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Abstract

We investigate the relations between finitistic dimensions and restricted flat dimensions (introduced
by Foxby [L.W. Christensen, H.-B. Foxby, A. Frankild, Restricted homological dimensions and Cohen—
Macaulayness, J. Algebra 251 (1) (2002) 479-502]). In particular, we show the following result. (1) If T is
a selforthogonal left module over a left noetherian ring R with the endomorphism ring A, then rfd(74) <
fdim(4 A) <id(gT) +1fd(T4). (2) If T is classical partial tilting, then fdim(4 A) < fdim(g R) +1fd(Ty4).
B)If A=A9g S Al € - C Ay = R are Artin algebras with the same identity such that, for each
0<i<m~—1,rad A; is a right ideal in A; ;1 and rfd(A; 1, ) <00 (e.g., Aj41,. is of finite projective
dimension, or finite Gorenstein projective dimension, or finite 'll“or-bound dimensionl), then fdim(g R) < 00
implies fdim(4 A) < co. As applications, we disprove Foxby’s conjecture [H. Holm, Gorenstein homolog-
ical dimensions, J. Pure Appl. Algebra 189 (2004) 167-193] on restricted flat dimensions by providing a
counterexample and give a partial answer to a question posed by Mazorchuk [V. Mazorchuk, On finitistic
dimension of stratified algebras, arXiv:math.RT/0603179, 6.4].
© 2008 Elsevier Inc. All rights reserved.
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Introduction

Let R be an associative ring with identity. We denote by R-Mod (resp., Mod -R) the category
of all left (resp., right) R-modules and by R-mod (resp., mod-R) the category of all left (resp.,
right) modules possessing finitely generated projective resolutions. The left little (resp., big) fini-
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tistic (projective) dimension of R, denoted by fdim(gR) (resp., Fdim(g R)), is defined as the
supremum of the projective dimensions of all modules in R-mod (resp., R- Mod) of finite pro-
jective dimension. Obviously, fdim(g R) < Fdim(g R). We denote by fdim(Ry) and Fdim(Rg)
the corresponding right finitistic dimensions of R.

It is known that Fdim(g R) coincides with the Krull dimension of R in case R is commutative
and noetherian and that fdim(g R) = depth R in case R is commutative local and noetherian. So
in the latter case both dimensions are finite, but they coincide if and only if R is Cohen—Macaulay.
There are also examples of commutative noetherian rings with Fdim(z R) = fdim(g R) = oo.

In case R is an Artin algebra, it is known that the first finitistic dimension conjecture, which
stated that Fdim(g R) = fdim(g R), fails in general and the differences can even be arbitrarily
big. However, the second finitistic dimension conjecture, which states that fdim(z R) < oo, is
still open. This conjecture is also related to many other homological conjectures and attracts
many algebraists, see for instance [3,19,21].

In this note, we will investigate the finitistic dimension in terms of the restricted flat dimen-
sion.

Let A be a ring, and let T4 be a right A-module. Following [6], T4 is said to have (big)
restricted flat dimension at most m if for each i > m the functor ToriA(T, —) vanishes on the
category of modules of finite flat dimension. The little restricted flat dimension is defined cor-
respondingly by considering only modules of finite flat dimension which admit a projective
resolution with finitely generated projectives. Obviously, rfd(7T4) < Rfd(T4) < fd(T4) by def-
inition, where fd(74) denotes the flat dimension of 74. Moreover, restricted flat dimensions are
also smaller than Gorenstein flat dimension and *-syzygy dimension (see Lemma 1.1). It was
conjectured by Foxby that the (big) restricted flat dimension of a module is equal to its Goren-
stein flat dimension whenever the latter is finite [11]. The conjecture was proved in case that A
is commutative noetherian [11] and that A is a coherent ring with finite Gorenstein weak dimen-
sion [4].

We find that the restricted flat dimension is a useful tool to describe the finitistic dimension.
For example, we obtain that the left little finitistic dimension of an Artin algebra A is equal to
the little restricted flat dimension of (D A) 4, where D denotes the usual duality in Artin algebras
(Corollary 2.7).

Recall that T € R-Mod is selfsmall provided that Hompz (7, 7YX ~ Homg(T, TX)) canoni-
cally, for any X. rT is selforthogonal if T € KerExth%(T, —), i.e., T belongs to the category of
all modules M such that Ext’k(T, M) =0foralli > 1. gT is said to be coproduct-selforthogonal
if 7O € KerExt'y” (T, —) for all X.

One of our main results states as follows. The idea comes from [17], where the global dimen-
sion of endomorphism rings is estimated in terms of the flat dimension.

Theorem 0.1. Let R be a ring and T € R-Mod with A =Endg T.

(1) If T is selfsmall and coproduct-selforthogonal, then Rfd(T4) < Fdim(4A) <id(Addg T) +
Rfd(T4), where id(Addg T) denotes the supremum of injective dimensions of modules
in Addg T.

(1) If T is selforthogonal, then tfd(T4) < fdim(4A) <id(gT) + rfd(Ty4).

(2) If gT is selfsmall and coproduct-selforthogonal and of finite projective dimension, then
Rfd(T4) < Fdim(4A) < Fdim(gR) + Rfd(Ty).
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(2") If rT is selforthogonal and of finite projective dimension, then fdim(4A) < Fdim(gR) +
rfd(T4). If additionally gT € R-mod, then fdim(4 A) < fdim(g R) + rfd(T4).

As applications, we show that, if g T is a classical fdim-test tilting module with A = Endg T,
then fdim(4 A) < fdim(z R) (Proposition 2.8). This gives a partial answer to a question posed by
Mazorchuk [14, 6.4]. The question asks if there is any relation between fdim(g R) and fdim(4 A),
where A = Endgr T and gT is a classical fdim-test tilting module over a standardly stratified
algebra R such that its Ringel dual is a properly stratified algebra [9, Sections 5 and 6].

We also obtain the following corollary which contains [20, Theorems 1.2], where the conclu-
sion is proved under assumptions that T4 is of finite %-syzygy dimension (or finite Gorenstein
projective dimension or finite projective dimension).

Corollary 0.2. Let R be a ring and T € R-Mod with A =Endgr T.

() If gT is selfsmall and projective with Rfd(Ty4) finite, then Fdim(gR) < oo implies that
Fdim(4A) < o0.

(2) If rT is projective with tfd(Ty) finite, then Fdim(g R) < oo implies that fdim(4 A) < oo. If
furthermore RT is finitely generated, then fdim(g R) < oo implies that fdim(4A) < oo.

We give examples to show that, in general, the restricted flat dimension of a module may be
strictly smaller than its %-syzygy dimension (Gorenstein projective dimension, projective dimen-
sion). In particular, we give a counterexample to Foxby’s conjecture.

Another main result of the note concerns the finitistic dimension of some fixed subrings. The
first part of the following result extends [13, Theorem 6], while the second part can be compared
with [18, Theorem 3.1].

Theorem 0.3.

(1) Let A be a subring of a ring R such that A is an A—A bimodule direct summand of R. Then
Fdim(4A) < Fdim(g R) + Rfd(R4).

(2) Assume that A= Ag C A1 C--- C A,, = R are Artin algebras with the same identity such
that, for each 0 <i <m — 1, rad A; is a right ideal in A;11 and rfd(A;1+1,.) < o0 (e.g.,
Aiy1,. is of finite projective dimension or finite Gorenstein projective dim’ension), then
fdim(g R) < 0o implies fdim(4 A) < co.

1. Preliminaries

Throughout this paper, all rings will be associated with non-zero identity. By a category, we
mean a full subcategory closed under isomorphisms.

In the following, we fix R to be a ring and 7 € R-Mod with the endomorphism ring A.
Then gT4 is an R—A bimodule. We denote by Addg T (resp., addg T') the class of modules
isomorphic to direct summands of (resp., finite) direct sums of copies of g7 .

Let C € R-Mod be a category and M € R-Mod. We denote by C-dim(g M) the minimal
integer m such that there is an exact sequence 0 - 7,,, — --- — Ty > M — O witheach 7; € C
and call it the C-dimension of g M. Note that, for some g M, the C-dimension of g M may not
exist. In the latter case, we denote C-dim(g M) = co. The category of all modules M € R-Mod
such that C-dim(g M) < oo is denoted by C.
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We define Fdim (g T') to be the supremum of the Addg 7' -dimensions of all modules in R- Mod
of finite Addg T-dimension. Similarly, fdim(g7T') is denoted to be the supremum of the addg T -
dimensions of all modules in R-Mod of finite addr 7 -dimension. It is easy to see that Fdim(z R)
(resp., fdim(g R)) is just the left big (resp., little) finitistic dimension of R defined in the intro-
duction. )

Similarly to the notion KerExthZ1 (T,—) defined in the introduction, we denote by
KerTorlA)l(T, —) the category of all modules M € A-Mod such that Torl’.“ (T,M) =0 for
alli > 1.

It is well known that (T ® 4 -, Homg (T, —)) is a pair of adjoint functors and there are the
following canonical homomorphisms for any R-module M and any A-module N:

om:T @ Homg(T,M) — M, byt® f— f(t);
oy :N— Homgr(T, T ®4 N), byn—[t—1tQn].

Moreover, for any M € R-Mod, the composition

Hompg (T, T ®4 Homg (T, M)) “2m2CL, fom e (T, M)

Hompg (T, M)
_

Homg (T, M) ~

is the identity. Similarly, the composition (T ®4 on) o pre,N = lTg, N, for any N € A-Mod
(see for instance [16]).

Throughout the paper, we denote by pd(rT") (resp., id(gT), fd(T4)) the projective (resp.,
injective, flat) dimension of the module g7 (resp., g7, T4).

Let A be aring and T € Mod-A. T4 is said to be Gorenstein projective provided there is an
exact sequence of projective modules - -- — P — Py — P_; — ---suchthat T >~ Im(P; — P)
and such that Homy4 (—, Q) leaves the sequence exact whenever Q4 is a projective module.
T is said to be Gorenstein flat provided there is an exact sequence of flat modules - -- — F| —
Fy— F_1 — ---such that T >~ Im(F; — Fp) and such that — ® 4 I leaves the sequence exact
whenever 4/ is an injective module. T4 is said to be a *-syzygy module if, for all d, T4 is always
isomorphic to a direct summand of a d-syzygy of a projective resolution of some right A-module.

The Gorenstein projective (resp., Gorenstein flat, x-syzygy) dimension of T4 is denoted by
Gpd(T4) (resp., Gfd(Ty), *-sd(Ty4)).

Lemma 1.1. Let A be a ring and Ty € Mod -A.

(1) REd(Ty) < #-sd(Ta) < Gpd(T4) < pd(Ty). If pd(T4) < 00, then Gpd(T4) = pd(Ty).
(2) Rfd(Ty) < Gfd(T4) < {d(Ty). If A is coherent and £d(T4) < oo, then Gfd(T4) = fd(T4).

Proof. (1) By definitions and [11, Proposition 2.27].

(2) The first part is shown in [11, Theorem 3.19]. The second part is easily obtained from
[11, Theorem 3.6] and the dual part of [11, Proposition 2.27], together with relations between
injective and flat modules. O

We will see in the next section that both inequalities Rfd(74) < *-sd(T4) and Rfd(T4) <
Gfd(T4) can be strict. It is not known to us if Gfd(T4) = fd(T4) over any ring whenever the
latter is finite.

Finally, we recall the definitions of tilting modules.
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Let R be a ring and g7 € R-Mod. We say rT is tilting if (i) pd(gT) < oo, (ii) rT 1is
coproduct-selforthogonal and (iii) there is an exact sequence 0 - R — Tp — --- — T,, — 0 for
some n with each 7; € Addr T (see for instance [2]). g T is classical tilting if (i) pd(gT) < o0
and gT € R-mod, (ii) gT is selforthogonal and (iii) there is an exact sequence 0 — R — Tp —
-+ — T, — 0 for some n with each T; € addg T (see for instance [10,15]). We say rT is clas-
sical partial tilting if it satisfies the condition (i) and (ii) in the definition of classical tilting
modules.

Lemma 1.2. Let R be a ring and rT € R-Mod with A =Endg T.

(1) If rT is tilting, then there is T' ~ T for some X such that R ~ End(T},) and T, is
classical partial tilting, where A’ =Endg T'. In particular, R >~ End(Ty).
(2) If rT is classical tilting, then Ty is classical tilting too. Moreover, pd(gT) = pd(T4).

Proof. (1) By definition, there is an exact sequence 0 - R — Ty — --- — T,, — 0 for some n
with each 7; € Addg T. Now take T™ ~ (P T;) @ T” for some T”. It is easy to see that
T’ = T satisfies the conditions (ii) and (iii) in the definition of classical tilting modules. It
follows from [15, Proposition 1.4(2)], that R =~ End(T/;,) and T/;, is classical tilting. In particular,
by [1, 14.2], we have that R ~ BiEnd(7 ) ~ BiEnd(T) (= End(T})) canonically.

(2) See for instance [15, Theorem 1.5]. O

2. Finitistic dimension of endomorphism rings

We first note the following relations between finitistic dimensions and restricted flat dimen-
sions.

Lemma 2.1. Assume that A is a ring and Ty € Mod -A.

(1) Rfd(Ty) < Fdim(4 A).
(2) tfd(Ty) < fdim(4 A).

Proof. Clearly we need only to show that if Fdim(4A) = n < oo (resp., fdim(4A) = n < 00),
then Rfd(T4) < n (resp., rfd(T4) < n).

(1) By the definition of the big restricted flat dimension, it is sufficient to show that
Tor;‘Jrl (T, M) =0 for any 4 M with finite flat dimension. Since Fdim(4 A) = n < oo, we obtain
that every module with finite flat dimension has finite projective dimension, by [12, Proposi-
tion 6]. It follows that pd(4 M) < n. Hence Torfl‘H(T, M) =0.

(2) Note that the flat dimension coincides with the projective dimension for every 4 M €
A-mod. So the conclusion follows by definition. O

Lemma 2.2. Let R be a ring and gT € R-Mod.

(1) If RT is selfsmall and coproduct-selforthogonal, then
(1) Addg T-dim(zgM) = pd(4Homg (T, M)), for any M € Addr T.
(i) Fdim(gT) <id(Addgr 7).
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(2) If RT is selforthogonal, then
(1) addgr T-dim(zgM) = pd(4Hompg (T, M)), for any M € addr T
(i) fdim(g7T) <id(gT).

Proof. See for instance [17, Lemmas 2.1 and 2.2]. O
Lemma 2.3. Let R be a ring and rT € R-Mod with A =Endg T.

(1) If RT is selfsmall and coproduct-selforthogonal, then, for any Y € A-Mod such that
ToriA%(T, Y)=0and pd(4Y) < oo, it holds that Y ~Hompg(T,T ®4 Y) canonically and
Addr T-dim(T ®4 Y) < oo.

(2) If RT is selforthogonal, then, for any Y € A-mod such that Tor: > (T,Y)=0andpd(4Y) <
00, it holds that Y ~Homg(T, T ®4 Y) canonically and addR T- dim(7T ®4 Y) < o0.

Proof. (1) Since pd(4Y) < oo, we can take a finite projective resolution of 4Y, say,
0— Py—---—>P1—>Py—>Y—0

with each P; projective. Note 4Y € KerTorlA>l(T, —) and KerTorlA>1(T, —) is closed under
kernels of epimorphisms, so we obtain the following exact sequence, by applying the functor
T ®4q —:

0—>T®AP),—>-~-—>T®A Py—>T®sY — 0.

Denote T; ;=T ®4 P; for 0 <i < y. Then each T; € Addg T. It follows that Addg T-
dim(T ®4 Y) < oo. Moreover, by applying the functor Homg (T, —), we obtain the following
exact sequence:

0— Homg(T,T ®4 Py) — ---— Homg (T, T @4 Pop) > Homg(T, T ®4 Y) — 0,
as T is coproduct-selforthogonal and KerExth>1 (T, —) is closed under cokernels of monomor-
phisms. Since T is also selfsmall, we have that P; ~ Homg (T, T ® 4 P;) canonically, for each i.
It follows that 4 Y >~ 4 Homg (T, T ®4 Y) canonically.
(2) Similarly. O

The following is one of our main results.
Theorem 2.4. Let R be a ring and gT € R-Mod with A =Endgr T.
(1) If RT is selfsmall and coproduct-selforthogonal, then Rfd(T4) < Fdim(4A) < Fdim(rT) +
Rfd(Tx).
(2) If RT is selforthogonal, then rfd(Ty) < fdim(4 A) < fdim(grT) + rfd(Ty4).
Proof. (1) If Fdim(gT) or Rfd(7y) is infinite, then we have nothing to say in this case. So we

assume that Fdim(g7) = r < oo and Rfd(74) =t < oo. Obviously we need only to show that
Fdim(4A) <r +t.
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Let 4Y € A-Mod with pd(4Y) < oco. By taking the projective resolution of 4 Y, we obtain an
exact sequence

0 P L Ly p S pfoy g

with P; projective for each 0 < i < s. Denote by Y; the ith syzygy, for each i. We claim now
pd(aY;) <randsopd(4Y) <1+ r. Then the conclusion will be followed from the arbitrarity of
the choice of 4 Y.

Indeed, since Rfd(74) = ¢, we easily obtain that 4Y; € KerTor;;] (T, —). It is obvious that
pd(aY;) < oo. Hence, by Lemma 2.3, we have that 4 Y; >~ 4 Homg (T, T ® 4 ;) canonically and
Addg T-dim(T ®4 Y;) < oo. It follows that Addg T-dim(7 ®4 Y;) < Fdim(gT) = r. Now, by
Lemma 2.2, we obtain that pd(4Y;) = pd(4Homg (T, T ®4 Y;)) < r, as desired.

(2) Similarly. O

Immediately by Lemma 2.2 and Theorem 2.4, we have the following corollary which extends
[17, Theorem 2.5] where the global dimension is considered.

Corollary 2.5. Let R be a ring and rT € R-Mod with A =Endg T.

(1) IfRT is selfsmall and coproduct-selforthogonal, then Rfd(T4) < Fdim(4 A) <id(Addg T)+
Rfd(T4), where id(Addg T) denotes the supremum of injective dimensions of modules in
Addg T.

(2) If RT is selforthogonal, then rfd(T4) < fdim(4 A) <id(gT) + rfd(T4).

More special case of Theorem 2.4 is the following.
Corollary 2.6. Let R be a ring and gT € R-Mod with A=Endg T.

(1) If gT is selfsmall and coproduct-selforthogonal with Addr T closed under cokernels of
monomorphisms, then Fdim(4 A) = Rfd(Ty).

) If gT is selforthogonal with addgr T closed under cokernels of monomorphisms, then
fdim(4 A) = rfd(Ty).

Proof. It is easy to see that Fdim(z7) =0 in (1) and fdim(g7) =01in (2). O

Of course, (selfsmall) injective modules over left noetherian rings satisfy assumptions in the
above corollary (2) (resp., (1)). In particular, if A is an Artin algebra, then 4 (D A) is injective with
A ~End4 (DA), where D is the usual duality in Artin algebras. Hence we have the following.

Corollary 2.7. If A is an Artin algebra, then

(1) Fdim(4A) = Rfd(DA) 4.
(2) fdim(4A) = rfd(DA) 4.

Let R be a left noetherian ring and g7 € R-Mod. We say g7 is fdim-test tilting if g7 is
tilting such that KerExth%(T, —) = KerExt’[?1 (P=%°, —), where P=%° is the category of mod-
ules in R-mod of finite projective dimension. The fdim-test tilting modules were studied in [3],
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where it was proved that fdim(g R) < oo if and only if there exists a fdim-test tilting module g T
[3, Theorem 2.6]. In this case, fdim(gR) = pd(grT). If R is an Artin algebra, then there exists
a classical fdim-test tilting module g7 if and only if P=°° is contravariantly finite in R-mod
[3, Theorem 4.2].

Proposition 2.8. Let R be an Artin algebra. Assume that there is a classical fdim-test tilting
module gT with A =Endg T. Then addr T is closed under cokernels of monomorphisms. In
particular, fdim(4 A) =rfd(T4) < pd(rT) = fdim(g R).

Proof. Let 0 > Ty —» T} — M — 0 be exact with Ty, 71 € addg T. Then xkM € R-mod
and pd(gM) < oo, that is, M € P=%°. Since pT is fdim-test tilting, we have that RT €
KerExt'Z (T, ) _KerExth>l(7?<°° —) € KerExt)? (M, —). Tt follows that Extk (M, T) =
Hence the above exact sequence splits and g M € addg T, i.e., addg T is closed under cokernels
of monomorphisms.

The remained part follows from Lemma 1.2(2) and Corollary 2.6. O

Remark 2.9. Following [9], if R is a standardly stratified algebra such that its Ringel dual is
a properly stratified algebra, then there is a classical fdim-test tilting module 7. It was asked
in [14, 6.4] if there is any relation between fdim(g R) and fdim(4A), where A = Endgr T. The
above result gives a partial answer to this question.

We now apply Theorem 2.4 to (coproduct-)selforthogonal modules of finite projective dimen-
sion.

Proposition 2.10. Let R be a ring and rT € R-Mod with A=Endg T.

(1) If grT is selfsmall and coproduct-selforthogonal and of finite projective dimension, then
Rfd(T4) < Fdim(4A) < Fdim(gR) + Rfd(Ty).

(2) If RT is selforthogonal and of finite projective dimension, then rfd(T4) < fdim(4A) <
Fdim(g R) + tfd(T4). If additionally rT € R-mod, i.e., rT is classical partial tilting, then
rfd(Ty) < fdim(4 A) < fdim(g R) + rfd(Ty).

Proof. (1) By Theorem 2.4, it is sufficient to show that Fdim(z7) < Fdim(g R). Obviously, we
may assume that Fdim(z R) =t < oo.

For any M € Addg T, we have an exact sequence

fm f2 fi fo

0— Ty, ST —>Ty—> M—>0

with each 7; € Addr T. Since pd(rT) < oo, pd(rM) < oo too. Hence pd(r M) < t. More-
over, we have that each Im f; € KerExtf (T,—), as T is coproduct-selforthogonal. Suppose
now m > t, then we obtain that ExtR (Im f;, Im fi41) = Ext“rl (M, Im f;41) = 0 by the dimen-
sion shifting. It follows that Im f; € Addgr T and consequently, Addg T-dim(gM) < t. Hence
Fdim(gT) < Fdim(z R) by definition.

(2) Similarly. O
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In particular, we obtain the following corollary which contains [20, Theorems 1.2], where the
conclusion is proved under assumptions that 74 is of finite x-syzygy dimension (or Gorenstein
projective dimension or projective dimension).

Corollary 2.11. Let R be a ring and rT € R-Mod with A =Endg T.

(1) If T is selfsmall and projective, then Fdim(4 A) < Fdim(g R) 4+ Rfd(Ty).
(2) If rT is projective, then fdim(4A) < Fdim(gR) + tfd(T4). If additionally gT is finitely
generated, then fdim(4 A) < fdim(g R) + rfd(Ty).

We note that, in general, the restricted flat dimension may be strictly smaller than the x-syzygy
dimension (Gorenstein projective dimension, projective dimension), as the following example
shows.

Example 2.12. There exists a finite dimensional algebra A satisfying the following statement.

(1) There is a right A-module T4 such that rfd(7T4) = Rfd(T4) < Gpd(T4) = pd(T4) < oo.
(2) There is a right A-module U4 such that rfd(U4) = Rfd(U4) < *-sd(Uy,) strictly.

Proof. By [8], for any arbitrary finite numbers m and n, there is a finite dimensional algebra A
with fdim(4 A) = Fdim(4A) = m and fdim(A4) = Fdim(A4) =n. Letus take m =0 and n > 0.
Thus rfd(7T4) = Rfd(T4) = 0 for all right A-module 7', by Lemma 2.1.

For (1), we can take T4 € mod-A to be of projective dimension exactly n. Combining with
Lemma 1.1, we obtain that 0 = rfd(7T4) = Rfd(T4) < Gpd(T4) = pd(T4) < oo.

For (2), we take Uy = (DA) 4. We need only to show that (DA)4 is not a x-syzygy mod-
ule and it then follows that 0 = rfd(U4) = Rfd(Us) < *-sd(Uy) strictly. Suppose Uy is a
*-syzygy module, then there is a monomorphism Uy — A" with A’, projective by definition.
Since Us = (D A) 4 is injective, we obtain that Uy, is a direct summand of A" and hence is pro-
jective. Consequently, every injective right module is projective. Hence A is self-injective by the
Faith—Walker Theorem. It then follows fdim(A 4) = 0, a contradiction. O

Remark 2.13. It was conjectured in [6] that, for any ring A, if Gfd(T4) is finite, then Gfd(T4) =
Rfd(T4). The conjecture was proved in case that A is commutative noetherian [11] and that A is
a coherent ring with finite Gorenstein weak dimension [4]. However, by the above example, one
sees that the conjecture fails in general (note that Gfd(74) = pd(T4) in case T4 € mod-A, A is
noetherian and pd(7T4) < oo, by Lemma 1.1).

Recall that for an Artin algebra R, g7 € R-mod is classical cotilting if (i) id(gT) < oo,
(1) rT is selforthogonal and (iii) there is an exact sequence 0 — T, = --- — Ty — r(DR) — 0
for some n with each 7; € addg T', where D is the usual duality in Artin algebras. It is easy to
see that g T is classical tilting if and only if (DT)p is classical cotilting. Note that all classical
tilting modules are classical cotilting when the global dimension of R is finite.

Let R be an Artin algebra. A well-known result in the classical tilting theory is that gd R —
pdrT < gdA < gdR+pdp T in case T is classical tilting with A =Endg T, where gd R and
gd A denote respectively the global dimensions of R and A, see for instance [10] or [15]. The
result was improved in [7] where it was shown thatidg T < gd A < pdg T +idg T. The following
proposition is a generalization of the latter result to finitistic dimension.
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Proposition 2.14. Let R, A be Artin algebras and T € R-mod with A =Endg T. If rT is clas-
sical tilting and cotilting, then

max{fdim(g R) —id(gT),id(rT)} < fdim(4 A) < pd(gT) +id(gT).

Proof. Since rfd(7T4) < pd(T4) = pd(rT), the upper-bound part follows from Corollary 2.5.
Consider now the classical tilting and cotilting module 4 (DT)g, then we have that fdim(g R) <
fdim(4A) + rfd((DT)g) < fdim(4A) + pd((DT)gr) by Proposition 2.10. It follows that
fdim(gR) — pd((DT)g) < fdim(4A). Note that pd((DT)gr) = id(gT), so we have that
fdim(gR) — id(rT) < fdim(4A). Note also that fdim(4A) > pd(4(DT)) = pd((DT)g) =
id(gT), so the lower-bound part follows. O

3. Finitistic dimension of fixed subrings

The section concerns the finitistic dimension of some fixed subrings.

Let A be aring and T € Mod-A. We define the Tor-bound dimension of T4, denoted by
Tbd(T4), to be the minimal nonnegative integer n such that Tor?(T, M)=0foral p>n+1
whenever Torg (T, M) =0 for all p sufficiently large. The Tor-bound dimension of T4 is nothing
but the minimal bound on the vanishing of Tor (T, —), see [13].

The following lemma shows that the Tor-bound dimension is a refinement of flat dimension.

Lemma 3.1. Let A be a ring and T € Mod-A. Then Rfd(T4) < Tbd(T4) < fd(Ty). If
fd(T4) < oo, then Tbd(T4) = fd(Ty).

Proof. The inequality is obvious. If fd(T4) < oo, then Tor?(T, M) =0 forall p>{d(T4) + 1
and all modules oM. It follows that TorQ(T, M) =0 for all p > Tbd(T4) 4+ 1 and all mod-

ules 4 M, by the definition of the Tor-bound dimension. The latter is indeed equivalent to say that
fd(T4) <Tbd(T4). O

Combining the above result and Example 2.12, we see that the restricted flat dimension is
often strictly smaller than the Tor-bound dimension. In view of this point, most results in [13]
can be extended. For example, the following proposition is a generalization of [13, Theorem 6].

Proposition 3.2. Let A be a subring of a ring R such that A is an A—A bimodule direct summand
of R. Then

(1) Fdim(4A) < Fdim(gR) + Rfd(R4).
(2) fdim(4A) < fdim(gR) + rfd(R ).

Proof. The proof is just similar to that of [13, Theorem 6]. O

In the rest, we concentrate ourself on Artin algebras.

Let A, R be both Artin algebras. Following [18], we say that R is a left (resp., right) idealized
extension of A if A C R has the same identity and rad A is a left (resp., right) ideal in R. The
following result is very important in studying the finitistic dimension conjecture in Artin algebras
in connection with idealized extensions.
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Lemma 3.3. (See [18, Erratum, Lemma 0.1].) Let R be a left (resp., right) idealized extension
of A. If X € A-mod (resp., X € mod-A), then 2% (X) € R-mod (resp., 23(X) € mod-R). Here-
after, the symbol .qu (X) denotes the ith syzygy of the A-module X.

Let A, R be both k-algebras such that R is a left idealized extension of A, where k is the
residue field of a discrete valuation ring. It was shown in [18] that, if fdim(z R) < oo implies
fdim(4 A) < oo for all A, R satisfying the above assumptions, then fdim(4A) < oo for all k-
algebras A.

Proposition 3.4. Let R be a left idealized extension of A. Then fdim(4A) < fdim(gR) +
pd(a R) + max{rfd(R4), 2}. In particular, if both AR and R are of finite projective dimension,
then fdim(4 A) is finite provided that fdim(g R) is finite.

Proof. Let t = max{rfd(R,4),2} and r = fdim(g R). Then, for any 4 M of finite projective di-
mension, we obtain that 4 M; := .Qj\ (M) e KerToriA%(R, —) by the dimension shifting, since
t >rfd(Rq). Let 0 > A, —> --- — Ag —> M; — 0 be exact with each 4 A; projective. Then we
have an induced exact sequence 0 > RR®4 Ay = -+ = RR®4 Ao > RR®4 M; — 0. Obvi-
ously, RR ®4 A; € addg R for all i > 0. It follows that pd(r R ® 4 M;) < fdim(g R) = r. Conse-
quently, we have an exact sequence 0 - R, — --- — Rg — g R ® 4 M; — 0 with each g R; pro-
jective. It restricts to an exact sequence in A-modules 0 - R, — --- — Ry —> AR ®4 M; — 0,
since A C R has the same identity. Thus we have that pd(4 R ®4 M;) < pd(4R) + r. Since
t =2, gAM; is also a left R-module by Lemma 3.3. Consequently, 4 M; >~ 4 Homg(rR s, M;).
Note that the canonical homomorphism 4 Homg(rR s, M;) (= aM;) — Homg(r R4, RR ®4
Hompg(rR s, M;)) (=Hompgr(RRA, RR ®4 M;) = AR ®4 M,) is a split monomorphism, so that
AM; is a direct summand of 4R ®4 M;. It follows that pd(4 M;) < pd(4R) + r. Therefore,
pd(aM) <pd(aR)+r+t. O

Corollary 3.5. Assume that Ao C ... C Ay, are Artin algebras such that A;1 is a left idealized
extension of A;, for each 0 < - L IfA i+1 and A,_HA are of finite projective dimension,
forall 0 <i<m—1, then fdlm(A Ap) lsﬁmte provided that fdlm(A A is finite.

The following result can be compared with [19, Theorem 3.1], which states that, if Ag C - --
C A,, are Artin algebras such that, for each 0 <i <m — 1, A;4 is a left idealized extension of
A; and Al+1 is of finite projective dimension, then fdlm(A Ap) is finite provided that gd(A,,)
is finite, Where gd(A,,) denotes the global dimension of A,,

Theorem 3.6. Let R be a right idealized extension of A. Then fdim(4A) < fdim(gR) +
rfd(Ra) + 2. In particular, if R4 is of finite projective dimension (or finite x-syzygy dimension
or finite Gorenstein projective dimension or finite Tor-bound dimension), then fdim(4 A) is finite
provided that fdim(g R) is finite.

Proof. Let t =1fd(R4) and r = fdim(g R). Similarly as in the proof of Proposition 3.4, for any
AM of finite projective dimension, we obtain that 4 M, := .{22 M) € KerTorl.A>1(R, —) and that
pd(RR ®4 M;) < fdim(grR) =r.

Claim. QZZ(Y ) € R-mod, for any oY € A-mod, where Q;z(Y) denotes the second cosyzygy
in the minimal injective resolution of oY .
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Proof of the Claim. Note that (DY)4 € mod-A, where D is the usual duality in Artin algebras.
Thus £22 (DY) € mod-R by Lemma 3.3. It follows that 2, %(Y) ~ D23(DY) € R-mod. O

Now, for any 4Y € A-mod, we obtain that Ext;‘+3(M,, Y) ~ Eth;rl (M,, .Q;z(Y)) ~
Ext;eJrl (RR®4 M, QXZ(Y)) = 0, by the above arguments and [5, Chapter VI, Proposition 4.1.3,
p. 118]. It follows that pd(4 M;) < r + 2 and consequently, pd(4M) <t +r+2. O

Corollary 3.7. Assume that Ag C - - - C A, are Artin algebras such that, for each 0 <i <m —1,
A1 is aright idealized extension of A; and rfd(A;41,,) < 00 (e.g., Aiy1,. Is of finite projective
dimension, or finite x-syzygy dimension, or finite Gorenstein projective dilinension, or finite Tor-
bound dimension), then fdim( Ao Ao) is finite provided that fdim( Ay Am) 1S finite.
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