
Computers Math. Applic. Vol. 35, No. 3, pp. 71-80, 1998
P e r g a m o n Copyright(~)1998 Elsevier Science Ltd

Printed in Great Britain. All rights reserved
0898-1221/98 $19.00 + 0.00

PII: 80898-1221(97)00280-0

Fast Parallel Algorithms for Graeffe's
Root Squaring Technique

P. K. JANA
Department of Computer Engineering

BIT, Mesra, 835215, India

B . P . SINHA*
Electronics Unit, Indian Statistical Institute

203 Barrackpore Trunk Road, Calcutta, 700035, India
bhabani@isical, ernet, in

(Received August 1994; accepted May 1997)

A b s t r a c t - - T h i s paper presents two parallel algorithms for the solution of a polynomial equation
of degree n, where n can be very large. The algorithms are based on Graeffe's root squaring tech-
nique implemented on two different systolic architectures, built around mesh of trees and multitrees,
respectively. Each of these algorithms requires O(log n) time using O(n 2) processors.

g e y w o r d s - - R o o t extraction, Graeffe's root squaring method, Matrix-vector multiplication, Mesh
of trees, Multitrees.

I. I N T R O D U C T I O N

In many real-time applications, e.g., automatic control, digital signal processing, etc., we often
need fast extraction of the roots of a polynomial equation with a very high degree. A common
technique for finding the roots of a polynomial equation is through iterations [1-3]. In recent
years, many parallel algorithms have been proposed for the extraction of the roots of a polynomial
equation. Mirankar [4,5], Schedler [6], and Winogard [7] have developed parallel algorithms
for this purpose which are based on the approach of reducing the total number of iterations.
Another approach for developing parallel algorithms for solving a polynomial equation is based
on reducing the computat ion t ime per iteration. Rice and Jamieson [8] have developed a parallel
algorithm following this latter approach. Their algorithm is based on the Graeffe's root squaring
technique [9] and requires approximately 2n arithmetic steps and n communication steps, using
(n + 1) processors.

The Graeffe's root squaring technique offers some inherent parallelism in computing the new
coefficients at each step of iteration, and also in finding all the roots at the final step. In this paper,
we propose two parallel algorithms exploiting this parallelism on two different architectures using
mesh of trees and multitrees, respectively. Both the algorithms are developed with the objective
of reducing the execution t ime per iteration. Each of these algorithms requires O(log n) t ime per
iteration step employing O(n 2) processors.

The paper is organized as follows. A sequential algorithm for the Graeffe's root squaring
method is discussed in Section 2, followed by the two parallel implementations in Section 3.

*Author to whom all correspondence should be addressed.

Typeset by A M$-TFjX

71

72 P.K. JANA AND B. P. SINHA

2. G R A E F F E ' S R O O T S Q U A R I N G M E T H O D

Graeffe's root squaring method for finding the roots, say, c~1, a2, an of a polynomial equa-
tion

. f (x) = aox '~ + a l x '~-1 + a~x " -2 + . . . + a,~-lX + an = O,

consists of forming a sequence of polynomials f l (x), f2(x), • • •, such that the roots of the equation
f~+l(X) -- 0, i >_ 1 are the squares of the roots of the equation f i (x) = 0. Thus, if we assume that

f~(x) = A ox n + A l x n-1 + A 2x '~-~ + . . . + A n - i x + An = O,

~ + l (x) = CoX" + ClX ~-1 + C2x "-2 + . . . + C,_~x + C , = 0,

then the Cj's, 0 <_ j <_ n, can be computed as

Cj = A~ - 2Aj_IAj+I + 2Aj_2Aj+2 - 2Aj_aAj+3 +

There is a chance of getting an overflow error while computing the new coefficients because of
the rapid growth of the relevant coefficients in the prolonged sequence of root squarings. But
this problem can be overcome by using suitable floating point operations [9].

SEQUENTIAL ALGORITHM.

Input : A o , A 1 , A 2 , . . . , A ~ ,

Output: Co, C1, C 2 , . . . , Cn

begin
Co :-- A~;
fo r j := 1 to n do
begin

Cj := Aj2;
i := 1;
wh i l e (((i + j) _< n) and (i _< j)) do
begin

cj := c j + (-1) * 2 * * A i + i;

i : = i + 1 ;
end

e n d
end .

3 . P A R A L L E L I M P L E M E N T A T I O N S

In this section, two different parallel implementations of an iteration step in the Graeffe's
root squaring technique are discussed. The implementations have been done on the mesh of
trees and the multitrees with the main objective of reducing the time for computing the new
coefficients Cj's, that is, to reduce the time per iteration.

We observe that the computations of Cj 's can be obtained from the the following matr ix by
vector multiplication:

(i ° ° ° °... °)(° / A1 -2A0 0 0 . . . 0 A1
0 A2 -2A1 2Ao -. . 0 A2 .

j
0 0 0 0 "'" Am n

Fast Parallel Algorithms 73

Pvt(O) Pvt(l) Pvt(2) Pvt{3)

, ~ i , i I I I I
I , I I i I , , I

p I I I i I I i I i
: 0, ,0, ,6

I i , - - , I - - - , . - - I - - - - - - . I - - . I - - _ . . _ l I I I / . - . _ , . ~ ,_ _ l _ _ . l . I
~ . _ ? ' - , ' - r ' _ _ r - ' - ~ . _ _ . . _ ~ . _ . ~ L _ . L I

'-_" rl-J--_-T-l, I Fi--_ I T ,,J--'
'. I , _ ~ _ -] . , . - _ - _ - - ~ ~ . - _ _ _ L I , _ _ _ J t I :
t - . ~ - . I I - . I - - - - 4 - . - t - I - - I - - . - 4

I I I I I I
.... ~ i _ _ !

Pht{2) , I

,I.

I I I

, . .

L I

O Root Node 0 Leaf Node

Figure i. Mesh of trees.

In recent years, a few general techniques for parallel sparse-matrix by vector multiplication

have been repor ted in the l i tera ture [10,11]. Bu t in our present case, the sparse m a t r i x has a
special s t ruc ture . We can exploit this s t ruc tura l character is t ic to compu te the C#'s in an efficient
way by the following two implementa t ions .

3 .1 . I m p l e m e n t a t i o n o n M e s h o f T r e e s

For an n-degree polynomia l equat ion, let us assume t h a t m - In//9. + 1]. T h e n we ar range
m 2 processors in the form of an m × m square array. Using the processors in the i th row,
0 _< i <_ m - 1, of this a r ray as the leaf nodes, a b inary t ree is cons t ruc ted wi th the help of
addi t ional (~n - 1) internal nodes (processors). There will be m such t rees which will be t e rmed
as hor izontal b ina ry trees. Similarly, wi th the processors in the # th column of the m × m square

a r r ay as the leaf nodes, 0 _< # <_ m - 1, a vert ical tree is also cons t ruc ted using (~u - 1) addi t ional
nonleaf nodes (processors) . T h e scheme is shown in Figure 1 for n -- 6, where Pht(g indicates the
roo t of the i th horizontal t ree and Pvt(#) denotes the root of the 3.th vert ical tree. T h e internal
nodes o ther t h a n the root of a t ree are, however, not shown in the figure and the presence of the
links connect ing a root of a t ree to its leaf nodes is indicated by do t ted lines.

Let P (i , j) denote the processor a t the posi t ion of the i th row and the j th column. Consider
now the ma in diagonal connect ing the processors P (m - 1,0) and P(0 , m - 1). T h e processors
on every diagonal paral lel to this ma in diagonal, including itself, are also in terconnected to form
a b ina ry t ree such tha t :

(i) P (0 , j) is a root for 0 S 3. <: m - 1,
(ii) P (i , m - 1) is a root for 1 < i < m - 1,

(iii) P (i , j - i) is d i rect ly linked to P (2 i + 1,3. - 2i - 1) and P (2 i + 2,3. - 2i - 2) whenever they
exist , for i > 0 and 0 _< 3. < m - 1,

(iv) P (i + #, ~n - 3") is direct ly linked to P (i + 23", m - 2#) and P (i + 23" + 1, m - 23' - 1) whenever
t hey exist, for 0 < i <: m - 2 and 3" >_ 1.

74 P.K. JANA AND B. P. SINHA

The interconnections of two such trees rooted at P(0,4) and P(1,5) for m = 6 are shown in

Figure 2. These trees will be termed as diagonal trees.

P(0,4) P(l,5)

P (~ P(2,2) P (~ P(3,3)

P(3,1) P(4,0) P(4,2) P(5,1)

Figure 2. Links of the diagonal trees rooted at P(0, 4) and P(1, 5).

Every processor in the m x m array, as shown in Figure 1, is a leaf node of the horizontal as
well as the vertical binary trees, and also it may be an internal node of the diagonal tree. Hence,
each processor will have a maximum of five links. However, for large n, about 83% of the total
number of processors need to have maximum of only three links.

Each of the processors P (i , j) , 0 <_ i, j < m - 1, will be assumed to have four local regis-
ters V (i , j) , H (i , y) , D(i,j) , and R (i , j) . The registers V, H, and D will be used for the commu-
nications along the vertical, horizontal, and diagonal trees, respectively. The intermediate results
will be stored in the R register. The parallel algorithm is formally described in Algorithm A.
The main idea is to divide the coefficients Ai's into two groups with even and odd values of the
index i, perform the computations with each group independently, and then combine the results
together.

We assume that the coefficient values A-1 = An = An+l = 0. Steps 1-6 compute the coeffi-
cients Co, C1, . . . , Cn-1, and Steps 7-10 are used to transfer these computed coefficients to the
root processors of the corresponding horizontal and vertical binary trees, to effect initialization
for the next step of iteration.

ALGORITHM A.
begin

/* Computations of new coefficients C~'s from A~'s */
S t e p 1 :

/* Inputting the even coefficients and broadcasting them */
do Steps 1.1 and 1.2 in parallel

1.1 for all j , 0 < j < m - 1 do in parallel
Pvt(j) receives A2j, multiplies it by (-1)J, and broadcasts the result to its
leaf processors for being stored in V (i , j) , 0 < i < m - 1.

1.2 for all i, 0 < i < m - 1 do in parallel
Pht(~) receives A2~, multiplies it by (-1) i, and broadcasts the result to its leaf
processors for being stored in H (i , j) , 0 < j < m - 1.

Step 2 :
for all P (i , j) , 0 < i < m - 1, 0 < j < m - 1, do in parallel

D (i , j) := V (i , j) * H (i , j) .

Step 3 :
Sum up the D(i , j) 's using the links of the respective diagonal trees for being stored in
the R registers of the root processors of the corresponding diagonal trees.

S t e p 4 :
/* Inputting the odd coefficients and broadcasting them */
do Steps 4.1 and 4.2 in parallel

4.1 for all j , 0 _< j < m - 1 do in parallel
Pvt(j) receives A2j-1, multiplies it by (-1) j - l , and broadcasts the result
to its leaf processors for being stored in V (i , j) , 0 < i < m - 1.

Fast Parallel Algorithms 75

4 .2 for all i, 0 < i < m - 1 d o in parallel

Pht(i) receives A2/+l, multiplies it by (- 1) i, and broadcas ts the result

to its leaf processors for being stored in H (i , j) , 0 < j <_ m - 1.

S t e p 5 :
Repea t Steps 2 and 3, except t h a t the results are now stored in the D registers

instead of the R registers.

S t e p 6 :

d o Steps 6.1 and 6.2 i n p a r a l l e l

6 .1 f o r al l j , 0 <_ j <_ m - 1, d o in p a r a l l e l
D (O , j) := D (O , j) + R (O , j) .

6.2 fo r a l l i, 1 < i < m - 1, d o in p a r a l l e l

D (i , m - 1) := D (i , m - 1) + R (i , m - 1).

~o-O0 O 0 .',, O O O 0
p(o,o) p(o,1) P(0,2) P(0,3) P(O,O) P(O,I) P(0,2) P(0,3)

~, O 0 O 0 ~, O 0 O 0
P(I,O) P(I,I) P(I,2) P(I,3) P(I,O) P(I,I) P(I,2) P(I,3)

A, O 0 O 0 ", O O O 0
P(2,0) P(2,1) P(2,2) P(2,3) P(2,0) P(2,1) P(2,2) P(2,3)

A. O O 0 0 ~--0) 0 0 0 O
P(3,0) P(3,1) P(3,2) P(3,3) P(3,0) P(3,1) P(3,2) P(3,3)

I' t t I' t I' t I'
A o A 2 A~ A 6 0 A I A s As

During Step 1 During Step 4

(a) Input data for n = 6, m = 4,

~o O 0 O O O ,,. O O O 0 0
P(o,o) P(O,I) P(o,2) P(0,3)P(O,4) P(O,O) P(O,l) P(O,2) P(0,3)P(O,4)

',.~ O O O O O ',, O O O O O
P(I,0) P(I,I) P(I,2) P(I,3) P(I,4) P(l,0) P(I,I) P(1,2) P(I,3) P(I,4)

A, O 0 0 0 0 ~, O O O O O
P(2,0) P(2,1) P(2,2) P(2,3)P(2,4) P(2,0) P(2,1) P(2,2) P(2,3)P(2,4)

~o O O O O O ~, O O O O O
P(3,0) P(3,1) P(3,2) P(3,3)P(3,4) P(3,0) P(3,1) P(3,2) P(3,3)P(3,4)

~, O 0 0 0 0 ~, O O O O O
(=0) P(4,0) P(4,1) P(4,2) p(4,3) P(4,4) (-0) P(4,0) P(4,1) P(4,2) P(4,3)P(4,4)

1' I' 1' ^
A o A 2 A, A 6 A s 0 A I A 3 As A 7

During Step I (=0) During Step 4

(b) Input data for n = 7, m = 5.

Figure 3. Distribution of input coefficient values for different n.

EXAMPLE 1. The even and odd coefficient values received by different rows and columns of the
processors, dur ing Step 1 and Step 4, respectively, are shown in Figure 3 for two different values
of n. The s i tuat ion for n = 6 (i.e., m = 4) is shown in Figure 3a and t h a t for n = 7 (i.e., m = 5)
is shown in Figure 3b.

REMARK. I t appears f rom the illustrations in Figure 3 tha t we need, in fact, an m x m ar ray for
even m and an (m - 1) × m array for odd n.

76 P . K . JANA AND B. P. SINHA

/* Moving Ci's to the roots of trees to initialize for the next iteration */
S t e p 7" :

d o Steps 7.1 and 7.2 in pa ra l l e l
7.1 for all i, 0 ~_ i <_ r m / 2] - 1, do Steps 7.1.1 and 7.1.2 in pa ra l l e l

7.1.1 Using the respective diagonal trees, the content of D(0, 2/) is sent
to the V register of P(/ , i).

7.1.2 Using the respective diagonal trees, the content of D(0, 2i % 1),
whenever it exists, is sent to the V register of P (i , i + 1).

7.2 fo r all i, 0 ~ i ~_ ~ m / 2] - 1, do Steps 7.2.1 and ?.2.2 in pa ra l l e l
7.2.1 Using the respective diagonal trees, the content of D (m - 2i - 1, m - 1),

if it exists, is sent to the V register of P (m - i - 1, m - i - 1).
7".2.2 Using the respective diagonal trees, the content of D (m - 2i - 2, m - 1),

if it exists, is sent to the V register of P (m - i - 2, m - i - 1).
S t e p 8 :

fo r all i, 0 < i < m - 1, do in pa ra l l e l
H (i , i) : = V (i , i)

g (i , i + 1) :--- Y (i , i + 1)
S t e p 9 :

for all i, 0 < i < m - 1, do Steps 9.1 and 9.2 in pa ra l l e l
9.1 The content of V (i , i) is sent to its root processor Pvt(i) for

being stored as the even coefficient for the next iteration.
9.2 The content of H (i , i) is sent to its root processor Pht(~) for

being stored as the even coefficient for the next iteration.
S t e p 10 :

fo r all i, 0 < i < m - 2, do Steps 10.1 and 10.2 in pa ra l l e l
10.1 The content of V (i , i + 1) is sent to its root processor Pvt(i) for

being stored as the odd coefficient for the next iteration.
10.2 The content of H (i , i + 1) is sent to its root processor Pht(O for

being stored as the odd coefficient for the next iteration.
end .

T i m e c o m p l e x i t y

In the above algorithm, Steps 1, 3, 5, 7, 9, and 10 require O(logn) time each and the remaining
steps take constant time. So the overall t ime complexity of the algorithm is O(log n).

EXAMPLE 2. Let us assume that n = 6. Then the new coefficients are given as follows:

Co = A~,

C1 = A21 - 2AoA2,

C2 = A 2 - 2 A 1 A 3 + 2AoA4,

C3 = A3 2 - 2A2A4 + 2 A l A s - 2 A o A ~ ,

C4 = A 2 - 2 A 3 A 5 + 2 A 2 A 6 ,

C5 = A 2 - 2 A 4 A s ,

Figure 4 shows the contents of different registers of the processors after Step 3, where a ' - '
denotes a don ' t care value. After the execution of Step 8, the contents of the registers are shown
in Figure 5.

The above algorithm has the advantage that it works with the time complexity O(log n) and it
uses the processors with roughly one-sixth of them having the maximum degree of 5, and the rest

Fast Parallel Algorithms 77

P(O, O) P(O, 1) P(O, 2) P(O, 3)

P(1, O) P(1, 1) P(1, 2) P(1, 3)

P(2, O) P(2, 1) P(2, 2) P(2, 3)

II I I- .

P(3, 0) P(3, 1) P(3, 2) P(3, 3) Registers

Figure 4. Contents of registers after Step 3 of Algorithm A (n = 6).

D D

Figure 5. Contents of registers after Step 8 of Algorithm A (n = 6).

having the max imum degree of only 3. But it has the disadvantage tha t only about one-half of the

processors are utilized for the main computation, and the remaining processors are needed only
for da ta communication purposes. The processor utilization can, however, be increased if we use
an alternative architecture with an increased number of links per processor. An implementat ion
with this idea is shown below.

3 .2 . I m p l e m e n t a t i o n o n M u l t i t r e e s

Let us assume tha t q -- [n/2J. Then we arrange [(n + 2)2/4J processors in the form of an
(n + 1) × (q + 1) tr iangular array such tha t there are n - 2j + 1 processors in the j t h column,
0 <_ j ~ q. The interconnection scheme is described below, with an example for n -- 6 in Figure 6.

78 P .K. JANA AND a. P. SINHA

P(0,0) %% % ~ % ~ .

L L - . . / l _ Y ' - . ' , , .
PO.O) ~ ,:~,,,, P(I.D ~,,,

P(3,0) "~I~ ./ P(,) 1%_/P(3,2) /P(3,3)

//~ ~ .-- " I "~ I

Ld%. I /'l__..J / I:-'-t---J I

".d "" . / I/
/ ~ -- 1 I "

/ % -.--" . . . I / "

I_._1 / " ! _ _ 1 I
/ P(5,1) .../ P(5,o) /

/ / / ~ . . - -~ '~ '~ -.-~'~ =, Links of Downward Diagonal Tree
~ '] , ' / t " " Links of Upward Diagonal Tree
Ly - Links of Horizontal Tree
P(6,0)

Figure 6. Multitrees structure.

(i) The processors in the i th row, 0 < i < n, are interconnected to form a horizontal complete
binary tree, with the rightmost processor in that row as the root. Thus, P(i, j) has the
two children P(i , 2j - q - 1) and P(i, 2j - q - 2), for j _< q, whenever they exist.

(ii) The processors on every upward diagonal are interconnected to form a complete binary tree
with P(i ,0) as the root, 0 < i < n. Tha t is, P (i , j) has the two children P (i - j - l , 2 j + l)
and P(i - j - 2, 2j + 2), for j _> 0, whenever they exist.

(iii) Similarly, the processors on every downward diagonal are interconnected to form a com-
plete binary tree. That is, P (i , j) has the two children P(i + j + 1, 2j + 1) and P(i + j + 2,
2j + 2), for j _> 0, whenever they exist.

The above interconnection scheme requires that the maximum number of links of a processor
will be nine, since a processor can be an internal node of three different trees. Data inputting or
output t ing can be done only through the processors P(i , 0) for all i, 0 < i < n. Every proces-
sor P (i , j) has three local registers U(i,j), D(i, j) , and R(i , j) . The registers U(i , j) and D(i, j)
will be used for the communication along upward and downward diagonal trees, respectively,
while the register R(i , j) will be used for communication along the horizontal tree. The parallel
algorithm is now formally described below.

Fast Parallel Algorithms 79

Registers Specification

Figure 7. Contents of registers after Step 2 of Algorithm B.

ALGORITHM B.

begin
Step 1 :

for all i, 0 < i < n, P(i, 0) receives Ai and stores it in U(i, 0) and D(i, 0).
Step 2 : do Steps 2.1 and 2.2 in parallel

2.1 for all i, 0 < i < n, the content of U(i, 0) is broadcast to the processors in the
corresponding upward diagonals following the binary tree connection.

2.2 for all i, 0 < i < n, the content of D(i, 0) is broadcast to the processors in the
corresponding downward diagonals following the binary tree connection.

S t e p 3 :

for all P(i , j) ,O < i < n, 0 < j < q do in pa ra l l e l
R (i , j) := U(i , j) * D(i , j) .

S t e p 4 :
for all P(i , j) ,O < i < n,O _ j _< q, do Steps 4.1 and 4.2 in pa ra l l e l

4.1 i f j is odd, t h e n R(i , j) := - 2 * R(i , j) .
4.2 i f j is even, t h e n R (i , j) := 2 * R(i , j) .

S t e p 5 :
for all P(i , j) , 0 <_ i < n, 0 < j <_ q d o in pa ra l l e l
sum up the contents of R(i, j) ' s following the horizontal binary tree connections
and put the result in R(i, 0).

end .

80 P . K . JANA AND]3. P. SINHA

T i m e c o m p l e x i t y

In Algorithm B, each of the Steps 1, 2, and 5 requires O(logn) time and the remaining steps
require constant time. So the overall time complexity of the algorithm is O(log n).

EXAMPLE 3. We illustrate Algorithm B with an example for n = 6. After the execution of

Step 2, we get the situation as shown in Figure 7, where a ' - ' denotes a don't care value.

4. C O N C L U S I O N

In this paper, we have proposed two efficient parallel implementations for an iteration step of
Graeffe's root squaring method, implemented on mesh of trees and multitrees, respectively. The
time complexities of both these algorithms are O(Iogn) using O(n 2) processors, resulting to an

AT-value of O(n ~ logn). The mesh of trees has the advantage of low number of communication

links per processor. But only about one-half of the processors are actually utilized for the main
computation and the rest are needed only for data communication in this architecture. In the

scheme using multitrees, the number of processors will be asymptotically about one-third of that
used in the mesh of trees. However, in that case, a processor needs to have a maximum of nine

links. The utilization of processor time in the multitree structure is, of course, much more than
that in the mesh of trees architecture.

R E F E R E N C E S
1. P. Henrici, Elements of Numerical Analysis, John Wiley, New York, (1964).
2. M.A. Jenkins and J.F. Traub, A three-stage algorithm for real polynomials using quadratic iteration, SIAM

J. Numerical Analysis, 545-566, (December 1970).
3. M.A. Jenkins and J.F. Traub, Zeros of a real polynomial, ACM Trans. Math. Software, (1975).
4. W.L. Miranker, Parallel methods for approximating the roots of a function, IBM J. Res. Develop., 297-301,

(1969).
5. W.L. Miranker, A survey of parallelism in numerical analysis, SIAM Review, 524-547, (October 1971).
6. G.S. Schedler, Parallel numerical methods for the solution of equations, Communications ACM, 286-290,

(May 1967).
7. S. Winogard, Parallel iteration methods, In Complexity of Computer Computations, (Edited by R.E. Miller

and J.W. Thatcher), pp. 53-60, Plenum, New York, (1972).
8. T.A. Rice and L.H. Jamieson, A highly parallel algorithm for root extraction, IEEE Trans. on Computers

38 (3), 443-449, (March 1989).
9. F.B. Hildebrand, Introduction to Numerical Analysis, McGraw-Hill, New York, (1974).

I0. A. Peters, Sparse matrix vector multiplication techniques on the IBM 3090 VF, Parallel Computing 17 (12),
1409-1424, (December 1991).

11. J. Andersen, G. Mitra and D. Parkinson, The scheduling of sparse matrix vector multiplication on a massively
parallel DAP computer, Parallel Computing 18 (6), 675--697, (June 1992).

