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A b s t r a c t - - T h i s  paper presents two parallel algorithms for the solution of a polynomial equation 
of degree n, where n can be very large. The algorithms are based on Graeffe's root squaring tech- 
nique implemented on two different systolic architectures, built around mesh of trees and multitrees, 
respectively. Each of these algorithms requires O(log n) time using O(n 2) processors. 

g e y w o r d s - - R o o t  extraction, Graeffe's root squaring method, Matrix-vector multiplication, Mesh 
of trees, Multitrees. 

I. I N T R O D U C T I O N  

In many  real-time applications, e.g., automatic  control, digital signal processing, etc., we often 
need fast extraction of the roots of a polynomial equation with a very high degree. A common 
technique for finding the roots of a polynomial equation is through iterations [1-3]. In recent 
years, many  parallel algorithms have been proposed for the extraction of the roots of a polynomial 
equation. Mirankar [4,5], Schedler [6], and Winogard [7] have developed parallel algorithms 
for this purpose which are based on the approach of reducing the total  number of iterations. 
Another approach for developing parallel algorithms for solving a polynomial equation is based 
on reducing the computat ion t ime per iteration. Rice and Jamieson [8] have developed a parallel 
algorithm following this latter approach. Their algorithm is based on the Graeffe's root squaring 
technique [9] and requires approximately 2n arithmetic steps and n communication steps, using 
(n + 1) processors. 

The Graeffe's root squaring technique offers some inherent parallelism in computing the new 
coefficients at each step of iteration, and also in finding all the roots at the final step. In this paper,  
we propose two parallel algorithms exploiting this parallelism on two different architectures using 
mesh of trees and multitrees, respectively. Both the algorithms are developed with the objective 
of reducing the execution t ime per iteration. Each of these algorithms requires O(log n) t ime per 
iteration step employing O(n 2) processors. 

The paper  is organized as follows. A sequential algorithm for the Graeffe's root squaring 
method is discussed in Section 2, followed by the two parallel implementations in Section 3. 

*Author to whom all correspondence should be addressed. 
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2. G R A E F F E ' S  R O O T  S Q U A R I N G  M E T H O D  

Graeffe's root squaring method for finding the roots, say, c~1, a2, . . . .  an of a polynomial equa- 
tion 

. f (x)  = aox '~ + a l x  '~-1 + a~x " -2  + . . .  + a,~-lX + an = O, 

consists of forming a sequence of polynomials f l  (x), f2(x), • • •, such that  the roots of the equation 
f~+l(X) -- 0, i >_ 1 are the squares of the roots of the equation f i (x)  = 0. Thus, if we assume that  

f~(x) = A ox  n + A l x  n-1 + A 2x  '~-~ + . . .  + A n - i x  + An = O, 

~ + l (x )  = CoX" + ClX ~-1 + C2x "-2  + . . .  + C,_~x + C ,  = 0, 

then the Cj's, 0 <_ j <_ n, can be computed as 

Cj = A~ - 2Aj_IAj+I + 2Aj_2Aj+2 - 2Aj_aAj+3 + . . . .  

There is a chance of getting an overflow error while computing the new coefficients because of 
the rapid growth of the relevant coefficients in the prolonged sequence of root squarings. But 
this problem can be overcome by using suitable floating point operations [9]. 

SEQUENTIAL ALGORITHM. 

Input  : A o , A 1 , A 2 , . . . , A ~ ,  

Output:  Co, C1, C 2 , . . . ,  Cn 

begin 
Co :-- A~; 
fo r  j := 1 to n do  
begin 

Cj := Aj2; 
i := 1; 
wh i l e  (((i + j )  _< n) and (i _< j ) )  do  
begin 

cj  := c j  + (-1) * 2 * * A i  + i; 

i : = i + 1 ;  
end 

e n d  
end .  

3 .  P A R A L L E L  I M P L E M E N T A T I O N S  

In this section, two different parallel implementations of an iteration step in the Graeffe's 
root squaring technique are discussed. The implementations have been done on the mesh of 
trees and the multitrees with the main objective of reducing the time for computing the new 
coefficients Cj's, that  is, to reduce the time per iteration. 

We observe that  the computations of Cj 's can be obtained from the the following matr ix by 
vector multiplication: 

(i ° ° ° °... °)(° / A1 -2A0 0 0 . . .  0 A1 
0 A2 -2A1 2Ao -. .  0 A2 . 

j 
0 0 0 0 "'" Am n 
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Figure i. Mesh of trees. 

In recent years, a few general techniques for parallel sparse-matrix by vector multiplication 

have been  repor ted  in the  l i tera ture  [10,11]. Bu t  in our present  case, the  sparse  m a t r i x  has a 
special  s t ruc ture .  We can exploit  this  s t ruc tura l  character is t ic  to  compu te  the  C#'s in an efficient 
way  by  the  following two implementa t ions .  

3 .1 .  I m p l e m e n t a t i o n  o n  M e s h  o f  T r e e s  

For an n-degree  polynomia l  equat ion,  let us assume t h a t  m - In//9. + 1]. T h e n  we ar range  
m 2 processors  in the  form of an m × m square  array. Using the  processors  in the  i th row, 
0 _< i <_ m - 1, of  this  a r ray  as the  leaf nodes,  a b inary  t ree is cons t ruc ted  wi th  the  help of  
addi t ional  (~n - 1) internal  nodes (processors).  There  will be  m such t rees  which will be t e rmed  
as hor izontal  b ina ry  trees. Similarly, wi th  the  processors  in the  # th column of the  m × m square  

a r r ay  as the  leaf nodes,  0 _< # <_ m - 1, a vert ical  tree is also cons t ruc ted  using (~u - 1) addi t ional  
nonleaf  nodes  (processors) .  T h e  scheme is shown in Figure  1 for n -- 6, where  Pht(g indicates  the  
roo t  of  the  i th horizontal  t ree  and Pvt(#) denotes  the  root  of the  3.th vert ical  tree.  T h e  internal  
nodes  o ther  t h a n  the  root  of  a t ree are, however,  not  shown in the  figure and the  presence of the  
links connect ing a root  of  a t ree  to  its leaf nodes is indicated by do t ted  lines. 

Let  P ( i ,  j )  denote  the  processor  a t  the  posi t ion of the  i th row and the  j th column.  Consider  
now the  ma in  diagonal  connect ing the  processors  P ( m  - 1,0) and P(0 ,  m - 1). T h e  processors  
on every  diagonal  paral lel  to  this ma in  diagonal,  including itself, are also in terconnected  to  form 
a b ina ry  t ree  such tha t :  

(i) P (0 ,  j )  is a root  for 0 S 3. <: m - 1, 
(ii) P ( i , m -  1) is a root  for 1 < i < m -  1, 

(iii) P ( i , j  - i) is d i rect ly  linked to  P (2 i  + 1,3. - 2i - 1) and P (2 i  + 2,3. - 2i - 2) whenever  they  
exist ,  for i > 0 and  0 _< 3. < m - 1, 

(iv) P ( i  + #, ~n - 3") is direct ly  linked to  P ( i  + 23", m - 2#) and P ( i  + 23" + 1, m - 23' - 1) whenever  
t hey  exist,  for 0 < i <: m - 2 and  3" >_ 1. 
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The interconnections of two such trees rooted at P(0,4) and P(1,5) for m = 6 are shown in 

Figure 2. These trees will be termed as diagonal trees. 

P(0,4) P(l,5) 

P ( ~  P(2,2) P ( ~  P(3,3) 

P(3,1) P(4,0) P(4,2) P(5,1) 

Figure 2. Links of the diagonal trees rooted at P(0, 4) and P(1, 5). 

Every processor in the m x m array, as shown in Figure 1, is a leaf node of the horizontal as 
well as the vertical binary trees, and also it may be an internal node of the diagonal tree. Hence, 
each processor will have a maximum of five links. However, for large n, about 83% of the total 
number of processors need to have maximum of only three links. 

Each of the processors P ( i , j ) ,  0 <_ i, j < m - 1, will be assumed to have four local regis- 
ters V ( i , j ) ,  H ( i , y ) ,  D(i,j) ,  and R ( i , j ) .  The registers V, H, and D will be used for the commu- 
nications along the vertical, horizontal, and diagonal trees, respectively. The intermediate results 
will be stored in the R register. The parallel algorithm is formally described in Algorithm A. 
The main idea is to divide the coefficients Ai's into two groups with even and odd values of the 
index i, perform the computations with each group independently, and then combine the results 
together. 

We assume that the coefficient values A-1 = An = An+l = 0. Steps 1-6 compute the coeffi- 
cients Co, C1, . . . ,  Cn-1, and Steps 7-10 are used to transfer these computed coefficients to the 
root processors of the corresponding horizontal and vertical binary trees, to effect initialization 
for the next step of iteration. 

ALGORITHM A. 
begin 

/* Computations of new coefficients C~'s from A~'s */ 
S t e p  1 : 

/* Inputting the even coefficients and broadcasting them */ 
do Steps 1.1 and 1.2 in parallel 

1.1 for all j ,  0 < j < m - 1 do in parallel  
Pvt(j) receives A2j, multiplies it by (-1)J, and broadcasts the result to its 
leaf processors for being stored in V ( i , j ) ,  0 < i < m - 1. 

1.2 for all i, 0 < i < m - 1 do in parallel 
Pht(~) receives A2~, multiplies it by (-1) i, and broadcasts the result to its leaf 
processors for being stored in H ( i , j ) ,  0 < j < m - 1. 

Step 2 : 
for all P ( i , j ) ,  0 < i < m - 1, 0 < j < m - 1, do in parallel 

D ( i , j )  := V ( i , j )  * H ( i , j ) .  

Step  3 : 
Sum up the D(i ,  j) 's using the links of the respective diagonal trees for being stored in 
the R registers of the root processors of the corresponding diagonal trees. 

S t e p  4 : 
/* Inputting the odd coefficients and broadcasting them */ 
do Steps 4.1 and 4.2 in parallel 

4.1 for all j ,  0 _< j < m - 1 do in parallel 
Pvt(j) receives A2j-1, multiplies it by (-1) j - l ,  and broadcasts the result 
to its leaf processors for being stored in V ( i , j ) ,  0 < i < m - 1. 
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4 .2  for all i, 0 < i < m - 1 d o  in parallel 

Pht(i) receives A2/+l, multiplies it by  ( - 1 )  i, and broadcas ts  the  result  

to  its leaf processors for being stored in H ( i , j ) ,  0 < j <_ m - 1. 

S t e p  5 : 
Repea t  Steps 2 and 3, except t h a t  the  results are now stored in the  D registers 

instead of  the  R registers. 

S t e p  6 : 

d o  Steps 6.1 and 6.2 i n  p a r a l l e l  

6 .1  f o r  al l  j ,  0 <_ j <_ m - 1, d o  in  p a r a l l e l  
D ( O , j )  :=  D ( O , j )  + R ( O , j ) .  

6.2  fo r  a l l  i, 1 < i < m - 1, d o  in  p a r a l l e l  

D ( i ,  m - 1) :=  D ( i ,  m - 1) + R ( i ,  m - 1). 

~o-O0 O 0  .',, O O  O 0  
p(o,o) p(o,1) P(0,2) P(0,3) P(O,O) P(O,I) P(0,2) P(0,3) 

~, O 0  O 0  ~, O 0  O 0  
P(I,O) P(I,I) P(I,2) P(I,3) P(I,O) P(I,I) P(I,2) P(I,3) 

A, O 0  O 0  ", O O  O 0  
P(2,0) P(2,1) P(2,2) P(2,3) P(2,0) P(2,1) P(2,2) P(2,3) 

A. O O 0 0  ~--0) 0 0  0 O 
P(3,0) P(3,1) P(3,2) P(3,3) P(3,0) P(3,1) P(3,2) P(3,3) 

I' t t I' t I' t I' 
A o A 2 A~ A 6 0 A I A s As 

During Step 1 During Step 4 

(a) Input data for n = 6, m = 4, 

~o O 0  O O O  ,,. O O  O 0 0  
P(o,o) P(O,I) P(o,2) P(0,3)P(O,4) P(O,O) P(O,l) P(O,2) P(0,3)P(O,4) 

',.~ O O  O O O  ',, O O  O O O  
P(I,0) P(I,I) P(I,2) P(I,3) P(I,4) P(l,0) P(I,I) P(1,2) P(I,3) P(I,4) 

A, O 0  0 0 0  ~, O O  O O O  
P(2,0) P(2,1) P(2,2) P(2,3)P(2,4) P(2,0) P(2,1) P(2,2) P(2,3)P(2,4) 

~o O O  O O O  ~, O O  O O O  
P(3,0) P(3,1) P(3,2) P(3,3)P(3,4) P(3,0) P(3,1) P(3,2) P(3,3)P(3,4) 

~, O 0  0 0 0  ~, O O  O O O  
(=0) P(4,0) P(4,1) P(4,2) p(4,3) P(4,4) ( -0 )  P(4,0) P(4,1) P(4,2) P(4,3)P(4,4) 

1' I' 1' ^ 
A o A 2 A, A 6 A s 0 A I A 3 As A 7 

During Step I (=0) During Step 4 

(b) Input data for n = 7, m = 5. 

Figure 3. Distribution of input coefficient values for different n. 

EXAMPLE 1. The  even and odd coefficient values received by different rows and columns of  the  
processors, dur ing Step 1 and Step 4, respectively, are shown in Figure 3 for two different values 
of  n. The  s i tuat ion for n = 6 (i.e., m = 4) is shown in Figure 3a and t h a t  for n = 7 (i.e., m = 5) 
is shown in Figure 3b. 

REMARK. I t  appears  f rom the  illustrations in Figure 3 tha t  we need, in fact, an m x m ar ray  for 
even m and  an (m - 1) × m array  for odd n. 
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/*  Moving Ci's to the roots of trees to initialize for the next iteration */  
S t e p  7" : 

d o  Steps 7.1 and 7.2 in pa ra l l e l  
7.1 for  all  i, 0 ~_ i <_ r m / 2 ]  - 1, do  Steps 7.1.1 and 7.1.2 in pa ra l l e l  

7.1.1 Using the respective diagonal trees, the content of D(0, 2/) is sent 
to the V register of P( / ,  i). 

7.1.2 Using the respective diagonal trees, the content of D(0, 2i % 1), 
whenever it exists, is sent to the V register of P ( i ,  i + 1). 

7.2 fo r  all i, 0 ~ i ~_ ~ m / 2 ]  - 1, do  Steps 7.2.1 and ?.2.2 in pa ra l l e l  
7.2.1 Using the respective diagonal trees, the content of D ( m  - 2i  - 1, m - 1), 

if it exists, is sent to the V register of P ( m  - i - 1, m - i - 1). 
7".2.2 Using the respective diagonal trees, the content of D ( m  - 2i  - 2, m - 1), 

if it exists, is sent to the V register of P ( m  - i - 2, m - i - 1). 
S t e p  8 : 

fo r  all  i, 0 < i < m - 1, do  in pa ra l l e l  
H ( i ,  i ) : =  V ( i ,  i )  

g ( i ,  i + 1) :--- Y ( i ,  i + 1) 
S t e p  9 : 

for  all  i, 0 < i < m - 1, do  Steps 9.1 and 9.2 in pa ra l l e l  
9.1 The content of V ( i ,  i) is sent to its root processor Pvt(i)  for 

being stored as the even coefficient for the next iteration. 
9.2 The content of H ( i ,  i) is sent to its root processor Pht(~) for 

being stored as the even coefficient for the next iteration. 
S t e p  10 : 

fo r  all  i, 0 < i < m - 2, do  Steps 10.1 and 10.2 in pa ra l l e l  
10.1 The content of V ( i ,  i + 1) is sent to its root processor Pvt(i) for 

being stored as the odd coefficient for the next iteration. 
10.2 The content of H ( i ,  i + 1) is sent to its root processor Pht(O for 

being stored as the odd coefficient for the next iteration. 
end .  

T i m e  c o m p l e x i t y  

In the above algorithm, Steps 1, 3, 5, 7, 9, and 10 require O(logn) time each and the remaining 
steps take constant time. So the overall t ime complexity of the algorithm is O(log n). 

EXAMPLE 2. Let us assume that  n = 6. Then the new coefficients are given as follows: 

Co = A~, 

C1 = A21 - 2AoA2, 

C2 = A 2 - 2 A 1 A 3  + 2AoA4, 

C3 = A3 2 - 2A2A4 + 2 A l A s  - 2 A o A ~ ,  

C4 = A 2 - 2 A 3 A 5  + 2 A 2 A 6 ,  

C5 = A 2 - 2 A 4 A s ,  

Figure 4 shows the contents of different registers of the processors after Step 3, where a ' - '  
denotes a don ' t  care value. After the execution of Step 8, the contents of the registers are shown 
in Figure 5. 

The above algorithm has the advantage that  it works with the time complexity O(log n) and it 
uses the processors with roughly one-sixth of them having the maximum degree of 5, and the rest 
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P(O, O) P(O, 1) P(O, 2) P(O, 3) 

P(1, O) P(1, 1) P(1, 2) P(1, 3) 

P(2, O) P(2, 1) P(2, 2) P(2, 3) 

II I I-  . 

P(3, 0) P(3, 1) P(3, 2) P(3, 3) Registers 

Figure 4. Contents of registers after Step 3 of Algorithm A (n = 6). 

D D 

Figure 5. Contents of registers after Step 8 of Algorithm A (n = 6). 

having the max imum degree of only 3. But  it has the disadvantage tha t  only about  one-half of the 

processors are utilized for the main computation,  and the remaining processors are needed only 
for da ta  communication purposes. The processor utilization can, however, be increased if we use 
an alternative architecture with an increased number of links per processor. An implementat ion 
with this idea is shown below. 

3 .2 .  I m p l e m e n t a t i o n  o n  M u l t i t r e e s  

Let us assume tha t  q -- [n/2J. Then we arrange [(n + 2)2/4J processors in the form of an 
(n + 1) × (q + 1) tr iangular array such tha t  there are n - 2j + 1 processors in the j t h  column, 
0 <_ j ~ q. The  interconnection scheme is described below, with an example for n -- 6 in Figure 6. 
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P(0,0) %% % ~ % ~ .  
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/ / /  ~ . . - -~ '~ '~  -.-~'~ =, Links of Downward Diagonal Tree 
~ ' ] , ' / t " "  Links of Upward Diagonal Tree 
Ly  - Links of Horizontal Tree 
P(6,0) 

Figure 6. Multitrees structure. 

(i) The processors in the i th row, 0 < i < n, are interconnected to form a horizontal complete 
binary tree, with the rightmost processor in that  row as the root. Thus, P(i, j )  has the 
two children P( i ,  2j - q - 1) and P(i, 2j - q - 2), for j _< q, whenever they exist. 

(ii) The  processors on every upward diagonal are interconnected to form a complete binary tree 
with P( i ,0 )  as the root, 0 < i < n. Tha t  is, P ( i , j )  has the two children P ( i - j - l , 2 j + l )  
and P(i - j - 2, 2j + 2), for j _> 0, whenever they exist. 

(iii) Similarly, the processors on every downward diagonal are interconnected to form a com- 
plete binary tree. That  is, P ( i , j )  has the two children P(i + j  + 1, 2j + 1) and P(i + j  + 2, 
2j + 2), for j _> 0, whenever they exist. 

The  above interconnection scheme requires that  the maximum number of links of a processor 
will be nine, since a processor can be an internal node of three different trees. Data  inputting or 
output t ing can be done only through the processors P( i ,  0) for all i, 0 < i < n. Every proces- 
sor P ( i , j )  has three local registers U(i,j),  D(i, j) ,  and R(i , j) .  The registers U( i , j )  and D(i, j )  
will be used for the communication along upward and downward diagonal trees, respectively, 
while the register R(i , j )  will be used for communication along the horizontal tree. The parallel 
algorithm is now formally described below. 
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Registers Specification 

Figure 7. Contents of registers after Step 2 of Algorithm B. 

ALGORITHM B. 

begin 
Step 1 : 

for all i, 0 < i < n, P(i, 0) receives Ai and stores it in U(i, 0) and D(i, 0). 
Step 2 : do Steps 2.1 and 2.2 in parallel 

2.1 for all i, 0 < i < n, the content of U(i, 0) is broadcast to the processors in the 
corresponding upward diagonals following the binary tree connection. 

2.2 for all i, 0 < i < n, the content of D(i, 0) is broadcast to the processors in the 
corresponding downward diagonals following the binary tree connection. 

S t e p  3 : 

for  all  P( i , j ) ,O  < i < n, 0 < j < q do  in pa ra l l e l  
R ( i , j )  := U(i , j )  * D( i , j ) .  

S t e p  4 : 
for all P( i , j ) ,O  < i < n,O _ j  _< q, do  Steps 4.1 and 4.2 in pa ra l l e l  

4.1 i f j  is odd, t h e n  R( i , j )  := - 2  * R( i , j ) .  
4.2 i f j  is even, t h e n  R ( i , j )  := 2 * R( i , j ) .  

S t e p  5 : 
for all P( i , j ) ,  0 <_ i < n, 0 < j <_ q d o  in pa ra l l e l  
sum up the contents of R(i,  j ) ' s  following the horizontal binary tree connections 
and put  the result in R(i, 0). 

end .  
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T i m e  c o m p l e x i t y  

In Algorithm B, each of the Steps 1, 2, and 5 requires O(logn) time and the remaining steps 
require constant time. So the overall time complexity of the algorithm is O(log n). 

EXAMPLE 3. We illustrate Algorithm B with an example for n = 6. After the execution of 

Step 2, we get the situation as shown in Figure 7, where a ' - '  denotes a don't care value. 

4. C O N C L U S I O N  

In this paper, we have proposed two efficient parallel implementations for an iteration step of 
Graeffe's root squaring method, implemented on mesh of trees and multitrees, respectively. The 
time complexities of both these algorithms are O(Iogn) using O(n 2) processors, resulting to an 

AT-value of O(n ~ logn). The mesh of trees has the advantage of low number of communication 

links per processor. But only about one-half of the processors are actually utilized for the main 
computation and the rest are needed only for data communication in this architecture. In the 

scheme using multitrees, the number of processors will be asymptotically about one-third of that  
used in the mesh of trees. However, in that  case, a processor needs to have a maximum of nine 

links. The utilization of processor time in the multitree structure is, of course, much more than 
that  in the mesh of trees architecture. 
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