. Martinec, S. Shenker, Conformal invariance, supersymmetry and string theory, Nuclear Phys. B 271 (1986) 93-165.
[6] P. Goddard, A. Kent, D. Olive, Virasoro algebras and coset space models, Phys. Lett. B 152 (1985) 88-93.
[7] V. Gorbounov, F. Malikov, V. Schectman, Gerbes of chiral differential operators, Math. Res. Lett. 7 (1) (2000) 55-66.
[8] Harish-Chandra, Differential operators on a semisimple Lie algebra, Amer. J. Math. 79 (1) (1957) 87-120.
[9] Harish-Chandra, Invariant differential operators and distributions on a semisimple Lie algebra, Amer. J. Math. 86 (3) (1964) $534-564$.
[10] V. Kac, D. Peterson, Infinite-dimensional Lie algebras, theta functions and modular forms, Adv. Math. 53 (1984) 125-264.
[11] V. Kac, A. Radul, Representation theory of the vertex algebra $W_{1+\infty}$, Transf. Groups 1 (1996) 41-70.
[12] F. Knop, A Harish-Chandra homomorphism for reductive group actions, Ann. Math. 140 (1994) 253-288.
[13] B. Lian, A. Linshaw, Howe pairs in the theory of vertex algebras, J. Algebra 317 (2007) 111-152.
[14] B. Lian, A. Linshaw, Chiral equivariant cohomology I, Adv. Math. 209 (2007) 99-161.
[15] F. Malikov, V. Schectman, A. Vaintrob, Chiral de Rham complex, Comm. Math. Phys. 204 (1999) 439-473.
[16] I. Musson, M. van den Bergh, Invariants under Tori of Rings of Invariant Operators and Related Topics, in: Mem. Amer. Math. Soc., vol. $650,1998$.
[17] G. Schwarz, Finite-dimensional representations of invariant differential operators, J. Algebra 258 (2002) 160-204.
[18] W. Wang, $\mathcal{W}_{1+\infty}$ algebra, \mathcal{W}_{3} algebra, and Friedan-Martinec-Shenker bosonization, Comm. Math. Phys. 195 (1998) 95-111.
[19] W. Wang, Classification of irreducible modules of W_{3} with $c=-2$, Comm. Math. Phys. 195 (1998) 113-128.
[20] A. Zamolodchikov, Infinite additional symmetries in two-dimensional conformal field theory, Theoret. Math. Phys. 65 (1985) 1205-1213.
[21] Y. Zhu, Modular invariants of characters of vertex operators, J. Amer. Math. Soc. 9 (1996) 237-302.

[^0]: E-mail address: alinshaw@math.ucsd.edu.
 0022-4049/\$ - see front matter © 2008 Elsevier B.V. All rights reserved.
 doi:10.1016/j.jpaa.2008.08.006

[^1]: ${ }^{1}$ I thank N . Wallach for explaining this construction to me.
 ${ }^{2}$ I thank N. Wallach for pointing this out to me.

