Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

journal homepage: www.elsevier.com/locate/jpaa

Invariant chiral differential operators and the W_3 algebra

Andrew R. Linshaw

Department of Mathematics, University of California, San Diego, La Jolla, CA 92093, United States

ARTICLE INFO

Article history: Received 13 November 2007 Received in revised form 24 July 2008 Available online 19 September 2008 Communicated by E.M. Friedlander

MSC: Primary: 17B69 secondary: 16S32

ABSTRACT

Attached to a vector space *V* is a vertex algebra $\delta(V)$ known as the $\beta\gamma$ -system or algebra of chiral differential operators on *V*. It is analogous to the Weyl algebra $\mathcal{D}(V)$, and is related to $\mathcal{D}(V)$ via the Zhu functor. If *G* is a connected Lie group with Lie algebra \mathfrak{g} , and *V* is a linear *G*-representation, there is an action of the corresponding affine algebra on $\delta(V)$. The invariant space $\delta(V)^{\mathfrak{g}[t]}$ is a commutant subalgebra of $\delta(V)$, and plays the role of the classical invariant ring $\mathcal{D}(V)^{\mathcal{G}}$. When *G* is an abelian Lie group acting diagonally on *V*, we find a finite set of generators for $\delta(V)^{\mathfrak{g}[t]}$, and show that $\delta(V)^{\mathfrak{g}[t]}$ is a simple vertex algebra and a member of a Howe pair. The Zamolodchikov W_3 algebra with c = -2 plays a fundamental role in the structure of $\delta(V)^{\mathfrak{g}[t]}$.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Let *G* be a connected, reductive Lie group acting algebraically on a smooth variety *X*. Throughout this paper, our base field will always be **C**. The ring $\mathcal{D}(X)^G$ of invariant differential operators on *X* has been much studied in recent years. In the case where *X* is the homogeneous space G/K, $\mathcal{D}(X)^G$ was originally studied by Harish-Chandra in order to understand the various function spaces attached to *X* [8,9]. In general, $\mathcal{D}(X)^G$ is not a homomorphic image of the universal enveloping algebra of a Lie algebra, but it is believed that $\mathcal{D}(X)^G$ shares many properties of enveloping algebras. For example, the center of $\mathcal{D}(X)^G$ is always a polynomial ring [12]. In the case where *G* is a torus, the structure and representation theory of the rings $\mathcal{D}(X)^G$ were studied extensively in [16], but much less is known about $\mathcal{D}(X)^G$ when *G* is nonabelian. The first step in this direction was taken by Schwarz in [17], in which he considered the special but nontrivial case where *G* = *SL*(3) and *X* is the adjoint representation. In this case, he found generators for $\mathcal{D}(X)^G$, showed that $\mathcal{D}(X)^G$ is an FCR algebra, and classified its finite-dimensional modules.

1.1. A vertex algebra analogue of $\mathcal{D}(X)^G$

In [15], Malikov–Schechtman–Vaintrob introduced a sheaf of vertex algebras on any smooth variety X known as the chiral de Rham complex. For an affine open set $V \subset X$, the algebra of sections over V is just a copy of the $bc\beta\gamma$ -system $\delta(V) \otimes \mathcal{E}(V)$, localized over the function ring $\mathcal{O}(V)$. A natural question is whether there exists a subsheaf of "chiral differential operators" on X, whose space of sections over V is just the (localized) $\beta\gamma$ -system $\delta(V)$. For general X, there is a cohomological obstruction to the existence of such a sheaf, but it does exist in certain special cases such as affine spaces and certain homogeneous spaces [15,7].

In this paper, we focus on the case where *X* is the affine space $V = \mathbb{C}^n$, and we take $\mathscr{S}(V)$ to be our algebra of chiral differential operators on *V*. $\mathscr{S}(V)$ is related to $\mathscr{D}(V)$ via the *Zhu functor*, which attaches to every vertex algebra \mathscr{V} an associative algebra $A(\mathscr{V})$ known as the *Zhu algebra* of \mathscr{V} , together with a surjective linear map $\pi_{Zh} : \mathscr{V} \to A(\mathscr{V})$.

E-mail address: alinshaw@math.ucsd.edu.

^{0022-4049/\$ –} see front matter 0 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.jpaa.2008.08.006

If *V* carries a linear action of a group *G* with Lie algebra \mathfrak{g} , the corresponding representation $\rho : \mathfrak{g} \to \text{End}(V)$ induces a vertex algebra homomorphism

$$\mathcal{O}(\mathfrak{g}, B) \to \mathscr{S}(V). \tag{1.1}$$

Here $\mathcal{O}(\mathfrak{g}, B)$ is the current algebra of \mathfrak{g} associated to the bilinear form $B(\xi, \eta) = -Tr(\rho(\xi)\rho(\eta))$ on \mathfrak{g} . Letting Θ denote the image of $\mathcal{O}(\mathfrak{g}, B)$ inside $\mathcal{S}(V)$, the commutant $\operatorname{Com}(\Theta, \mathcal{S}(V))$, which we denote by $\mathcal{S}(V)^{\Theta_+}$, is just the invariant space $\mathcal{S}(V)^{\mathfrak{g}[t]}$. Accordingly, we call $\mathcal{S}(V)^{\Theta_+}$ the algebra of *invariant chiral differential operators* on V. There is a commutative diagram

Here the horizontal maps are inclusions, and the map π on the left is the restriction of the Zhu map on $\mathscr{S}(V)$ to the subalgebra $\mathscr{S}(V)^{\Theta_+}$. In general, π is not surjective, and $\mathscr{D}(V)^G$ need not be the Zhu algebra of $\mathscr{S}(V)^{\Theta_+}$.

For a general vertex algebra \mathcal{V} and subalgebra \mathcal{A} , the commutant $Com(\mathcal{A}, \mathcal{V})$ was introduced by Frenkel–Zhu in [4], generalizing a previous construction in representation theory [10] and conformal field theory [6] known as the coset construction. We regard \mathcal{V} as a module over \mathcal{A} via the left regular action, and we regard $Com(\mathcal{A}, \mathcal{V})$, which we often denote by $\mathcal{V}^{\mathcal{A}_+}$, as the invariant subalgebra. Finding a set of generators for $\mathcal{V}^{\mathcal{A}_+}$, or even determining when it is finitely generated as a vertex algebra, is generally a non-trivial problem. It is also natural to study the double commutant $Com(\mathcal{V}^{\mathcal{A}_+}, \mathcal{V})$, which always contains \mathcal{A} . If $\mathcal{A} = Com(\mathcal{V}^{\mathcal{A}_+}, \mathcal{V})$, we say that \mathcal{A} and $\mathcal{V}^{\mathcal{A}_+}$ form a *Howe pair* inside \mathcal{V} . Since

 $\operatorname{Com}(\operatorname{Com}(\mathcal{V}^{\mathcal{A}_+},\mathcal{V}),\mathcal{V})=\mathcal{V}^{\mathcal{A}_+},$

a subalgebra \mathcal{B} is a member of a Howe pair if and only if $\mathcal{B} = \mathcal{V}^{\mathcal{A}_+}$ for some \mathcal{A} .

Here are some natural questions one can ask about $\mathscr{S}(V)^{\Theta_+}$ and its relationship to $\mathscr{D}(V)^G$.

Question 1.1. When is $\mathscr{S}(V)^{\Theta_+}$ finitely generated as a vertex algebra? Can we find a set of generators?

Question 1.2. When do $\mathscr{S}(V)^{\Theta_+}$ and Θ form a Howe pair inside $\mathscr{S}(V)$? In the case where G = SL(2) and V is the adjoint module, this question was answered affirmatively in [13].

Question 1.3. What are the vertex algebra ideals in $\mathscr{S}(V)^{\Theta_+}$, and when is $\mathscr{S}(V)^{\Theta_+}$ a simple vertex algebra?

Question 1.4. When is $\mathscr{S}(V)^{\Theta_+}$ a conformal vertex algebra?

Question 1.5. When is $\pi : \mathscr{E}(V)^{\Theta_+} \to \mathscr{D}(V)^G$ surjective? More generally, describe $\operatorname{Im}(\pi)$ and $\operatorname{Coker}(\pi)$.

These questions are somewhat outside the realm of classical invariant theory because the Lie algebra $\mathfrak{g}[t]$ is both infinitedimensional and non-reductive. Moreover, when *G* is nonabelian, $\mathscr{S}(V)$ need not decompose into a sum of irreducible $\mathcal{O}(\mathfrak{g}, B)$ -modules. The case where *G* is simple and *V* is the adjoint module is of particular interest to us, since in this case $\mathscr{S}(V)^{\Theta_+}$ is a subalgebra of the complex ($\mathscr{W}(\mathfrak{g})_{bas}, d$) which computes the chiral equivariant cohomology of a point [14].

In this paper, we focus on the case where *G* is an abelian group acting faithfully and diagonalizably on *V*. This is much easier than the general case because $\mathcal{O}(\mathfrak{g}, B)$ is then a tensor product of Heisenberg vertex algebras, which act completely reducibly on $\mathcal{S}(V)$. For any such action, we find a finite set of generators for $\mathcal{S}(V)^{\Theta_+}$, and show that $\mathcal{S}(V)^{\Theta_+}$ is a simple vertex algebra. Moreover, $\mathcal{S}(V)^{\Theta_+}$ and Θ always form a Howe pair inside $\mathcal{S}(V)$. For generic actions, we show that $\mathcal{S}(V)^{\Theta_+}$ admits a *k*-parameter family of conformal structures where $k = \dim V - \dim \mathfrak{g}$, and we find a finite set of generators for $\operatorname{Im}(\pi)$. Finally, we show that $\operatorname{Coker}(\pi)$ is always a finitely generated module over $\operatorname{Im}(\pi)$ with generators corresponding to central elements of $\mathcal{D}(V)^G$. The Zamolodchikov W_3 algebra of central charge c = -2 plays an important role in the structure of $\mathcal{S}(V)^{\Theta_+}$. Our description relies on the fundamental papers [18,19] of W. Wang, in which he classified the irreducible modules of $W_{3,-2}$.

In the case where *G* is nonabelian, very little is known about the structure of $\mathscr{E}(V)^{\Theta_+}$, and the representation-theoretic techniques used in the abelian case cannot be expected to work. In a separate paper, we will use tools from commutative algebra to describe $\mathscr{E}(V)^{\Theta_+}$ in the special cases where *G* is one of the classical Lie groups SL(n), SO(n), or Sp(2n), and *V* is a direct sum of copies of the standard representation.

One hopes that the vertex algebra point of view can also shed some light on the classical algebras $\mathcal{D}(V)^G$. For example, the vertex algebra products on $\mathscr{S}(V)$ induce a family of bilinear operations $*_k, k \ge -1$ on $\mathcal{D}(V)^G$, which coincide with classical operations known as transvectants. $\mathcal{D}(V)^G$ is generally not simple as an associative algebra, but in the case where *G* is an abelian group acting diagonalizably on *V*, $\mathcal{D}(V)^G$ is always simple as a *-algebra in the obvious sense.

2. Invariant differential operators

Fix a basis $\{x_1, \ldots, x_n\}$ for *V* and a corresponding dual basis $\{x'_1, \ldots, x'_n\}$ for *V*^{*}. The Weyl algebra $\mathcal{D}(V)$ is generated by the linear functions x'_i and the first-order differential operators $\frac{\partial}{\partial x'_i}$, which satisfy $[\frac{\partial}{\partial x'_i}, x'_j] = \delta_{i,j}$. Equip $\mathcal{D}(V)$ with the Bernstein filtration

$$\mathcal{D}(V)_{(0)} \subset \mathcal{D}(V)_{(1)} \subset \cdots,$$
(2.1)

defined by $(x'_1)^{k_1} \cdots (x'_n)^{k_n} (\frac{\partial}{\partial x'_1})^{l_1} \cdots (\frac{\partial}{\partial x'_n})^{l_n} \in \mathcal{D}(V)_{(r)}$ if $k_1 + \cdots + k_n + l_1 + \cdots + l_n \leq r$. Given $\omega \in \mathcal{D}(V)_{(r)}$ and $\nu \in \mathcal{D}(V)_{(s)}$, $[\omega, \nu] \in \mathcal{D}(V)_{(r+s-2)}$, so that

$$\operatorname{gr}\mathcal{D}(V) = \bigoplus_{r>0} \mathcal{D}(V)_{(r)} / \mathcal{D}(V)_{(r-1)} \cong \operatorname{Sym}(V \oplus V^*).$$
(2.2)

We say that $\deg(\alpha) = d$ if $\alpha \in \mathcal{D}(V)_{(d)}$ and $\alpha \notin \mathcal{D}(V)_{(d-1)}$.

Let *G* be a connected Lie group with Lie algebra \mathfrak{g} , and let *V* be a linear representation of *G* via $\rho : G \to \operatorname{Aut}(V)$. Then *G* acts on $\mathcal{D}(V)$ by algebra automorphisms, and induces an action $\rho^* : \mathfrak{g} \to \operatorname{Der}(\mathcal{D}(V))$ by derivations of degree zero. Since *G* is connected, the invariant ring $\mathcal{D}(V)^G$ coincides with $\mathcal{D}(V)^{\mathfrak{g}}$, where

$$\mathcal{D}(V)^{\mathfrak{g}} = \{ \omega \in \mathcal{D}(V) \mid \rho^*(\xi)(\omega) = 0, \ \forall \xi \in \mathfrak{g} \}$$

We will usually work with the action of \mathfrak{g} rather than *G*, and for greater flexibility, we do not assume that the \mathfrak{g} -action comes from an action of a *reductive* group *G*.

The action of \mathfrak{g} on $\mathfrak{D}(V)$ can be realized by *inner* derivations: there is a Lie algebra homomorphism

$$\tau: \mathfrak{g} \to \mathcal{D}(V), \qquad \xi \mapsto -\sum_{i=1}^{n} x_{i}^{\prime} \rho^{*}(\xi) \left(\frac{\partial}{\partial x_{i}^{\prime}}\right).$$
(2.3)

 $\tau(\xi)$ is just the linear vector field on V generated by ξ , so $\xi \in \mathfrak{g}$ acts on $\mathcal{D}(V)$ by $[\tau(\xi), -]$. Clearly τ extends to a map $\mathfrak{U}\mathfrak{g} \to \mathcal{D}(V)$, and

 $\mathcal{D}(V)^{\mathfrak{g}} = \operatorname{Com}(\tau(\mathfrak{Ug}), \mathcal{D}(V)).$

Since \mathfrak{g} acts on $\mathcal{D}(V)$ by derivations of degree zero, (2.1) restricts to a filtration $\mathcal{D}(V)^{\mathfrak{g}}_{(0)} \subset \mathcal{D}(V)^{\mathfrak{g}}_{(1)} \subset \cdots$ on $\mathcal{D}(V)^{\mathfrak{g}}$, and $gr(\mathcal{D}(V)^{\mathfrak{g}}) \cong gr(\mathcal{D}(V))^{\mathfrak{g}} \cong Sym(V \oplus V^*)^{\mathfrak{g}}$.

2.1. The case where g is abelian

Our main focus is on the case where g is the abelian Lie algebra $\mathbf{C}^m = gl(1) \oplus \cdots \oplus gl(1)$, acting diagonally on *V*. Let R(V) be the **C**-vector space of all diagonal representations of g. Given $\rho \in R(V)$ and $\xi \in \mathfrak{g}$, $\rho(\xi)$ is a diagonal matrix with entries $a_1^{\xi}, \ldots, a_n^{\xi}$, which we regard as a vector $a^{\xi} = (a_1^{\xi}, \ldots, a_n^{\xi}) \in \mathbf{C}^n$. Let $A(\rho) \subset \mathbf{C}^n$ be the subspace spanned by $\{\rho(\xi) \mid \xi \in \mathfrak{g}\}$. The action of GL(m) on g induces a natural action of GL(m) on R(V), defined by

$$(\mathbf{g} \cdot \boldsymbol{\rho})(\boldsymbol{\xi}) = \boldsymbol{\rho}(\mathbf{g}^{-1} \cdot \boldsymbol{\xi}) \tag{2.4}$$

for all $g \in GL(m)$. Clearly $A(\rho) = A(g \cdot \rho)$ for all $g \in GL(m)$. Note that dim $\text{Ker}(\rho) = \text{dim Ker}(g \cdot \rho)$ for all $g \in GL(m)$, so in particular GL(m) acts on the dense open set $\mathbb{R}^0(V) = \{\rho \in \mathbb{R}(V) \mid \text{Ker}(\rho) = 0\}$. The correspondence $\rho \mapsto A(\rho)$ identifies $\mathbb{R}^0(V)/GL(m)$ with the Grassmannian Gr(m, n) of *m*-dimensional subspaces of \mathbb{C}^n .

Given $\rho \in R(V)$, $\mathcal{D}(V)^{\mathfrak{g}} = \mathcal{D}(V)^{\mathfrak{g}'}$ where $\mathfrak{g}' = \mathfrak{g}/\operatorname{Ker}(\rho)$, so we may assume without loss of generality that $\rho \in R^0(V)$. We denote $\mathcal{D}(V)^{\mathfrak{g}}$ by $\mathcal{D}(V)^{\mathfrak{g}}_{\rho}$ when we need to emphasize the dependence on ρ . Given $\omega \in \mathcal{D}(V)$, the condition $\rho^*(\xi)(\omega) = 0$ for all $\xi \in \mathfrak{g}$ is equivalent to the condition that $\rho^*(g \cdot \xi)(\omega) = 0$ for all $\xi \in \mathfrak{g}$, so it follows that $\mathcal{D}(V)^{\mathfrak{g}}_{\rho} = \mathcal{D}(V)^{\mathfrak{g}}_{g \cdot \rho}$ for all $g \in GL(m)$. Hence the family of algebras $\mathcal{D}(V)^{\mathfrak{g}}_{\rho}$ is parametrized by the points $A(\rho) \in Gr(m, n)$.

Fix $\rho \in \mathbb{R}^0(V)$, and choose a basis $\{\xi^1, \ldots, \xi^m\}$ for \mathfrak{g} . Let $a^i = (a_1^i, \ldots, a_n^i) \in \mathbb{C}^n$ be the vectors corresponding to the diagonal matrices $\rho(\xi^i)$, and let $A = A(\rho)$ be the subspace spanned by these vectors. The map $\tau : \mathfrak{g} \to \mathcal{D}(V)$ is defined by

$$\tau(\xi^i) = -\sum_{j=1}^n a^i_j x'_j \frac{\partial}{\partial x'_j}.$$
(2.5)

The Euler operators $\{e_j = x'_j \frac{\partial}{\partial x'_j} \mid j = 1, ..., n\}$ lie in $\mathcal{D}(V)^{\mathfrak{g}}$, and we denote the polynomial algebra $\mathbf{C}[e_1, ..., e_n]$ by *E*. For each j = 1, ..., n and $d \in \mathbf{Z}$, define $v_i^d \in \mathcal{D}(V)$ by

 $v_j^d = \begin{cases} \left(\frac{\partial}{\partial x_j'}\right)^{-d} & d < 0\\ 1 & d = 0\\ (x_j')^d & d > 0. \end{cases}$ (2.6)

Let $\mathbf{Z}^n \subset \mathbf{C}^n$ denote the lattice generated by the standard basis, and for each lattice point $l = (l_1, \ldots, l_n) \in \mathbf{Z}^n$, define

$$\omega_l = \prod_{j=1}^n v_j^{l_j}.$$
(2.7)

As a module over E,

$$\mathcal{D}(V) = \bigoplus_{l \in \mathbf{Z}^n} M_l, \tag{2.8}$$

where M_l is the free *E*-module generated by ω_l . Moreover, we have

$$[e_i, \omega_l] = l_i \omega_l, \tag{2.9}$$

so the \mathbb{Z}^n -grading (2.8) is just the eigenspace decomposition of $\mathcal{D}(V)$ under the family of diagonalizable operators $[e_j, -]$. In particular, (2.9) shows that

$$\rho^*(\xi^1)(\omega_l) = [\tau(\xi^1), \omega_l] = -\langle l, a^l \rangle \omega_l, \tag{2.10}$$

where \langle, \rangle denotes the standard inner product on \mathbf{C}^n . Hence ω_l lies in $\mathcal{D}(V)^{\mathfrak{g}}$ precisely when $l \in A^{\perp}$, so

$$\mathcal{D}(V)^{\mathfrak{g}} = \bigoplus_{l \in A^{\perp} \cap \mathbf{Z}^n} M_l.$$
(2.11)

For generic actions, the lattice $A^{\perp} \cap \mathbf{Z}^n$ has rank zero, so $\mathcal{D}(V)^{\mathfrak{g}} = M_0 = E$.

Consider the double commutant $Com(\mathcal{D}(V)^{\mathfrak{g}}, \mathcal{D}(V))$, which always contains $T = \tau(\mathfrak{Ug}) = \mathbf{C}[\tau(\xi_1) \dots, \tau(\xi_m)]$. Since $Com(E, \mathcal{D}(V)) = E$, we have $Com(\mathcal{D}(V)^{\mathfrak{g}}, \mathcal{D}(V)) = E$ for generic actions.

Suppose next that $A^{\perp} \cap \mathbb{Z}^n$ has rank r for some $0 < r \le n-m$. For i = 1, ..., r let $\{l^i = (l_1^i, ..., l_n^i)\}$ be a basis for $A^{\perp} \cap \mathbb{Z}^n$, and let L be the **C**-vector space spanned by $\{l^1, ..., l^r\}$. If r < n-m, we can choose vectors $s^k = (s_1^k, ..., s_n^k) \in L^{\perp} \cap A^{\perp}$, so that $\{l^1, ..., l^r, s^{r+1}, ..., s^{n-m}\}$ is a basis for A^{\perp} . For i = 1, ..., r and k = r + 1, ..., n-m, define differential operators

$$\phi^i = \sum_{j=1}^n l_j^i e_j, \qquad \psi^k = \sum_{j=1}^n s_j^k e_j.$$

Note that $\mathbf{C}[e_1, \ldots, e_n] = T \otimes \Psi \otimes \Phi$, where $\Phi = \mathbf{C}[\phi^1, \ldots, \phi^r]$ and $\Psi = \mathbf{C}[\psi^{r+1}, \ldots, \psi^{n-m}]$.

Theorem 2.1. Com $(\mathcal{D}(V)^{\mathfrak{g}}, \mathcal{D}(V)) = T \otimes \Psi$. Hence $\mathcal{D}(V)^{\mathfrak{g}}$ and T form a pair of mutual commutants inside $\mathcal{D}(V)$ precisely when $\Psi = \mathbf{C}$, which occurs when $A^{\perp} \cap \mathbf{Z}^n$ has rank n - m.

Proof. By (2.9), for any lattice point $l \in A^{\perp} \cap \mathbb{Z}^n$, and for k = r + 1, ..., n - m we have

$$[\psi^{\kappa}, \omega_l] = \langle s^{\kappa}, l \rangle \omega_l = 0$$

since $s^k \in L^{\perp}$. It follows that $\Psi \subset \text{Com}(\mathcal{D}(V)^{\mathfrak{g}}, \mathcal{D}(V))$. Hence $T \otimes \Psi \subset \text{Com}(\mathcal{D}(V)^{\mathfrak{g}}, \mathcal{D}(V))$. Moreover, since $[\phi^i, \omega_l] = \langle l^i, l \rangle \omega_l$ and $\{l^1, \ldots, l^r\}$ form a basis for $A^{\perp} \cap \mathbb{Z}^n$, it follows that the variables ϕ^i cannot appear in any element $\omega \in \text{Com}(\mathcal{D}(V)^{\mathfrak{g}}, \mathcal{D}(V))$. \Box

In the case $\Psi = \mathbf{C}$, we can recover the action ρ (up to GL(m)-equivalence) from the algebra $\mathcal{D}(V)^{\mathfrak{g}}$ by taking its commutant inside $\mathcal{D}(V)$, but otherwise $\mathcal{D}(V)^{\mathfrak{g}}$ does not determine the action.

3. Vertex algebras

We will assume that the reader is familiar with the basic notions in vertex algebra theory. For a list of references, see page 117 of [13]. We briefly describe the examples and constructions that we need, following the notation in [13].

Given a Lie algebra g equipped with a symmetric g-invariant bilinear form *B*, the *current algebra* $\mathcal{O}(g, B)$ is the universal vertex algebra with generators $X^{\xi}(z), \xi \in g$, which satisfy the OPE relations

$$X^{\xi}(z)X^{\eta}(w) \sim B(\xi,\eta)(z-w)^{-2} + X^{[\xi,\eta]}(w)(z-w)^{-1}$$

Given a finite-dimensional vector space V, the $\beta\gamma$ -system, or algebra of chiral differential operators $\delta(V)$, was introduced in [5]. It is the unique vertex algebra with generators $\beta^{x}(z)$, $\gamma^{x'}(z)$ for $x \in V$, $x' \in V^*$, which satisfy

$$\beta^{x}(z)\gamma^{x}(w) \sim \langle x', x \rangle (z-w)^{-1}, \qquad \gamma^{x}(z)\beta^{x}(w) \sim -\langle x', x \rangle (z-w)^{-1},$$

$$\beta^{x}(z)\beta^{y}(w) \sim 0, \qquad \gamma^{x'}(z)\gamma^{y'}(w) \sim 0.$$
(3.1)

Given $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbf{C}^n$, $\mathcal{S}(V)$ has a Virasoro element

$$L^{\alpha}(z) = \sum_{i=1}^{n} (\alpha_{i} - 1) : \partial \beta^{x_{i}}(z) \gamma^{x'_{i}}(z) : + \alpha_{i} : \beta^{x_{i}}(z) \partial \gamma^{x'_{i}}(z) :$$
(3.2)

of central charge $\sum_{i=1}^{n} (12\alpha_i^2 - 12\alpha_i + 2)$. Here $\{x_1, \ldots, x_n\}$ is any basis for *V* and $\{x'_1, \ldots, x'_n\}$ is the corresponding dual basis for *V*^{*}. An OPE calculation shows that $\beta^{x_i}(z)$, $\gamma^{x'_i}(z)$ are primary of conformal weights α_i , $1 - \alpha_i$, respectively.

 $\mathcal{S}(V)$ has an additional **Z**-grading which we call the $\beta\gamma$ -charge. Define

$$v(z) = \sum_{i=1}^{n} : \beta^{x_i}(z)\gamma^{x'_i}(z) :.$$
(3.3)

The zeroth Fourier mode v(0) acts diagonalizably on $\mathcal{S}(V)$; the $\beta\gamma$ -charge grading is just the eigenspace decomposition of $\mathcal{S}(V)$ under v(0). For $x \in V$ and $x' \in V^*$, $\beta^x(z)$ and $\gamma^{x'}(z)$ have $\beta\gamma$ -charges -1 and 1, respectively.

There is also an odd vertex algebra $\mathcal{E}(V)$ known as a *bc*-system, or a semi-infinite exterior algebra, which is generated by $b^{x}(z)$, $c^{x'}(z)$ for $x \in V$ and $x' \in V^*$, which satisfy

$$b^{x}(z)c^{x'}(w) \sim \langle x', x \rangle (z-w)^{-1}, \qquad c^{x'}(z)b^{x}(w) \sim \langle x', x \rangle (z-w)^{-1},$$

 $b^{x}(z)b^{y}(w) \sim 0, \qquad c^{x'}(z)c^{y'}(w) \sim 0.$

 $\mathcal{E}(V)$ has an analogous conformal structure $L^{\alpha}(z)$ for any $\alpha \in \mathbf{C}^n$, and an analogous **Z**-grading which we call the *bc*-charge. Define

$$q(z) = -\sum_{i=1}^{n} : b^{x_i}(z)c^{x'_i}(z) : .$$
(3.4)

The zeroth Fourier mode q(0) acts diagonalizably on $\mathcal{S}(V)$, and the *bc*-charge grading is just the eigenspace decomposition of $\mathcal{E}(V)$ under q(0). Clearly $b^x(z)$ and $c^{x'}(z)$ have *bc*-charges -1 and 1, respectively.

3.1. The commutant construction

Definition 3.1. Let \mathcal{V} be a vertex algebra, and let \mathcal{A} be a subalgebra. The commutant of \mathcal{A} in \mathcal{V} , denoted by Com $(\mathcal{A}, \mathcal{V})$ or $\mathcal{V}^{\mathcal{A}_+}$, is the subalgebra of vertex operators $v \in \mathcal{V}$ such that [a(z), v(w)] = 0 for all $a \in \mathcal{A}$. Equivalently, $a(z) \circ_n v(z) = 0$ for all $a \in \mathcal{A}$ and $n \ge 0$.

We regard \mathcal{V} as a module over \mathcal{A} , and we regard $\mathcal{V}^{\mathcal{A}_+}$ as the invariant subalgebra. If \mathcal{A} is a homomorphic image of a current algebra $\mathcal{O}(\mathfrak{g}, B)$, $\mathcal{V}^{\mathcal{A}_+}$ is just the invariant space $\mathcal{V}^{\mathfrak{g}[t]}$. We will always assume that \mathcal{V} is equipped with a weight grading, and that \mathcal{A} is a graded subalgebra, so that $\mathcal{V}^{\mathcal{A}_+}$ is also a graded subalgebra of \mathcal{V} .

Our main example of this construction comes from a representation $\rho : \mathfrak{g} \to \operatorname{End}(V)$ of a Lie algebra \mathfrak{g} . There is an induced vertex algebra homomorphism $\hat{\tau} : \mathcal{O}(\mathfrak{g}, B) \to \mathscr{E}(V)$, which is analogous to the map $\tau : \mathfrak{U}\mathfrak{g} \to \mathcal{D}(V)$ given by (2.3). Here *B* is the bilinear form $B(\xi, \eta) = -Tr(\rho(\xi)\rho(\eta))$ on \mathfrak{g} . In terms of a basis $\{x_1, \ldots, x_n\}$ for *V* and dual basis $\{x'_1, \ldots, x'_n\}$ for V^* , $\hat{\tau}$ is defined by

$$\hat{\tau}(X^{\xi}(z)) = \theta^{\xi}(z) = -\sum_{i=1}^{n} : \gamma^{x'_i}(z)\beta^{\rho(\xi)(x_i)}(z) :.$$
(3.5)

Definition 3.2. Let Θ denote the subalgebra $\hat{\tau}(\mathcal{O}(\mathfrak{g}, B)) \subset \mathcal{S}(V)$. The commutant algebra $\mathcal{S}(V)^{\Theta_+}$ will be called the algebra of *invariant chiral differential operators* on *V*.

If $\mathscr{S}(V)$ is equipped with the conformal structure L^{α} given by (3.2), Θ is not a graded subalgebra of $\mathscr{S}(V)$ in general. For example, if $\mathfrak{g} = \mathfrak{gl}(n)$ and $V = \mathbb{C}^n$, Θ is graded by weight precisely when $\alpha_1 = \alpha_2 = \cdots = \alpha_n$. However, when \mathfrak{g} is abelian and its action on V is diagonal, $\theta^{\xi}(z)$ will be homogeneous of weight one for any α . Hence $\mathscr{S}(V)^{\Theta_+}$ is also graded by weight, but this grading will depend on the choice of α .

3.2. The Zhu functor

Let \mathcal{V} be a vertex algebra with weight grading $\mathcal{V} = \bigoplus_{n \in \mathbb{Z}} \mathcal{V}_n$. In [21], Zhu introduced a functor that attaches to \mathcal{V} an associative algebra $A(\mathcal{V})$, together with a surjective linear map $\pi_{Zh} : \mathcal{V} \to A(\mathcal{V})$. For $a \in \mathcal{V}_m$ and $b \in \mathcal{V}$, we define

$$a * b = \operatorname{Res}_{z}\left(a(z)\frac{(z+1)^{m}}{z}b\right),$$
(3.6)

and extend * by linearity to a bilinear operation $\mathcal{V} \otimes \mathcal{V} \rightarrow \mathcal{V}$. Let $O(\mathcal{V})$ denote the subspace of \mathcal{V} spanned by elements of the form

$$a \circ b = \operatorname{Res}_{z}\left(a(z)\frac{(z+1)^{m}}{z^{2}}b\right)$$
(3.7)

where $a \in \mathcal{V}_m$, and let $A(\mathcal{V})$ be the quotient $\mathcal{V}/O(\mathcal{V})$, with projection $\pi_{Zh} : \mathcal{V} \to A(\mathcal{V})$. For $a, b \in \mathcal{V}$, $a \sim b$ means $a - b \in O(\mathcal{V})$, and [a] denotes the image of a in $A(\mathcal{V})$. A useful fact which is immediate from (3.6) and (3.7) is that for $a \in \mathcal{V}_m$,

$$\partial a \sim ma.$$
 (3.8)

Theorem 3.3 (*Zhu*). O(V) is a two-sided ideal in V under the product *, and (A(V), *) is an associative algebra with unit [1]. The assignment $V \mapsto A(V)$ is functorial. If \mathfrak{L} is a vertex algebra ideal of V, we have

$$A(\mathcal{V}/\mathfrak{l}) \cong A(\mathcal{V})/\mathfrak{l}, \quad \mathfrak{l} = \pi_{Zh}(\mathfrak{l}). \tag{3.9}$$

The main application of the Zhu functor is to study the representation theory of \mathcal{V} , or at least reduce it to a more classical problem. Let $M = \bigoplus_{n \ge 0} M_n$ be a module over \mathcal{V} such that for $a \in \mathcal{V}_m$, $a(n)M_k \subset M_{m+k-n-1}$ for all $n \in \mathbb{Z}$. Given $a \in \mathcal{V}_m$, the Fourier mode a(m-1) acts on each M_k . The subspace M_0 is then a module over $A(\mathcal{V})$ with action $[a] \mapsto a(m-1) \in \text{End}(M_0)$. In fact, $M \mapsto M_0$ provides a one-to-one correspondence between irreducible $\mathbb{Z}_{\ge 0}$ -graded \mathcal{V} -modules and irreducible $A(\mathcal{V})$ -modules.

A vertex algebra \mathcal{V} is said to be *strongly generated* by a subset $\{v_i(z) \mid i \in I\}$ if \mathcal{V} is spanned by collection of iterated Wick products

$$\{: \partial^{\kappa_1} v_{i_1}(z) \cdots \partial^{\kappa_m} v_{i_m}(z) : | k_1, \ldots, k_m \ge 0\}.$$

Lemma 3.4. Suppose that \mathcal{V} is strongly generated by $\{v_i(z) \mid i \in I\}$, which are homogeneous of weights $d_i \geq 0$. Then $A(\mathcal{V})$ is generated as an associative algebra by the collection $\{\pi_{Zh}(v_i) \mid i \in I\}$.

Proof. Let *C* be the algebra generated by $\{\pi_{Zh}(v_i)|i \in I\}$. We need to show that for any vertex operator $\omega \in \mathcal{V}$, we have $\pi_{Zh}(\omega) \in C$. By strong generation, it suffices to prove this when ω is a monomial of the form

$$: \partial^{k_1} v_{i_1} \cdots \partial^{k_r} v_{i_r} :$$

We proceed by induction on weight. Suppose first that ω has weight zero, so that $k_1 = \cdots = k_r = 0$ and v_{i_1}, \ldots, v_{i_r} all have weight zero. Note that $v_{i_1} \circ_n$ (: $v_{i_2} \cdots v_{i_r}$:) has weight -n - 1, and hence vanishes for all $n \ge 0$. It follows from (3.6) that

$$[v_{i_1}] * [: v_{i_2} \cdots v_{i_r} :] = [\omega].$$

Continuing in this way, we see that $[\omega] = [v_{i_1}] * [v_{i_2}] * \cdots * [v_{i_r}] \in C$. Next, assume that $\pi_{Zh}(\omega) \in C$ whenever $wt(\omega) < n$, and suppose that $\omega = :\partial^{k_1}v_i \cdots \partial^{k_r}v_r$: has weight *n*. We calculate

$$[\partial^{k_1}v_{i_1}] * [: \partial^{k_2}v_{i_2}\cdots \partial^{k_r}v_{i_r} :] = [\omega] + \dots,$$

where \cdots is a linear combination of terms of the form $[\partial^{k_1}v_{i_1}\circ_k(:\partial^{k_2}v_{i_2}\cdots\partial^{k_r}v_{i_r}:)]$ for $k \ge 0$. The vertex operators $\partial^{k_1}v_{i_1}\circ_k(:\partial^{k_2}v_{i_2}\cdots\partial^{k_r}v_{i_r}:)$ all have weight n-k-1, so by our inductive assumption, $[\partial^{k_1}v_{i_1}\circ_k(:\partial^{k_2}v_{i_2}\cdots\partial^{k_r}v_{i_r}:)] \in \mathcal{C}$. Applying the same argument to the vertex operator $:\partial^{k_2}v_{i_2}\cdots\partial^{k_r}v_{i_r}:$ and proceeding by induction on r, we see that $[\omega] \equiv [\partial^{k_1}v_{i_1}] * \cdots * [\partial^{k_n}v_{i_n}]$ modulo \mathcal{C} . Finally, by applying (3.8) repeatedly, we see that $[\omega] \in \mathcal{C}$, as claimed. \Box

Example 3.5. $\mathcal{V} = \mathcal{O}(\mathfrak{g}, B)$ where each generator X^{ξ} has weight 1. Then $A(\mathcal{O}(\mathfrak{g}, B))$ is generated by $\{[X^{\xi}] | \xi \in \mathfrak{g}\}$, and is isomorphic to the universal enveloping algebra $\mathfrak{U}\mathfrak{g}$ via $[X^{\xi}] \mapsto \xi$.

Example 3.6. Let $\mathcal{V} = \mathscr{E}(V)$ where $V = \mathbb{C}^n$, and $\mathscr{E}(V)$ is equipped with the conformal structure L^{α} given by (3.2). Then $A(\mathscr{E}(V))$ is generated by $\{[\gamma^{x'_i}], [\beta^{x_i}]\}$ and is isomorphic to the Weyl algebra $\mathcal{D}(V)$ with generators $x'_i, \frac{\partial}{\partial x'_i}$ via

$$[\gamma^{x'_i}] \mapsto x'_i, \qquad [\beta^{x_i}] \mapsto \frac{\partial}{\partial x'_i}.$$

Even though the structure of $A(\delta(V))$ is independent of the choice of α , the Zhu map $\pi_{Zh} : \delta(V) \to A(\delta(V))$ does depend on α . For example, (3.6) shows that

$$\pi_{Zh}(:\gamma^{x'_i}\beta^{x_i}:) = x'_i\frac{\partial}{\partial x'_i} + 1 - \alpha_i.$$
(3.10)

We will be particularly concerned with the interaction between the commutant construction and the Zhu functor. If $a, b \in \mathcal{V}$ are (super)commuting vertex operators, [a] and [b] are (super)commuting elements of $A(\mathcal{V})$. Hence for any subalgebra $\mathcal{B} \subset \mathcal{V}$, we have a commutative diagram

$$\begin{array}{cccc} \operatorname{Com}(\mathcal{B},\mathcal{V}) & \stackrel{\iota}{\hookrightarrow} & \mathcal{V} \\ \pi \downarrow & & \pi_{Zh} \downarrow \\ \operatorname{Com}(B,A(\mathcal{V})) & \stackrel{\iota}{\hookrightarrow} & A(\mathcal{V}). \end{array}$$
(3.11)

Here *B* denotes the subalgebra $\pi_{Zh}(\mathcal{B}) \subset A(\mathcal{V})$, and $Com(B, A(\mathcal{V}))$ denotes the (super)commutant of *B* inside $A(\mathcal{V})$. The horizontal maps are inclusions, and π is the restriction of the Zhu map on \mathcal{V} to $Com(\mathcal{B}, \mathcal{V})$. Clearly $Im(\pi)$ is a subalgebra of $Com(B, A(\mathcal{V}))$. A natural problem is to describe $Im(\pi)$ and $Coker(\pi)$. In our main example $\mathcal{V} = \mathcal{S}(\mathcal{V})$ and $\mathcal{A} = \Theta$, we have $\pi_{Zh}(\Theta) = \tau(\mathfrak{Ug}) \subset \mathcal{D}(\mathcal{V})$ and $Com(\tau(\mathfrak{Ug}), \mathcal{D}(\mathcal{V})) = \mathcal{D}(\mathcal{V})^{\mathfrak{g}}$, so (3.11) specializes to (1.2).

4. The Friedan-Martinec-Shenker bosonization

4.1. Bosonization of fermions

First we describe the bosonization of fermions and the well-known boson–fermion correspondence due to [3]. Let A be the Heisenberg algebra with generators $j(n), n \in \mathbb{Z}$, and κ , satisfying $[j(n), j(m)] = n\delta_{n+m,0}\kappa$. The field $j(z) = \sum_{n \in \mathbb{Z}} j(n)z^{-n-1}$ satisfies the OPE

$$j(z)j(w) \sim (z-w)^{-2},$$

and generates a Heisenberg vertex algebra \mathcal{H} of central charge 1. Define the free bosonic scalar field

$$\phi(z) = q + j(0) \ln z - \sum_{n \neq 0} \frac{j(n)}{n} x^{-n},$$

where *q* satisfies $[q, j(n)] = \delta_{n,0}$. Clearly $\partial \phi(z) = j(z)$, and we have the OPE

$$\phi(z)\phi(w) \sim \ln(z-w)$$

Given $\alpha \in \mathbf{C}$, let \mathcal{H}_{α} denote the irreducible representation of A generated by the vacuum vector v_{α} satisfying

$$j(n)v_{\alpha} = \alpha \delta_{n,0}v_{\alpha}, \quad n \ge 0$$

Given $\eta \in \mathbf{C}$, the operator $e^{\eta q}(v_{\alpha}) = v_{\alpha+\eta}$, so $e^{\eta q}$ maps $\mathcal{H}_{\alpha} \to \mathcal{H}_{\alpha+\eta}$. Define the vertex operator

$$X_{\eta}(z) = \mathrm{e}^{\eta\phi(z)} = \mathrm{e}^{\eta q} z^{\eta\alpha} \exp\left(\eta \sum_{n>0} j(-n) \frac{z^n}{n}\right) \exp\left(\eta \sum_{n<0} j(-n) \frac{z^n}{n}\right).$$

The X_{η} satisfy the OPEs

$$j(z)X_{\eta}(w) = \eta X_{\eta}(w)(z-w)^{-1} + \frac{1}{\eta} \partial X_{\eta}(w),$$

$$X_{\eta}(z)X_{\nu}(w) = (z-w)^{\eta\nu} : X_{\eta}(z)X_{\nu}(w) : .$$

If we take $\eta = \pm 1$, the pair of (fermionic) fields X_1, X_{-1} generate the lattice vertex algebra V_L associated to the onedimensional lattice $L = \mathbf{Z}$. The state space of V_L is just $\sum_{n \in \mathbf{Z}} \mathcal{H}_n = \mathcal{H} \otimes_{\mathbf{C}} L$. It follows that

$$\begin{aligned} X_1(z)X_{-1}(w) &\sim (z-w)^{-1}, \qquad X_{-1}(z)X_1(w) \sim (z-w)^{-1}, \\ X_1(z)X_1(w) &\sim 0, \qquad X_{-1}(z)X_{-1}(w) \sim 0, \end{aligned}$$

so the map $\mathcal{E} \to V_L$ sending $b \mapsto X_{-1}$, $c \to X_1$ is a vertex algebra isomorphism. Here \mathcal{E} denotes the *bc*-system $\mathcal{E}(V)$ in the case where *V* is one-dimensional.

4.2. Bosonization of bosons

Next, we describe the bosonization of bosons, following [2]. Recall that \mathcal{E} has the grading $\mathcal{E} = \bigoplus_{l \in \mathbb{Z}} \mathcal{E}^l$ by *bc*-charge. As in [2], define $N(s) = \sum_{l \in \mathbb{Z}} \mathcal{E}^l \otimes \mathcal{H}_{i(s+l)}$, which is a module over the vertex algebra $\mathcal{E} \otimes V_{L'}$. Here *L'* is the one-dimensional lattice *i***Z**, and $V_{L'}$ is generated by $X_{\pm i}$. We define a map $\epsilon : \mathcal{E} \to \mathcal{E} \otimes V_{L'}$ by

$$\beta \mapsto \partial b \otimes X_{-i}, \qquad \gamma \mapsto c \otimes X_i. \tag{4.2}$$

It is straightforward to check that (4.2) is a vertex algebra homomorphism, which is injective since \mathscr{S} is simple. Moreover Proposition 3 of [2] shows that the image of (4.2) coincides with the kernel of $c(0) : N(s) \rightarrow N(s - 1)$. Let \mathscr{E}' be the subalgebra of \mathscr{E} generated by c and ∂b , which coincides with the kernel of $c(0) : \mathscr{E} \rightarrow \mathscr{E}$. It follows that

$$\epsilon(\delta) \subset \mathcal{E}' \otimes V_{L'}. \tag{4.3}$$

(4.1)

5. W algebras

The W algebras are vertex algebras which arise as extended symmetry algebras of two-dimensional conformal field theories. For each integer $n \ge 2$ and $c \in \mathbf{C}$, the algebra $W_{n,c}$ of central charge c is generated by fields of conformal weights 2, 3, ..., n. In the case n = 2, $W_{2,c}$ is just the Virasoro algebra of central charge c. In contrast to the Virasoro algebra, the generating fields for $W_{n,c}$ for $n \ge 3$ have nonlinear terms in their OPEs, which makes the representation theory of these algebras highly nontrivial. One also considers various limits of W algebras denoted by $W_{1+\infty,c}$ which may be defined as modules over the universal central extension $\hat{\mathcal{D}}$ of the Lie algebra \mathcal{D} of differential operators on the circle [11].

We will be particularly concerned with the W_3 algebra, which was introduced by Zamolodchikov in [20] and studied extensively in [1]. Our discussion is taken directly from [18,19]. First, let $\mathcal{F}(W_3)$ denote the free associative algebra with generators L_m , W_m , $m \in \mathbb{Z}$. Let $\hat{\mathcal{F}}(W_3)$ be the completion of $\mathcal{F}(W_3)$ consisting of (possibly) infinite sums of monomials in $\mathcal{F}(W_3)$ such that for each N > 0, only finitely many terms depend only on the variables L_n , W_n for $n \leq N$. For a fixed central charge $c \in \mathbb{C}$, let $\mathfrak{U}W_{3,c}$ be the quotient of $\hat{\mathcal{F}}(W_3)$ by the ideal generated by

$$[L_m, L_n] = (m-n)L_{m+n} + \frac{c}{12}(m^3 - m)\delta_{m, -n},$$
(5.1)

$$[L_m, W_n] = (2m - n)W_{m+n},$$
(5.2)

$$[W_m, W_n] = (m-n) \left(\frac{1}{15} (m+n+3)(m+n+2) - \frac{1}{6} (m+2)(n+2) \right) L_{m+n} + \frac{16}{22+5c} (m-n) \Lambda_{m+n} + \frac{c}{360} m(m^2-1)(m^2-4) \delta_{m,-n}.$$
(5.3)

Here

 $\Lambda_m = \sum_{n \le -2} L_n L_{m-n} + \sum_{n > -2} L_{m-n} L_n - \frac{3}{10} (m+2)(m+3) L_m.$

Let

 $W_{3,c,\pm} = \{L_n, W_n, \pm n > 0\}, \qquad W_{3,c,0} = \{L_0, W_0\}.$

The Verma module $\mathcal{M}_c(t, w)$ of highest weight (t, w) is the induced module

 $\mathfrak{U} W_{3,c} \otimes_{W_{3,c,+} \oplus W_{3,c,0}} \mathbf{C}_{t,w},$

where $C_{t,w}$ is the one-dimensional $W_{3,c,+} \oplus W_{3,c,0}$ -module generated by the vector $v_{t,w}$ such that

 $W_{3,c,+}(v_{t,w}) = 0, \qquad L_0(v_{t,w}) = tv_{t,w}, \qquad W_0(v_{t,w}) = wv_{t,w}.$

A vector $v \in \mathcal{M}_c(t, w)$ is called *singular* if $\mathcal{W}_{3,c,+}(v) = 0$. In the case t = w = 0, the vectors

 $L_{-1}(v_{0,0}), \qquad W_{-1}(v_{0,0}), \qquad W_{-2}(v_{0,0})$

are singular vectors in $\mathcal{M}_c(0, 0)$. The vacuum module $\mathcal{W}_{3,c}$ is defined to be the quotient of $\mathcal{M}_c(0, 0)$ by the $\mathfrak{U}_{3,c}$ -submodule generated by the vectors (5.4). $\mathcal{W}_{3,c}$ has the structure of a vertex algebra which is freely generated by the vertex operators

$$L(z) = \sum_{n \in \mathbf{Z}} L_n z^{-n-2}, \qquad W(z) = \sum_{n \in \mathbf{Z}} W_n z^{-n-3}.$$

In particular, the vertex operators

$$\{\partial^{i_1}L(z)\cdots\partial^{i_m}L(z)\partial^{j_1}W(z)\cdots\partial^{j_n}W(z)\mid 0\leq i_1\leq\cdots\leq i_m, 0\leq j_1\leq\cdots\leq j_n\}$$

which correspond to $i_1! \cdots i_m! j_1! \cdots j_n! L_{-i_1-2} \cdots L_{-i_m-2} W_{-j_1-3} \cdots W_{-j_n-3} v_{0,0}$ under the state-operator correspondence, form a basis for $\mathcal{VW}_{3,c}$. By Lemma 4.1 of [19], the Zhu algebra $A(\mathcal{VW}_{3,c})$ is just the polynomial algebra $\mathbf{C}[l, w]$ where $l = \pi_{Zh}(L)$ and $w = \pi_{Zh}(W)$.

Let \mathcal{I}_c denote the maximal proper $\mathfrak{U}W_{3,c}$ -submodule of $\mathcal{V}W_{3,c}$, which is a vertex algebra ideal. The quotient $\mathcal{V}W_{3,c}/\mathcal{I}_c$ is a simple vertex algebra which we denote by $W_{3,c}$. Let $I_c = \pi_{Zh}(\mathcal{I}_c)$, which is an ideal of $\mathbb{C}[l, w]$. By (3.9), we have $A(W_{3,c}) = \mathbb{C}[l, w]/\mathcal{I}_c$. Generically, $\mathcal{I}_c = 0$, so that $\mathcal{V}W_{3,c} = W_{3,c}$. We will be primarily concerned with the non-generic case c = -2, in which $\mathcal{I}_{-2} \neq 0$. The generators L(z), $W(z) \in \mathcal{V}W_{3,-2}$ satisfy the following OPEs:

$$L(z)L(w) \sim -(z-w)^{-4} + 2L(w)(z-w)^{-2} + \partial L(w)(z-w)^{-1},$$
(5.5)

$$L(z)W(w) \sim 3W(w)(z-w)^{-2} + \partial W(w)(z-w)^{-1},$$
(5.6)

$$W(z)W(w) \sim -\frac{2}{3}(z-w)^{-6} + 2L(w)(z-w)^{-4} + \partial L(w)(z-w)^{-3} + \left(\frac{8}{3}:L(w)L(w):-\frac{1}{2}\partial^2 L(w)\right)(z-w)^{-2} + \left(\frac{4}{3}\partial(:L(w)L(w):)-\frac{1}{3}\partial^3 L(w)\right)(z-w)^{-1}.$$
 (5.7)

The simple vertex algebra $W_{3,-2}$ also has generators L(z), W(z) satisfying (5.5)–(5.7), but $W_{3,-2}$ is no longer freely generated.

(5.4)

In order to avoid introducing extra notation, we will *not* use the change of variables $\tilde{W}(z) = \frac{1}{2}\sqrt{6}W(z)$ given by Eq. 3.13 of [19]. By Lemma 4.3 of [19], the ideal $I_{-2} \subset \mathbb{C}[l, w]$ is generated (in our variables) by the polynomial

$$w^2 - \frac{2}{27}l^2(8l+1).$$
(5.8)

5.1. The representation theory of $W_{3,-2}$

In [19], Wang gave a complete classification of the irreducible modules over the simple vertex algebra $W_{3,-2}$. An important ingredient in his classification is the following realization of $W_{3,-2}$ as a subalgebra of the Heisenberg algebra \mathcal{H} with generator j(z) satisfying $j(z)j(w) \sim (z - w)^{-2}$. Define

$$L_{\mathcal{H}} = \frac{1}{2} (:j^2 :) + \partial j, \qquad W_{\mathcal{H}} = \frac{2}{3\sqrt{6}} (:j^3 :) + \frac{1}{\sqrt{6}} (:j\partial j :) + \frac{1}{6\sqrt{6}} \partial^2 j.$$
(5.9)

The map $W_{3,-2} \hookrightarrow \mathcal{H}$ sending $L \mapsto L_{\mathcal{H}}$ and $W \mapsto W_{\mathcal{H}}$ is a vertex algebra homomorphism, so we may regard any \mathcal{H} -module as a $W_{3,-2}$ -module. Given $\alpha \in \mathbf{C}$, consider the irreducible \mathcal{H} -module \mathcal{H}_{α} defined by (4.1), and let V_{α} denote the irreducible quotient of the $W_{3,-2}$ -submodule of \mathcal{H}_{α} generated by v_{α} . It is easily checked that the generator v_{α} is a highest weight vector of $W_{3,-2}$ with highest weight

$$\left(\frac{1}{2}\alpha(\alpha-1), \frac{1}{3\sqrt{6}}\alpha(\alpha-1)(2\alpha-1)\right).$$
(5.10)

The main result of [19] is that the modules $\{V_{\alpha} \mid \alpha \in \mathbf{C}\}$ account for all the irreducible modules of $W_{3,-2}$.

6. The commutant algebra $\mathscr{S}(V)^{\Theta_+}$ for $\mathfrak{g} = gl(1)$ and V = C

In this section, we describe $\delta(V)^{\Theta_+}$ in the case where $\mathfrak{g} = \mathfrak{gl}(1)$ and $V = \mathbf{C}$, where the action $\rho : \mathfrak{g} \to End V$ is by multiplication. Fix a basis ξ of \mathfrak{g} and a basis x of V, such that $\rho(\xi)(x) = x$. Then $\delta = \delta(V)$ is generated by $\beta(z) = \beta^x(z)$ and $\gamma(z) = \gamma^{x'}(z)$, and the map (2.5) is given by

$$\mathfrak{g} \to \mathfrak{D} = \mathfrak{D}(V), \qquad \xi \mapsto -x' \frac{\mathrm{d}}{\mathrm{d}x'}.$$

In this case, $\mathcal{O}(\mathfrak{g}, B)$ is just the Heisenberg algebra \mathcal{H} of central charge -1, and the action of \mathcal{H} on \mathscr{S} given by (3.5) is

$$\theta(z) = -: \gamma(z)\beta(z):, \tag{6.1}$$

which clearly satisfies

$$\theta(z)\theta(w) \sim -(z-w)^{-2}.$$
(6.2)

As usual, Θ will denote the subalgebra of δ generated by $\theta(z)$. Since $-\theta(0)$ is the $\beta\gamma$ -charge operator, δ^{Θ_+} must lie in the subalgebra δ^0 of $\beta\gamma$ -charge zero.

Let : θ^n : denote the *n*-fold iterated Wick product of θ with itself. It is clear from (6.2) that each : θ^n : lies in δ^0 but not in δ^{Θ_+} . A natural place to look for elements in δ^{Θ_+} is to begin with the operators : θ^n : and try to "quantum correct" them so that they lie in δ^{Θ_+} . As a polynomial in β , $\partial\beta$, ..., γ , $\partial\gamma$, ..., note that

$$: \theta^n := (-1)^n \beta^n \gamma^n + \nu_n,$$

where ν_n has degree at most 2n - 2. By a quantum correction, we mean an element $\omega_n \in \mathscr{S}$ of polynomial degree at most 2n - 2, so that : $\theta^n : +\omega_n \in \mathscr{S}^{\Theta_+}$.

Clearly θ has no such correction ω_1 , because ω_1 would have to be a scalar, in which case $\theta \circ_1(\theta + \omega_1) = \theta \circ_1 \theta = -1$. However, the next lemma shows that we can find such ω_n for all $n \ge 2$.

Lemma 6.1. Let

$$\begin{split} \omega_2 &=: \beta(\partial\gamma): -: (\partial\beta)\gamma:, \\ \omega_3 &= -\frac{9}{2}: \beta^2\gamma(\partial\gamma): +\frac{9}{2}: \beta(\partial\beta)\gamma^2: -\frac{3}{2}: \beta(\partial^2\gamma): -\frac{3}{2}: (\partial^2\beta)\gamma: +6: (\partial\beta)(\partial\gamma):. \end{split}$$

Then $: \theta^2 : +\omega_2 \in \mathscr{S}^{\Theta_+}$ and $: \theta^3 : +\omega_3 \in \mathscr{S}^{\Theta_+}$. Since $: (\theta^n) :$ and $: (: \theta^i :)(: \theta^j :) :$ have the same leading term as polynomials in $\beta, \partial\beta, \ldots, \gamma, \partial\gamma, \ldots$ for i + j = n, it follows that for any $n \ge 2$ we can find ω_n such that $: \theta^n : +\omega_n \in \mathscr{S}^{\Theta_+}$.

Proof. This is a straightforward OPE calculation. \Box

Next, define vertex operators L_{δ} , $W_{\delta} \in \delta^{\Theta_{+}}$ as follows:

$$L_{\delta} = \frac{1}{2} (: \theta^{2} : +\omega_{2}) = \frac{1}{2} (: \beta^{2} \gamma^{2} :) - : (\partial \beta) \gamma : + : \beta (\partial \gamma) :,$$
(6.3)

$$W_{\delta} = -\sqrt{\frac{2}{27}} (: \theta^{3} : +\omega_{3}) \\ = \sqrt{\frac{2}{27}} (: \beta^{3} \gamma^{3} :) - \sqrt{\frac{3}{2}} (: \beta(\partial\beta)\gamma^{2} :) + \sqrt{\frac{3}{2}} (: \beta^{2}\gamma(\partial\gamma) :) \\ + \sqrt{\frac{1}{6}} (: (\partial^{2}\beta)\gamma :) - \sqrt{\frac{8}{3}} (: (\partial\beta)(\partial\gamma) :) + \sqrt{\frac{1}{6}} (: \beta(\partial^{2}\gamma) :).$$
(6.4)

Let $W \subset \delta^{\Theta_+}$ be the vertex algebra generated by L_δ , W_δ . An OPE calculation shows that the map

$$\mathcal{V}\mathcal{W}_{3,-2} \to \mathscr{E}^{\Theta_+}, \qquad L \mapsto L_{\mathscr{E}}, \qquad \mathcal{W} \mapsto \mathcal{W}_{\mathscr{E}}$$

$$\tag{6.5}$$

is a vertex algebra homomorphism. Moreover, the ideal L_{-2} is annihilated by (6.5), so this map descends to a map

$$f: \mathcal{W}_{3,-2} \hookrightarrow \mathscr{E}^{\Theta_+}. \tag{6.6}$$

In fact, (6.6) is related to the realization of $W_{3,-2}$ as a subalgebra of \mathcal{H} defined earlier. First, under the boson–fermion correspondence,

$$L_{\mathcal{H}} \mapsto L_{\mathcal{E}} = :\partial bc:, \tag{6.7}$$

$$W_{\mathcal{H}} \mapsto W_{\mathcal{E}} = \frac{1}{\sqrt{6}} (: (\partial^2 b)c : - : (\partial b)(\partial c) :).$$
(6.8)

Next, under the map $\epsilon : \delta \to \mathcal{E} \otimes \mathcal{H}$ given by (4.2), we have

$$L_{\delta} \mapsto L_{\delta} \otimes 1, \qquad W_{\delta} \mapsto W_{\delta} \otimes 1.$$
 (6.9)

The subalgebra δ^0 of $\beta\gamma$ -charge zero has a natural set of generators

$$\{J^i =: \beta(\partial^i \gamma) :, i \ge 0\}$$

and it is well known that δ^0 is isomorphic to $W_{1+\infty,-1}$ [11]. One of the main results of [18] is that $\epsilon : \delta \to \mathcal{E} \otimes \mathcal{H}$ restricts to an isomorphism

$$s^0 \cong \mathcal{A} \otimes \mathcal{H},\tag{6.10}$$

where $A \cong W_{3,-2}$ is the subalgebra of \mathcal{E} generated by $L_{\mathcal{E}}$ and $W_{\mathcal{E}}$. By (6.9), ϵ maps \mathcal{W} onto $A \otimes 1$. Similarly, $\epsilon(\theta) = i(1 \otimes j)$, so ϵ maps Θ onto $1 \otimes \mathcal{H}$, and $\delta^0 = \mathcal{W} \otimes \Theta$.

For each $d \in \mathbb{Z}$, the subspace \mathscr{S}^d of $\beta \gamma$ -charge d is a module over \mathscr{S}^0 , which is in fact irreducible [11,19]. Define $v^d(z) \in \mathscr{S}^d$ by

$$v^{d}(z) = \begin{cases} \beta(z)^{-d} & d < 0\\ 1 & d = 0\\ \gamma(z)^{d} & d > 0. \end{cases}$$
(6.11)

Here $\beta(z)^{-d}$ and $\gamma(z)^d$ denote the *d*-fold iterated Wick products : $\beta(z) \cdots \beta(z)$: and : $\gamma(z) \cdots \gamma(z)$:, respectively. Each $v^d(z)$ is a highest weight vector for the action of $W_{3,-2}$, and the highest weight of $v^d(z)$ is given by (5.10) with

$$\begin{cases} \alpha = d & d \le 0\\ \alpha = d + 1 & d > 0. \end{cases}$$
(6.12)

Moreover, $v^d(z)$ is also a highest weight vector for the action of \mathcal{H} , so \mathscr{S}^d is generated by $v^d(z)$ as a module over $\mathcal{W}_{3,-2} \otimes \mathcal{H}$.

Theorem 6.2. The map $f : W_{3,-2} \hookrightarrow \mathscr{S}^{\Theta_+}$ given by (6.6) is an isomorphism of vertex algebras. Moreover, $\operatorname{Com}(\mathscr{S}^{\Theta_+}, \mathscr{S}) = \Theta$. Hence Θ and \mathscr{S}^{Θ_+} form a Howe pair inside \mathscr{S} .

Proof. Clearly $\delta^{\Theta_+} \subset \delta^0$, and since $\delta^0 = W \otimes \Theta$, we have

$$\mathscr{S}^{\Theta_+} = \mathsf{Com}(\Theta, \mathscr{W} \otimes \Theta) = \mathscr{W} \otimes \mathsf{Com}(\Theta, \Theta) = \mathscr{W}$$

This proves the first statement. As for the second statement, it is clear from (5.10) and (6.12) that $Com(\delta^{\Theta_+}, \delta) \subset \delta^0$. Hence

 $\operatorname{Com}(\delta^{\Theta_+}, \delta) = \operatorname{Com}(\mathcal{W}, \mathcal{W} \otimes \Theta) = \Theta \otimes \operatorname{Com}(\mathcal{W}, \mathcal{W}) = \Theta. \quad \Box$

6.1. The map $\pi: \mathscr{S}^{\Theta_+} \to \mathscr{D}^{\mathfrak{g}}$

Equip δ with the conformal structure $L^{\alpha} = (\alpha - 1) : \partial \beta(z)\gamma(z) : + \alpha : \beta(z)\partial\gamma(z) :$, and consider the map $\pi : \delta^{\Theta_+} \to \mathcal{D}^{\mathfrak{g}}$ given by (1.2). In this case, $\mathcal{D}^{\mathfrak{g}}$ is just the polynomial algebra **C**[*e*], where *e* is the Euler operator $x' \frac{d}{dx'}$.

Lemma 6.3. We have

$$\pi(L_{\delta}) = \frac{1}{2}(e^{2} + e), \qquad \pi(W_{\delta}) = \frac{2}{3\sqrt{6}}e^{3} + \frac{1}{\sqrt{6}}e^{2} + \frac{1}{3\sqrt{6}}e.$$
(6.13)

In particular, $\pi(L_{\delta})$ and $\pi(W_{\delta})$ are independent of the choice of α .

Proof. This is a straightforward computation using (3.6) and the fact that $\pi_{Zh}(\gamma(z)) = x'$ and $\pi_{Zh}(\beta(z)) = \frac{d}{dx'}$. Note that $l = \pi(L_{\delta})$ and $w = \pi(W_{\delta})$ satisfy (5.8). \Box

Corollary 6.4. For any conformal structure L^{α} on \mathscr{S} as above, $\operatorname{Im}(\pi)$ is the subalgebra of $\mathbf{C}[e]$ generated by $\pi(L_{\mathscr{S}})$ and $\pi(W_{\mathscr{S}})$. Moreover, $\operatorname{Coker}(\pi) = \mathbf{C}[e]/\operatorname{Im}(\pi)$ has dimension one, and is spanned by the image of e in $\operatorname{Coker}(\pi)$.

Proof. The first statement is immediate from Lemma 3.4, since δ^{Θ_+} is strongly generated by L_{δ} and W_{δ} which have weights 2 and 3 respectively. The second statement follows from (3.10) and (6.13), because any polynomial in C[e] is equivalent to an element which is homogeneous of degree 1 modulo Im (π) . \Box

7. $\mathscr{S}(V)^{\Theta_+}$ for abelian Lie algebra actions

Fix a basis $\{x_1, \ldots, x_n\}$ for V and dual basis $\{x'_1, \ldots, x'_n\}$ for V^* . We regard $\delta(V)$ as $\delta_1 \otimes \cdots \otimes \delta_n$, where δ_j is the copy of δ generated by $\beta^{x_j}(z)$, $\gamma^{x'_j}(z)$. Let $f_j : \delta \to \delta(V)$ be the obvious map onto the *j*th factor. The subspace δ_j^0 of $\beta\gamma$ -charge zero is isomorphic to $\mathcal{W}^j \otimes \mathcal{H}^j$, where \mathcal{H}^j is generated by $\theta^j(z) = f_j(\theta(z))$, and \mathcal{W}^j is generated by $L^j = f_j(L_\delta)$, $\mathcal{W}^j = f_j(\mathcal{W}_\delta)$. Moreover, as a module over $\mathcal{W}^j \otimes \mathcal{H}^j$, the space δ_j^d of $\beta\gamma$ -charge *d* is generated by the highest weight vector $v_j^d(z) = f_j(v^d(z))$, which is given by

$$v_j^d(z) = \begin{cases} \beta^{x_j}(z)^{-d} & d < 0\\ 1 & d = 0\\ \gamma^{x'_j}(z)^d & d > 0. \end{cases}$$
(7.1)

We denote by \mathscr{S}'_j the linear span of the vectors $\{v_j^d(z) \mid d \in \mathbf{Z}\}$. Note that for any conformal structure L^{α} on $\mathscr{S}(V)$, the differential operators $v_i^d \in \mathscr{D}(V)$ defined by (2.6) correspond to $v_i^d(z)$ under the Zhu map. Let \mathscr{B} denote the vertex algebra

$$\mathscr{S}_1^0 \otimes \cdots \otimes \mathscr{S}_n^0 \cong (\mathscr{W}^1 \otimes \mathscr{H}^1) \otimes \cdots \otimes (\mathscr{W}^n \otimes \mathscr{H}^n).$$

Clearly the space $\delta(V)'$ consisting of highest-weight vectors for the action of \mathcal{B} is just $\delta'_1 \otimes \cdots \otimes \delta'_n$. As usual, let $\mathbf{Z}^n \subset \mathbf{C}^n$ denote the standard lattice. For each lattice point $l = (l_1, \ldots, l_n) \in \mathbf{Z}^n$, define

$$\omega_{l}(z) =: v_{1}^{l_{1}}(z) \cdots v_{n}^{l_{n}}(z) :,$$
(7.2)

where $v_j^d(z)$ is given by (7.1). For example, in the case n = 2 and $l = (2, -3) \in \mathbb{Z}^2$, we have

$$\omega_{l}(z) := v_{1}^{2}(z)v_{2}^{-3}(z) := \gamma^{x_{1}}(z)\gamma^{x_{1}}(z)\beta^{x_{2}}(z)\beta^{x_{2}}(z)\beta^{x_{2}}(z) = 0$$

For any conformal structure L^{α} on $\mathcal{S}(V)$, $\omega_l(z)$ corresponds under the Zhu map to the element $\omega_l \in \mathcal{D}(V)$ given by (2.7).

Lemma 7.1. For each $l \in \mathbb{Z}^n$, the \mathcal{B} -module \mathcal{M}_l generated by $\omega_l(z)$ is irreducible. Moreover, as a module over \mathcal{B}_l ,

$$\mathscr{S}(V) = \bigoplus_{l \in \mathbb{Z}^n} \mathscr{M}_l.$$
(7.3)

Proof. This is immediate from the description of δ^d as the irreducible δ^0 -module generated by $v_d(z)$, and the fact that $\delta(V)' = \delta'_1 \otimes \cdots \otimes \delta'_n$. \Box

Note that $\theta^j(z) \circ_0 \omega_l(z) = -l_j \omega_l(z)$, so the **Z**^{*n*}-grading on $\mathscr{E}(V)$ above is just the eigenspace decomposition of $\mathscr{E}(V)$ under the family of diagonalizable operators $-\theta^j(z) \circ_0$.

For the remainder of this section, \mathfrak{g} will denote the abelian Lie algebra

 $\mathbf{C}^m = gl(1) \oplus \cdots \oplus gl(1),$

and $\rho : \mathfrak{g} \to \operatorname{End}(V)$ will be a faithful, diagonal action. Let $A(\rho) \subset \mathbb{C}^n$ be the subspace spanned by $\{\rho(\xi) \mid \xi \in \mathfrak{g}\}$. As in the classical setting, we denote $\mathscr{S}(V)^{\Theta_+}$ by $\mathscr{S}(V)^{\Theta_+}_{\rho}$ when we need to emphasize the dependence on ρ . Clearly $\mathscr{S}(V)^{\Theta_+}_{\rho} = \mathscr{S}(V)^{\Theta_+}_{g,\rho}$ for all $g \in GL(m)$, so the family of algebras $\mathscr{S}(V)^{\Theta_+}_{\rho}$ is parametrized by the points $A(\rho) \in Gr(m, n)$.

Choose a basis $\{\xi^1, \ldots, \xi^m\}$ for g such that the corresponding vectors

$$\rho(\xi^i) = a^i = (a_1^i, \dots, a_n^i) \in \mathbf{C}^n$$

form an orthonormal basis for $A = A(\rho)$. Let $\theta^{\xi_i}(z)$ be the vertex operator corresponding to $\rho(\xi^i)$, and let Θ be the subalgebra of \mathcal{B} generated by { $\theta^{\xi_i}(z) \mid i = 1, ..., m$ }. By (3.5), we have

$$\theta^{\xi_i}(z) = \sum_{j=1}^n a_j \theta^j(z) = -\sum_{j=1}^n a_j : \gamma^{x'_j}(z) \beta^{x_j}(z) : .$$

Clearly $\theta^{\xi_i}(z)\theta^{\xi_j}(w) \sim -\langle a^i, a^j \rangle (z-w)^{-2} = \delta_{i,j}(z-w)^{-2}$.

If m < n, extend the set $\{a^1, \ldots, a^m\}$ to an orthonormal basis for \mathbb{C}^n by adjoining vectors $b^i = (b_1^i, \ldots, b_n^i) \in \mathbb{C}^n$, for $i = m + 1, \ldots, n$. Let

$$\phi^{i}(z) = \sum_{j=1}^{n} b^{i}_{j} \phi^{j}(z) = -\sum_{j=1}^{n} b^{i}_{j} : \gamma^{x'_{j}}(z) \beta^{x_{j}}(z) :$$

be the corresponding vertex operators, and let Φ be the subalgebra of \mathcal{B} generated by { $\phi^i(z) \mid i = m + 1, ..., n$ }. The OPEs

$$\phi^i(z)\phi^j(w) \sim -\langle b^i, b^j \rangle (z-w)^{-2}, \qquad \theta^{\xi_i}(z)\phi^j(w) \sim -\langle a^i, b^j \rangle (z-w)^{-2}$$

show that the $\phi^i(z)$ pairwise commute and each generates a Heisenberg algebra of central charge -1, and that $\Phi \subset \delta(V)^{\Theta_+}$. In particular, we have the decomposition

$$\mathcal{H}^1 \otimes \cdots \otimes \mathcal{H}^n = \Theta \otimes \Phi.$$

Next, let W denote the subalgebra of \mathcal{B} generated by $\{L^j(z), W^j(z) \mid j = 1, ..., n\}$. Theorem 6.2 shows that W commutes with both Θ and Φ , so we have the decomposition

$$\mathcal{B} = \mathcal{W} \otimes \Theta \otimes \Phi. \tag{7.4}$$

In particular, the subalgebra $\mathscr{B}' = \mathscr{W} \otimes \mathscr{O}$ lies in the commutant $\mathscr{S}(V)^{\Theta_+}$. Let \mathscr{M}'_l denote the \mathscr{B}' -submodule of \mathscr{M}_l generated by $\omega_l(z)$, which is clearly irreducible as a \mathscr{B}' -module.

In order to describe $\mathscr{S}(V)^{\Theta_+}$, we first describe the larger space $\mathscr{S}(V)^{\Theta_>}$ which is annihilated by $\theta^{\xi_i}(k)$ for i = 1, ..., m and k > 0. Then $\mathscr{S}(V)^{\Theta_+}$ is just the subspace of $\mathscr{S}(V)^{\Theta_>}$ which is annihilated by $\theta^{\xi_i}(0)$, for i = 1, ..., m. It is clear from (7.4) and the irreducibility of \mathscr{M}_l as a \mathscr{B} -module that $\mathscr{S}(V)^{\Theta_>} \cap \mathscr{M}_l = \mathscr{M}'_l$, so

$$\delta(V)^{\Theta_{>}} = \bigoplus_{l \in \mathbb{Z}^{n}} \mathcal{M}'_{l}.$$
(7.5)

Theorem 7.2. As a module over \mathcal{B}' ,

$$\delta(V)^{\Theta_{+}} = \bigoplus_{l \in A^{\perp} \cap \mathbf{Z}^{n}} \mathcal{M}'_{l}.$$
(7.6)

Proof. Let $\omega(z) \in \delta(V)^{\Theta_+}$. Since ω lies in the larger space $\delta(V)^{\Theta_>}$ which is a direct sum of irreducible, cyclic \mathscr{B}' -modules \mathscr{M}'_l with generators $\omega_l(z)$, we may assume without loss of generality that $\omega(z) = \omega_l(z)$ for some *l*. An OPE calculation shows that

$$\theta^{\xi_i}(z)\omega_l(w) \sim -\langle a^i, l\rangle \omega_l(w)(z-w)^{-1}.$$
(7.7)

Hence $\omega_l \in \mathscr{E}(V)^{\Theta_+}$ if and only if *l* lies in the sublattice $A^{\perp} \cap \mathbf{Z}^n$. \Box

Our next step is to find a *finite* generating set for $\mathscr{S}(V)^{\Theta_+}$. Generically, $A^{\perp} \cap \mathbb{Z}^n$ has rank zero, so $\mathscr{S}(V)^{\Theta_+} = \mathscr{B}'$, which is (strongly) generated by the set

$$\{\phi^{i}(z), L^{j}(z), W^{j}(z) | i = m + 1, \dots, n, j = 1, \dots, n\}.$$

If $A^{\perp} \cap \mathbb{Z}^n$ has rank r for some $0 < r \le n - m$, choose a basis $\{l^1, \ldots, l^r\}$ for $A^{\perp} \cap \mathbb{Z}^n$. We claim that for any $l \in A^{\perp} \cap \mathbb{Z}^n$, $\omega_l(z)$ lies in the vertex subalgebra generated by

 $\{\omega_{l^1}(z),\ldots,\omega_{l^r}(z),\omega_{-l^1}(z),\ldots,\omega_{-l^r}(z)\}.$

It suffices to prove that given lattice points $l = (l_1, \ldots, l_n)$ and $l' = (l'_1, \ldots, l'_n)$ in \mathbb{Z}^n , $\omega_{l+l'}(z) = k\omega_l(z) \circ_d \omega_{l'}(z)$ for some $k \neq 0$ and $d \in \mathbb{Z}$.

First, consider the special case where $l = (l_1, 0, ..., 0)$ and $l' = (l'_1, 0, ..., 0)$. If $l_1 l'_1 \ge 0$, we have $\omega_l(z) \circ_{-1} \omega_{l'}(z) = \omega_{l+l'}(z)$. Suppose next that $l_1 < 0$ and $l'_1 > 0$, so that $\omega_l(z) = \beta^{x_1}(z)^{-l_1}$ and $\omega_{l'}(z) = \gamma^{x'_1}(z)^{l'_1}$. Let

 $d_1 = \min\{-l_1, l'_1\}, \quad e_1 = \max\{-l_1, l'_1\}, \quad d = d_1 - 1.$

An OPE calculation shows that

$$\omega_l(z) \circ_d \omega_{l'}(z) = \frac{e_1!}{(e_1 - d_1)!} \omega_{l+l'}(z), \tag{7.8}$$

where as usual 0! = 1. Similarly, if $l_1 > 0$ and $l'_1 < 0$, we take $d_1 = \min\{l_1, -l'_1\}$, $e_1 = \max\{l_1, -l'_1\}$, and $d = d_1 - 1$. We have

$$\omega_l(z) \circ_d \omega_{l'}(z) = -\frac{e_1!}{(e_1 - d_1)!} \omega_{l+l'}(z).$$
(7.9)

Now consider the general case $l = (l_1, ..., l_n)$ and $l' = (l'_1, ..., l'_n)$. For j = 1, ..., n, define

$$d_{j} = \begin{cases} 0 & l_{j}l'_{j} \ge 0 \\ \min\{|l_{j}|, |l'_{j}|\}, & l_{j}l'_{j} < 0, \end{cases} \quad e_{j} = \begin{cases} 0 & l_{j}l'_{j} \ge 0 \\ \max\{|l_{j}|, |l'_{j}|\}, & l_{j}l'_{j} < 0, \end{cases}$$
$$k_{j} = \begin{cases} 0 & l_{j} \le 0 \\ d_{j} & l_{j} > 0, \end{cases} \quad d = -1 + \sum_{i=1}^{n} d_{j}.$$

Using (7.8) and (7.9) repeatedly, we calculate

$$\omega_{l}(z) \circ_{d} \omega_{l'}(z) = \left(\prod_{j=1}^{n} (-1)^{k_{j}} \frac{e_{j}!}{(e_{j} - d_{j})!}\right) \omega_{l+l'}(z),$$

which shows that $\omega_{l+l'}(z)$ lies in the vertex algebra generated by $\omega_l(z)$ and $\omega_{l'}(z)$. Thus we have proved

Theorem 7.3. Let $\{l^1, \ldots, l^r\}$ be a basis for the lattice $A^{\perp} \cap \mathbb{Z}^n$, as above. Then $\mathscr{S}(V)^{\Theta_+}$ is generated as a vertex algebra by \mathscr{B}' together with the additional vertex operators

$$\omega_{l^1}(z),\ldots,\omega_{l^r}(z),\qquad \omega_{-l^1}(z),\ldots,\omega_{-l^r}(z).$$

In particular, $\mathscr{S}(V)^{\Theta_+}$ is finitely generated as a vertex algebra.

In the generic case where $A^{\perp} \cap \mathbb{Z}^n = 0$ and $\delta(V)^{\Theta_+} = \mathcal{B}'$, we claim that $\delta(V)^{\Theta_+}$ has a natural (n-m)-parameter family of conformal structures for which the generators $\phi^i(z), l^j(z), W^j(z)$ are primary of conformal weights 1, 2, 3, respectively. Note first that W has the conformal structure $L_W(z) = \sum_{j=1}^n l^j(z)$ of central charge -2n. It is well known that for $k \neq 0$ and $c \in \mathbf{C}$, the Heisenberg algebra \mathcal{H} of central charge k admits a Virasoro element

It is well known that for $k \neq 0$ and $c \in \mathbf{C}$, the Heisenberg algebra \mathcal{H} of central charge k admits a Virasoro element $L^{c}(z) = \frac{1}{2k}j(z)j(z) + c\partial j(z)$ of central charge $1 - 12c^{2}k$, under which the generator j(z) is primary of weight one. Hence given $\lambda = (\lambda_{m+1}, \ldots, \lambda_{n}) \in \mathbf{C}^{n-m}$ the Heisenberg algebra generated by $\phi^{i}(z)$ has a conformal structure

$$L^{\lambda_i}(z) = -\frac{1}{2} : \phi^i(z)\phi^i(z) : +\lambda_i\partial\phi^i(z)$$

of central charge $1 + 12\lambda_i^2$. Since $\phi^i(z)$ and $\phi^j(z)$ commute for $i \neq j$, it follows that $L_{\phi}^{\lambda}(z) = \sum_{i=m+1}^n L^{\lambda_i}(z)$ is a conformal structure on Φ of central charge $\sum_{i=m+1}^n 1 + 12\lambda_i^2$. Finally,

$$L_{\mathscr{B}'}(z) = L_{\mathscr{W}}(z) \otimes 1 + 1 \otimes L_{\mathscr{D}}^{\lambda}(z) \in \mathscr{W} \otimes \mathscr{O} = \mathscr{B}$$

is a conformal structure on \mathscr{B}' of central charge $-2n + \sum_{i=m+1}^{n} 1 + 12\lambda_i^2$ with the desired properties.

When the lattice $A^{\perp} \cap \mathbb{Z}^n$ has positive rank, the vertex algebras $\mathscr{E}(V)^{\Theta_+}$ have a very rich structure which depends sensitively on $A^{\perp} \cap \mathbb{Z}^n$. In general, the set of generators for $\mathscr{E}(V)^{\Theta_+}$ given by Theorem 7.3 will not be a set of *strong* generators, and the conformal structure $L_{\mathscr{B}'}$ on \mathscr{B}' will not extend to a conformal structure on all of $\mathscr{E}(V)^{\Theta_+}$.

Theorem 7.4. For any action of g on V, $\operatorname{Com}(\mathscr{S}(V)^{\Theta_+}, \mathscr{S}(V)) = \Theta$. Hence $\mathscr{S}(V)^{\Theta_+}$ and Θ form a Howe pair inside $\mathscr{S}(V)$.

Proof. Since $\mathscr{B}' \subset \mathscr{S}(V)^{\Theta_+}$, we have $\Theta \subset \operatorname{Com}(\mathscr{S}(V)^{\Theta_+}, \mathscr{S}(V)) \subset \operatorname{Com}(\mathscr{B}', \mathscr{S}(V))$, so it suffices to show that $\operatorname{Com}(\mathscr{B}', \mathscr{S}(V)) = \Theta$. Recall that $\mathscr{B}' = \mathscr{W} \otimes \varPhi$ and $\Theta \otimes \varPhi = \mathscr{H}^1 \otimes \cdots \otimes \mathscr{H}^n$. Since $\operatorname{Com}(\mathscr{W}^i, \mathscr{S}_i) = \mathscr{H}^i$ by Theorem 6.2, it follows that $\operatorname{Com}(\mathscr{W}, \mathscr{S}(V)) = \Theta \otimes \varPhi$. Then

 $\operatorname{Com}(\mathcal{B}', \mathscr{E}(V)) = \operatorname{Com}(\Phi, \operatorname{Com}(\mathcal{W}, \mathscr{E}(V))) = \operatorname{Com}(\Phi, \Theta \otimes \Phi) = \Theta \otimes \operatorname{Com}(\Phi, \Phi) = \Theta. \quad \Box$

This result shows that we can always recover the action of \mathfrak{g} (up to GL(m)-equivalence) from $\mathfrak{S}(V)^{\Theta_+}$, by taking its commutant inside $\mathfrak{S}(V)$. This stands in contrast to Theorem 2.1, which shows that we can reconstruct the action from $\mathfrak{D}(V)^{\mathfrak{g}}$ only when $A^{\perp} \cap \mathbb{Z}^n$ has rank n - m.

Theorem 7.5. For any action of g on V, $\mathscr{S}(V)^{\Theta_+}$ is a simple vertex algebra.

Proof. Given a non-zero ideal $\mathcal{I} \subset \mathcal{S}(V)^{\Theta_+}$, we need to show that $1 \in \mathcal{I}$. Let $\omega(z)$ be a non-zero element of \mathcal{I} . Since each \mathcal{M}'_I is irreducible as a module over \mathcal{B}' , we may assume without loss of generality that

$$\omega(z) = \sum_{l \in \mathbf{Z}^n} c_l \omega_l(z) \tag{7.10}$$

for constants $c_l \in \mathbf{C}$, such that $c_l \neq 0$ for only finitely many values of *l*.

For each lattice point $l = (l_1, ..., l_n) \in \mathbf{Z}^n$, both $\omega_l(z)$ and $\omega_{-l}(z)$ have degree $d = \sum_{j=1}^n |l_j|$ as polynomials in the variables $\beta^{x_j}(z)$ and $\gamma^{x'_j}(z)$. Let d be the maximal degree of terms $\omega_l(z)$ appearing in (7.10) with non-zero coefficient c_l , and let l be such a lattice point for which $\omega_l(z)$ has degree d. An OPE calculation shows that

$$\omega_{-l}(z) \circ_{d-1} \omega_{l'}(z) = \begin{cases} 0 & l' \neq l \\ \left(\prod_{j=1}^{n} (-1)^{k_j} |l_j|!\right) 1 & l' = l \end{cases}$$
(7.11)

where $k_i = \min\{0, l_i\}$, for all lattice points l' appearing in (7.10) with non-zero coefficient. It follows from (7.11) that

$$\frac{1}{c_l\left(\prod_{j=1}^n (-1)^{k_j} |l_j|!\right)} \omega_{-l}(z) \circ_{d-1} \omega(z) = 1. \quad \Box$$

7.1. The map $\pi : \mathscr{S}(V)^{\Theta_+} \to \mathscr{D}(V)^{\mathfrak{g}}$

Equip $\mathscr{S}(V)$ with the conformal structure L^{α} given by (3.2), for some $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{C}^n$. Suppose first that $A^{\perp} \cap \mathbb{Z}^n$ has rank zero, so that $\mathscr{S}(V)^{\Theta_+} = \mathscr{B}'$, and $\mathscr{D}(V)^{\mathfrak{g}} = \mathbb{C}[e_1, \ldots, e_n] = E$. Let $\pi : \mathscr{S}(V)^{\Theta_+} \to \mathscr{D}(V)^{\mathfrak{g}}$ be the map given by (1.2). By Lemma 6.3, for $j = 1, \ldots, n$ we have

$$\pi(L^{j}(z)) = \frac{1}{2}(e_{i}^{2} + e_{j}), \qquad \pi(W^{j}(z)) = \frac{2}{3\sqrt{6}}e_{j}^{3} + \frac{1}{\sqrt{6}}e_{j}^{2} + \frac{1}{3\sqrt{6}}e_{j}.$$

Moreover, (3.10) shows that $\pi(\phi^i(z)) = \langle b^i, \alpha \rangle - \sum_{j=1}^n b^i_j(e_j + 1)$. Since \mathscr{B}' is strongly generated by $\{\phi^i(z), L^j(z), W^j(z) \mid i = m + 1, ..., n, j = 1, ..., n\}$, it follows from Lemma 3.4 that $\operatorname{Im}(\pi)$ is generated by the collection

$$[\pi(\phi^{1}(z)), \pi(L^{j}(z)), \pi(W^{j}(z)) \mid i = m + 1, \dots, n, j = 1, \dots, n].$$

The map π is not surjective, but $Coker(\pi)$ is generated as a module over $Im(\pi)$ by the collection $\{t^{\xi_i} \mid i = 1, ..., m\}$, where t^{ξ_i} is the image of

$$\pi_{Zh}(\theta^{\xi_i}(z)) = \langle a^i, \alpha \rangle - \sum_{j=1}^n a^i_j(e_j+1)$$

in $\operatorname{Coker}(\pi) = E/\pi(\mathcal{B}')$. Unlike the case where V is one-dimensional, π depends on the choice of α .

Suppose next that the lattice $A^{\perp} \cap \mathbb{Z}^n = 0$ has positive rank. Clearly $\pi_{Zh}(\mathcal{M}_l) = M_l$ for all l, so $\pi(\mathcal{M}'_l) \subset M_l$. This map need not be surjective, but since M_l is the free E-module generated by ω_l , and $E/\pi(\mathcal{B}')$ is generated as a $\pi(\mathcal{B}')$ -module by $\{t^{\xi_l} \mid i = 1, ..., m\}$, it follows that each $M_l/\pi(\mathcal{M}'_l)$ is generated as a $\pi(\mathcal{B}')$ -module by $\{t^{\xi_l} \mid i = 1, ..., m\}$, where $t^{\xi_l}_l$ is the image of $\pi_{Zh}(\theta^{\xi_l}(z))\omega_l$ in $M_l/\pi(\mathcal{M}'_l)$.

Theorem 7.6. For any action of \mathfrak{g} on V, $\operatorname{Coker}(\pi)$ is generated as a module over $\operatorname{Im}(\pi)$ by the collection $\{t^{\xi_i} \mid i = 1, \ldots, m\}$. In particular, $\operatorname{Coker}(\pi)$ is a finitely generated module over $\operatorname{Im}(\pi)$ with generators corresponding to central elements of $\mathcal{D}(V)^{\mathfrak{g}}$.

Proof. First, since $\pi(\omega_l(z)) = \omega_l$ for all l, it is clear that the generators $t_l^{\xi_l}$ of $M_l/\pi(\mathcal{M}'_l)$ lie in the Im (π) -module generated by $\{t^{\xi_l} \mid i = 1, ..., m\}$, which proves the first statement. Finally, the fact that the elements $\pi_{Zh}(\theta^{\xi_l}(z))$ corresponding to t^{ξ_l} each lie in the center of $\mathcal{D}(V)^{\mathfrak{g}}$ is immediate from (2.10). \Box

7.2. A vertex algebra bundle over the Grassmannian Gr(m, n)

As ρ varies over the space $R^0(V)$ of effective actions, recall that $\delta(V)_{\rho}^{\Theta_+}$ is uniquely determined by the point $A(\rho) \in Gr(m, n)$. The algebras $\delta(V)_{\rho}^{\Theta_+}$ do not form a fiber bundle over Gr(m, n). However, the subspace of $\delta(V)_{\rho}^{\Theta_+}$ of degree zero in the $A(\rho)^{\perp} \cap \mathbb{Z}^n$ -grading (7.6) is just $\mathcal{B}'_{\rho} = \mathcal{B}'$, and the algebras \mathcal{B}'_{ρ} form a bundle of vertex algebras \mathcal{E} over Gr(m, n). The classical analogue of \mathcal{E} is not interesting; it is just the trivial bundle whose fiber over each point is the polynomial algebra E.

For each ρ , recall that $\mathscr{B}'_{\rho} = \mathscr{W}_{\rho} \otimes \mathscr{\Phi}_{\rho}$, where \mathscr{W}_{ρ} is generated by $\{L^{j}(z), W^{j}(z) \mid j = 1, ..., n\}$, and $\mathscr{\Phi}_{\rho}$ is generated by $\{\varphi^{i}(z) \mid i = m + 1, ..., n\}$. Since \mathscr{W}_{ρ} is independent of ρ , it gives rise to a trivial subbundle of \mathscr{E} . As a vector space, note that $\mathscr{\Phi}_{\rho} = \operatorname{Sym}\left(\bigoplus_{k\geq 1} A(\rho)_{k}^{\perp}\right)$, where $A(\rho)_{k}^{\perp}$ is the copy of $A(\rho)^{\perp}$ spanned by the vectors $\partial^{k}\varphi^{i}(z)$ for i = m + 1, ..., n. It follows that the factor $\mathscr{\Phi}_{\rho}$ in the fiber over $A(\rho)$ gives rise to the following subbundle of \mathscr{E} :

$$\operatorname{Sym}\left(\bigoplus_{k\geq 1}\mathcal{F}_k\right),\tag{7.12}$$

where \mathcal{F}_k is the quotient of the rank *n* trivial bundle over Gr(m, n) by the tautological bundle. Since each \mathcal{F}_k has weight *k*, the weighted components of the bundle (7.12) are all finite-dimensional. The non-triviality of this bundle is closely related to Theorem 7.4.

8. Vertex algebra operations and transvectants on $\mathcal{D}(V)^{\mathfrak{g}}$

If we fix a basis $\{x_1, \ldots, x_n\}$ for V and a dual basis $\{x'_1, \ldots, x'_n\}$ for V*, $\mathcal{S}(V)$ has a basis consisting of iterated Wick products of the form

$$\mu(z) =: \partial^{k_1} \gamma^{x'_{i_1}}(z) \cdots \partial^{k_r} \gamma^{x'_{i_r}}(z) \partial^{l_1} \beta^{x_{j_1}}(z) \cdots \partial^{l_s} \beta^{x_{j_s}}(z) :$$

Define gradings *degree* and *level* on $\delta(V)$ as follows:

$$\deg(\mu) = r + s,$$
 $\operatorname{lev}(\mu) = \sum_{i=1}^{r} k_i + \sum_{j=1}^{s} l_j.$

and let $\mathscr{S}(V)^{(n)}[d]$ denote the subspace of level *n* and degree *d*. The gradings

$$\delta(V) = \bigoplus_{n \ge 0} \delta(V)^{(n)} = \bigoplus_{n, d \ge 0} \delta(V)^{(n)}[d] = \bigoplus_{d \ge 0} \delta(V)[d]$$
(8.1)

are clearly independent of our choice of basis on V, since an automorphism of V has the effect of replacing β^{x_i} and $\gamma^{x'_i}$ with linear combinations of the β^{x_i} 's and $\gamma^{x'_i}$'s, respectively.

Let $\sigma : \mathcal{D}(V) \to gr \mathcal{D}(V) = Sym(V \oplus V^*)$ be the map

$$x'_{i_1}\cdots x'_{i_r}\frac{\partial}{\partial x'_{j_1}}\cdots \frac{\partial}{\partial x'_{j_s}} \mapsto x'_{i_1}\cdots x'_{i_r}x_{j_1}\cdots x_{j_s},$$
(8.2)

which is a linear isomorphism. Any bilinear product * on Sym($V \oplus V^*$) corresponds to a bilinear product on $\mathcal{D}(V)$, which we also denote by *, as follows:

$$\omega * \nu = \sigma^{-1}(\sigma(\omega) * \sigma(\omega))$$

for $\omega, \nu \in \mathcal{D}(V)$, Moreover, $\omega_1, \ldots, \omega_k$ generate $\mathcal{D}(V)$ as a ring if and only if $\sigma(\omega_1), \ldots, \sigma(\omega_k)$ generate Sym $(V \oplus V^*)$ as a ring. The map f: Sym $(V \oplus V^*) \to \delta(V)^{(0)}$ given by

$$x'_{i_1} \cdots x'_{i_r} x_{j_1} \cdots x_{j_s}, \mapsto : \gamma^{x'_{i_1}}(z) \cdots \gamma^{x'_{i_r}}(z) \beta^{x_{j_1}}(z) \cdots \beta^{x_{j_s}}(z) :,$$
(8.3)

is a linear isomorphism, so that $f \circ \sigma : \mathcal{D}(V) \to \mathscr{E}(V)^{(0)}$ is a linear isomorphism as well.

 $\mathscr{S}(V)^{(0)}$ has a family of bilinear products $*_k$ which are induced by the circle products on $\mathscr{S}(V)$. Given $\omega(z)$, $\nu(z) \in \mathscr{S}(V)^{(0)}$, define

$$\omega(z) *_k v(z) = p(\omega(z) \circ_k v(z)), \tag{8.4}$$

where $p : \delta(V) \to \delta(V)^{(0)}$ is the projection onto the subspace of level zero. Clearly $\omega(z) *_k \nu(z) = 0$ whenever k < -1 because $p \circ \partial$ acts by zero on $\delta(V)^{(0)}$. For $k \ge -1$, $*_k$ is homogeneous of degree -2k - 2.

Via (8.3), we may pull back the products $*_k$, $k \ge -1$ to obtain a family of bilinear products on Sym($V \oplus V^*$), which we also denote by $*_k$. In fact, these products have a classical description. Let

$$\Gamma = \sum_{i=1}^{n} \frac{\partial}{\partial x_i} \otimes \frac{\partial}{\partial x'_i} - \frac{\partial}{\partial x'_i} \otimes \frac{\partial}{\partial x_i},$$
(8.5)

and define the *k*th transvectant¹ on Sym($V \oplus V^*$) by

 $[,]_k : \operatorname{Sym}(V \oplus V^*) \otimes \operatorname{Sym}(V \oplus V^*) \to \operatorname{Sym}(V \oplus V^*), \qquad [\omega, \nu]_k = m \circ \Gamma^k(\omega \otimes \nu).$

Here *m* is the multiplication map sending $\omega \otimes v \mapsto \omega v$.

Theorem 8.1. The product $*_k$ on Sym $(V \oplus V^*)$ given by (8.4) coincides with the transvectant $[,]_{k+1}$ for $k \ge -1$.

Proof. First consider the case k = -1. In this case [,]₀ is just ordinary multiplication. Recall the formula

$$: (:ab:)c: -:abc: = \sum_{k\geq 0} \frac{1}{(k+1)!} \left(:(\partial^{k+1}a)(b\circ_k c): +(-1)^{|a||b|}: (\partial^{k+1}b)(a\circ_k c): \right)$$

which holds for any vertex operators a, b, c in a vertex algebra \mathcal{A} . It follows that the associator ideal in $\mathcal{S}(V)$ under the Wick product is annihilated by the projection p. Similarly, the commutator ideal in $\mathcal{S}(V)$ under the Wick product is annihilated by p, so $\mathcal{S}(V)^{(0)}$ is a polynomial algebra with product $*_{-1}$, and $f : \text{Sym}(V \oplus V^*) \to \mathcal{S}(V)^{(0)}$ is an isomorphism of polynomial algebras. Hence given $\omega, \nu \in \text{Sym}(V \oplus V^*)$, we have $[\omega, \nu]_0 = \omega \nu = \omega *_{-1} \nu$.

Next, if $k \ge 0$, it is clear from the definition of the vertex algebra products \circ_k that given $\omega(z)$, $\nu(z) \in \mathscr{E}(V)^{(0)}$, $\omega(z) *_k \nu(z)$ is just the sum of all possible contractions of k + 1 factors of the form $\beta^{x_i}(z)$ or $\gamma^{x'_i}(z)$ appearing in $\omega(z)$ with k + 1 factors of the form $\beta^{x_i}(z)$ or $\gamma^{x'_i}(z)$ appearing in $\nu(z)$. Here the contraction of $\beta^{x_i}(z)$ with $\gamma^{x_j}(z)$ is $\delta_{i,j}$, and the contraction of $\gamma^{x_i}(z)$ with $\beta^{x_i}(z)$ is $-\delta_{i,j}$. Similarly, it follows from (8.5) that given ω , $\nu \in \text{Sym}(V \oplus V^*)$, $[\omega, \nu]_{k+1}$ is the sum of all possible contractions of k + 1 factors of the form x_i or x'_i appearing in ω with k + 1 factors of the form x_i or x'_i appearing in ν . The contraction of x_i with x'_j is $\delta_{i,j}$ and the contraction of x'_i with x_j is $-\delta_{i,j}$. Since $f : \text{Sym}(V \oplus V^*) \to \mathscr{E}(V)^{(0)}$ is the algebra isomorphism sending $x_i \mapsto \beta^{x_i}(z)$ and $x'_i \mapsto \gamma^{x'_i}(z)$, the claim follows. \Box

Via $\sigma : \mathcal{D}(V) \to \text{Sym}(V \oplus V^*)$ the products $*_k$ on $\text{Sym}(V \oplus V^*)$ pull back to bilinear products on $\mathcal{D}(V)$, which we also denote by $*_k$. These products satisfy $\omega *_k \nu \in \mathcal{D}(V)_{(r+s-2k-2)}$ for $\omega \in \mathcal{D}(V)_{(r)}$ and $s \in \mathcal{D}(V)_{(s)}$. It is immediate from Theorem 8.1 that $*_{-1}$ and $*_0$ correspond to the ordinary associative product and bracket on $\mathcal{D}(V)$, respectively. Since the circle product \circ_0 is a derivation of every \circ_k , it follows that $\omega *_0$ is a derivation of $*_k$ for all $\omega \in \mathcal{D}(V)$ and $k \ge -1$.

We call $\mathcal{D}(V)$ equipped with the products $\{*_k \mid k \geq -1\}$ a *-algebra. A similar construction goes through in other settings as well. For example, given a Lie algebra \mathfrak{g} equipped with a symmetric, invariant bilinear form B, $\mathfrak{U}\mathfrak{g}$ has a *-algebra structure (which depends on B). Given a *-algebra \mathcal{A} , we can define *-subalgebras, *-ideals, quotients, and homomorphisms in the obvious way. If V is a module over a Lie algebra \mathfrak{g} , $\mathcal{D}(V)^{\mathfrak{g}}$ is a *-subalgebra of $\mathcal{D}(V)$ because the action of $\xi \in \mathfrak{g}$ is given by $[\tau(\xi), -] = \tau(\xi) *_0$ which is a derivation of all the other products.

Given elements $\omega_1, \ldots, \omega_k \in \mathcal{D}(V)^{\mathfrak{g}}$, examples are known where $\omega_1, \ldots, \omega_k$ do not generate $\mathcal{D}(V)^{\mathfrak{g}}$ as a ring, but do generate $\mathcal{D}(V)^{\mathfrak{g}}$ as a *-algebra.² This phenomenon occurs in our main example, in which \mathfrak{g} is the abelian Lie algebra \mathbb{C}^m acting diagonally on $V = \mathbb{C}^n$. Recall that $\mathcal{D}(V)^{\mathfrak{g}} = \bigoplus_{l \in A^{\perp} \cap \mathbb{Z}^n} M_l$, where M_l is the free *E*-module generated by ω_l . Suppose that $A^{\perp} \cap \mathbb{Z}^n$ has rank *r*, and let $\{l^i = (l_1^i, \ldots, l_n^i) \mid i = 1, \ldots, r\}$ be a basis for $A^{\perp} \cap \mathbb{Z}^n$. In general, the collection

$$e_1, \dots, e_n, \qquad \omega_{l^1}, \dots, \omega_{l^r}, \qquad \omega_{-l^1}, \dots, \omega_{-l^r}$$

$$(8.6)$$

is too small to generate $\mathcal{D}(V)^{\mathfrak{g}}$ as a ring.

Theorem 8.2. $\mathcal{D}(V)^{\mathfrak{g}}$ is generated as a *-algebra by the collection (8.6). Moreover, $\mathcal{D}(V)^{\mathfrak{g}}$ is simple as a *-algebra.

Proof. To prove the first statement, it suffices to show that given lattice points $l = (l_1, \ldots, l_n)$ and $l' = (l'_1, \ldots, l'_n)$, $\omega_{l+l'}$ lies in the *-algebra generated by ω_l and $\omega_{l'}$. For $j = 1, \ldots, n$, define

$$d_{j} = \begin{cases} 0 & l_{j}l_{j}' \ge 0 \\ \min\{|l_{j}|, |l_{j}'|\}, & l_{j}l_{j}' < 0, \end{cases} e_{j} = \begin{cases} 0 & l_{j}l_{j}' \ge 0 \\ \max\{|l_{j}|, |l_{j}'|\}, & l_{j}l_{j}' < 0 \end{cases}$$
$$k_{j} = \begin{cases} 0 & l_{j} \le 0 \\ d_{j} & l_{j} > 0, \end{cases} \quad d = -1 + \sum_{j=1}^{n} d_{j}.$$

The same calculation as in the proof of Theorem 7.3 shows that

$$\omega_{l} *_{d} \omega_{l'} = \left(\prod_{j=1}^{n} (-1)^{k_j} \frac{e_j!}{(e_j - d_j)!}\right) \omega_{l+l'},$$

which shows that $\omega_{l+l'}$ lies in the *-algebra generated by ω_l and $\omega_{l'}$.

¹ I thank N. Wallach for explaining this construction to me.

² I thank N. Wallach for pointing this out to me.

As for the second statement, the argument is analogous to the proof of Theorem 7.5. Given a non-zero *-ideal $I \subset \mathcal{D}(V)^{\mathfrak{g}}$, we need to show that $1 \in I$. Let ω be a non-zero element of I. It is easy to check that for i, j = 1, ..., n, and $l \in A^{\perp} \cap \mathbb{Z}^{n}$, we have

$$e_i *_1 e_j = -\delta_{i,j}, \qquad e_i *_1 \omega_l = 0.$$

By applying the operators $e_i *_1$ for i = 1, ..., n, we can reduce ω to the form

$$\sum_{l\in\mathbf{Z}^n}c_l\omega_l\tag{8.7}$$

for constants $c_l \in \mathbf{C}$, such that $c_l \neq 0$ for only finitely many values of *l*. We may assume without loss of generality that ω is already of this form. Let *d* be the maximal degree (in the Bernstein filtration) of terms ω_l appearing in (8.7) with non-zero coefficient c_l , and let *l* be such a lattice point for which ω_l has degree *d*. We have

$$\omega_{-l} *_{d-1} \omega_{l'} = \begin{cases} 0 & l' \neq l \\ \left(\prod_{j=1}^{n} (-1)^{k_j} |l_j|!\right) 1 & l' = l \end{cases}$$

where $k_i = \min\{0, l_i\}$, for all *l'* appearing in (8.7). Hence

$$\frac{1}{c_l\left(\prod_{j=1}^n (-1)^{k_j} |l_j|!\right)} \omega_{-l} *_{d-1} \omega = 1. \quad \Box$$

Acknowledgements

I thank B. Lian for helpful conversations and for suggesting the Friedan–Martinec–Shenker bosonization as a tool in studying commutant subalgebras of $\delta(V)$. I also thank A. Knutson, G. Schwarz, and N. Wallach for helpful discussions about classical invariant theory, especially the theory of invariant differential operators.

References

- P. Bouwknegt, J. McCarthy, K. Pilch, The W₃ Algebra: Modules, Semi-infinite Cohomology and BV-algebras, in: Lect. Notes in Phys, New Series Monographs, vol. 42, Springer-Verlag, 1996.
- [2] B. Feigin, E. Frenkel, Semi-infinite Weil complex and the Virasoro algebra, Comm. Math. Phys. 137 (1991) 617-639.
- [3] I. Frenkel, Two constructions of affine Lie algebras and boson-fermion correspondence in quantum field theory, J. Funct. Anal. 44 (1981) 259-327.
- [4] I.B. Frenkel, Y.C. Zhu, Vertex operator algebras associated to representations of affine and Virasoro algebras, Duke Math. J. 66 (1) (1992) 123–168.
- [5] D. Friedan, E. Martinec, S. Shenker, Conformal invariance, supersymmetry and string theory, Nuclear Phys. B 271 (1986) 93–165.
- [6] P. Goddard, A. Kent, D. Olive, Virasoro algebras and coset space models, Phys. Lett. B 152 (1985) 88–93.
- [7] V. Gorbounov, F. Malikov, V. Schectman, Gerbes of chiral differential operators, Math. Res. Lett. 7 (1) (2000) 55–66.
- [8] Harish-Chandra, Differential operators on a semisimple Lie algebra, Amer. J. Math. 79 (1) (1957) 87-120.
- [9] Harish-Chandra, Invariant differential operators and distributions on a semisimple Lie algebra, Amer. J. Math. 86 (3) (1964) 534–564.
- [10] V. Kac, D. Peterson, Infinite-dimensional Lie algebras, theta functions and modular forms, Adv. Math. 53 (1984) 125-264.
- [11] V. Kac, A. Radul, Representation theory of the vertex algebra $W_{1+\infty}$, Transf. Groups 1 (1996) 41–70.
- [12] F. Knop, A Harish-Chandra homomorphism for reductive group actions, Ann. Math. 140 (1994) 253–288.
- [13] B. Lian, A. Linshaw, Howe pairs in the theory of vertex algebras, J. Algebra 317 (2007) 111-152.
- [14] B. Lian, A. Linshaw, Chiral equivariant cohomology I, Adv. Math. 209 (2007) 99-161.
- [15] F. Malikov, V. Schectman, A. Vaintrob, Chiral de Rham complex, Comm. Math. Phys. 204 (1999) 439–473.
- [16] I. Musson, M. van den Bergh, Invariants under Tori of Rings of Invariant Operators and Related Topics, in: Mem. Amer. Math. Soc., vol. 650, 1998.
- [17] G. Schwarz, Finite-dimensional representations of invariant differential operators, J. Algebra 258 (2002) 160–204.
- [18] W. Wang, $w_{1+\infty}$ algebra, w_3 algebra, and Friedan-Martinec-Shenker bosonization, Comm. Math. Phys. 195 (1998) 95–111.
- [19] W. Wang, Classification of irreducible modules of W_3 with c = -2, Comm. Math. Phys. 195 (1998) 113–128.
- 20] A. Zamolodchikov, Infinite additional symmetries in two-dimensional conformal field theory, Theoret. Math. Phys. 65 (1985) 1205–1213.
- [21] Y. Zhu, Modular invariants of characters of vertex operators, J. Amer. Math. Soc. 9 (1996) 237-302.