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The role of Kupffer cells in hepatitis B and hepatitis C virus infections
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Summary

Globally, over 500 million people are chronically infected with
the hepatitis B virus (HBV) or hepatitis C virus (HCV). These
chronic infections cause liver inflammation, and may result in
fibrosis/cirrhosis or hepatocellular carcinoma. Albeit that HBV
and HCV differ in various aspects, clearance, persistence, and
immunopathology of either infection depends on the interplay
between the innate and adaptive responses in the liver. Kupffer
cells, the liver-resident macrophages, are abundantly present in
the sinusoids of the liver. These cells have been shown to be cru-
cial players to maintain homeostasis, but also contribute to
pathology. However, it is important to note that especially during
pathology, Kupffer cells are difficult to distinguish from infiltrat-
ing monocytes/macrophages and other myeloid cells. In this
review we discuss our current understanding of Kupffer cells,
and assess their role in the regulation of anti-viral immunity
and disease pathogenesis during HBV and HCV infection.
� 2014 European Association for the Study of the Liver. Published
by Elsevier B.V. Open access under CC BY-NC-ND license.
The characteristics of Kupffer cells

Kupffer cells (KC) are tissue-resident macrophages residing in the
liver. They are located in the liver sinusoids, and are the largest
population of innate immune cells in the liver [1–3]. Due to their
abundance and localization, KC are crucial cellular components of
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the intrahepatic innate immune system that are specialized to
perform scavenger and phagocytic functions, thereby removing
protein complexes, small particles, and apoptotic cells from blood
[1–3]. Together with the sinusoidal endothelial cells, KC are the
first barrier for pathogens to enter the liver via the portal vein
[4]. This is extremely important, since venous portal blood is rich
in pathogen-derived products, such as lipopolysaccharide, and
pathogens from the gut, which need to be eliminated from the
circulation to avoid systemic immune activation.

The specialized function of KC is reflected by the phenotype:
they were identified in the early 1970s as peroxidase-positive
cells with cytoplasm containing numerous granules and vacuoles,
and occasional tubular, vermiform invaginations [5–8]. At
present, human KC are identified by immunohistochemistry or
flow cytometry using antibodies directed against CD68, CD14,
and CD16 [9–11]. However, it is important to mention that these
markers are not unique for human KC and macrophages from
other tissues, but are also expressed on monocytes, which are
also considered a source of precursor cells for KC, and/or den-
dritic cells [12]. Different from their human counterpart, rat KC
are commonly identified by antibodies against CD68 or CD163
(ED1 and ED2, respectively) [13], and mouse KC using the F4/80
marker [14]. However, also the rat and mouse markers are not
unique for KC, but are shared with other leukocytes.

The ambiguity in the identification of KC that exists under
steady state conditions is even more challenging under patholog-
ical conditions, in which cellular infiltrates are observed consist-
ing of inflammatory monocytes and/or dendritic cells that share
certain surface markers. In rat studies, large and small KC were
shown to be present in a distinct area within the liver, i.e., in
the peri-portal, and peri-venous and mid-zonal area, respectively
[10,15–19], and 2 subpopulations of KC have been isolated from
rat liver tissue: ED1+ED2� and ED1+ED2+ cells [16,17]. Similarly,
some studies have identified 2 subpopulations of mouse KC: F4/
80+CD68+ and F4/80+CD11b+ cells from mouse liver tissue [20].
It is likely that these populations either illustrate distinct differ-
entiation phases rather than distinct KC subpopulations, or that
they identify infiltrating monocytes instead of resident tissue
macrophages. In studies from our group, we defined only one
KC population in mouse liver tissue on the basis of F4/80 and
CD11b expression [21]. This was in line with a study in humans
where only a single population of KC was identified as CD14+,
HLA-DR+, HLA-ABC+, CD86+, and DC-SIGN+ cells, with low
expression of CD1b, CD40, and CD83 [9]. It is preferable to
identify KC not solely based on the available markers, but also
on their morphology and phagocytic ability as their hallmark
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function. In this review, KC are identified as CD68+, CD14+, and/or
CD11b+ cells (human), ED1+ and/or ED2+ cells (rat) and CD68+,
F4/80+ and/or CD11b+ cells (mouse), according to the original
studies. Under steady state condition, the majority of tissue-
resident macrophages in the mouse liver have a yolk sac origin
and are self-maintained. Upon serious challenge, tissue resident
KC can be replaced by precursor cells from bone marrow as well
as monocytes, which develop into tissue-resident macrophages
[22]. Since the distinction between tissue-resident KC and tis-
sue-infiltrating monocyte/macrophages is difficult, and since
most studies did not discriminate between these cells with a dif-
ferent origin, we will use the term ‘‘KC’’ to describe both cells.

Studies on human KC are being performed using cells
obtained from liver tissue or from liver graft perfusate. Liver graft
perfusate is preserved in a different manner than liver tissue.
Also, tissue-derived KC are commonly isolated using collagenase,
a processing step not included for perfusate, which increases the
amount of extracellular debris and may induce phenotypic and
functional changes. The source of liver material as well as the
method to process the samples are important to take into account
when interpreting results on the phenotype and function of KC
from the various studies.

Macrophages are specialized in sensing and responding to
pathogens and equipped with specific pattern recognition
receptors, including scavenger receptors, Toll-like receptors
(TLR), RIG-like receptors (RLR), NOD-like receptors (NLR) and
C-type lectins. These receptors are expressed by tissue-derived
as well as in vitro-generated macrophages (reviewed in [23]).
However, only few of them have been described for KC and it is
not clear whether the others are expressed by KC. Scavenger
receptors and C-type lectins are important receptors mediating
phagocytosis, which are expressed by human, rat, and mice KC
[24–26]. The phagocytic ability of human KC has been shown in
relation to removal of erythrocytes, apoptotic cells, and debris
[27,28]. In line with that notion, we and others have shown that
rat and mouse KC are strongly phagocytic and possess a high
level of basal reactive oxygen species (ROS) production [20,21].
Upon in vivo administration of dextran particles, E. coli or gado-
linium chloride, rat and mouse KC take up these particles, pro-
duce high levels of ROS, and demonstrate high lysosomal
activity [17,18,20,21]. Human KC were shown to express TLR2,
TLR3, and TLR4 [9,29]. The expression of other TLR, as well as
NLR and RLR have not been described, but cannot be excluded
since the murine counterparts were found to express functional
TLR1-TLR9 and RIG-I [25,30]. In human and rodents, ligation of
TLR on tissue-derived and in vitro-generated macrophages
resulted in cytokine production [31]. However, to date, studies
on the ability of KC to produce cytokines upon TLR ligation
resulted in divergent conclusions. For instance, we and others
show that KC from human liver tissue and perfusate release IL-
10, IL-1b, IL-6, IL-12, IL-18, and TNF upon TLR2, TLR3, and TLR4
ligation ex vivo [9,32,33] and [Boltjes, unpublished data]. Simi-
larly, Kono et al. showed that liver tissue-derived rat KC produce
superoxide, TNF, and IL-6 upon TLR4 ligation ex vivo [17].
However, examination of mouse KC isolated from liver tissue
by our group and others demonstrated weak induction of TNF
and IL-12p40 upon ex vivo stimulation with agonist for TLR4,
TLR7/8, or TLR9 [20,21], whereas no data are available on
the cytokine-producing ability of liver perfusate-derived rat or
murine KC. Thus, more studies using highly purified KC with a
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well-defined phenotype need to be conducted to obtain
conclusive data on the TLR responsiveness of KC.

A weak ability of KC to produce cytokines might be related to
their tolerogenic function in a steady state condition. KC are fre-
quently exposed to gut-derived antigens. Instead of exerting
inflammatory responses, human and murine KC constitutively
express TGF-b and PD-1, possess high levels of negative regula-
tors downstream the TLR pathway and secrete IL-10 upon LPS
stimulation [20,21,32,34–36]. More importantly, the ability of
murine KC to produce pro-inflammatory cytokines upon TLR4,
TLR7/8, and TLR9 is by far weaker than that of peritoneal macro-
phages [21]. This observation suggests that KC play a crucial role
in maintaining liver homeostasis in a steady state condition.
Additionally, our mouse study and others show that KC are supe-
rior in the ability to take up particles and have a higher basal ROS
production, in comparison to splenic and peritoneal macro-
phages, which highlight their function to remove particulates
from the circulation [21,37].

Key Points

• Kupffer cells contribute to immune activation and anti-
viral immunity upon infection with HBV or HCV

• Both HBV and HCV are able to exploit the function of 
Kupffer cells 

• The receptors and molecular mechanisms involved in 
the interaction between Kupffer cells and HBV or HCV, 
or its components, need to be elucidated

• Kupffer cells and/or liver-infiltrating macrophages 
contribute to tissue damage and play a role in the 
regulation of fibrosis, cirrhosis, and hepatocellular 
carcinoma during chronic viral hepatitis

• The contribution of liver-resident Kupffer cells vs.
liver-infiltrating macrophages in the regulation of viral 
immunity and disease pathogenesis is hampered by 
the lack of distinctive phenotypical markers
The role of KC during LCMV infections

Besides their barrier [4] and janitor function [38,39], KC have
been shown to play a role in the response to pathogens, including
viruses. Studies on the importance and anti-viral immune func-
tions of KC in HBV and HCV infections are difficult to perform,
since these viruses only infect and replicate in humans and
non-human primates, and immunocompetent small animal mod-
els for viral hepatitis are not yet available (reviewed in [40,41]).
As an alternative approach several mouse infection models,
including lymphocytic choriomeningitis virus (LCMV), murine
cytomegalovirus (MCMV), mouse hepatitis virus (MHV) and ade-
novirus models, have provided information on the role of KC in
viral infection. However, in contrast to HBV and HCV where infec-
tion and replication is restricted to hepatocytes, these hepatitis
mouse models also infect other cells and even other organs. Of
these models, MHV and LCMV have been shown to replicate in
KC [42,43]. LCMV, MHV, and adenovirus particles can be taken
up from the circulation by murine KC via scavenger and
4 vol. 61 j 660–671 661
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complement receptors, which may limit infection [44–47]. It has
been shown that failure in clearing LCMV, MHV, and adenovirus
particles during the acute phase results in ‘‘spill-over’’ infection
of hepatocytes, prolonged infection, and exacerbated immunopa-
thology [47–49]. Studies using these mouse models have been
instrumental in our understanding of the effects on KC during
the early phases of virus infections. A number of studies have also
evaluated KC during persistent infection in mice. These studies
are conducted using specific isolates of LCMV, the clone 13 and
WE strains. The development of persistent infection with a high
rate of replication of LCMV is similar to HBV and HCV, and impor-
tant mechanistic pathways identified in LCMV infected mice,
were later confirmed to be operational during chronic viral infec-
tions in patients. However, in contrast to HBV and HCV, murine
LCMV infections are not restricted to the liver, and LCMV replica-
tion can also be found in the spleen, lung, and kidney. The long-
term consequences of human viral hepatitis, such as fibrosis, are
absent in mice, although virus-induced liver damage is observed
[44,50]. The effect of chronic LCMV infection on NK cells and
virus-specific T cells has been extensively examined, however
only few studies have focussed on KC. In contrast to HBV or
HCV, active replication of LCMV in the liver, as evidenced by
the detection of viral RNA and antigen, has been demonstrated
in KC as well as in hepatocytes [43,51,52]. During the first
2 weeks following LCMV infection, an increase of the number of
F4/80+ cells is observed, followed by normalization of their num-
bers [19]. Although differences in MHC class-I expression levels
were observed within the F4/80 population by immunohisto-
chemistry, the relative contribution of infiltrating monocytes vs.
enhanced activation of resident KC is difficult to determine.

An elegant study by Lang et al. showed that clodronate-
mediated depletion of KC resulted in rapid LCMV dissemination
due to the inability to capture virus, which led to replication
within hepatocytes and subsequently severe CD8+ T cell-medi-
ated liver damage [44]. The study further showed that KC
responded to type I IFN by inducing the expression of inter-
feron-stimulated genes, and that mice lacking IFNAR specifically
on macrophages exhibited strongly enhanced viral titers. How-
ever, recently a detrimental influence of granulocytes and macro-
phages in spleen and liver was reported by their ability to
produce reactive oxygen species (ROS) following viral infection,
although ROS production by liver F4/80+ cells was low [53].
Importantly, the effect of ROS was an impairment of the immune
response, and in the absence of ROS mice exhibited lower viral
titers and less liver damage. In a different experimental mouse
model, which makes use of transgenic intrahepatic expression
of the HBV large envelope protein, ROS activity was observed in
KC, and these mice exhibited a chronic necroinflammatory liver
disease, resembling human chronic active hepatitis [54].

The findings from the LCMV mouse model clearly show the
complexity of the anti-viral response in the liver since KC can
both contribute to promote and suppress viral eradication and
liver pathology. In the following section, we will focus on the
interaction of KC with HBV and HCV, and the functional
consequences.
The role of KC during HBV and HCV infections

Both HBV and HCV are transmitted predominantly via percutane-
ous and sexual exposure, while perinatal exposure is often seen
for HBV only [55–57]. Infection with these viruses can either
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resolve spontaneously or develop into chronic liver disease with
continuous viral replication in hepatocytes [56–58]. Chronic
hepatitis poses an increased risk for liver fibrosis and cirrhosis,
hepatic failure, and hepatocellular carcinoma (HCC) [58,59].
Patients with a self-limiting HBV or HCV infection show
sustained, vigorous, and multi-epitope-specific CD4+ or CD8+ T
cell and B cell responses, whereas in chronic HBV and HCV these
responses are weak and/or transient [60–63]. This demonstrates
that clearance of the infection is dependent on strong multi-
epitope-specific T and B cell responses, which is only possible fol-
lowing effective innate immune responses [63,64]. Here, we will
firstly address the role of KC in the interaction and recognition of
HBV and HCV, and their role in the induction of a pro-inflamma-
tory response. Pro-inflammatory mediators are important for
inhibition of viral replication, the induction of resistance to infec-
tion of neighboring cells, and attraction and activation of other
immune cells, and consequently contribute to the development
of effective virus-specific immunity. Secondly, we will discuss
KC-virus interactions that may inhibit the development of
effective viral immunity, facilitate viral persistence or promote
liver damage.
Interaction of KC with HBV and HCV

HBV is a 3.2 kb partially double-stranded DNA envelope-virus
which replicates via RNA intermediates. Hepatitis B core protein
(HBcAg)-encapsulated viral DNA and hepatitis B envelope protein
(HBsAg) form a complete viral or Dane particle. HBV particles,
HBsAg, and hepatitis B early antigen (HBeAg; a truncated form
of HBcAg) are secreted by infected hepatocytes and can be
detected in serum of HBV patients [58,65].

Evidence for productive HBV infection of cells other than
hepatocytes is lacking. Also, detailed information on the presence
of HBV (proteins) in KC in vivo or the uptake of HBV or its proteins
by human KC ex vivo has not been reported. Although no informa-
tion is available on KC, studies using THP-1 monocytic cells,
monocytes, and dendritic cells have shown binding of HBV or
HBV proteins, leading to their activation. For instance, TLR2 and
heparan sulfate proteoglycan (HSPG) were suggested to be
responsible for HBcAg recognition on THP-1 cells, and HBcAg-
induced activation of THP-1 cells resulted in production of IL-6,
IL-12p40, and TNF [66]. However, since HBcAg is only found
within infected hepatocytes or viral particles, it is unclear
whether HBcAg interacts with KC, via HSPG and/or another extra-
cellular receptor like TLR2. Also, other receptors expressed by KC
are known to interact with HBV proteins as demonstrated in
other cell-systems (Table 1). For instance, HBsAg can interact
with human blood monocytes in a CD14-dependent fashion
[67], and with dendritic cells via the mannose receptor [68],
which are both receptors known to be also expressed on KC
[69]. Finally, complex formation of HBsAg with albumin may lead
to enhanced uptake of HBsAg from the circulation by KC and
endothelial cells [70].

HCV contains a 9.6 kb positive-strand RNA genome that trans-
lates into the structural proteins, core, and E1 and E2 envelope
proteins, and the non-structural proteins NS1–NS5. After replica-
tion, they form a small-enveloped virus particle containing the
newly synthesized RNA genome [71,72].

Compared to HBV, there is a better understanding of the entry
receptors on hepatocytes used by HCV. In addition to claudin1,
occludin, epidermal growth factor receptor (EGFR), and ephrin
4 vol. 61 j 660–671



Table 1. Surface molecules and secreted inflammatory mediators facilitating
KC roles in HBV/HCV infection.

HBV HCV
Mediators [Ref.] Mediators [Ref.]

Binding/uptake
HSPG [79] HSPG [79]
CD14 [9] SR-B1 [82]
mannose 
receptor

[69] LDL-
receptor

[81]

DC-SIGN [9, 85]
Pattern recognition receptors

TLR2 [84, 87]
TLR4 [88]

Cytokines
IL-1β [89] IL-1β [84, 100]
IL-6 [89] TNF [84]
TNF [89] IL-10 [84]
TGFβ [91]

Chemokines
CXCL8 [89]

Co-stimulatory molecules
CD40 [94]
CD80 [94]
MHC class 
II

[94]

Immune inhibition or promotion of tolerance
TGFβ [91] PD-L1 [84, 137]
PD-L2 [30] IL-10 [84]
galectin-9 [135] galectin-9 [120]

Liver damage
IL-6 [89] TRAIL [84]
TRAIL [84] granzyme B [105, 106]
FasL [106] perforin [105, 106]
granzyme B [105]
perforin [105]
ROS [54]
galectin-9 [135]
TGFβ [91]
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type-A receptor-2, HCV infects hepatocytes by attaching to HSPG,
low-density lipoprotein (LDL) receptor, scavenger receptor (SR)-
B1 and CD81. Some, but not all, receptors are expressed by KC
(Table 1) [73–82]. It has been reported that incubation of human
liver cells with HCV-E2 resulted in HCV-E2 binding to KC in a
CD81-dependent manner [83], but also DC-SIGN, a C-type lectin
not expressed by hepatocytes, has been demonstrated to bind
HCV on KC [84–86].

Although it is unlikely that HCV can replicate in KC, activation
of KC by HCV and its proteins has been demonstrated. HCV core
and NS3 stimulate human liver perfusate-derived CD14+ KC and
monocyte-derived macrophages via TLR2 to produce pro-inflam-
matory IL-1b, IL-6, and TNF and immunosuppressive IL-10
[84,87]. Recently, it was shown that TLR4, in density gradient-
and adherence-isolated liver-derived human KC, mediates NS3
recognition, resulting in TNF production [88]. However, HCV core
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and NS3 are not secreted at significant levels by infected hepato-
cytes, posing little relevance to extracellular recognition of HCV
by KC via these TLR. Alternatively, phagocytosis of infected hepa-
tocytes by KC may allow intracellular exposure to viral RNA, but
so far no evidence exists.
Stimulatory effects of HBV or HCV on KC function

There are only few publications that show a stimulatory effect of
HBV or HBV proteins on the function of KC. Hösel et al. showed
that HBV particles and HBsAg induce IL-1b, IL-6, CXCL8, and
TNF production by human CD68+ cell-enriched non-parenchymal
cells via NF-rB activation [89] and subsequently inhibit HBV rep-
lication in primary hepatocytes. This inhibitory effect was mainly
ascribed to IL-6, but also TNF inhibited HBV replication in a non-
cytopathic manner [90]. In contrast, Li et al. demonstrated that
rat ED1+ adherent KC exposed to HBV virions hardly expressed
IL-1b, IL-6, or TNF, but produced the immunoregulatory cytokine
TGFb [91].

During chronic HCV infection, KC are increased in numbers in
the liver [92,93], and exhibit an activated phenotype with higher
mRNA expression levels of the activation markers CD163 and
CD33 in livers of chronic HCV patients vs. controls [94,95].
Recently, it was reported that in response to HCV human KC
release IL-1b and IL-18 in vitro [96]. In line with these findings,
stimulation of CD14+CD68+ cells from liver perfusate with UV
irradiated cell culture-derived HCV induced IL-1b production.
To support this data, in vivo co-expression of IL-1b and CD68
was observed using immunofluorescence on liver tissues from
patients with chronic HCV [97]. Besides intrahepatic IL-1b, also
elevated serum IL-1b levels were detected in patients as com-
pared to healthy individuals [97].

Although a direct effect of HCV-exposed KC on HCV replica-
tion is unknown, it was recently reported that KC-derived TNF
increased the permissivity of hepatoma cells to HCV. In this
study, LPS as well as HCV induced KC to produce TNF, thereby
indirectly promoting HCV infection [33]. On the other hand,
HCV- or TLR-ligand-induced KC-derived cytokines, such as IL-6,
IL-1b, and IFNb [84,87,97,98], were found to inhibit HCV replica-
tion in the HCV replicon model [98–100], implying that KC are
also capable of displaying antiviral activity upon HCV exposure.

In addition, release of chemokines and cytokines by KC has an
indirect effect on the immune response in the liver by recruit-
ment and activation of infiltrating leukocytes, as also discussed
by Heydtmann et al. [101]. This may result in a complex interac-
tion between factors produced by liver parenchymal cells, liver
resident immune cells including KC, and infiltrating leukocytes.
KC are able to activate NK cells and NKT cells, both present at rel-
atively high numbers in the liver, via the production of pro-
inflammatory cytokines [9]. In turn, NK and NKT cells produce
cytokines such as TNF and IFNc and are cytotoxic in nature
[9,102]. Upon HBV exposure, KC were found to produce CXCL8
[89], which potentially attracts NK and NKT cells during the early
phase of HBV infection. KC are also able to recruit dendritic cells
to the liver, which involved C-type lectins interactions [103]. This
enhanced dendritic cell recruitment may initiate and promote
virus-specific T cell responses. In contrast to dendritic cells, KC
are less efficient in priming naïve T cells. Nevertheless, mouse
KC have been shown to present antigen to CD4+ and CD8+ T cells,
inducing these to proliferate and produce IFNc [104,105]. The rel-
atively high expression of CD40, CD80, and MHC class II found on
4 vol. 61 j 660–671 663
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CD68+ cells in chronic HCV patients [94] might point towards
possible antigen presentation by intrahepatic macrophages.

Although lymphocytes such as NK cells and CD8+ T cells are
potent effector cells responsible to kill virus infected cells, KC
have been reported to express cytotoxic molecules such as
TRAIL, Fas-ligand, granzyme B, perforin, and ROS, enabling them
to lyse infected hepatocytes [106–108]. However, since KC act
in an antigen-nonspecific manner and hence can lyse hepato-
cytes irrespective of their infection state, it is tempting to spec-
ulate that KC cause more damage to the organ due to their
cytotoxic capacity than that they provide protective immunity
to the host.

In summary, only limited information exists on the direct
interaction between HBV and HCV with KC in vivo and ex vivo.
Macrophages are able to bind HBV or HCV or virus-related
proteins in vitro, triggering surface and/or intracellular receptors.
However, receptors used for these purposes need to be further
investigated. Several studies indicate that KC may play a role in
controlling HBV and HCV infections by inhibiting viral replica-
tion, either directly via the production of cytokines or via their
interaction with other cells, as well as in shaping the inflamma-
tory response towards the induction of virus-specific immunity.
However, more research is required to get a better insight into
the role of KC in regulating intrahepatic immunity.

Suppressive effects of HBV and HCV on KC function

Besides the contribution of KC to viral clearance, viruses may
actively interfere with the pro-inflammatory functions of KC
to evade host immunity. Various studies show that HBV and
HCV are able to interfere with TLR pathways, RIG-I signaling
and subsequent pro-inflammatory activities of hepatocytes and
immune cells [109–113], but studies describing the effect on
human KC are limited. Only one study described that type I
IFN production and TRAIL expression by human perfusate-
derived KC were suppressed by HCV core protein via disruption
of the TLR3/TRIF/TRK1/IRF3 pathway [84]. In addition, numerous
studies on monocytes have demonstrated modulation of cyto-
kine production by HCV proteins, and altered TLR responsive-
ness of monocytes obtained from chronic HCV patients [114–
116].

Concerning HBV, pretreatment of non-parenchymal cells
including KC, with HBV-Met cell-derived supernatants, HBsAg,
HBeAg, or hepatitis B virions almost completely abrogated TLR-
induced anti-viral activity, i.e., IFNb production, interferon-
stimulated gene (ISG) induction, IRF3, NF-jB, and ERK1/2 expres-
sion [117]. Accordingly, incubating human monocytes with HBeAg
or HBsAg inhibited TLR2-induced phosphorylation of p38 MAPK
and JNK MAPK, and subsequent production of IL-6, TNF, and IL-
12 [29,118,119]. In vivo, TLR2 expression by KC and peripheral
blood monocytes in HBeAg-positive chronic HBV-infected indi-
viduals was lower than that in HBeAg-negative patients and con-
trols. Moreover, TLR2 ligation induced less IL-6 and TNF in those
HBeAg-positive patients [29]. These alterations may be related to
the inhibitory effect of HBeAg on TLR2 signaling demonstrated
in vitro. In addition, also TLR3 expression was found to be lower
on PBMC from chronic HBV patients compared to control patients
as well as on liver cells, including KC [120]. Antiviral therapy of
chronic HBV patients with entecavir or pegylated IFN-a partially
restored TLR3 expression, but it is unclear whether this is a direct
viral effect.
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Tolerogenic effects of HBV and HCV related to KC

As mentioned above, KC are constantly exposed to pathogen-
derived products from the gut. To prevent excessive inflamma-
tion and pathology of the liver, continuous activation of
KC is avoided as these cells become refractory to subsequent
endotoxin challenge, a phenomenon known as endotoxin-toler-
ance [121,122]. This contributes to the well-described tolerogenic
milieu in the liver. Besides modulation of TLR-signaling
pathways, also expression of anti-inflammatory mediators, such
as IL-10 and TGFb, and other soluble and membrane-bound
inhibitory molecules are underlying the intrahepatic tolerance
[35,105,122,123].

A number of studies have reported that HBV and HCV com-
ponents affect the production of immunoregulatory cytokines,
and consequently promote the tolerogenic milieu of the liver.
In this respect, it has been reported that HBV particles prefera-
bly induced TGFb production by rat KC instead of pro-inflamma-
tory cytokines [91]. One of the activities of TGFb is that it plays
a role in maintaining tolerance towards self-antigens by
selectively supporting the differentiation of FoxP3+ regulatory
T cells [124,125]. Furthermore, HCV core protein induces IL-10
production by human KC [84,87]. Elevated intrahepatic IL-10
levels may suppress pro-inflammatory cytokine production
by intrahepatic cells, frustrate KC-NK cell interaction [9,126]
and antigen presentation to T cells and their activation
[105,127–133]. Interestingly, chronic HBV and HCV patients
showed higher plasma levels of IL-10 than uninfected individu-
als [134,135], which could be the result of a direct viral effect
on KC and/or other cells, or the result of a negative feedback
mechanism resulting from ongoing liver inflammation. Recently,
the role of KC was examined in an established HBV-carrier
mouse model. In this model, KC as well as IL-10 were involved
in the establishment of antigen-specific tolerance towards
peripheral HBsAg vaccination [136].

KC express membrane-bound inhibitory ligands that could
facilitate a tolerogenic milieu in the liver. For instance, under
steady state conditions, KC are known to express PD-L1, which
is a ligand for PD-1 and known to impede T cell function by inhib-
iting proliferation and cell division [36]. Immunohistochemical
analyses of liver biopsies from chronic viral hepatitis patients
revealed that CD68+ macrophages expressed increased levels of
PD-L2 compared to control liver tissue [30,123,137]. Similar
results were reported for galectin-9 with enhanced expression
by CD68+ cells by immunohistochemistry, which was confirmed
by flow cytometry [137]. Interestingly, enhanced serum levels
of galectin-9 were observed in patients with biochemical
evidence of highly active chronic HBV-related liver disease (ALT
>100 U/L) as compared to patients with relatively low ALT levels
(<50 IU/L) or healthy controls. Also comparison of plasma
galectin-9 levels in patients with chronic HCV showed higher
levels in patients compared to healthy individuals [123]. Further-
more, co-localization of CD68 and galectin-9 was observed in the
peri-portal regions of the livers of virtually all the patients with
HCV infection, regardless of grade of inflammation or stage of
fibrosis, but not in normal control livers [123].

These inhibitory ligands are known to inhibit T cell function
upon cell-cell contact via interaction with PD-1 and Tim-3,
respectively [138], which is of relevance since both PD-1 and
Tim-3 are reported to be upregulated on HBV- and HCV-specific
intrahepatic and peripheral blood-derived CD8+ T cells and
4 vol. 61 j 660–671
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associated with T cell dysfunction and exhaustion during chronic
viral hepatitis [123,139,140]. Intrahepatic expression levels of
PD-L1, PD-L2, and PD-1 correlated with liver inflammation in
chronic HBV [30]. Although it has been shown that HCV core pro-
tein can induce PD-L1 expression on human perfusate-derived KC
[84], it is not clear whether the upregulation of inhibitory ligands
on intrahepatic macrophages and its correlation with inflamma-
tion are direct effects of HBV or HCV, or are components of neg-
ative feedback mechanisms that develop as a consequence of
persistent inflammation.

Thus, several studies indicate that both HBV and HCV compro-
mise anti-viral immunity to a certain extent by (1) interfering
with signaling of pathogen recognition receptors and the produc-
tion of pro-inflammatory cytokines by KC and (2) increasing the
tolerogenic capacities of KC resulting in the elevated expression
of anti-inflammatory mediators. As persistent inflammation in
general is accompanied by negative feedback mechanisms, the
KC-related anti-inflammatory signals observed during chronic
viral hepatitis could be explained by direct viral effects, immune
regulation as part of the ongoing inflammatory response, or a
combination. However, also immune activating functions of KC
have been described upon HBV/HCV interaction. These seemingly
contradictory functions probably indicate a critical balance influ-
enced by the extent to which receptors are triggered (or over-
triggered) and also by the type of KC receptors that are triggered.
Therefore, not only the concentration of virus (proteins), but also
the time since infection may strongly affect KC function. Whether
also age influences KC function as one of the mechanisms
explaining the self-limiting hepatitis often seen in HBV-infected
adults, whereas young children usually develop chronic infection,
has to be investigated.
Role of KC in viral hepatitis-related liver damage

Liver fibrosis

One of the consequences of sustained low-grade injury induced
by persistence of HBV and HCV in the liver is fibrosis, which is
characterized by excess collagen deposition and accumulation
of extracellular matrix. HBV and HCV may induce fibrinogenesis
by activating hepatic stellate cells directly or indirectly by induc-
ing cellular injury, apoptosis, and necrosis, which triggers a
wound healing response. KC are thought to be involved in fibro-
genesis by the release of various pro-fibrinogenic factors, such as
ROS and certain cytokines, such as IL-6, TNF, IL-1, PDGF, and
TGFb, that induce activation of hepatic stellate cells [141]. In
addition, KC produce enzymes that are important or the break-
down of matrix, such as collagenases and metalloproteinases,
but they also regulate the production of these factors by other
cells, leading to disturbance of the homeostatic mechanisms
involved in extracellular matrix deposition [142]. Recent studies
in experimental animal models demonstrate that these activities
are only partially conducted by liver-resident macrophages, but
largely depend on recruitment of monocytes as precursors of
macrophages into the inflamed and damaged liver [143,144].

Although, in patients with viral hepatitis, no causative role has
been demonstrated for KC in the development of liver fibrosis,
increased numbers of CD14+CD68+ KC were found around the
regions of damage and fibrosis [134]. These increased numbers
were associated with liver injury [93,141,145,146]. A detailed
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study by Liaskou et al. observed that in liver tissue from non-viral
hepatitis patients with end-stage liver disease a specific mono-
cyte subpopulation accumulated in the liver, which was able to
conduct phagocytic activity and to release inflammatory and
profibrinogenic cytokines [147]. Interestingly, a study in HBV
replication-competent transgenic mice showed an opposite effect
of KC by demonstrating that they did not contribute to liver
damage, but prevented liver injury by removal of apoptotic
hepatocytes during viral hepatitis [39]. In this model,
clodronate-mediated depletion of KC resulted in higher numbers
of necrotic hepatocytes and elevated serum ALT levels. In line
with this, in a different mouse model, liver-infiltrating monocyte/
macrophages mediated regression of fibrosis via phagocytosis of
cellular debris [148].

Liver damage and ultimately the induction of fibrosis may, at
least in part, be attributed to cytokines produced by KC. More-
over, during viral hepatitis KC have also been found to express
cytotoxic molecules, like TRAIL, Fas-ligand, granzyme B, perforin,
and ROS, that enable them to kill infected as well as non-infected
‘‘bystander’’ hepatocytes [106–108]. Fas-ligand expression by KC
was increased in chronic HBV patients and associated with ele-
vated ALT levels, while granzyme B and perforin expression by
KC was increased in both chronic HBV and HCV patients
[106,107]. Interestingly, a direct contribution of KC to the patho-
genesis of hepatitis has also been reported for viral infections by
viruses that infect other organs and are not detected in the liver
itself [149]. In influenza infection, KC were indicated as the
effector cells killing hepatocytes in an as yet unidentified manner,
leading to damage-associated hepatitis. KC can kill hepatocytes
either directly via Fas-dependent apoptotic pathways or
indirectly by interacting with CD8+ (and possibly CD4+) T cells
through stimulation of cytokine secretion and other mediators,
such as ROS [149].

Hepatocellular carcinoma

Chronic HBV/HCV and cirrhosis are major risk factors for the
development of hepatocellular carcinoma [150]. Although HCC
development has been extensively studied in mice and rat, only
few studies have directly assessed the importance of KC in HCC
development in chronic HBV settings, and no studies are avail-
able from chronic HCV settings. Dying hepatocytes, likely result-
ing from anti-viral activities since HBV and HCV are considered
non-cytopathic, will activate neighboring cells, including KC
[151], to produce cytokines and growth factors, such as hepato-
cyte growth factor, IL-6, and TNF, which will further amplify
the inflammatory response and drive the compensatory prolifer-
ation of surviving hepatocytes [152]. Ongoing cycles of
hepatocyte death and regeneration increase the chances of spon-
taneous mutations and DNA damage [153] eventually resulting in
HCC. In HBV-transgenic mice, KC and/or infiltrating macrophages
produced high levels of ROS, resulting in extensive oxidative DNA
damage in neighboring proliferating hepatocytes and develop-
ment of HCC [54]. HBV/HCV also activate KC to produce these
types of pro-inflammatory mediators, which may support the
development of HCC [84,89]. Additionally, the immunoregulatory
mediators expressed by KC, either as a direct virus-KC interaction
or as a consequence of the inflammatory response, may also
inhibit tumor-specific immune responses. For instance, galec-
tin-9 expressed on intrahepatic macrophages caused senescence
of CD4+ and CD8+ Tim3+ T cells, and may explain part of the
4 vol. 61 j 660–671 665
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mechanism leading to the development of HCC [154]. Further-
more, one of the HBV-derived proteins, HBxAg, also has direct
tumorigenic effects [155]. Hepatocyte regeneration, either influ-
enced by KC or not, allows HBxAg integration in DNA of hepato-
cytes, which is one of the processes involved in the development
Journal of Hepatology 201
of HCC (reviewed in [153]). Whether HBxAg directly interacts
with KC is not described.

In conclusion, KC play a central role in liver damage during
hepatitis, having all the tools to induce inflammation, cell
death, fibrosis, and ultimately HCC, but further research during
4 vol. 61 j 660–671 667
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HBV/HCV infection remains to be carried out to determine the
exact contribution of KC to liver damage in viral hepatitis.
Perspectives

Currently, our understanding of the role of KC in viral hepatitis is
incomplete. The detailed contributions of liver-resident KC vs.
liver-infiltrating macrophages to various processes of disease
pathogenesis are difficult to determine, because of the highly
overlapping characteristics of these cells. Nevertheless, we can
appreciate several possible anti-viral roles of KC, including
binding and/or uptake of virus leading to immune recognition
and the production of pro-inflammatory mediators resulting in
(1) inhibition of viral replication in hepatocytes, (2) activation
of neighboring cells, and (3) attraction, activation, and interaction
with other immune cells, which will further increase the
anti-viral and inflammatory response (Fig. 1). These immune acti-
vating roles of KC are beneficial to combat HBV and HCV in the
early phases after infection, but may also contribute to tissue
damage and the development of fibrosis, cirrhosis, and HCC
during chronic viral hepatitis (Fig. 1). Furthermore, also immune
regulatory functions of KC have been described, either as a conse-
quence of direct virus-KC interaction, or as part of the complex
tolerogenic liver environment and the ongoing inflammatory
response upon HBV and HCV-infection, which may counteract
the development of effective anti-viral immunity and support
viral persistence and related disease pathogenesis (Fig. 2).

With our growing appreciation of the roles of intrahepatic
macrophages in both protective and harmful responses, intrahe-
patic macrophages form an interesting but complex cellular
target for treatment options in viral hepatitis. The versatile fea-
tures assigned to KC may partly belong to infiltrating mono-
cytes/macrophages and therefore future efforts should focus on
identifying phenotypical and/or functional characteristics
discriminating KC from infiltrating macrophages. Furthermore,
the function of KC and other intrahepatic macrophages will lar-
gely depend on type, level, and duration of receptors triggered
pushing the balance towards either protective or harmful
responses. Identification of receptors and underlying molecular
mechanisms involved in virus-cell interactions and insight into
mechanisms involved in wanted and unwanted responses of
the different macrophage populations that exert distinctive func-
tions during the early and later phases of HBV/HCV infection are
needed to move the field forward.
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