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Abstract

The notion of simple compact quantum group is introduced. As non-trivial (noncommutative and nonco-
commutative) examples, the following families of compact quantum groups are shown to be simple: (a) The
universal quantum groups Bu(Q) for Q ∈ GL(n,C) satisfying QQ̄ = ±In, n � 2; (b) The quantum auto-
morphism groups Aaut(B, τ ) of finite-dimensional C∗-algebras B endowed with the canonical trace τ when
dim(B) � 4, including the quantum permutation groups Aaut(Xn) on n points (n � 4); (c) The standard de-
formations Kq of simple compact Lie groups K and their twists Ku

q , as well as Rieffel’s deformation KJ .
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The theory of quantum groups saw spectacular breakthroughs in the 1980s when on the one
hand Drinfeld [24] and Jimbo [27] discovered the quantized universal enveloping algebras of
semisimple Lie algebras based on the work of the Faddeev school on the quantum inverse scat-
tering method, and on the other hand Woronowicz [58–60] independently discovered quantum
deformations of compact Lie groups and formulated the axioms for compact quantum groups.
Further work of Rosso [38,40], Soibelman and Vaksman, Levendorskii [30,43,44] showed that
“compact real forms” Kq of the Drinfeld–Jimbo quantum groups and their twists Ku

q are exam-
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ples of compact quantum groups in the sense of Woronowicz. Most notable of these is the work
of Soibelman [43] based on his earlier joint work with Vaksman [44], in which a general Kir-
illov type orbit theory of representations of the quantum function algebras of deformed simple
compact Lie groups was developed using the orbits of dressing transformations (i.e. symplectic
leaves) in Poisson Lie group theory (see also the monograph [29] for more detailed treatment).

Starting in his PhD thesis [48], the author of the present article took a different direction from
the above by viewing quantum groups as intrinsic objects and found in a series of papers (in-
cluding [47] in collaboration with Van Daele) several classes of compact quantum groups that
cannot be obtained as deformations of Lie groups. The most important of these are the universal
compact quantum groups of Kac type Au(n) and their self-conjugate counterpart Ao(n) [49],
the more general universal compact quantum groups Au(Q) and their self-conjugate counter-
part Bu(Q) [47,50], where Q ∈ GL(n,C), and the quantum automorphism groups Aaut(B, tr) of
finite-dimensional C∗-algebras B endowed with a tracial functional tr, including the quantum
permutation groups Aaut(Xn) on the space Xn of n points [53]. Further studies of these quantum
groups reveal remarkable properties: (1) According to deep work of Banica [2–4], the representa-
tion rings (also called the fusion rings) of the quantum groups Bu(Q) (when QQ̄ is a scalar) are
all isomorphic to that of SU(2) (see [2, Théorème 1]), and the representation rings of Aaut(B, τ)

(when dim(B) � 4, τ being the canonical trace on B) are all isomorphic to that of SO(3) (see
[4, Theorem 4.1]), and the representation ring of Au(Q) is almost a free product of two copies
of Z (see [3, Théorème 1]); (2) The compact quantum groups Au(Q) admit ergodic actions on
both finite and infinite injective von Neumann factors [54]; (3) The special Au(Q)’s for positive
Q and Bu(Q)’s for Q satisfying the property QQ̄ = ±In are classified up to isomorphism us-
ing respectively the eigenvalues of Q (see [56, Theorem 1.1]) and polar decomposition of Q and
eigenvalues of |Q| (see [56, Theorem 2.4]), and the general Au(Q)’s and Bu(Q)’s for arbitrary Q

have explicit decompositions as free products of the former special ones (see [56, Theorems 3.1,
3.3 and Corollaries 3.2, 3.4]); (4) Certain quantum symmetry groups in the theory of subfactors
were found by Banica [6,7] to fit in the theory of compact quantum groups; (5) The quantum per-
mutation groups Aaut(Xn) admit interesting quantum subgroups that appear in connection with
other areas of mathematics, such as the quantum automorphism groups of finite graphs and the
free wreath products discovered by Bichon [15,16]. See also [17] and [8–14] and the references
therein for other interesting results related to the quantum permutation groups.

The purpose of this article is to initiate a study of simple compact quantum groups. It focuses
on the introduction of a notion of simple compact quantum groups and first examples. It is shown
that the compact quantum groups mentioned in the last two paragraphs are simple in generic
cases. The paper is organized as follows.

In Section 2, we recall the notion of a normal quantum subgroup N of a compact quantum
group G introduced in [48,49], on which the main notion of a simple compact quantum group
in this paper depends. We prove several equivalent conditions for N to be normal, including one
that stipulates that the quantum coset spaces G/N and N\G are identical. Further applications
of these are contained in [57].

In Section 3 the notion of simple compact quantum groups is introduced. In the classical
setting, the notion of a simple compact Lie group can be defined in two ways: one using Lie
algebra and the other using the group itself. Though the universal enveloping algebras of simple
Lie groups can be deformed into the quantized universal enveloping algebras [24,27], we have no
analog of Lie algebras for general quantum groups. Hence we formulate the notion of a simple
compact quantum group using group theoretical language so that our notion reduces precisely to
the notion of a simple compact Lie group when the quantum group is a compact Lie group:
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Definition 1.1. A compact matrix quantum group is called simple if it is connected and has no
non-trivial connected normal quantum subgroups and no non-trivial representations of dimension
one.

Here a compact quantum group G is called connected if the coefficients of every non-trivial
irreducible representation of G generate an infinite-dimensional C∗-algebra. In the classical sit-
uation, the fact that a simple compact Lie group has no non-trivial representations of dimension
one is a consequence of the deep Weyl dimension formula. It is not known if the postulate that
a simple compact matrix quantum group has no non-trivial representations of dimension one
follows from the other postulates in the definition, for we do not have a dimension formula for
irreducible representations of a general simple compact quantum group except the specific ex-
amples studied in this paper.

After preparatory work in Sections 2 and 3, the main examples of this paper are studied in
Sections 4 and 5. Recall [4] that the canonical trace τ on a finite-dimensional C∗-algebra B is
the restriction of the unique tracial state on the algebra L(B) of operators on B . In Section 4, we
prove that Bu(Q) and Aaut(B, τ) are simple:

Theorem 1.2. (See Theorem 4.1.) Let Q ∈ GL(n,C) be such that QQ̄ = ±In and n � 2. Then
Bu(Q) is a simple compact quantum group.

Theorem 1.3. (See Theorem 4.7.) Let B be a finite-dimensional C∗-algebra with dim(B) � 4
and τ its canonical trace. Then Aaut(B, τ) is a simple compact quantum group.

The proofs of these two results rely heavily on the fundamental work of Banica [2,4] on
the structure of fusion rings (i.e. representative rings) of these quantum groups, as well as the
technical results on the correspondence between Hopf ∗-ideals and Woronowicz C∗-ideals and
the reconstruction of a normal quantum subgroup from the identity in the quotient quantum
group, which are developed in Section 4 and are of interest in their own right.

It is also shown in Section 4 that the closely related quantum group Au(Q) is not simple for
any n and any Q ∈ GL(n,C) (see Proposition 4.5).

The last Section 5 is devoted to the standard deformations Kq of simple compact Lie groups,
their twists Ku

q [30,31,43], and Rieffel’s quantum groups KJ [37], where q ∈ R\ {0}, u ∈ ∧2
(it)

and J is an appropriate skew-symmetric transformation on the direct sum t ⊕ t of Cartan subal-
gebra t of the Lie algebra of K :

Theorem 1.4. (See Theorems 5.1 and 5.6.) Let K be a connected and simply connected simple
compact Lie group. Then both Kq and its twists Ku

q are simple compact quantum groups.

Theorem 1.5. (See Theorem 5.4.) Let K be a simple compact Lie group with a toral subgroup T

of rank at least two. Then KJ is a simple compact quantum group.

The proofs of Theorems 1.4 and 1.5 make use of the work of Lusztig and Rosso [32,39] on
representations of quantized universal enveloping algebras, the work of Soibelman and Leven-
dorskii [30,31,43] on quantum function algebras of Kq and Ku

q , and the work of Rieffel [37] and
the author [51] on strict deformations of Lie groups and quantum groups, as well as the technical
results in Section 4 mentioned earlier.
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Classification of simple compact quantum groups and their irreducible representations up to
isomorphism are two of the main goals in the study of compact quantum groups. Namely, one
would like to develop a theory of simple compact quantum groups that parallels the Killing–
Cartan theory and the Cartan–Weyl theory for simple compact Lie groups. To accomplish the
first goal, one must first construct all simple compact quantum groups. Though we have given
several infinite classes of examples of these in this article, it should be pointed out that the
construction of simple compact quantum groups is far from being complete. In fact it is fair to
say that we are only at the beginning stage for this task at the moment. One indication of this is
that all the simple compact quantum groups known so far have commutative representation rings,
and these rings are order isomorphic to the representation rings of compact Lie groups (we call
such quantum groups almost classical ). The universal compact matrix quantum groups Au(Q)

have a “very” noncommutative representation ring, being close to the free product of two copies
of the ring of integers, according to the fundamental work of Banica [3], where Q ∈ GL(n,C) are
positive, n � 2. However, Au(Q) are not simple quantum groups (see Section 4). Because of their
universal property, Au(Q) should play an important role in the construction and classification
of simple compact quantum groups with non-commutative representation rings. A natural and
profitable approach seems to be to study quantum automorphism groups of appropriate quantum
spaces and their quantum subgroups, such as those in [53–55] and the papers of Banica and
Bichon and their collaborators [6]–[17]. In retrospect, both simple Lie groups and finite simple
groups are automorphism groups, a similar approach for the theory of simple quantum groups
should also play a fundamental role.

Convention and notation. We assume that all Woronowicz C∗-algebras (also called Woronow-
icz Hopf C∗-algebras) considered in this paper to be full unless otherwise explicitly stated, since
morphisms between quantum groups are meaningful only for full Woronowicz C∗-algebras (cf.
[49,52]). For a compact quantum group G, AG, or C(G), denote the underlying Woronowicz
C∗-algebra and AG denotes the associated canonical dense Hopf ∗-algebra of quantum repre-
sentative functions on G. Sometimes we also call AG a compact quantum group, referring to G.
See [49,59] for more on other unexplained definitions and notations used in this paper.

2. The notion of normal quantum subgroups

Before making the notion of simple quantum groups precise, we recall the notion of normal
quantum subgroups (of compact quantum groups) introduced in [48,49] and study their proper-
ties further. Let (N,π) be a quantum subgroup of a compact quantum group G with surjections
π : AG → AN and π̂ : AG → AN . The quantum group (N,π) should be more precisely called
a closed quantum subgroup, but we will omit the word closed in this paper, since we do not
consider non-closed quantum subgroups. Define

AG/N = {
a ∈ AG

∣∣ (id ⊗ π)�(a) = a ⊗ 1N

}
,

AN\G = {
a ∈ AG

∣∣ (π ⊗ id)�(a) = 1N ⊗ a
}
,

where � is the coproduct on AG, 1N is the unit of the algebra AN . We omit the subscript N in
1N when no confusion arises. Similarly, we define

AG/N = AG ∩ AG/N, and AN\G = AG ∩ AN\G.
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Note that G/N, N\G shall be denoted more precisely by G/(N,π), (N,π)\G respectively, if
there is a possible confusion. Let hN be the Haar measure on N . Let

EG/N = (id ⊗ hNπ)�, EN\G = (hNπ ⊗ id)�.

Then EG/N and EN\G are projections of norm one (completely positive and completely bounded
conditional expectations) from AG onto AN\G and AG/N respectively (cf. [34] as well as [54,
Proposition 2.3 and Section 6]), and

AG/N = EG/N(AG), and AN\G = EN\G(AG).

From this, we see that the ∗-subalgebras AN\G and AG/N are dense in AG/N and AN\G respec-
tively.

Assume N is a closed subgroup of an ordinary compact group G. Let π be the restriction mor-
phism from AG := C(G) to AN := C(N). Let C(G/N) and C(N\G) be continuous functions
on G/N and N\G respectively. Then one can verify that

C(G/N) = AG/N = EG/N(AG),

C(N\G) = AN\G = EN\G(AG).

Therefore we will use the symbols C(G/N) and AG/N (respectively C(N\G) and AN\G; C(G)

and AG) interchangeably for all quantum groups.

Proposition 2.1. Let N be a quantum subgroup of a compact quantum group G. Then the fol-
lowing conditions are equivalent:

(1) AN\G is a Woronowicz C∗-subalgebra of AG.
(2) AG/N is a Woronowicz C∗-subalgebra of AG.
(3) AG/N = AN\G.
(4) For every irreducible representation uλ of G, either hNπ(uλ) = Idλ or hNπ(uλ) = 0, where

hN is the Haar measure on N , dλ is the dimension of uλ and Idλ is the dλ × dλ identity
matrix.

Proof. We only need to show that (1) ⇔ (4) ⇔ (3). The proof of the implications (2) ⇔ (4) ⇔
(3) is similar.

(3) ⇒ (4). In general one has

�(AN\G) ⊆ AN\G ⊗ AG, �(AG/N) ⊆ AG ⊗ AG/N .

Letting B = AN\G = AG/N one has

�(B) ⊆ B ⊗ B.

For λ ∈ Ĝ, let nλ be the multiplicity of the trivial representation of N in the representation π(uλ).
We claim that either nλ = dλ or nλ = 0.

Assume on the contrary that there is a λ ∈ Ĝ such that 1 < nλ < dλ. Note that in general
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EN\G
(
uλ

ij

) = (hNπ ⊗ id)�
(
uλ

ij

) =
∑

k

hNπ
(
uλ

ik

)
uλ

kj ,

EG/N

(
uλ

ij

) = (id ⊗ hNπ)�
(
uλ

ij

) =
∑

k

hNπ
(
uλ

kj

)
uλ

ik.

Using unitary equivalence if necessary we choose uλ
ij in such a way that the nλ trivial represen-

tations of N appear on the upper left diagonal corner of π(uλ). Then

EN\G
(
uλ

ij

) =
{

uλ
ij if 1 � i � nλ, 1 � j � dλ,

0 if nλ < i � dλ, 1 � j � dλ,

EG/N

(
uλ

ij

) =
{

uλ
ij if 1 � i � dλ, 1 � j � nλ,

0 if 1 � i � dλ, nλ < j � dλ.

Since AN\G = AG/N = B and both EN\G and EG/N are projections from AG onto B, we
have

EN\G = EG/N .

Then for nλ < j � dλ,

0 �= uλ
ij = EN\G

(
uλ

ij

) = EG/N

(
uλ

ij

) = 0.

This is a contradiction.
(4) ⇒ (3). Let S(N) (or S(N,π)) be the subset of Ĝ consisting of those λ’s such that hNπ(uλ)

is Idλ . Then a straightforward calculation using the fact that EN\G and EG/N are projections of
AG onto AN\G and AG/N respectively, one gets

AN\G = AG/N =
⊕{

Cuλ
ij

∣∣ λ ∈ S(N), i, j = 1, . . . , dλ

}
.

(4) ⇒ (1). Let S(N) be defined as in the proof of (4)⇒(3). It is clear that AN\G is a Woronow-
icz C∗-subalgebra of AG and that

{
uλ

ij

∣∣ λ ∈ S(N), i, j = 1, . . . , dλ

}
is a Peter–Weyl basis of the dense ∗-subalgebra AN\G of AN\G.

(1) ⇒ (4). Let G1 = N\G. Then by Woronowicz’s Peter–Weyl theorem for compact quantum
groups, every irreducible representation uλ of G is either an irreducible representation of G1 or
none of the coefficients uλ

ij is in AG1 . That is

EN\G
(
uλ

ij

) =
{

uλ
ij if λ ∈ Ĝ1,

0 if λ ∈ Ĝ \ Ĝ1.

By the definition of EN\G and linear independence of the uλ ’s, this implies that
ij
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.

hNπ
(
uλ

ik

) = δik, λ ∈ Ĝ1, i, k = 1, . . . , dλ,

hNπ
(
uλ

ik

) = 0, λ ∈ Ĝ \ Ĝ1.

This completes the proof of the proposition. �
Definition 2.2. A quantum subgroup N of a compact quantum group G is said to be normal if it
satisfies the equivalent conditions of Proposition 2.1.

Remarks. (a) Condition (4) of Proposition 2.1 plays an important role in this paper. It is a refor-
mulation of the following condition for a normal quantum subgroup N that appears near the end
of [49, Section 2]: for every irreducible representation v of G, the multiplicity of the trivial rep-
resentation of N in the representation π(v) is either zero or the dimension of v. From the proof
of the proposition we see that the counit of AG/N is equal to the restriction morphism π |AG/N

.
(b) Note also that on p. 679 of [49] the following statement is found: “In general, a right quo-

tient quantum group is different from the corresponding left quotient quantum group.” Though
in the purely algebraic setting of Hopf algebras, one needs to distinguish between left and right
normal quantum subgroups, as indicated in Parshall and Wang [33, 1.5] (see also [1,42,46]),
however, in view of Proposition 2.1 above, this cannot happen for normal quantum subgroups
of compact quantum groups. Moreover, using Lemmas 4.2–4.4 below, it can be shown that the
notion of normality defined in [33] when applied to compact quantum groups is equivalent to our
notion of normality. As the main results of this paper do not depend on this equivalence, its proof
and other applications are in [57].

(c) The notion of a normal quantum subgroup depends on the morphism π , which gives the
“position” of the quantum group N in G. If (N,π1) is another quantum subgroup of G with sur-
jection π1 : AG → AN , (N,π1) may not be normal even if (N,π) is. This phenomenon already
occurs in the group situation. For example a finite group can contain two isomorphic subgroups
with one normal but the other not.

Examples. We show in (1) and (2) below that the identity group and the full quantum group G

are both normal quantum subgroups of G under natural embeddings. These will be called the
trivial normal quantum subgroups. See Sections 4, 5 and [57] for examples of non-trivial normal
quantum subgroups.

(1) Let N = {e} be the one element identity group. Let π = ε = counit of AG be the morphism
from AG to AN . Then by the counital property, one has

AG/N = {
a ∈ AG

∣∣ (id ⊗ ε)�(a) = a ⊗ 1
} = AG.

That is ({e}, ε) is normal and G/({e}, ε) = G.
(2) Now let N = G and let π : AG → AN be any isomorphism of Woronowicz C∗-algebras [49]

Let h be the Haar measure on G and a ∈ AG/N . Since π is an isomorphism and (id ⊗ π)�(a) =
a ⊗ 1, one has �(a) = (id ⊗ π)−1(a ⊗ 1) = a ⊗ 1. From the invariance of h one has

h(a)1 = (1 ⊗ h)�(a) = ah(1) = a.

Hence

AG/N = {
a ∈ AG

∣∣ (id ⊗ π)�(a) = a ⊗ 1
} = C1.
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That is (G,π) is normal and G/(G,π) ∼= {e}.
(3) We note that besides the embeddings in (2) it is possible to construct examples of compact

quantum groups G with non-normal proper embeddings of G into G. In fact this can happen for
compact groups already.

The following is a justification of the above notion of normal quantum subgroups.

Proposition 2.3. Let A = C(G) be a compact group. Let N be a closed subgroup of G. Let π be
the restriction map from A to AN = C(N). Then (N,π) is normal in the sense above if and only
if N is a normal subgroup of G in the usual sense.

Proof. Under the Gelfand–Naimark correspondence which associates to every commutative C∗-
algebra its spectrum, quotients of G by (ordinary) closed normal subgroups N correspond to
Woronowicz C∗-subalgebras of C(G), i.e.,

G/N corresponds to C(G/N),

see [49, 2.6 and 2.12]. Since AG/N = C(G/N) for any closed subgroup N , the proposition
follows from Proposition 2.1 above. �

The following result gives a complete description of quantum normal subgroups of the com-
pact quantum group dual of a discrete group Γ , whose proof is straightforward using e.g. [59]
and Proposition 2.1.

Proposition 2.4. Let AG = C∗(Γ ). Let N be a quantum subgroup of G with surjection
π :AG → AN . Then N is normal, L := π(Γ ) is a discrete group and AN = C∗(L). Moreover,
AG/N = C∗(K), where K = ker(π : Γ → L).

To distinguish two different quantum subgroups, we include the following result, which
should be known to experts in the theory of C∗-algebras.

Proposition 2.5. Let πk : A → Ak be surjections of unital C∗-algebras with kernels Ik (k = 1,2).
Let Pk be the pure state space of Ak . Then the following conditions are equivalent:

(1) {φ1 ◦ π1 | φ1 ∈ P1} = {φ2 ◦ π2 | φ2 ∈ P2} as subsets of pure states of A.
(2) I1 = I2.
(3) There is an isomorphism α : A1 → A2 such that π2 = α ◦ π1.

Proof. (1) ⇒ (2). If I1 �= I2, say, there is an x ∈ I1 \ I2. Then there is a pure state φ of A/I2
such that φ(π2(x)) �= 0, where we identify A2 with A/I2. But φπ2 is a pure state of A/I1 ∼= A1
according to assumption (1). Hence we must have φπ2(x) = 0. This is a contradiction.

(2) ⇒ (3). Let I = I1 = I2. Let π be the quotient map A → A/I . Let π̃k be the homo-
morphism from A/I to Ak such that πk = π̃kπ (k = 1,2). Then π̃k are isomorphisms. Put
α = π̃2 ◦ π̃−1

1 . Then π2 = α ◦ π1.
(3) ⇒ (1). This follows from P1 = P2 ◦ α. �
The following proposition is an easy consequence of Proposition 2.1.
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Proposition 2.6. Let (N1,π1) be a normal quantum subgroup of G. Let

α : AN1 −→ AN2

be an isomorphism of quantum groups. Then (N2, απ1) is normal.

In view of the above discussions, it is reasonable to have the following definition (cf. also
remarks after Proposition 2.3).

Definition 2.7. Two quantum subgroups (π1,H1) and (π2,H2) of a quantum group G are said
to have the same imbedding in G if π1,π2 satisfy the equivalent conditions of Proposition 2.5.
When this happens, we denote (H1,π1) = (H2,π2).

Geometrically speaking, two quantum subgroups (H1,π1) and (H2,π2) of a quantum group
G are said to have the same imbedding in G if their “images” in G are the same.

3. Simple compact quantum groups

To avoid such a difficulty as the classification of finite groups up to isomorphism in developing
the theory of simple compact quantum groups, we assume connectivity as a part of the postulates
of the latter. We use representation theory to define the notion of connectivity:

Definition 3.1. We call a compact quantum group GA connected if for each non-trivial irre-
ducible representation uλ ∈ ĜA, the C∗-algebra C∗(uλ

ij ) generated by the coefficients of uλ is of
infinite dimension.

In virtue of [26, (28.21)], we have

Proposition 3.2. Let GA be an ordinary compact group (i.e. AG is commutative). Then GA is
connected as a topological space if and only if it is connected in the sense above.

Definition 3.3. We call a compact quantum group GA simple if it satisfies the following condi-
tions (1)–(4):

(1) The Woronowicz C∗-algebra AG is finitely generated;
(2) GA is connected;
(3) GA has no non-trivial connected normal quantum subgroups;
(4) GA has no non-trivial representations of dimension one.

A (simple) quantum group is called absolutely simple if it has no non-trivial normal quantum sub-
groups. Similarly a finite quantum group is called simple if it has no non-trivial normal quantum
subgroups.

Just as the notion of simple compact Lie groups excludes the torus groups, the above notion
of simple quantum groups excludes abelian compact quantum groups in the sense of Worono-
wicz [59], i.e. quantum groups coming from group C∗-algebras C∗(Γ ) of discrete groups Γ

(note that C∗(Γ ) is the algebra of continuous functions on the torus T
n when Γ is the discrete
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group Z
n). This is important because it is impossible to classify discrete groups up to isomor-

phism. However, we do not know if condition (4) in Definition 3.3 (i.e., there is no non-trivial
group-like elements) is superfluous, as is the case for simple compact Lie groups because of the
Weyl dimension formula.

As a justification of this definition, we have the following proposition that shows that our
notion of simple compact quantum groups recovers exactly the ordinary notion of simple compact
Lie groups.

Proposition 3.4. If GA is a simple compact quantum group with A commutative, then the set
G := Â of Gelfand characters is a simple compact Lie group in the ordinary sense. Conversely,
every simple compact Lie group in the ordinary sense is of this form.

The proof Proposition 3.4 follows immediately from [49, Theorem 2.8] and Proposition 3.2
above. We remark that although it is easy as above to prove the characterization of the ordinary
simple compact Lie group in terms of our notion of simple compact quantum groups when AG is
commutative, it has been highly non-trivial to prove the analogous characterization of ordinary
differential manifolds in terms of the axioms of non-commutative manifolds, which is finally
achieved in the recent work of Connes [21] (see references therein for earlier, presumably un-
successful, attempts to such a characterization).

Note that a simple compact Lie group is not a direct product of proper connected subgroups.
Also, a simple Lie group is not a semi-direct product. Similarly, the following general results are
true for quantum groups (for proofs see [57]):

Proposition 3.5. If GA is a simple compact quantum group, then AG is neither a tensor product,
nor a crossed product by a non-trivial discrete group.

To put in perspective the examples of simple compact quantum groups to be studied later, we
introduce some properties for compact quantum groups. First we recall that the representation
ring (also called the fusion ring) R(G) of a compact quantum group G is an ordered algebra over
the integers Z with positive cone (or semiring, which is also a basis) R(G)+ := {χu} consisting
of characters χu of irreducible representations u ∈ Ĝ of G, and structure constants cw

uv ∈ N ∪ {0}
given by the rules

χuχv =
∑
w∈Ĝ

cw
uvχw,

where the product χuχv is taken in the algebra AG.

Definition 3.6. Let G be a compact quantum group. We say that G has property F if each
Woronowicz C∗-subalgebra of AG is of the form AG/N for some normal quantum subgroup N

of G. We say that G has property FD if each quantum subgroup of G is normal.
We say that G is almost classical if its representation ring R(G) is order isomorphic to the

representation ring of a compact group.

By Proposition 2.3, a compact group trivially has property F . We will give in Sections 4
and 5 non-trivial simple compact quantum groups that are almost classical and have property F .
Among compact quantum groups, simple compact quantum groups that are almost classical or
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have property F are closest to ordinary simple compact Lie groups in regard to noncommutative
geometry.

By Proposition 2.4, as the dual of discrete group Γ , a compact quantum group of the form
C∗(Γ ) has property FD. When Γ is finite, C∗(Γ ) is equal to the dual of the function algebra
C(Γ ). This explains the term FD.

A compact quantum group G is absolutely simple with property F if and only if every non-
trivial representation v of G is faithful, i.e., C∗(vij ) = AG, cf. [54].

By a theorem of Handelman [25], the representation ring of a compact connected Lie group
is a complete isomorphism invariant. But this fails for compact quantum groups, since the rep-
resentation rings of a simple compact Lie group K and its standard deformation Kq are order
isomorphic.

In [5], Banica uses the positive cone R+(G) of the representation ring R(G) of a compact
quantum group G to define what he calls an R+ deformation. This is closely related to almost
classical quantum groups.

It is clear that a quantum quotient group G/N of an almost classical quantum group G is
also almost classical. But a quantum subgroup of an almost classical quantum group need not be
almost classical. For example, the quantum permutation groups are almost classical (cf. [4,53]
and remarks preceding Theorem 4.7), but according to Bichon [16], their quantum subgroups
A2(Z/mZ) are not almost classical if m � 3 (see Corollary 2.7 and the paragraph following
Corollary 4.3 of [16]). However, for a compact quantum group with property F , we have the
following general result.

Theorem 3.7. Let G be a compact quantum group with property F . Then its quantum subgroups
and quotient groups G/N (by normal quantum subgroups N ) also have property F .

As we will only use the definitions of quantum groups with property F (respectively prop-
erty FD) but not the assertion in the theorem above, the details for the proof of the theorem is
included in a separate paper [57].

The main goals/problems in the theory of simple compact quantum groups are: (1) to construct
and classify (up to isomorphism if possible) simple compact quantum groups; (2) to construct
and classify irreducible representations of simple compact quantum groups; (3) to analyze the
structure of compact quantum groups in terms of simple ones; and (4) to develop applications of
simple compact quantum groups in other areas of mathematics and physics. For these purposes,
new techniques for compact quantum groups must be developed.

The above is a very difficult program at present. Even problem (1) of the program above is
daunting. To obtain clues on the general problem (1), it is desirable to find and solve easier parts
of it. For this purpose, we propose the following apparently easier problems.

Problem 3.8. (1) Construct and classify all simple compact quantum groups with property F (up
to isomorphism if possible).

(2) Construct and classify all simple compact quantum groups that are almost classical (up to
isomorphism if possible).

Problem 3.9. Construct simple compact quantum groups with property FD.
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Simple quantum groups in Problems 3.8, 3.9 are most closest to groups known in mathematics.
They should be easiest classes to classify. Therefore they should play a fundamental role in the
main problems in the theory of simple compact quantum groups.

4. Simplicity of Bu(Q) and Aaut(B,τ)

To prove the main results in this and the next sections, we develop here two technical results,
which are of interest in their own right: one on the correspondence between Hopf ∗-ideals and
Woronowicz C∗-ideals; the other on the reconstruction of a normal quantum group from the
identity in the quotient quantum group.

We first recall the construction of compact quantum group Bu(Q) associated to a non-singular
n×n complex scalar matrix Q (cf. [2,47,49,50]). The (noncommutative) C∗-algebra of functions
on the quantum group Bu(Q) is generated by noncommutative coordinate functions uij (i, j =
1, . . . , n) that are subject to the following relations:

u∗u = In = uu∗, utQuQ−1 = In = QuQ−1ut ,

where u = (uij )
n
i,j=1. When QQ̄ is a scalar multiple cIn of the identity matrix In, the quantum

group Bu(Q) and the group SU(2) have the same fusion rules for their irreducible representa-
tions, as shown by Banica [2], which implies that Bu(Q) is an almost classical quantum group.
Under the condition QQ̄ = ±In, the isomorphism classification of Bu(Q) is determined by the
author [56] using polar decomposition of Q and eigenvalues of |Q| (see [56, Theorem 2.4]).
For arbitrary Q, Bu(Q) is a free product of its building blocks, involving both Bu(Ql)’s and
Au(Pk)’s with QlQ̄l being scalar matrices and Pk positive matrices (see [56, Theorem 3.3]). The
precise definition of Au(Q) is recalled later in the paragraphs before Proposition 4.5. For positive
matrix Q, Au(Q) is classified up to isomorphism in terms of the eigenvalues of Q (see [56, The-
orem 1.1]); and for an arbitrary non-singular matrix Q, the general Au(Q) is a free product of
Au(Pk)’s with positive matrices Pk (see [56, Theorem 3.1]). In Bichon et al. [18], the same tech-
niques as in [56] were used to classify the unitary fiber functors of the quantum groups Au(Q)

and Bu(Q) and their ergodic actions with full multiplicity. Note that for n = 1, Bu(Q) = C(T)

is the trivial 1 × 1 unitary group. We will concentrate on the non-trivial case n � 2. Note that the
isomorphism class of Bu(Q) depends on the normalized Q only if QQ̄ is a scalar matrix [56].

Theorem 4.1. Let Q ∈ GL(n,C) be such that QQ̄ = ±In. Then Bu(Q) is an almost classical
simple compact quantum group with property F . In fact it has only one normal subgroup of
order 2.

Proof. As noted above, the quantum group Bu(Q) is almost classical because its representa-
tion ring is order isomorphic to the representation ring of the compact Lie group SU(2) [2].
More precisely, according to [2] irreducible representations of the quantum group Bu(Q) can be
parametrized by rk (k = 0,1,2, . . .) with r0 trivial and r1 = (uij )

n
ij=1, so that the fusion rules for

their tensor product representations (i.e., decomposition into irreducible representations) read

rk ⊗ rl = r|k−l| ⊕ r|k−l|+2 ⊕ · · · ⊕ rk+l−2 ⊕ rk+l , k, l � 0.

We show that the quantum group Bu(Q) is connected. If k = 2m is even (m > 0), then let
rl = rk in the above tensor product decomposition and do the same for the irreducible constituents
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repeatedly, one sees that the algebra C∗(r2m) generated by the coefficients of the representation
r2m contains the coefficients of r2s for all s. Hence r2m generates an infinite-dimensional algebra:

C∗(r2m) = C∗({r2s | s � 0}).
If k = 2m+1 is odd (m � 0), then let rl = rk in the above tensor product decomposition, one sees
that the representation r2 appears therein. Apply the decomposition to r2m+1 ⊗ r2, one sees that
r1 = (uij ) appears therein. Hence the algebra generated by the coefficients of r2m+1 is the same
as the algebra generated by those of r1 = (uij ). We conclude from this analysis that there is only
one non-trivial Woronowicz C∗-subalgebra in Bu(Q), the one C∗(r2m) generated by coefficients
of r2m, which is obviously infinite-dimensional as noted above, where m is any nonzero positive
number. In particular, the quantum group Bu(Q) is connected.

For rest of the proof, we show that the quantum group Bu(Q) has only one normal quantum
subgroup, although it has many quantum subgroups.

Note that the coordinate functions vij of the matrix group N = {In,−In} satisfy the defining
relations of Bu(Q), hence there is a surjection π from the C∗-algebra Bu(Q) to the C∗-algebra
AN of functions on N such that

π(uij ) = vij , i, j = 1,2, . . . , n.

It is clear that π is a morphism of quantum groups, hence (N,π) is a quantum subgroup of the
quantum group Bu(Q).

We show that (N,π) is actually a normal quantum subgroup. To see this, it suffices by Propo-
sition 2.1 to show that

π(r2m) = d2m · v0, π(r2m+1) = d2m+1 · v1,

where d2m and d2m+1 are dimensions of the representations r2m and r2m+1 respectively, v0 and v1
are the trivial and the non-trivial irreducible representations of N respectively (v1(±In) = ±1).
By the definition of π and v1 the assertion is clearly true for m = 0. In general, suppose the
assertion is true for m. Then π(r2m+1) ⊗ π(r1) is a multiple of v0 since v2

1 = v0. From the
decomposition of r2m+1 ⊗ r1, we get

π(r2m+1) ⊗ π(r1) = π(r2m) ⊕ π(r2m+2).

Hence π(r2(m+1)) = π(r2m+2) is a scalar multiple of v0. Similarly, from

π(r2m+2) ⊗ π(r1) = π(r2m+1) ⊕ π(r2m+3),

we see that π(r2(m+1)+1) = π(r2m+3) is a multiple of v1. Since v0 and v1 are one-dimensional
representations, the multiples we obtained above must be d2m+2 and d2m+3 respectively. That is
(N,π) is normal and

AG/N = C∗(r2) = C∗({r2s | s � 0}),
where for simplicity of notation, the symbol G in G/N refers to the quantum group GBu(Q). The
above also shows that this quantum group has property F .
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We have to show that Bu(Q) has no other normal quantum subgroups, which will imply that
it has no connected normal quantum subgroups and is therefore a simple quantum group.

Let (N1,π1) be a non-trivial normal quantum subgroup of Bu(Q). We show that (N1,π1) =
(N,π) in the sense of Definition 2.7, which will finish the proof of the theorem. Since N1 �= 1,
by Definition 2.7 and Proposition 2.1 there exists an irreducible representation v of the quantum
group Bu(Q) such that π1(v) is not a scalar and therefore EG/N1(v) = 0. Hence by the proof of
Proposition 2.1 and Woronowicz’s Peter–Weyl theorem [59], AG/N1 = EG/N1(AG) �= AG.

Similarly, we claim that AG/N1 �= C1, where 1 is the unit of AG. To prove this, we need three
lemmas. It is instructive to compare the second lemma (Lemma 4.3) with the ideal theory for
C∗-algebras.

Lemma 4.2. Let B1 and B2 be Woronowicz C∗-algebras with canonical dense Hopf ∗-algebras
of “representative functions” B1 and B2 respectively. Assume B2 is full and ψ : B1 → B2 is
a morphism of Woronowicz C∗-algebras such that the induced morphism ψ̂ : B1 → B2 is an
isomorphism. Then B1 is full and ψ is also an isomorphism.

Remark. The above is false if the roles of B1 and B2 are exchanged, as seen by taking B1 =
C∗(F2) and B2 = C∗

r (F2).

Proof of Lemma 4.2. Since B1 is dense in B1, it suffices to show that ‖ψ̂(a)‖ = ‖a‖ for a ∈ B1.
Since ψ is a morphism of C∗-algebras, we have ‖ψ(a)‖ � ‖a‖ and therefore the first inequal-

ity ∥∥ψ̂(a)
∥∥ = ∥∥ψ(a)

∥∥ � ‖a‖.

Since B2 is full, the norm on B2 is the universal C∗-norm (see [52]):∥∥ψ̂(a)
∥∥ = sup

{∥∥π
(
ψ̂(a)

)∥∥: π is a ∗-representation of B2
}
.

Taking π = ψ̂−1 in the above, we obtain the second inequality∥∥ψ̂(a)
∥∥ �

∥∥ψ̂−1(ψ̂(a)
)∥∥ = ‖a‖.

Combining the first the second inequalities finishes the proof of Lemma 4.2. �
Lemma 4.3 (Hopf ∗-ideals vs. Woronowicz C∗-ideals).

(1) Let G be a compact quantum group. Let I be a Hopf ∗-ideal of AG. Then the norm closure I
in the C∗-algebra AG is a Woronowicz C∗-ideal and AG/I is a full Woronowicz C∗-algebra.
The Hopf ∗-algebra AG/I admits a universal C∗-norm and its completion under this norm
is a Woronowicz C∗-algebra isomorphic to AG/I .

(2) The map f (I) = I is a bijection from the set of Hopf ∗-ideals {I} of AG onto the set of
Woronowicz C∗-ideals {I } of AG such that AG/I is full. The inverse g of f is given by
g(I) = I ∩ AG.

Remarks. (a) Note that (2) and the last part of (1) in the lemma above are false if the Woronowicz
C∗-algebra AG or AG/I is not full, as is shown by the following example. Let AG = C∗(F2)
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be the group C∗-algebra of the free group F2 on two generators. Let I be the kernel of the
canonical map π : C∗(F2) → C∗

r (F2) where C∗
r (F2) is the reduced group C∗-algebra of F2.

Then I ∩ AG = 0 but I �= 0.
(b) This lemma strengthens the philosophy in [52] that the “pathology” associated with the

ideals between 0 and the kernel of the morphism from the full Woronowicz C∗-algebra to reduced
one such as π : C∗(F2) → C∗

r (F2) is not (quantum) group theoretical, but purely functional
analytical, and C∗(F2) and C∗

r (F2) should be viewed as the same quantum group because the
same dense Hopf ∗-subalgebra that completely determines the quantum group can be recovered
from either the full or the reduced algebra. Similarly, for a general compact quantum group G, the
totality of (quantum) group theoretic information is encoded in the purely algebraic object AG,
any other (Hopf) algebra should be viewed as defining the same quantum group as AG so long
as AG can be recovered from it. The advantage of working with the category of full C∗-algebras
or the purely algebraic objects AG is that morphisms can be easily defined for them, whereas
it is not even possible to define a morphism from the one element group to the quantum group
associated with the reduced algebra C∗

r (F2) if is viewed as a different quantum group than the
one associated with the full algebra C∗(F2).

Proof of Lemma 4.3. Let I be as in (1). Let π1 : AG → AG/I be the quotient map. Since I is
a Hopf ∗-ideal, we have in particular (see Sweedler [45])

�(I) ⊂ AG ⊗ I + I ⊗ AG ⊂ ker(π1 ⊗ π1).

Therefore �(I) ⊂ ker(π1 ⊗π1). That is, I is a Woronowicz C∗-ideal and AG/I is a Woronowicz
C∗-algebra (see [49, 2.9–2.11]). Denote B1 = AG/I and let π̂1 be the induced morphism of the
canonical dense Hopf-∗-subalgebras π̂1 : AG → B1.

We claim that ker π̂1 = I and ψ̂0 : AG/I → B1, ψ̂0 : [a] �→ π1(a) is an isomorphism, where
[a] ∈ AG/I , a ∈ AG.

By [49,59], AG is generated as an algebra by the coefficients uλ
ij of irreducible unitary corep-

resentations uλ of Hopf ∗-algebra AG. The images [uλ
ij ] of uλ

ij in the quotient Hopf ∗-algebra
AG/I give rise to unitary corepresentation of AG/I , and generate it as an algebra (not just as a
∗-algebra). Therefore AG/I is a compact quantum group algebra (CQG algebra) in the sense of
Dijkhuizen and Koornwinder [23] (see also [28,52,60])—a more appropriate name for compact
quantum group (CQG) algebra might be Woronowicz ∗-algebra (or compact Hopf ∗-algebra),
since the quantum group C∗-algebra of a compact quantum group G is the C∗-algebra C∗(G)

dual to C(G) according to [35].
Let B2 = AG/I and let B2 be the closure of B2 in the universal C∗-norm. Then B2 is a

Woronowicz C∗-algebra. As the norm on AG is universal, the composition

AG −→ AG/I −→ B2

is bounded and extends to a morphism of Woronowicz C∗-algebras ρ : AG → B2. Since I ⊂
ker(ρ), we have I ⊂ ker(ρ) and ρ factors through B1 = AG/I via a C∗-algebra morphism ψ :

AG
π1−→ B1

ψ−→ B2, ρ = ψπ1.
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It is clear that ρ(a) = [a] for a ∈ AG and from this it can be checked that ψ̂ and ψ̂0 are inverse
morphisms, where ψ̂ : B1 → B2 is the restriction of ψ to the dense Hopf ∗-subalgebra B1 and B2.
Hence ψ̂0 is an isomorphism as claimed.

From ρ̂ = ψ̂π̂1 (since ρ = ψπ1), it is easy to see that ψ is a morphism of Woronowicz C∗-
algebras (see [49, 2.3]). Since ψ̂ = ψ̂−1

0 is an isomorphism and B2 is full, by Lemma 4.2,
B1 is full and ψ is itself an isomorphism from B1 to B2. ( We note in passing that since
AG/ker(ρ) ∼= B2, we have I = ker(ρ).) This proves part (1) of the lemma.

To prove part (2) of the lemma, let I be as in (2) and B1 = AG/I . Then by (1) above and [49],
B1 is a Woronowicz C∗-algebra. Let B1 be the canonical dense Hopf ∗-algebra of B1 and let
π̂1 : AG → B1 be the morphism associated with the quotient morphism π1. Then clearly

I ⊂ I ∩ AG = gf (I).

Conversely if x ∈ I ∩ AG, then x ∈ ker(π̂1) = I . Hence gf (I) = I .
Next let I be as in (2). We show that fg(I) = I . Let B2 = AG/I—this is not the same B2 as

in (1) above. Let π2 be the quotient morphism from AG onto B2 (compare with ρ above). Define
I = g(I) = I ∩ AG. We need to show that I = I . The idea of proof is the same as that of the last
part in (1).

Using the morphism π̂2 : AG → B2 of dense Hopf ∗-algebras associated with π2, we see that
I = ker(π̂2). Hence I is a Hopf ∗-ideal in AG and AG/I is isomorphic to B2 under the natural
map induced from π̂2, and by (1) above, B1 := AG/I is a Woronowicz C∗-algebra. Since I ⊂ I ,
the morphism π2 factors through B1 via a morphism ψ of Woronowicz C∗-algebras:

AG
π1−→ B1

ψ−→ B2, π2 = ψπ1.

Besides being isomorphic to B2, AG/I is also isomorphic to B1 (under the morphism ψ̂0) ac-
cording to the proof of (1) earlier. Hence the restriction ψ̂ of ψ to the dense Hopf ∗-algebras
is an isomorphism from B1 to B2. Since B2 is full, by Lemma 4.2, ψ itself is an isomorphism,
which means that I = I (and B1 = B2). This completes the proof of Lemma 4.3. �
Lemma 4.4 (Reconstruct N from G/N ). Let (N,π) be a normal quantum subgroup of a compact
quantum group G. Let π̂ be the associated morphism from AG to AN . Then,

ker(π̂) = A+
G/N AG = AGA+

G/N = AGA+
G/N AG,

where H+ denotes the augmentation ideal (i.e. kernel of the counit) for any Hopf algebra H.

Remarks. (a) In the notation of Schneider [42], the result above can be restated as follows: the
map Φ is the left inverse of Ψ , where Ψ (ker(π̂)) := AG/N and Φ(AG/N) := AGA+

G/N . In the
language of Andruskiewitsch and Devoto [1], the result above implies that the sequence

1 −→ N −→ G −→ G/N −→ 1,

or the sequence

0 −→ AG/N −→ AG −→ AN −→ 0
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is exact. It is instructive to compare this with the purely algebraic situation in Parshall and
Wang [33], where for a given normal quantum subgroup in the sense there, the existence of an
exact sequence is not known and the uniqueness does not hold in general (cf. [33, 1.6 and 6.3]).
Note that the notion of exact sequence of quantum groups in Schneider [42] is equivalent to that
in Andruskiewitsch and Devoto [1] under certain faithful (co)flat conditions. Though a Hopf al-
gebra is not faithfully flat over its Hopf subalgebras if it is not commutative or cocommutative
(see Schauenburg [41]), we have the following

Conjecture 1. Let G be a compact quantum group. Then the Hopf algebra AG (respectively AG)

is faithfully flat over its Hopf subalgebras.
Similarly, AG (respectively AG) is faithfully coflat over AG/I (respectively AN/I) for every

Woronowicz C∗-ideal I (respectively Hopf ∗-ideal I).

(b) It can be shown using Lemma 4.4 and Schneider [42] that the notion of normal quantum
groups in this paper (or in [48,49]) and the one in Parshall and Wang [33] are equivalent for
compact quantum groups. For more details, see [57].

Proof of Lemma 4.4. The proof is an adaption of the ones in Sweedler [45, 16.0.2] and of
Childs [20, (4.21)] for finite-dimensional Hopf algebras to infinite-dimensional ones considered
here. We sketch the main steps here for convenience of the reader.

It suffices to prove ker(π̂) = A+
G/N AG. The other equality ker(π̂) = AGA+

G/N is proved sim-

ilarly. From these it follows that ker(π̂) = AGA+
G/N AG.

Consider the right AN -comodule structures on AN and AG given respectively by

�N : AN → AN ⊗ AN, and (id ⊗ π̂)�G : AG → AG ⊗ AN,

where �N and �G are respectively the coproducts of the Hopf algebras AN and AG. Since AN is
cosemisimple by the fundamental work of Woronowicz [59] (see remarks in [49, 2.2]), it follows
from of [22, Theorem 3.1.5] that every AN -comodule is projective. Furthermore, one checks
that the surjection π̂ : AG → AN is a morphism of AN -comodules. Hence π̂ has a comodule
splitting s : AN → AG with π̂s = idAN

.
Let x ∈ A+

G/N . By remark (a) following Definition 2.2, π̂(x) = 0. Hence A+
G/N ⊂ ker(π̂) and

therefore A+
G/N AG ⊂ ker(π̂).

Define a linear map φ on AG by φ = (sπ̂) ∗ S = m(sπ̂ ⊗ S)�G, where m and S are respec-
tively the multiplication map and antipode of AG. Then using the coassociativity of �G and
π̂s = idAN

along with the antipodal property of S, one verifies that φ(AG) ⊂ AG/N . Since
ker(π̂) ⊂ Im(id − sπ̂), to show ker(π̂) ⊂ A+

G/N AG, it suffices to show that Im(id − sπ̂) ⊂
A+

G/N AG. Since (ε − id)φ(AG) ⊂ A+
G/N , the later follows from the identity

id − sπ̂ = (ε − id)φ ∗ id = m
(
(ε − id)φ ⊗ id

)
�G,

which one verifies using basic properties of the convolution product along with εφ = ε and the
splitting property of s. This proves Lemma 4.4. �

End of proof of Theorem 4.1. If AG/N1 = C1, we would have AG/N1 = C1 and A+
G/N1

= 0.
Let π̂1 be the morphism of Hopf algebras from AG to AN associated with π1. Then by
1
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Lemma 4.4,

ker(π̂1) = A+
G/N1

AG = 0.

Since ker(π̂1) is dense in ker(π1) by Lemma 4.3, we would have ker(π1) = 0. This contradicts
the assumption that N1 is a non-trivial quantum subgroup of G and therefore AG/N1 �= C1.

Then AG/N1 has to be the only non-trivial Woronowicz C∗-subalgebra of Bu(Q), i.e. AG/N1 =
C∗({r2m | m � 0}) as noted near the beginning of the proof of Theorem 4.1. We infer from
Proposition 2.1 that π1(r2m) is a multiple of the trivial representation of N1 for any m. From

π1(r1) ⊗ π1(r1) = π1(r0) ⊕ π1(r2),

we see that π1(r1) ⊗ π1(r1) is a multiple of the trivial representation of N1. That is

∑
ijkl

eij ⊗ ekl ⊗ ũij ũkl = In ⊗ In ⊗ 1,

where ũij are the (i, j)-entries of π1(r1) and eij are matrix units. Hence

ũij ũkl = 0, when i �= j, or k �= l;
ũii ũll = 1, for all i, l.

Therefore ũij = 0 for i �= j and AN1 is commutative. That is, N1 is an ordinary compact group.
Now it is clear that ũii = ũll = ũ−1

ll for all i, l, which we denote by a. Since AN1 is generated by
a and N1 is non-trivial, we conclude that N1 is a group of order 2. The map α from AN to AN1

defined by α(vij ) = ũij is clearly an isomorphism such that π1 = απ . Hence (N1,π1) = (N,π)

by Definition 2.7.
For an example of a non-normal quantum subgroup (H, θ) of Bu(Q), take a two-elements

group H = {In,V }, where

V =
[−1 0

0 In−1

]
,

and θ(uij ) = wij , the coordinate functions on H . �
Let us also recall the construction of the quantum groups Au(Q) closely related to Bu(Q)

[47,49,50]. For every non-singular matrix Q, the quantum group Au(Q) is defined in terms of
generators uij (i, j = 1, . . . , n), and relations:

u∗u = In = uu∗, utQūQ−1 = In = QūQ−1ut .

According to Banica [3], when Q > 0, the irreducible representations of the quantum
group Au(Q) are parameterized by the free monoid N ∗ N with generators α and β and anti-
multiplicative involution ᾱ = β (the neutral element is e with ē = e). The classes of u and
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ū are rα and rβ respectively. Moreover, for each pair of irreducible representations rx and ry
(x, y ∈ N ∗ N), one has the following direct sum decomposition (fusion) rules:

rx ⊗ ry =
∑

x=ag, ḡb=y

rab.

In [56], the special Au(Q)’s with Q > 0 are classified up to isomorphism and the general
Au(Q)’s with arbitrary Q are shown to be free products of the special Au(Q)’s. The follow-
ing result was observed by Bichon through private communication (the proof given below was
developed by the author):

Proposition 4.5. The quantum groups Au(Q) are not simple for any Q ∈ GL(n,C).

Proof. To prove this, we first introduce the following notion. A quantum subgroup (N,π) of a
compact quantum group G is said to be in the center of G if

(π ⊗ id)� = (π ⊗ id)σ�,

where σ(a1 ⊗ a2) = a2 ⊗ a1, a1, a2 ∈ AG, and � is the coproduct of AG.
Assume (N,π) is in the center of G. Then using the definitions of AG/N and AN\G in Sec-

tion 2, it is straightforward to verify that AG/N = AN\G. By Proposition 2.1(3), (N,π) is normal
in G. Namely, a quantum subgroup that is in the center of G is always normal, just as in the
classical case.

Let T be the one-dimensional (connected) torus group and t ∈ C(T) the function such that
t∗t = 1 = t t∗. Then C(T) is generated by t as a C∗-algebra: C(T) = C∗(t). Define the morphism
π : Au(Q) → C(T) by π(uij ) = δij t (note the special case Au(Q) = C(T) when n = 1). Then it
is routine to verify that the connected group (T ,π) is in the center of the quantum group Au(Q)

(not viewed as an algebra) in the sense above and is therefore a normal subgroup therein. Hence
Au(Q) is not simple. �

We remark that although Au(Q) is not simple, for n � 2 and Q > 0, it is very close to being
normal, satisfying most of the axioms of a simple compact quantum group: its function algebra
is finitely generated, it is connected, and its non-trivial irreducible representations are all of di-
mension greater than one (see Wang [56] for a computation of the dimension of its irreducible
representations based on Banica [3]). In particular following problems should be accessible:

Problem 4.6.

(1) Study further the structure of Au(Q) for positive matrices Q ∈ GL(n,C) and n � 2. Deter-
mine all of their simple quotient quantum groups. Alternatively,

(2) Construct simple compact quantum groups that are not almost classical.

A solution of part (1) of the above problem should also give a solution to part (2) and provide
the first examples of simple compact quantum groups that are not almost classical because of the
highly non-commutative representation ring of Au(Q) (note that all the simple quantum groups
known so far are almost classical). It is worth noting that the determination of all simple quotient
quantum groups of Au(Q) in the above problem is easier than the determination of all of their
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simple quantum subgroups, the latter being tantamount to finding all simple quantum groups
because every compact matrix quantum group is a quantum subgroup of an appropriate Au(Q).
These remarks also indicate that Au(Q) should play an important role in the theory of simple
compact quantum groups.

Next we consider the quantum automorphism group Aaut(B, tr) of a finite-dimensional C∗-
algebra B endowed with a tracial functional tr (cf. [4,53]). This quantum group is defined to be
the universal object in the category of compact quantum transformation groups of B that leave
tr invariant. Note that the presence of a tracial functional tr is necessary for the existence of the
universal object when B is non-commutative (see of [53, Theorem 6.1]). For an arbitrary finite-
dimensional C∗-algebra B , the C∗-algebra Aaut(B, tr) is described explicitly in [53] in terms
of generators and relations. When B = C(Xn) is the commutative C∗-algebra of functions on
the space Xn of n points, the quantum automorphism group Aaut(B) = Aaut(Xn) (also called
the quantum permutation group on n letters) exists without the presence of a (tracial) functional
and its description in terms of generators and relations is surprisingly simple. The C∗-algebra
Aaut(Xn) is generated by self-adjoint projections aij such that each row and column of the matrix
(aij )

n
i,j=1 add up to 1. That is,

a2
ij = aij = a∗

ij , i, j = 1, . . . , n,

n∑
j=1

aij = 1, i = 1, . . . , n,

n∑
i=1

aij = 1, j = 1, . . . , n.

For more general finite-dimensional C∗-algebras B , the description of Aaut(B, tr) in terms of
generators and relations is more complicated. We refer the reader to [53] for details.

Assume tr is the canonical trace τ on B (see [4, p. 772] or Section 1 for the definition).
Then Aaut(B, τ) is an ordinary permutation group when the dimension of B is less than or equal
to 3. However, when the dimension of B is greater than or equal to 4, Aaut(B, τ) is a non-trivial
(noncommutative and noncocommutative) compact quantum group with an infinite-dimensional
function algebra [53,54], and as Banica [4] showed, the algebra of symmetries of the fundamen-
tal representation of this quantum group is isomorphic to the infinite-dimensional Temply–Lieb
algebras TL(n) and the representation ring of Aaut(B, τ) is isomorphic to that of SO(3). Hence
Aaut(B, τ) is almost classical for all B . It is easy to see that for B = C(Xn), the canonical trace
τ is equal to the unique Sn-invariant state on B , where Sn acts on Xn by permutation. Hence
by remark (2) following [53, Theorem 3.1], Aaut(B, τ) is the same as the quantum permutation
group Aaut(Xn).

We refer the reader to [4,53,54] for more on these quantum groups and [15–17] for interesting
related results. Note that the description in [4] is not exactly as that in [53] but equivalent to it.
We now prove

Theorem 4.7. Let B be a finite-dimensional C∗-algebra with dim(B) � 4. Then Aaut(B, τ) is an
almost classical, absolutely simple compact quantum group with property F .

Proof. The argument is similar to the one in Theorem 4.1. By Banica [4], the complete set
of mutually inequivalent irreducible representations of the quantum group Aaut(B, τ) can be
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parametrized by rk (k � 0, r0 being the trivial one-dimensional representation). Under this
parametrization the fusion rules of its irreducible representations are the same as those of SO(3)

and therefore it is almost classical:

rk ⊗ rl = r|k−l| ⊕ r|k−l|+1 ⊕ · · · ⊕ rk+l−1 ⊕ rk+l , k, l � 0.

We claim that there are only two Woronowicz C∗-subalgebras in Aaut(B, τ), namely C1 and
Aaut(B, τ).

Let A1 �= C1 be a Woronowicz C∗-subalgebra of Aaut(B, τ). Let v be a non-trivial irreducible
representation of the compact quantum group of A1. Then v = rk for some k �= 0 and

rk ⊗ rk = r0 ⊕ r1 ⊕ r2 ⊕ · · · ⊕ r2k−1 ⊕ r2k, k, l � 0.

Hence the coefficients of each of the representations r1, r2, . . . , r2k are in A1. Similarly, from the
decomposition of r2k ⊗ r2k , we see that the coefficients of each of the representations r1, r2, . . . ,
r4k are in A1. Inductively, the coefficients of each of the representations r1, r2, . . . , r2mk are in
A1 (m > 0). Hence A1 = Aaut(B, τ).

Let (π,N) be a normal quantum subgroup of G = Aaut(B, τ) different from the trivial one-
element subgroup. Then there is a non-trivial irreducible representation uλ = (uλ

ij ) such that

π(uλ) is not a multiple of the trivial representation. Using the same argument as in the proof of
Theorem 4.1 we have AG/N = EG/N(AG) �= AG. Therefore we must have AG/N = C1. Then
the argument near the end of the proof of Theorem 4.1 (i.e. the paragraph that follows the proof
of Lemma 4.4) shows that ker(π) = 0. That is, N is the same quantum group as G. �

Theorem 4.7 applies in particular to quantum permutation groups Aaut(Xn) when n � 4. As
Manin (private communication in July, 2002) pointed out to the author, the reason that these
quantum groups are connected could be that there are so many more quantum symmetries that
the originally n! isolated permutations are connected together by them. Note however that their
function algebras are generated by orthogonal projections aij , so these quantum groups are also
disconnected, as observed by Bichon [16]. It would be interesting to find a satisfactory explana-
tion of this paradox.

The proofs of the main results of this section do not need explicit description (models) of
representations of the quantum groups Bu(Q) and Aaut(B, τ) and Au(Q). Only the structures of
their representation rings (i.e. fusion rules) are used. However, explicit constructions of models
of irreducible representations of Lie groups are fundamental and have important applications in
other branches of mathematics and physics. Moreover, just as the construction and classification
of the representations of simple compact Lie groups is intimately intertwined with the classifica-
tion of simple compact Lie groups, the same might hold true for simple compact quantum groups.
In view of these, we believe an appropriate answer to the following problem should be important
in the theory of compact quantum groups in general and the theory of simple compact quantum
groups in particular. (Note that the model for the fundamental representation of the quantum
group Au(Q) is used in [54] to construct ergodic actions on various von Neumann factors.)

Problem 4.8. Construct explicit models of the irreducible representations of the following quan-
tum groups: Au(Q) for Q > 0; Bu(Q) for QQ̄ = ±In; the quantum automorphism group
Aaut(B, τ) of a finite-dimensional C∗-algebra B endowed with the canonical trace τ . Relate
the results to the theory simple compact quantum groups if possible.
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5. Simplicity of Kq , Ku
q and KJ

The compact real forms Kq of Drinfeld–Jimbo quantum groups and their twists Ku
q are studied

in [43] and [30] respectively. See also [31] for a summary of [30,43] and [29] for more detailed
treatment. Motivated by these works, Rieffel constructs in [37] a deformation KJ of compact
Lie group K which contains a torus T and raises the question whether Ku

q can be obtained as a
strict deformation quantization of Kq . This question is answered in the affirmative by the author
in [51]. The purpose of this section is to show that the quantum groups Kq , Ku

q and KJ are
simple in the sense of this paper, provided that the compact Lie group K is simple.

We first recall the notation of [30,31,43]. Let G be a connected and simply connected simple
complex Lie group with Lie algebra g. Fix a triangular decomposition g = n− ⊕h⊕n+, together
with the corresponding decomposition � = �+ ∪�− of the root system and a fixed basis {αi}ni=1
for �+. For each linear functional λ on h, Hλ denotes the element in h corresponding to λ under
the isomorphism h ∼= h∗ determined by the Killing form ( , ) on g. Note that if the reader keeps
the context in mind, the symbols α and λ used in this context should not cause confusion with
the same symbols used in this paper for other purposes. Let {Xα}α∈� ∪ {Hi}ni=1 be a Weyl basis
of g, where Hi = Hαi

. This determines a Cartan involution ω0 on g with ω0(Xα) = −X−α ,
ω0(Hi) = −Hi . Let k be the compact real form of g defined as the fixed points of ω0 and K the
associated compact real form of G. Put hR = ⊕n

i=1 RHi , t = ihR and T = exp(t), the later being
the associated maximal torus of K .

Let q = eh/4 (h ∈ R \ {0}). For n, k ∈ N, n � k, define

[n]q = qn − q−n

q − q−1
,

[
n

k

]
q

= [n]q [n − 1]q . . . [n − k + 1]q
[k]q [k − 1]q . . . [1]q .

The quantized universal enveloping algebra Uq(g) [24,27] is the complex associative algebra
with generators X±

i , K±1
i (i = 1, . . . , n) and defining relations

KiK
−1
i = 1 = K−1

i Ki, KiKj = KjKi,

KiX
±
j K−1

i = q±(αi ,αj )X±
j ,

[
X+

i ,X−
j

] = δij

K2
i − K−2

i

q − q−1
,

1−aij∑
k=0

(−1)k
[

1 − aij

k

]
qi

(
X±

i

)k
X±

j

(
X±

i

)1−aij −k = 0, i �= j,

where qi = q(αi ,αi ).
On Uq(g) there is a Hopf algebra structure with coproduct

�
(
K±1) = K±1 ⊗ K±1, �

(
X±) = X± ⊗ Ki + K−1 ⊗ X±,
i i i i i i i
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and counit and antipode respectively

ε
(
X±

i

) = 0, ε
(
K±1

i

) = 1, S
(
X±

i

) = −q±1
i X±

i , S
(
K±1

i

) = K∓1
i .

Under the ∗-structure defined by (
X±

i

)∗ = X∓
i , K∗

i = Ki,

Uq(g) is a Hopf ∗-algebra.
Let u = ∑

k,l cklHk ⊗ Hl ∈ ∧2
hR. Then it can be shown (cf. [29]) that the following defines

a new coproduct on Uq(g),

�u(ξ) = exp(−ihu/2)�(ξ) exp(ihu/2),

where X ∈ Uq(g) and � is the original coproduct on Uq(g). The new Hopf ∗-algebra so obtained
is denoted by Uq,u(g).

The function algebra AKq of the compact quantum group Kq is defined to be the subalgebra
of the dual algebra Uq(g)∗ consisting of matrix elements of finite-dimensional representations ρ

of Uq(g) such that eigenvalues of the endomorphisms ρ(Ki) are positive. The function algebra
AKu

q
of the compact quantum group Ku

q is defined to be the subalgebra of the dual algebra
Uq,u(g)∗ that has the same elements as AKq , as well as the same ∗-structure, while the product
of its elements is defined using �u instead of �.

For each (algebraically) dominant integral weight λ ∈ P+ of (g,h), define matrix elements
Cλ

μ,i;ν,j
of the highest weight Uq(g) module (L(λ),ρλ) as follows. Let {v(i)

ν } be an orthonormal

weight basis for the unitary Uq(g) module L(λ). Then Cλ
μ,i;ν,j

is defined by

Cλ
μ,i;ν,j (X) = 〈

ρλ(X)v(j)
ν , v(i)

μ

〉
,

where X ∈ Uq(g) and 〈 , 〉 is the inner product on L(λ). The Cλ
μ,i;ν,j

’s is a linear (Peter–Weyl)
basis of both AKq and AKu

q
when λ ranges through the set P+ of dominant integral weights of

(g,h).

Theorem 5.1. Let K be a connected and simply connected simple compact Lie group. Then for
each q , Kq is an almost classical simple compact quantum group with property F .

Proof. First we recall that representations of K and Kq are in one to one correspondence via
deformation and the decompositions of tensor products of irreducible representations are not
altered under deformation (see Lusztig [32] and Rosso [39] or Chari and Pressley [19]). From
this it follows immediately that Kq is almost classical.

Let ξ be the map that associates each irreducible representation v of K an irreducible repre-
sentation ξ(v) of Kq in this correspondence. This map defines an isomorphism of vector spaces
from AK to AKq , which we also denote by ξ . It follows from this that Kq is connected and has
no non-trivial representations of dimension one. Comparing decompositions of tensor products
of representations of K and Kq we see that the ξ maps bijectively the set of Hopf subalgebras of
AK onto the set of Hopf subalgebras of AKq .

Let ρq be the quotient morphism from AKq to the abelianization Aab
Kq

, which is by defini-
tion the quotient of AKq by the closed two-sided ideal of AKq generated by commutators [a, b],
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a, b ∈ AKq . According to [49], Aab
Kq

is the algebra of continuous functions on the maximal com-

pact subgroup ÂKq of Kq and ρq gives rise to the embedding of the quantum groups from ÂKq

to Kq . It is shown in [43] that the maximal compact subgroup ÂKq is isomorphic to the maximal
torus T of K .

The associated morphism ρ̂q from AKq to AT is given by

ρ̂q

(
Cλ

μ,i;ν,j

)
(t) = δij δμνe

2πμ(x),

where t = exp(x) ∈ T , x ∈ t = ihR (see [19, p. 438], but
√−1 should not appear in the formula

there). It is clear that one has the same formula as above for restriction morphism ρ from AK

to AT :

ρ̂
(
ξ−1(Cλ

μ,i;ν,j

))
(t) = δij δμνe

2πμ(x), i.e., ρ̂ = ρ̂q ◦ ξ.

Let N ⊂ K be a normal subgroup of K with surjections π : AK → AN and π̂ : AK → AN .
Then N is a finite subgroup of T and AN = AN is a finite-dimensional Hopf algebra. It is clear
that π = ρN ◦ ρ, where ρN is the restriction morphism from AT to AN . Define

πq : AKq −→ AN, by πq := ρN ◦ ρq.

We claim that (N,πq) is a normal subgroup of Kq . This follows immediately from the following
identities, which one can easily verify using ρ̂ = ρ̂q ◦ ξ and π̂ = π̂q ◦ ξ :

AKq/N = ξ(AK/N), i.e.,{
a ∈ AKq

∣∣ (id ⊗ πq)�(a) = a ⊗ 1
} = ξ

({
a ∈ AK

∣∣ (id ⊗ π)�(a) = a ⊗ 1
});

AN\Kq = ξ(AN\K), i.e.,{
a ∈ AKq

∣∣ (πq ⊗ id )�(a) = 1 ⊗ a
} = ξ

({
a ∈ AK

∣∣ (π ⊗ id )�(a) = 1 ⊗ a
})

.

That is, every normal subgroup N of K gives rise to a normal subgroup (N,πq) of Kq in the
manner above.

Conversely, let (N ′,π ′) be a quantum normal subgroup of Kq . Then AKq/N ′ is a Hopf sub-
algebra of AKq . Since every Hopf subalgebra of AK is of the form AK/N for some normal
subgroup N of K (cf. [49]), by the correspondence between Hopf subalgebras of AK and those
of AKq noted near the beginning of the proof we have

AKq/N ′ = ξ(AK/N) = AKq/N

for some normal subgroup N of K . By Lemma 4.4, we have ker(π̂q) = ker(π̂ ′). That is (N ′,π ′)
and (N,πq) is the same quantum subgroup of Kq (cf. Definition 2.7 and Lemma 4.3). Since
normal subgroups N of K are finite, we conclude from the above that Kq has no non-trivial
connected quantum normal subgroups. �

Examining the proof of Theorem 5.1, we formulate the following general result on the invari-
ance of simplicity of compact quantum groups under deformation, which will be used to prove
the simplicity of Ku and KJ .
q
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Let G be an almost classical simple compact quantum group with property F and (H,ρ) a
quantum subgroup. Assume all normal quantum subgroups of G are quantum subgroups of H .
Let Gv be a family of compact quantum groups (“deformation” of G) indexed by a subset {v} of
a vector space that includes the origin. Suppose the family Gv satisfies the following conditions:

(C1) G0 = G.
(C2) There is an isomorphism ξ of vector spaces from AG to AGv .
(C3) The coproduct is unchanged under deformation, i.e.,

�v

(
ξ(a)

) = (ξ ⊗ ξ)�(a) for a ∈ AG.

(C4) For any pair irreducible representations uλ1 and uλ2 of G, if

uλ1 ⊗ uλ2 ∼= uγ1 ⊕ uγ2 ⊕ · · · ⊕ uγl

is a decomposition of uλ1 ⊗ uλ2 into direct sum of irreducible subrepresentations uγj (j =
1,2, . . . , l), then

ξ
(
uλ1

) ⊗ ξ
(
uλ2

) ∼= ξ
(
uγ1

) ⊕ ξ
(
uγ2

) ⊕ · · · ⊕ ξ
(
uγl

)
is a decomposition of ξ(uλ1)⊗ ξ(uλ2) into direct sum of irreducible representations, where
for instance ξ(uλ1) denotes the representation of Gv whose coefficients are images of co-
efficients of uλ1 .

(C5) The quantum subgroup H is undeformed. The latter means that there is a morphism ρv of
quantum groups from H to Gv such that

ρv

(
ξ(a)

) = ρ(a) for a ∈ AG.

Under the assumptions above, we have the following result. The proof is the same as that of
Theorem 5.1 (H corresponds to T in Theorem 5.1).

Theorem 5.2. For each v ∈ {v}, Gv is an almost classical simple quantum group with property F .

Remarks. (a) Condition (C4) above is not the same as the requirement that

ξ
(
uλ1 ⊗ uλ2

) = ξ
(
uλ1

) ⊗ ξ
(
uλ2

)
.

The latter requirement together with conditions (C2) and (C3) imply that ξ is an isomorphism of
quantum from Gv to G, which is not the case for the quantum groups under consideration here.

(b) We believe similar results on invariance of simplicity under deformation hold true without
the property F assumption on G. But at the moment we do not know of any simple compact
quantum groups that do not satisfy this property, though there are many non-simple quantum
groups without this property.

Next we recall the construction in [37,51]. Let A = AG be a compact quantum group with
coproduct �. Suppose that the quantum group G has a toral subgroup (T ,ρ)—to obtain non-
trivial deformation we assume that T has rank no less than 2. For any element t in T , denote by Et

the corresponding evaluation functional on C(T ). Assume that η is a continuous homomorphism
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from a vector space Lie group R
n to T , where n is allowed to be different from the dimension

of T . Define an action α of Rd := Rn × Rn on the C∗-algebra A as follows:

α(s,v) = lη(s)rη(v),

where

lη(s) = (Eη(−s)ρ ⊗ id)�, rη(v) = (id ⊗ Eη(v)ρ)�.

For any skew-symmetric operator S on Rn, one may apply Rieffel’s quantization procedure [36]
for the action α above to obtain a deformed C∗-algebra AJ whose product is denoted ×J , where
J = S ⊕ (−S). The family AhJ (h ∈ R) is a strict deformation quantization of A (see [36, Chap-
ter 9]). In [51] the following result is obtained.

Theorem 5.3. The deformation AJ is a compact quantum group containing T as a (quantum)
subgroup; AJ is a compact matrix quantum group if and only if A is.

We denote by GJ the quantum group for AJ . When G is a compact Lie group, the construction
GJ above is the same as Rieffel’s construction [37]. By [37, 5.2], GJ is an almost classical
compact quantum group if G is a compact Lie group.

Combining Theorems 5.3 and 5.2, we obtain

Theorem 5.4. Let K be a simple compact Lie group with a toral subgroup T . Then KJ of Rieffel
[37] is an almost classical simple compact quantum group with property F .

We note that unlike in Theorem 5.1, in the result above we do not need to assume K to be
simply connected. This is because AKq is defined using irreducible representations of Uq(g)

associated with all dominant integral weights P+ of (g,h), so that AKq becomes the algebra
of representative functions on a simply connected K when q → 1. One could also start with a
non-simply connected K in Theorem 5.1 too, but then one needs to modify the definition of the
quantum algebra AKq by using irreducible representations of Uq(g) associated with analytically
dominant integral weights only. This newly defined AKq is a Hopf subalgebra of the Hopf algebra
defined originally. It is clear from the proof of Theorem 5.1 that its conclusion remains valid for
this newly defined Kq .

Finally we consider Ku
q . To avoid confusion with the Killing form, we now use s ⊕ v, instead

of (s, v) used above, to denote an element of R
d = R

n × R
n. In the present setting, the space R

n

is hR, with inner product 〈 , 〉 = ( , ), where ( , ) is the Killing form of g restricted to hR. We will
also use 〈 , 〉 to denote the inner product on hR ⊕ hR. Noting that the compact abelian group T

is also a subgroup of both Kq and Ku
q (see [30,43]). The map η there in this case is defined by

η(s) = exp(2πis). We can define as above an action of R
d on AKq by

αs⊕v = lexp(−2πis)rexp(2πiv).

This action may be viewed as an action of H = T × T in the sense of [36]. For each ν in the
weight lattice P of g, the element Hν is in hR. We use the notation Hν ⊕ Hμ to denote Hν + Hμ

as an element of hR ⊕ hR. Keep the notation of [36] for the spectral subspaces of the action α

(see [36, 2.22]).



S. Wang / Journal of Functional Analysis 256 (2009) 3313–3341 3339
Let ǔ be the map on h* determined by u via the Killing form ( , ) on g. Let

p = −(Hν1 ⊕ Hμ1), q = −(Hν2 ⊕ Hμ2),

J = h

4π

(
Su ⊕ (−Su)

)
,

where Su is the skew-symmetric operator on hR defined by

Su(Hν) =
∑
k,l

cklν(Hk)Hl.

Then one has

C
λ1
μ1,i1;ν1,j1

◦ C
λ2
μ2,i2;ν2,j2

= exp

(
ih

2

(
(μ1, ǔμ2) − (ν1, ǔν2)

))
C

λ1
μ1,i1;ν1,j1

C
λ2
μ2,i2;ν2,j2

= exp
(−2πi〈p,Jq〉)Cλ1

μ1,i1;ν1,j1
C

λ2
μ2,i2;ν2,j2

where ◦ on the left-hand side is the multiplication in AKu
q

and the right-hand side is the multipli-
cation in AKq .

On the other hand one has from [36, 2.22] that

C
λ1
μ1,i1;ν1,j1

×J C
λ2
μ2,i2;ν2,j2

= exp
(−2πi〈p,Jq〉)Cλ1

μ1,i1;ν1,j1
C

λ2
μ2,i2;ν2,j2

.

This means that we have the following result [51].

Theorem 5.5. The Hopf ∗-algebras AKu
q

and (AKq ,×J ) are isomorphic.

That is Ku
q = (Kq)J in the notation of Theorem 5.3, answering Rieffel’s question [37] in the

affirmative.
Combining Theorems 5.5, 5.1 and 5.2, we obtain the following

Theorem 5.6. Let K be a connected and simply connected simple compact Lie group. Then for
each (q,u), Ku

q is an almost classical simple compact quantum group with property F .
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