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Abstract

The Fourier coefficients of a smooth K-invariant function on a compact symmetric space M = U/K

are given by integration of the function against the spherical functions. For functions with support in a
neighborhood of the origin, we describe the size of the support by means of the exponential type of a
holomorphic extension of the Fourier coefficients.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The classical Paley–Wiener theorem (also called the Paley–Wiener–Schwartz theorem) de-
scribes the image by the Fourier transform of the space of compactly supported smooth functions
on R

n. The theorem was generalized to Riemannian symmetric spaces of the non-compact
type by Helgason and Gangolli (see [12, Theorem IV,7.1], [10]), to semisimple Lie groups by
Arthur (see [1]), and to pseudo-Riemannian reductive symmetric spaces by van den Ban and
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Schlichtkrull (see [2]). More precisely, these theorems describe the Fourier image of the space
of functions supported in a (generalized) ball of a given size. The image space consists of holo-
morphic (in the pseudo-Riemannian case, meromorphic) functions with exponential growth, and
the size of the ball is reflected in the exponent of the exponential growth estimate.

In this paper we present an analogue of these theorems for Riemannian symmetric spaces of
the compact type. Obviously the compact support is trivial in this case, and the important issue is
the determination of the size of the support of a smooth function from the growth property of its
Fourier transform. Let us illustrate this by recalling the corresponding result for Fourier series.
Consider a smooth 2π -periodic function f : T = R/2πZ → C, and suppose that f has support in
[−r, r] + 2πZ, where 0 < r < π . We denote the space of such functions by C∞

r (T). The Fourier
transform of f is the Fourier coefficient map n �→ f̂ (n) on Z, where

f̂ (n) = 1

2π

π∫
−π

f
(
eit

)
e−int dt,

and it extends to a holomorphic function on C, defined by the same formula with n replaced
by λ ∈ C. By the classical Paley–Wiener theorem for R this holomorphic extension has at most
exponential growth of type r , and every holomorphic function on C of this type arises in this
fashion from a unique function f ∈ C∞

r (T). It is this ‘local’ Paley–Wiener theorem for T that
we generalize to an arbitrary Riemannian symmetric space M of the compact type. We consider
spherical functions on M , and the relevant transform is the spherical Fourier transform.

The theorem presented here is known in some particular cases. In particular, it is known in the
case of a compact Lie group U , viewed as a symmetric space for the product group U × U with
the left × right action. In this case, the theorem was obtained by Gonzalez (see [11]) by a simple
reduction to the Euclidean case by means of the Weyl character formula. This result of Gonzalez
plays a crucial role in our proof, and it is recalled in Section 8 below. Other cases in which the
theorem is known, are as follows.

If the symmetric space has rank one, the spherical Fourier transform can be expressed in terms
of a Jacobi transform, for which the Paley–Wiener theorem has been obtained by Koornwinder
(see [14, p. 158]). As an example, we treat the special case S2 = SU(2)/SO(2) in the final section
of this paper. In this case, the theorem of Koornwinder is due to Beurling (unpublished, see [14]).

If the symmetric space is of even multiplicity type, the local Paley–Wiener theorem has been
achieved by Branson, Ólafsson and Pasquale (see [4]) by application of a holomorphic version
of Opdam’s differential shift operators (developed in [16,17]). The method is strongly dependent
on the assumption that the multiplicities are even. The theorem of Gonzalez is a particular case.

Finally, the theorem was obtained recently by Camporesi for the complex Grassmann mani-
folds by reduction to the rank one case, see [6].

We shall now give a brief outline of the paper. In Sections 2 and 3 we introduce the basic no-
tations. In Section 4 we define the relevant Paley–Wiener space and state the main theorem, that
the Fourier transform is bijective onto this space. The proof, that it maps into the space is given
in Section 6. Here we rely on work of Opdam [17]. The theorem of Gonzalez, mentioned above,
is recalled in Section 8, and the central argument of the present paper, establishing surjectivity,
is given in the following Sections 9–11. An important ingredient is a result of Rais from [18],
which has previously been applied in similar situations by Clozel and Delorme [7, Lemma 7],
and by Flensted-Jensen [9, p. 30]. Finally, in Section 12 we treat S2 as an example.
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The result of [4] has been generalized to the Jacobi transform associated to a root system with
a multiplicity function which is even, but not necessarily related to a symmetric space (see [5]).
For the method of the present paper the geometry of the symmetric space is crucial, especially in
Lemma 9.3, and we do not see how to generalize in this direction.

2. Basic notation

Let M be a Riemannian symmetric space of the compact type. We can write M as a homo-
geneous space M = U/K , where U is a connected compact semisimple Lie group which acts
isometrically on M , and K a closed subgroup with the property that Uθ

0 ⊂ K ⊂ Uθ for an invo-
lution θ of U . Here Uθ denotes the subgroup of θ -fixed points, and Uθ

0 its identity component. It
should be emphasized that the pair (U,K) is in general not uniquely determined by M (see [13,
Chapter VII]).

Let u denote the Lie algebra of U . We denote the involution of u corresponding to θ by the
same symbol. Let u = k⊕q be the corresponding Cartan decomposition, then k is the Lie algebra
of K , and q can be identified with the tangent space ToM , where o = eK ∈ M is the origin.

Recalling that the Killing form B(X,Y ) on u is negative definite, let 〈·,·〉 be the inner product
on u defined by 〈X,Y 〉 = −B(X,Y ). Then k and q are orthogonal subspaces. We assume that the
Riemannian metric g of M is normalized such that it agrees with 〈·,·〉 on q = ToM .

We denote by exp the exponential map u → U (which is surjective), and by Exp the map
q → M given by Exp(X) = exp(X) · o. By identification of q with the tangent space ToM , we
thus identify Exp with the exponential map associated to the Riemannian connection.

The inner product on u determines an inner product on the dual space u∗ in a canonical fash-
ion. Furthermore, these inner products have complex bilinear extensions to the complexifications
uC and u∗

C
. All these bilinear forms are denoted by the same symbol 〈·,·〉.

Let a ⊂ q be a maximal abelian subspace, a∗ its dual space, and a∗
C

the complexified dual
space. Let Σ denote the set of non-zero (restricted) roots of u with respect to a, then Σ ⊂ a∗

C
and

all the elements of Σ are purely imaginary on a. The multiplicity of a root α ∈ Σ is denoted mα .
The corresponding Weyl group, generated by the reflections in the roots, is denoted W . Recall
that it is naturally isomorphic with the factor group NK(a)/ZK(a) of the normalizer and the
centralizer of a in K (see [13, Corollary VII.2.13]).

3. Fourier series

Let (π,V ) be an irreducible unitary representation of U , and let

V K = {
v ∈ V

∣∣ ∀k ∈ K: π(k)v = v
}
,

then V K is either 0 or 1-dimensional. In the latter case π is said to be a K-spherical representa-
tion.

Let h ⊂ u be a Cartan subalgebra containing a, then h = hm ⊕ a, where hm = h ∩ k. Let Δ

denote the set of roots of u with respect to h, then Σ is exactly the set of non-zero restrictions
to a of elements of Δ. We fix a set Σ+ ⊂ Σ of positive restricted roots, and a compatible set
Δ+ ⊂ Δ of positive roots. The set of dominant integral linear functionals on h is

Λ+(h) =
{
λ ∈ h∗

C

∣∣∣ ∀α ∈ Δ+:
2〈λ,α〉 ∈ Z

+
}
,
〈α,α〉
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where Z
+ = {0,1,2, . . .}. Notice that since u is compact, all elements of Δ and Λ+(h) take

purely imaginary values on h.
Let Λ+(U) ⊂ h∗ denote the set of highest weights of irreducible representations of U , then

Λ+(U) ⊂ Λ+(h) with equality if and only if U is simply connected. Let Λ+
K(U) denote the

subset of Λ+(U) which corresponds to K-spherical representations. We recall the following
identification of Λ+

K(U), due to Helgason (see [12, p. 535]).

Theorem 3.1. Let λ ∈ Λ+(U). Then λ ∈ Λ+
K(U) if and only if λ|hm

= 0 and the restriction
μ = λ|a satisfies

〈μ,α〉
〈α,α〉 ∈ Z

+, (3.1)

for all α ∈ Σ+.
Furthermore, if μ ∈ a∗ satisfies (3.1) for all α ∈ Σ+, then the element λ ∈ h∗

C
defined by

λ|hm
= 0 and λ|a = μ belongs to Λ+(h). If this element λ belongs to Λ+(U), then it belongs

to Λ+
K(U).

Let Λ+(U/K) denote the set of restrictions μ = λ|a where λ ∈ Λ+
K(U), according to the

preceding theorem this set is in bijective correspondence with Λ+
K(U). For each μ ∈ Λ+(U/K)

we fix an irreducible unitary representation (πμ,Vμ) of U with highest weight λ, and we fix a
unit vector eμ ∈ V K

μ . The spherical function on U/K associated with μ is the matrix coefficient

ψμ(x) = (
πμ(x)eμ, eμ

)
, x ∈ U,

viewed as a function on U/K . It is K-invariant on both sides, and it is independent of the choice
of the unit vector eμ. The spherical Fourier transform of a continuous K-invariant function f on
M = U/K is the function f̃ on Λ+(U/K) defined by

f̃ (μ) =
∫
M

f (x)ψμ(x) dx,

where dx is the Riemannian measure on M , normalized with total measure 1. Notice that
ψμ(gK) = ψμ(g−1K) for g ∈ U , since πμ is unitary. The spherical Fourier series for f is
the series given by

∑
μ∈Λ+(U/K)

d(μ)f̃ (μ)ψμ (3.2)

where d(μ) = dimVμ. The Fourier series converges to f in L2 and, if f is smooth, absolutely
and uniformly (see [12, p. 538]).

Furthermore, f is smooth if and only if the Fourier transform f̃ is rapidly decreasing, that is,
for each k ∈ N there exists a constant Ck such that

∣∣f̃ (μ)
∣∣ � C

(
1 + ‖μ‖)−k

for all μ ∈ Λ+(U/K) (see [19]).
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4. Main theorem

For each r > 0 we denote by Br(0) the open ball in q centered at 0 and with radius r . The
exponential image ExpBr(0) is the ball in M , centered at the origin and of radius r . Let B̄r (0)

and Exp B̄r (0) denote the corresponding closed balls. We denote by C∞
r (U/K)K the space of

K-invariant smooth functions on M = U/K supported in Exp B̄r (0).
Let ρ = 1

2

∑
α∈Σ+ mαα ∈ a∗

C
.

Definition 4.1 (Paley–Wiener space). For r > 0 let PWr (a) denote the space of holomorphic
functions ϕ on a∗

C
satisfying the following:

(a) For each k ∈ N there exists a constant Ck > 0 such that

∣∣ϕ(λ)
∣∣ � Ck

(
1 + ‖λ‖)−k

er‖Reλ‖

for all λ ∈ a∗
C
.

(b) ϕ(w(λ + ρ) − ρ) = ϕ(λ) for all w ∈ W , λ ∈ a∗
C

.

We can now state the main theorem.

Theorem 4.2 (The local Paley–Wiener theorem). There exists R > 0 such that the following holds
for each 0 < r < R:

(i) Let f ∈ C∞
r (U/K)K . Then the Fourier transform f̃ :Λ+(U/K) → C of f extends to a

function in PWr (a).
(ii) Let ϕ ∈ PWr (a). There exists a unique function f ∈ C∞

r (U/K)K such that f̃ (μ) = ϕ(μ)

for all μ ∈ Λ+(U/K).
(iii) The functions in the Paley–Wiener space PWr (a) are uniquely determined by their values

on Λ+(U/K).

Thus the Fourier transform followed by the extension gives a bijection

C∞
r (U/K)K → PWr (a).

Remark 4.3. It will be seen in the proof that each of the parts (i)–(iii) is valid for explicit values of
the constant R. More precisely, part (i) is established under two conditions on R (see Section 6).
The first is that it should be at most the injectivity radius of M , that is, the supremum of the
values r for which the restriction of Exp to Br(0) is a diffeomorphism onto its image. The second
condition for part (i) is that R � π/(2‖α‖) for all α ∈ Σ . Furthermore, part (ii) will be proved
with R equal to the injectivity radius of U (see Section 8). Finally, for part (iii) we need that
R � π/‖μ‖ for all the fundamental weights μ of U/K (see Section 7). The full theorem is thus
valid with R equal to the minimum of all these numbers. There is however no reason to believe
that this minimum is the optimal value of R. It would be desirable to have the theorem with R

equal to the injectivity radius of M , but we have not been able to establish that.
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5. The invariant differential operators

Let D(U/K) denote the algebra of U -invariant differential operators on U/K . It is com-
mutative (see [12, Corollary II.5.4]). Recall that the Harish-Chandra homomorphism maps
γ : D(U/K) → S(a∗)W . It can be defined as follows. Let U(u) denote in the universal enveloping
algebra of u. The algebra D(U/K) is naturally isomorphic with the quotient U(u)K/U(u)K ∩
U(u)k, see [12, Theorem II.4.6]. It follows from [12, Theorem II.5.17] (by application to a sym-
metric pair of the non-compact type with Lie algebras g = k + iq and k), that there exists an
isomorphism of the quotient U(u)k/U(u)k ∩ U(u)k onto S(a∗)W . The Harish-Chandra map re-
sults from composition of the two, using that U(u)K ⊂ U(u)k. We shall need the following fact.

Lemma 5.1. The Harish-Chandra map γ is an isomorphism onto S(a∗)W .

Proof. Let K0 denote the identity component of K . It follows from the description of γ above,
that it suffices to prove equality between the quotients U(u)K/U(u)K ∩U(u)k and U(u)k/U(u)k ∩
U(u)k = U(u)K0/U(u)K0 ∩ U(u)k.

We shall employ [12, Corollary II.4.8], according to which the two quotients are in bijective
linear correspondence with S(q)K and S(q)K0 , respectively. It therefore suffices to prove identity
between these two spaces.

Let p ∈ S(q)K0 and let k ∈ K . By means of the Killing form we regard p as a polynomial
function on q. The claimed identity amounts to p ◦ Adk = p. Notice that p ◦ Ad k ∈ S(q)K0 ,
since k normalizes K0. According to [12, Corollary II.5.12], the elements of S(q)K0 are uniquely
determined by restriction to a. According to the lemma below, k is a product of elements from
K0 and ZK(a), and hence it follows that p ◦ Adk = p on a. �
Lemma 5.2. Each component of K contains an element from the centralizer ZK(a).

Proof. Let k ∈ K be arbitrary. Then Adk maps a to a maximal abelian subspace in q, hence
to Adk0(a) for some k0 ∈ K0. It follows that k−1

0 k normalizes a. The description of the Weyl
group cited in the end of Section 2 implies that NK(a)/ZK(a) = NK0(a)/ZK0(a), hence k−1

0 k ∈
NK0(a)ZK(a) and k ∈ K0ZK(a). �

The spherical function ψμ satisfies the joint eigenequation

Dψμ = γ (D,μ + ρ)ψμ, D ∈ D(U/K) (5.1)

(see [4, Lemma 2.5]). It follows that

(Df )∼(μ) = γ (D∗,μ + ρ)f̃ (μ)

where D∗ ∈ D(U/K) is the adjoint of D.
In particular, the Laplace–Beltrami operator L on M belongs to D(U/K), and we have

γ (L,λ) = 〈λ,λ〉 − 〈ρ,ρ〉.
Since L is self-adjoint it follows that

(Lf )∼(μ) = (〈μ + ρ,μ + ρ〉 − 〈ρ,ρ〉)f̃ (μ) (5.2)

for all f ∈ C∞(U/K)K .
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6. The estimate of Opdam

In this section we prove part (i) of Theorem 4.2. The proof is based on the following result.
Let Ω̄ be the closure of

Ω =
{
X ∈ a

∣∣∣ ∀α ∈ Σ :
∣∣α(X)

∣∣ <
π

2

}
.

Theorem 6.1 (Opdam). For each X ∈ Ω̄ the map

μ �→ ψμ(ExpX), μ ∈ Λ+(U/K),

has an analytic continuation to a∗
C

, denoted λ �→ ψλ(ExpX), with the following properties. There
exists a constant C > 0 such that

∣∣ψλ(ExpX)
∣∣ � Cemaxw∈W Rewλ(X) (6.1)

for all λ ∈ a∗
C

, X ∈ Ω̄ . Furthermore, the map X �→ ψλ(ExpX) is analytic, and

ψw(λ+ρ)−ρ(ExpX) = ψλ(ExpX) (6.2)

for all w ∈ W .

Proof. The existence of the analytic continuation follows from [17, Theorem 3.15], by identifi-
cation of ψμ(ExpX) with G(μ + ρ, k;X), where G is the function appearing there. Recall that
the root system R in [17] is 2Σ . For the shift by ρ and (6.2), see [4, Lemma 2.5]. It follows from
[17, Theorem 6.1(2)] that the analytic extension satisfies (6.1). �
Remark 6.2. An analytic extension of ψμ(ExpX) exists for X in the larger domain 2Ω . This
was proved by Faraut (see [4, p. 418]) and by Krötz and Stanton (see [15]). However, the estimate
(6.1) has not been obtained in this generality.

We can now derive Theorem 4.2(i). The following integration formula holds on M = U/K

(see [12, p. 190]), up to normalization of measures:

∫
M

f (x)dx =
∫
K

∫
A∗

f (ka · o)δ(a) da dk

where A∗ is the torus expa in U equipped with Haar measure, and where δ is defined by

δ(expH) =
∏

α∈Σ+

∣∣sin iα(H)
∣∣mα

for H ∈ a. It follows that

f̃ (μ) =
∫

f (a · o)ψμ

(
a−1 · o)

δ(a) da.
A∗
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Let R > 0 be sufficiently small, such that the restriction of exp to BR(0) is injective, then if
r < R and f is K-invariant with support inside Exp B̄r (0), it follows that

f̃ (μ) =
∫

Br(0)∩a

f (ExpH)ψμ

(
Exp(−H)

)
δ(expH)dH. (6.3)

Assume in addition that R � π/(2‖α‖) for all α ∈ Σ . Then Br(0) ∩ a ⊂ Ω for r < R, and
it follows from Theorem 6.1 that μ �→ f̃ (μ) allows an analytic continuation to a∗

C
, given by the

same formula (6.3), and denoted f̃ (λ), such that

∣∣f̃ (λ)
∣∣ � C max

a∈A∗

{∣∣f (a · o)δ(a)
∣∣}er‖Reλ‖ (6.4)

where C is a constant depending on r , but not on f . The derivation of the polynomial decay of
f̃ (λ) in (a) of Definition 4.1 is then easily obtained from the estimate (6.4), when applied to the
function Lmf with a sufficiently high power of L, by means of (5.2).

The Weyl group transformation property in part (b) of Definition 4.1 follows immediately
from (6.2). Hence we can conclude that f̃ (λ) belongs to PWr (a).

7. Uniqueness

In this section part (iii) of Theorem 4.2 is proved. The proof is based on the following simple
generalization of Carlson’s theorem (see [3, p. 153]).

Lemma 7.1. Let f : Cn → C be holomorphic. Assume:

(i) There exist a constant c < π , and for each z ∈ C
n a constant C such that

∣∣f (z + ζei)
∣∣ � Cec|ζ |

for all ζ ∈ C, i = 1, . . . , n.
(ii) f (k) = 0 for all k ∈ (Z+)n.

Then f = 0.

Proof. For n = 1 this is Carlson’s theorem. In general it follows by induction that z �→ f (z, κ)

is identically 0 on C
n−1 for each κ ∈ Z

+. By a second application of Carlson’s theorem it then
follows that f (z, ζ ) = 0 for all (z, ζ ) ∈ C

n. �
It follows that if X is sufficiently close to 0, then the analytic continuation λ �→ ψλ(ExpX) in

Theorem 6.1 is unique, when (6.1) is required. More precisely, let μ1, . . . ,μn ∈ a∗
C

be such that
Λ+(U/K) = Z

+μ1 + · · · + Z
+μn. If U is simply connected the elements μ1, . . . ,μn ∈ a∗

C
are

the fundamental weights determined by

〈μi,αj 〉 = δij
〈αj ,αj 〉
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where α1, . . . , αn is a basis for the inmultipliable roots of Σ+. If U is not simply connected, the
μi are suitable integral multiples of the fundamental weights, in order that they correspond to
representations of U . If ‖X‖ < π/‖μi‖ for all i the uniqueness of the analytic continuation now
follows by application of Lemma 7.1 to the function z �→ f (z1μ1 + · · · + znμn).

In the same fashion, if R � π/‖μi‖ for all i, it follows from Lemma 7.1 that for r < R the
elements ϕ ∈ PWr (a) are uniquely determined on Λ+(U/K), as claimed in Theorem 4.2(iii).

Notice that the minimal value of π/‖μi‖ can be strictly smaller than the injectivity radius of
U/K . See Remark 4.3.

8. The theorem of Gonzalez

In this section we treat the special case, where the symmetric space is the compact semisimple
Lie group U itself, viewed as a symmetric space for the product group U × U with the action
given by (g,h) · x = gxh−1. The stabilizer at e is the diagonal subgroup Δ = {(x, x) | x ∈ U}
in U × U , and the corresponding involution of U × U is (x, y) �→ (y, x). The Δ-invariant
functions on U are the class functions (also called central functions), that is, those for which
f (uxu−1) = f (x) for all u,x ∈ U . In this case the local Paley–Wiener theorem was obtained by
Gonzalez [11]. Let us recall his result.

As before, we denote by h a Cartan subalgebra of u, and by Λ+(h) ⊂ ih∗ the set of dominant
integral linear functionals. For μ ∈ Λ+(U) we denote by χμ the character of πμ, that is, χμ(x)

is the trace of πμ(x) for x ∈ U . The function d(μ)−1χμ is normalized so that its value at e is 1,
and when U is viewed as a symmetric space, this class function is exactly the spherical function
associated with πμ. It is however more convenient to use the unnormalized function χμ in the
definition of the Fourier transform, since it is a unit vector in L2 (with the normalized Haar
measure on U ).

Following custom, we thus define the Fourier transform by

F̂ (μ) = 〈F,χμ〉 =
∫
U

F(u)χμ(u)du, μ ∈ Λ+(U),

for class functions F ∈ L2(U)U . The corresponding Fourier series is given by

∑
μ∈Λ+(U)

F̂ (μ)χμ(x). (8.1)

It converges to F in L2. If F is smooth it also converges absolutely and uniformly (see [12,
p. 534]).

The theorem of Gonzalez [11] now reads as follows. Let R > 0 be the injectivity radius of U .
If U is simply connected, this means that R = 2π/‖α‖ where α is the longest root in Δ (see
[13, p. 318]).

Theorem 8.1 (Gonzalez). Let a class function F ∈ C∞(U)U be given, and let 0 < r < R. Then
F belongs to C∞

r (U)U if and only if the Fourier transform μ �→ F̂ (μ) extends to a holomorphic
function Φ on h∗ with the following properties:
C
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(a) For each k ∈ N there exists a constant Ck > 0 such that
∣∣Φ(λ)

∣∣ � Ck

(
1 + ‖λ‖)−k

er‖Reλ‖

for all λ ∈ h∗
C
.

(b) Φ(w(λ + ρ) − ρ) = det(w)Φ(λ) for all w ∈ W , λ ∈ h∗
C

.

Notice that as before the extension Φ is unique if r is sufficiently small. In that case, the
Fourier transform, followed by holomorphic extension, is then a bijection onto the space of holo-
morphic functions satisfying (a) and (b).

9. Construction of K-invariant functions

The following result is important for the proof of Theorem 4.2.

Lemma 9.1. Let F ∈ C∞(U)U and define f :U → C by

f (u) =
∫
K

F(ku)dk =
∫
K

F(uk)dk.

Then f ∈ C∞(U/K)K and

d(μ)f̃ (μ) = F̂ (λ) (9.1)

for all μ ∈ Λ+(U/K), where λ ∈ h∗
C

is the extension of μ determined by

λ|a = μ, λ|hm
= 0.

Proof. The fact that f ∈ C∞(U/K)K is clear. From the uniform convergence of the Fourier
series (8.1) it follows that

f (u) =
∑

λ∈Λ+(U)

F̂ (λ)

∫
K

χλ(uk)dk.

By the lemma below we then obtain

f (u) =
∑

μ∈Λ+(U/K)

F̂ (λ)ψμ(u)

where λ is the extension of μ as above. The statement (9.1) now follows by comparison
with (3.2). �
Lemma 9.2. Let λ ∈ Λ+(U) and μ = λ|a. If λ ∈ Λ+

K(U) then
∫
K

χλ(uk)dk = ψμ(u)

for all u ∈ U , and otherwise
∫

χλ(uk)dk = 0.

K
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Proof. (See also [12, p. 417].) The function u �→ ∫
K

χλ(uk)dk is a K-fixed vector in the right
representation generated by χλ, which is equivalent with πλ, hence it vanishes if λ /∈ Λ+

K(U).
Assume λ ∈ Λ+

K(U), and choose an orthonormal basis v1, . . . , vd for the representation
space V , such that v1 is K-fixed. Then

∫
K

χλ(uk)dk =
∫
K

d∑
i=1

〈
πλ(u)πλ(k)vi, vi

〉
dk.

Since the operator
∫
K

πλ(k) dk is the orthogonal projection onto V K , it follows that

∫
K

χλ(uk)dk = 〈
πλ(u)v1, v1

〉 = ψμ(u)

as claimed. �
Lemma 9.3. Let F ∈ C∞(U)U and f :U/K → C be as above. If F ∈ C∞

r (U)U for some r > 0
then f ∈ C∞

r (U/K)K .

Proof. Let x ∈ M with f (x) �= 0 and choose X ∈ q such that the curve on M given by t �→
γ (t) = Exp(tX) where t ∈ [0,1], is a minimal geodesic from o to x. The length of γ is ‖X‖.

Let x = u · o where u ∈ U , then there exists k ∈ K such that F(ku) �= 0. Hence ku = expY

where Y ∈ u with ‖Y‖ < r . Let Z = Ad(k−1)Y , then ‖Z‖ = ‖Y‖ < r . The smooth curve ξ(t) =
exp(tZ) · o, where t ∈ [0,1], also joins o to x. Hence it has length �(ξ) � ‖X‖.

Let Lu denote left translation by u, then ξ ′(t) = dLexp(tY )(ξ
′(0)), and hence ‖ξ ′(t)‖ =

‖ξ ′(0)‖ for all t . Let Zq denote the q component of Z in the orthogonal decomposition u = k+q.
Then ξ ′(0) = Zq, and we conclude that

‖X‖ � �(ξ) =
1∫

0

∥∥ξ ′(t)
∥∥dt = ‖Zq‖ � ‖Z‖ = ‖Y‖ < r.

Thus f has support in Exp B̄r (0). �
10. The result of Rais

The following result is due to M. Rais. Let r > 0 and recall that a holomorphic function ϕ

on h∗
C

is said to be of exponential type r if it satisfies (a) of Theorem 8.1. Let W̃ denote the
Weyl group of the root system Δ on h. Let l = |W̃ |, and let P1, . . . ,Pl be a basis for S(h∗) over
I (h∗) = S(h∗)W̃ (see [12, p. 360]).

Theorem 10.1. For each holomorphic function ψ of exponential type r there exist unique
W̃ -invariant holomorphic functions φ1, . . . , φl of exponential type r such that ψ = P1φ1 +
· · · + Plφl .
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Proof. See [8, Appendix B]. �
In the following statement, we regard a∗ as a subset of h∗, by trivial extension on hm. Like-

wise h∗
m is regarded as a subspace by trivial extension on a. Then h∗ = a∗ ⊕ h∗

m holds as an
orthogonal sum decomposition.

Corollary 10.2. There exist a collection of polynomials p1, . . . , pl ∈ S(a∗)W with the following
property. For each W -invariant holomorphic function ϕ on a∗

C
of exponential type r , there exist

W̃ -invariant holomorphic functions φ1, . . . , φl on h∗
C

of exponential type r , such that

ϕ = p1(φ1|a∗
C
) + · · · + pl(φl |a∗

C
). (10.1)

Proof. (See also [9, p. 30].) Notice that when φj is W̃ -invariant, then φj |a∗ is W -invariant, since
the normalizer in W̃ of a maps surjectively onto W (see [12, p. 366]).

Fix a holomorphic function ϕm on h∗
mC

of exponential type r , with the value ϕm(0) = 1.
Put ψ(λ) = ϕ(λ1)ϕm(λ2), where λ1 and λ2 are the components of λ. Then ψ is of exponential
type r , and we can apply Theorem 10.1. The restriction of ψ to a∗ is exactly ϕ. Taking restrictions
to a∗ we thus obtain (10.1) with pj = Pj |a∗ . The desired expression is obtained by averaging
over W . �
11. Proof of the main theorem

It remains to be seen that every function ϕ ∈ PWr (a) is the extension of f̃ for some f ∈
C∞(U/K)K .

Thus let ϕ ∈ PWr (a) be given. Let p1, . . . , pl and φ1, . . . , φl be as in Corollary 10.2, applied
to the W -invariant function λ �→ ϕ(λ − ρ) on a∗. By Lemma 5.1 there exist Dj ∈ D(U/K) such
that γ (D∗

j , λ) = pj (λ) for λ ∈ ia∗.
It follows from the Weyl dimension formula [12, p. 502] that μ �→ d(μ) extends to a polyno-

mial on h∗ which satisfies the transformation property (b) of Theorem 8.1. Hence the function
on h∗

C
defined by Φj(λ) = d(λ)φj (λ + ρ) satisfies both (a) and (b) in that theorem, and thus we

can find F1, . . . ,Fn ∈ C∞
r (U)U such that

F̂j (μ) = Φj(μ)

for all μ.
Let fj (uK) = ∫

K
Fj (uk)dk and define f = ∑

Djfj . Then by Lemma 9.3 we have f ∈
C∞

r (U/K)K , and it follows from (9.1) that

f̃ (μ) =
∑
j

γ (Dj ,μ + ρ)f̃j (μ)

=
∑
j

γ (Dj ,μ + ρ)d(μ)−1F̂j (μ)

=
∑
j

pj (μ + ρ)φj (μ + ρ) = ϕ(μ). �
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12. The sphere S2

Let M = S2 = {(x, y, z) ∈ R
3 | x2 + y2 + z2 = 1}, then M can be realized as a homogeneous

space for U = SU(2) with the following action. Identify R
3 with the space of Hermitian 2 × 2

matrices H with trace 0,

H =
(

z x + iy

x − iy −z

)
,

then u.H = uHu−1 for u ∈ U . The stabilizer of the point o = (0,0,1) ∈ S2 is the set of diagonal
elements in U , and the diagonal element

kθ =
(

eiθ/2 0
0 e−iθ/2

)

acts by rotation around the z-axis of angle θ .
A K-invariant function on M is determined by its values along the elements (x, y, z) =

(0, sin t, cos t), and it thus becomes identified as an even function of t ∈ [−π,π]. With the nota-
tion of above, the function is identified through the map t �→ f (at · o) where

at =
(

cos(t/2) i sin(t/2)

i sin(t/2) cos(t/2)

)
.

The irreducible representations of U are parametrized by half integers l = 0, 1
2 ,1, 3

2 , . . . ,

where πl has dimension 2l + 1, and the spherical representations are those for which l is an
integer. The corresponding spherical functions are given by ψl(at ) = Pl(cos t), where Pl is the
lth Legendre polynomial.

The Fourier series of a K-invariant function on S2, identified as an even function on [−π,π],
is then the Fourier–Legendre series

∞∑
l=0

(2l + 1)f̃ (l)Pl(cos t)

where

f̃ (l) = 1

2

π∫
0

f (t)Pl(cos t) sin t dt.

Our local Paley–Wiener theorem asserts the following for r < π :

An even function f ∈ C∞(−π,π) is supported in [−r, r] if and only if the Legendre transform
l �→ f̃ (l) of f extends to an entire function g on C of exponential type

∣∣g(λ)
∣∣ � Ck

(
1 + |λ|)−k

er| Imλ|

such that g(λ − 1 ) is an even function of λ. The extension g with these properties is unique.
2
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Moreover, every such function g on C is obtained in this fashion from a unique function
f ∈ C∞

r (−π,π).

Essentially this is the result stated by Koornwinder (and attributed to Beurling) in [14, p. 158].
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