

JOURNAL OF Algebra

Journal of Algebra 320 (2008) 116-127

www.elsevier.com/locate/jalgebra

Finitistic dimension and restricted flat dimension [☆]

Jiaqun Wei

Department of Mathematics, Nanjing Normal University, Nanjing 210097, PR China Received 1 September 2007 Available online 18 April 2008 Communicated by Kent R. Fuller

Abstract

We investigate the relations between finitistic dimensions and restricted flat dimensions (introduced by Foxby [L.W. Christensen, H.-B. Foxby, A. Frankild, Restricted homological dimensions and Cohen-Macaulayness, J. Algebra 251 (1) (2002) 479–502]). In particular, we show the following result. (1) If T is a selforthogonal left module over a left noetherian ring R with the endomorphism ring A, then $rfd(T_A) \le$ $fdim(_AA) \leq id(_RT) + rfd(T_A)$. (2) If $_RT$ is classical partial tilting, then $fdim(_AA) \leq fdim(_RR) + rfd(T_A)$. (3) If $A = A_0 \subseteq A_1 \subseteq \cdots \subseteq A_m = R$ are Artin algebras with the same identity such that, for each $0 \le i \le m-1$, rad A_i is a right ideal in A_{i+1} and $\mathrm{rfd}(A_{i+1_{A_i}}) < \infty$ (e.g., $A_{i+1_{A_i}}$ is of finite projective dimension, or finite Gorenstein projective dimension, or finite Tor-bound dimension), then $fdim(RR) < \infty$ implies $fdim(A) < \infty$. As applications, we disprove Foxby's conjecture [H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra 189 (2004) 167-193] on restricted flat dimensions by providing a counterexample and give a partial answer to a question posed by Mazorchuk [V. Mazorchuk, On finitistic dimension of stratified algebras, arXiv:math.RT/0603179, 6.4]. © 2008 Elsevier Inc. All rights reserved.

Keywords: Finitistic dimension; Restricted flat dimension; Selforthogonal module; Endomorphism ring; Idealized extension

Introduction

Let R be an associative ring with identity. We denote by R-Mod (resp., Mod-R) the category of all left (resp., right) R-modules and by R-mod (resp., mod-R) the category of all left (resp., right) modules possessing finitely generated projective resolutions. The left little (resp., big) fini-

Supported by the National Science Foundation of China (No. 10601024). E-mail address: weijiagun@njnu.edu.cn.

tistic (projective) dimension of R, denoted by $f\dim(_RR)$ (resp., $F\dim(_RR)$), is defined as the supremum of the projective dimensions of all modules in R-mod (resp., R-Mod) of finite projective dimension. Obviously, $f\dim(_RR) \leq F\dim(_RR)$. We denote by $f\dim(_RR)$ and $F\dim(_RR)$ the corresponding right finitistic dimensions of R.

It is known that $\operatorname{Fdim}(R)$ coincides with the Krull dimension of R in case R is commutative and noetherian and that $\operatorname{fdim}(R) = \operatorname{depth} R$ in case R is commutative local and noetherian. So in the latter case both dimensions are finite, but they coincide if and only if R is Cohen–Macaulay. There are also examples of commutative noetherian rings with $\operatorname{Fdim}(R) = \operatorname{Fdim}(R) = \infty$.

In case R is an Artin algebra, it is known that the first finitistic dimension conjecture, which stated that $\operatorname{Fdim}(_RR) = \operatorname{fdim}(_RR)$, fails in general and the differences can even be arbitrarily big. However, the second finitistic dimension conjecture, which states that $\operatorname{fdim}(_RR) < \infty$, is still open. This conjecture is also related to many other homological conjectures and attracts many algebraists, see for instance [3,19,21].

In this note, we will investigate the finitistic dimension in terms of the restricted flat dimension.

Let A be a ring, and let T_A be a right A-module. Following [6], T_A is said to have (big) restricted flat dimension at most m if for each i > m the functor $\operatorname{Tor}_i^A(T, -)$ vanishes on the category of modules of finite flat dimension. The little restricted flat dimension is defined correspondingly by considering only modules of finite flat dimension which admit a projective resolution with finitely generated projectives. Obviously, $\operatorname{rfd}(T_A) \leqslant \operatorname{Rfd}(T_A) \leqslant \operatorname{fd}(T_A)$ by definition, where $\operatorname{fd}(T_A)$ denotes the flat dimension of T_A . Moreover, restricted flat dimensions are also smaller than Gorenstein flat dimension and *-syzygy dimension (see Lemma 1.1). It was conjectured by Foxby that the (big) restricted flat dimension of a module is equal to its Gorenstein flat dimension whenever the latter is finite [11]. The conjecture was proved in case that A is commutative noetherian [11] and that A is a coherent ring with finite Gorenstein weak dimension [4].

We find that the restricted flat dimension is a useful tool to describe the finitistic dimension. For example, we obtain that the left little finitistic dimension of an Artin algebra A is equal to the little restricted flat dimension of $(DA)_A$, where D denotes the usual duality in Artin algebras (Corollary 2.7).

Recall that $T \in R$ -Mod is selfsmall provided that $\operatorname{Hom}_R(T,T)^{(X)} \cong \operatorname{Hom}_R(T,T^{(X)})$ canonically, for any X. $_RT$ is selforthogonal if $T \in \operatorname{KerExt}_R^{i\geqslant 1}(T,-)$, i.e., T belongs to the category of all modules M such that $\operatorname{Ext}_R^i(T,M)=0$ for all $i\geqslant 1$. $_RT$ is said to be coproduct-selforthogonal if $T^{(X)}\in\operatorname{KerExt}_R^{i\geqslant 1}(T,-)$ for all X.

One of our main results states as follows. The idea comes from [17], where the global dimension of endomorphism rings is estimated in terms of the flat dimension.

Theorem 0.1. Let R be a ring and $T \in R$ -Mod with $A = \operatorname{End}_R T$.

- (1) If T is selfsmall and coproduct-selforthogonal, then $Rfd(T_A) \leq Fdim(AA) \leq id(Add_R T) + Rfd(T_A)$, where $id(Add_R T)$ denotes the supremum of injective dimensions of modules in $Add_R T$.
- (1') If T is selforthogonal, then $\operatorname{rfd}(T_A) \leqslant \operatorname{fdim}(A_A) \leqslant \operatorname{id}(A_A) + \operatorname{rfd}(T_A)$.
- (2) If $_RT$ is selfsmall and coproduct-selforthogonal and of finite projective dimension, then $Rfd(T_A) \leq Fdim(_RA) \leq Fdim(_RR) + Rfd(T_A)$.

(2') If $_RT$ is selforthogonal and of finite projective dimension, then $fdim(_AA) \leq Fdim(_RR) + rfd(T_A)$. If additionally $_RT \in R$ -mod, then $fdim(_AA) \leq fdim(_RR) + rfd(T_A)$.

As applications, we show that, if $_RT$ is a classical fdim-test tilting module with $A = \operatorname{End}_R T$, then $\operatorname{fdim}(_AA) \leq \operatorname{fdim}(_RR)$ (Proposition 2.8). This gives a partial answer to a question posed by Mazorchuk [14, 6.4]. The question asks if there is any relation between $\operatorname{fdim}(_RR)$ and $\operatorname{fdim}(_AA)$, where $A = \operatorname{End}_R T$ and $_RT$ is a classical fdim-test tilting module over a standardly stratified algebra R such that its Ringel dual is a properly stratified algebra [9, Sections 5 and 6].

We also obtain the following corollary which contains [20, Theorems 1.2], where the conclusion is proved under assumptions that T_A is of finite *-syzygy dimension (or finite Gorenstein projective dimension or finite projective dimension).

Corollary 0.2. *Let* R *be a ring and* $T \in R$ -Mod *with* $A = \operatorname{End}_R T$.

- (1) If $_RT$ is selfsmall and projective with $\mathrm{Rfd}(T_A)$ finite, then $\mathrm{Fdim}(_RR) < \infty$ implies that $\mathrm{Fdim}(_AA) < \infty$.
- (2) If $_RT$ is projective with $\mathrm{rfd}(T_A)$ finite, then $\mathrm{Fdim}(_RR) < \infty$ implies that $\mathrm{fdim}(_AA) < \infty$. If furthermore $_RT$ is finitely generated, then $\mathrm{fdim}(_RR) < \infty$ implies that $\mathrm{fdim}(_AA) < \infty$.

We give examples to show that, in general, the restricted flat dimension of a module may be strictly smaller than its *-syzygy dimension (Gorenstein projective dimension, projective dimension). In particular, we give a counterexample to Foxby's conjecture.

Another main result of the note concerns the finitistic dimension of some fixed subrings. The first part of the following result extends [13, Theorem 6], while the second part can be compared with [18, Theorem 3.1].

Theorem 0.3.

- (1) Let A be a subring of a ring R such that A is an A-A bimodule direct summand of R. Then $\operatorname{Fdim}(_AA) \leq \operatorname{Fdim}(_RR) + \operatorname{Rfd}(R_A)$.
- (2) Assume that $A = A_0 \subseteq A_1 \subseteq \cdots \subseteq A_m = R$ are Artin algebras with the same identity such that, for each $0 \le i \le m-1$, rad A_i is a right ideal in A_{i+1} and rfd $(A_{i+1_{A_i}}) < \infty$ (e.g., $A_{i+1_{A_i}}$ is of finite projective dimension or finite Gorenstein projective dimension), then fdim $(R,R) < \infty$ implies fdim $(A,A) < \infty$.

1. Preliminaries

Throughout this paper, all rings will be associated with non-zero identity. By a category, we mean a full subcategory closed under isomorphisms.

In the following, we fix R to be a ring and $T \in R$ -Mod with the endomorphism ring A. Then ${}_RT_A$ is an R-A bimodule. We denote by Add_RT (resp., add_RT) the class of modules isomorphic to direct summands of (resp., finite) direct sums of copies of ${}_RT$.

Let $C \subseteq R$ -Mod be a category and $M \in R$ -Mod. We denote by C-dim $(_RM)$ the minimal integer m such that there is an exact sequence $0 \to T_m \to \cdots \to T_0 \to M \to 0$ with each $T_i \in C$ and call it the C-dimension of $_RM$. Note that, for some $_RM$, the C-dimension of $_RM$ may not exist. In the latter case, we denote C-dim $(_RM) = \infty$. The category of all modules $M \in R$ -Mod such that C-dim $(_RM) < \infty$ is denoted by \widehat{C} .

We define $\operatorname{Fdim}(_RT)$ to be the supremum of the Add_RT -dimensions of all modules in R- Mod of finite Add_RT -dimension. Similarly, $\operatorname{fdim}(_RT)$ is denoted to be the supremum of the add_RT -dimensions of all modules in R- Mod of finite add_RT -dimension. It is easy to see that $\operatorname{Fdim}(_RR)$ (resp., $\operatorname{fdim}(_RR)$) is just the left big (resp., little) finitistic dimension of R defined in the introduction.

Similarly to the notion $\operatorname{KerExt}_R^{i\geqslant 1}(T,-)$ defined in the introduction, we denote by $\operatorname{KerTor}_{i\geqslant 1}^A(T,-)$ the category of all modules $M\in A$ -Mod such that $\operatorname{Tor}_i^A(T,M)=0$ for all $i\geqslant 1$.

It is well known that $(T \otimes_A -, \operatorname{Hom}_R(T, -))$ is a pair of adjoint functors and there are the following canonical homomorphisms for any R-module M and any A-module N:

$$\rho_M: T \otimes_A \operatorname{Hom}_R(T, M) \to M, \text{ by } t \otimes f \to f(t);$$

$$\sigma_N: N \to \operatorname{Hom}_R(T, T \otimes_A N), \text{ by } n \to [t \to t \otimes n].$$

Moreover, for any $M \in R$ -Mod, the composition

$$\operatorname{Hom}_R(T,M) \xrightarrow{\sigma_{\operatorname{Hom}_R(T,M)}} \operatorname{Hom}_R(T,T \otimes_A \operatorname{Hom}_R(T,M)) \xrightarrow{\operatorname{Hom}_R(T,\rho_M)} \operatorname{Hom}_R(T,M)$$

is the identity. Similarly, the composition $(T \otimes_A \sigma_N) \circ \rho_{T \otimes_A N} = 1_{T \otimes_A N}$, for any $N \in A$ -Mod (see for instance [16]).

Throughout the paper, we denote by $pd(_RT)$ (resp., $id(_RT)$, $fd(T_A)$) the projective (resp., injective, flat) dimension of the module $_RT$ (resp., $_RT$, $_TA$).

Let A be a ring and $T \in \operatorname{Mod} - A$. T_A is said to be Gorenstein projective provided there is an exact sequence of projective modules $\cdots \to P_1 \to P_0 \to P_{-1} \to \cdots$ such that $T \simeq \operatorname{Im}(P_1 \to P_0)$ and such that $\operatorname{Hom}_A(-,Q)$ leaves the sequence exact whenever Q_A is a projective module. T is said to be Gorenstein flat provided there is an exact sequence of flat modules $\cdots \to F_1 \to F_0 \to F_{-1} \to \cdots$ such that $T \simeq \operatorname{Im}(F_1 \to F_0)$ and such

The Gorenstein projective (resp., Gorenstein flat, *-syzygy) dimension of T_A is denoted by $Gpd(T_A)$ (resp., $Gfd(T_A)$, *-sd (T_A)).

Lemma 1.1. Let A be a ring and $T_A \in \text{Mod} - A$.

- (1) $\operatorname{Rfd}(T_A) \leq *-\operatorname{sd}(T_A) \leq \operatorname{Gpd}(T_A) \leq \operatorname{pd}(T_A)$. If $\operatorname{pd}(T_A) < \infty$, then $\operatorname{Gpd}(T_A) = \operatorname{pd}(T_A)$.
- (2) $\operatorname{Rfd}(T_A) \leq \operatorname{Gfd}(T_A) \leq \operatorname{fd}(T_A)$. If A is coherent and $\operatorname{fd}(T_A) < \infty$, then $\operatorname{Gfd}(T_A) = \operatorname{fd}(T_A)$.

Proof. (1) By definitions and [11, Proposition 2.27].

(2) The first part is shown in [11, Theorem 3.19]. The second part is easily obtained from [11, Theorem 3.6] and the dual part of [11, Proposition 2.27], together with relations between injective and flat modules. \Box

We will see in the next section that both inequalities $Rfd(T_A) \leq *-sd(T_A)$ and $Rfd(T_A) \leq Gfd(T_A)$ can be strict. It is not known to us if $Gfd(T_A) = fd(T_A)$ over any ring whenever the latter is finite.

Finally, we recall the definitions of tilting modules.

Let R be a ring and ${}_RT \in R ext{-}Mod$. We say ${}_RT$ is tilting if (i) $\operatorname{pd}({}_RT) < \infty$, (ii) ${}_RT$ is coproduct-selforthogonal and (iii) there is an exact sequence $0 \to R \to T_0 \to \cdots \to T_n \to 0$ for some n with each $T_i \in \operatorname{Add}_RT$ (see for instance [2]). ${}_RT$ is classical tilting if (i) $\operatorname{pd}({}_RT) < \infty$ and ${}_RT \in R ext{-}mod$, (ii) ${}_RT$ is selforthogonal and (iii) there is an exact sequence $0 \to R \to T_0 \to \cdots \to T_n \to 0$ for some n with each $T_i \in \operatorname{add}_RT$ (see for instance [10,15]). We say ${}_RT$ is classical partial tilting if it satisfies the condition (i) and (ii) in the definition of classical tilting modules.

Lemma 1.2. Let R be a ring and $_RT \in R\text{-Mod } with A = \operatorname{End}_R T$.

- (1) If $_RT$ is tilting, then there is $T' \cong T^{(X)}$ for some X such that $R \cong \operatorname{End}(T'_{A'})$ and $T'_{A'}$ is classical partial tilting, where $A' = \operatorname{End}_R T'$. In particular, $R \cong \operatorname{End}(T_A)$.
- (2) If $_RT$ is classical tilting, then T_A is classical tilting too. Moreover, $pd(_RT) = pd(T_A)$.

Proof. (1) By definition, there is an exact sequence $0 \to R \to T_0 \to \cdots \to T_n \to 0$ for some n with each $T_i \in \operatorname{Add}_R T$. Now take $T^{(X)} \simeq (\bigoplus T_i) \oplus T''$ for some T''. It is easy to see that $T' = T^{(X)}$ satisfies the conditions (ii) and (iii) in the definition of classical tilting modules. It follows from [15, Proposition 1.4(2)], that $R \simeq \operatorname{End}(T'_{A'})$ and $T'_{A'}$ is classical tilting. In particular, by [1, 14.2], we have that $R \simeq \operatorname{BiEnd}(T^{(X)}) \simeq \operatorname{BiEnd}(T)$ (= $\operatorname{End}(T_A)$) canonically.

(2) See for instance [15, Theorem 1.5]. \Box

2. Finitistic dimension of endomorphism rings

We first note the following relations between finitistic dimensions and restricted flat dimensions.

Lemma 2.1. Assume that A is a ring and $T_A \in \text{Mod} - A$.

- (1) $\operatorname{Rfd}(T_A) \leqslant \operatorname{Fdim}(_A A)$.
- (2) $\operatorname{rfd}(T_A) \leqslant \operatorname{fdim}(_A A)$.

Proof. Clearly we need only to show that if $\operatorname{Fdim}(_AA) = n < \infty$ (resp., $\operatorname{fdim}(_AA) = n < \infty$), then $\operatorname{Rfd}(T_A) \leq n$ (resp., $\operatorname{rfd}(T_A) \leq n$).

- (1) By the definition of the big restricted flat dimension, it is sufficient to show that $\operatorname{Tor}_{n+1}^A(T,M)=0$ for any ${}_AM$ with finite flat dimension. Since $\operatorname{Fdim}({}_AA)=n<\infty$, we obtain that every module with finite flat dimension has finite projective dimension, by [12, Proposition 6]. It follows that $\operatorname{pd}({}_AM)\leqslant n$. Hence $\operatorname{Tor}_{n+1}^A(T,M)=0$.
- (2) Note that the flat dimension coincides with the projective dimension for every ${}_{A}M \in A$ -mod. So the conclusion follows by definition. \square

Lemma 2.2. Let R be a ring and $_RT \in R$ -Mod.

- (1) If _RT is selfsmall and coproduct-selforthogonal, then
 - (i) $Add_R T dim(_R M) = pd(_A Hom_R(T, M))$, for any $M \in Add_R T$.
 - (ii) $\operatorname{Fdim}(_R T) \leq \operatorname{id}(\operatorname{Add}_R T)$.

- (2) If $_RT$ is selforthogonal, then
 - (i) $\operatorname{add}_R T \operatorname{-dim}(_R M) = \operatorname{pd}(_A \operatorname{Hom}_R (T, M)), \text{ for any } M \in \operatorname{add}_R T.$
 - (ii) $fdim(_R T) \leq id(_R T)$.

Proof. See for instance [17, Lemmas 2.1 and 2.2]. \Box

Lemma 2.3. Let R be a ring and $_RT \in R$ -Mod with $A = \operatorname{End}_R T$.

- (1) If $_RT$ is selfsmall and coproduct-selforthogonal, then, for any $Y \in A$ -Mod such that $\operatorname{Tor}_{i\geqslant 1}^A(T,Y)=0$ and $\operatorname{pd}(_AY)<\infty$, it holds that $Y\simeq \operatorname{Hom}_R(T,T\otimes_AY)$ canonically and Add_RT - $\operatorname{dim}(T\otimes_AY)<\infty$.
- (2) If $_RT$ is selforthogonal, then, for any $Y \in A$ mod such that $\operatorname{Tor}_{i \geqslant 1}^A(T, Y) = 0$ and $\operatorname{pd}(_AY) < \infty$, it holds that $Y \simeq \operatorname{Hom}_R(T, T \otimes_A Y)$ canonically and $\operatorname{add}_R T$ $\operatorname{dim}(T \otimes_A Y) < \infty$.

Proof. (1) Since $pd(AY) < \infty$, we can take a finite projective resolution of AY, say,

$$0 \to P_{y} \to \cdots \to P_{1} \to P_{0} \to Y \to 0$$

with each P_i projective. Note ${}_AY \in \operatorname{KerTor}_{i\geqslant 1}^A(T,-)$ and $\operatorname{KerTor}_{i\geqslant 1}^A(T,-)$ is closed under kernels of epimorphisms, so we obtain the following exact sequence, by applying the functor $T\otimes_A -$:

$$0 \to T \otimes_A P_v \to \cdots \to T \otimes_A P_0 \to T \otimes_A Y \to 0.$$

Denote $T_i := T \otimes_A P_i$ for $0 \le i \le y$. Then each $T_i \in \operatorname{Add}_R T$. It follows that $\operatorname{Add}_R T$ - $\dim(T \otimes_A Y) < \infty$. Moreover, by applying the functor $\operatorname{Hom}_R(T, -)$, we obtain the following exact sequence:

$$0 \to \operatorname{Hom}_R(T, T \otimes_A P_{\nu}) \to \cdots \to \operatorname{Hom}_R(T, T \otimes_A P_0) \to \operatorname{Hom}_R(T, T \otimes_A Y) \to 0,$$

as T is coproduct-selforthogonal and $\operatorname{KerExt}_R^{i\geqslant 1}(T,-)$ is closed under cokernels of monomorphisms. Since T is also selfsmall, we have that $P_i \simeq \operatorname{Hom}_R(T,T\otimes_A P_i)$ canonically, for each i. It follows that $AY \simeq A \operatorname{Hom}_R(T,T\otimes_A Y)$ canonically.

(2) Similarly. □

The following is one of our main results.

Theorem 2.4. Let R be a ring and $_RT \in R$ -Mod with $A = \operatorname{End}_R T$.

- (1) If $_RT$ is selfsmall and coproduct-selforthogonal, then $\mathrm{Rfd}(T_A) \leqslant \mathrm{Fdim}(_RA) \leqslant \mathrm{Fdim}(_RT) + \mathrm{Rfd}(T_A)$.
- (2) If $_RT$ is selforthogonal, then $\mathrm{rfd}(T_A) \leqslant \mathrm{fdim}(_RA) \leqslant \mathrm{fdim}(_RT) + \mathrm{rfd}(T_A)$.

Proof. (1) If $\operatorname{Fdim}(_RT)$ or $\operatorname{Rfd}(T_A)$ is infinite, then we have nothing to say in this case. So we assume that $\operatorname{Fdim}(_RT) = r < \infty$ and $\operatorname{Rfd}(T_A) = t < \infty$. Obviously we need only to show that $\operatorname{Fdim}(_AA) \leq r + t$.

Let ${}_AY \in A\text{-Mod}$ with $\operatorname{pd}({}_AY) < \infty$. By taking the projective resolution of ${}_AY$, we obtain an exact sequence

$$0 \rightarrow P_s \xrightarrow{f_s} \cdots \xrightarrow{f_2} P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} Y \rightarrow 0$$

with P_i projective for each $0 \le i \le s$. Denote by Y_i the *i*th syzygy, for each *i*. We claim now $pd(_AY_t) \le r$ and so $pd(_AY) \le t + r$. Then the conclusion will be followed from the arbitrarity of the choice of $_AY$.

Indeed, since Rfd(T_A) = t, we easily obtain that ${}_AY_t \in \operatorname{KerTor}_{i \geqslant 1}^A(T, -)$. It is obvious that $\operatorname{pd}({}_AY_t) < \infty$. Hence, by Lemma 2.3, we have that ${}_AY_t \simeq {}_A\operatorname{Hom}_R(T, T \otimes_A Y_t)$ canonically and $\operatorname{Add}_R T$ -dim($T \otimes_A Y_t$) $< \infty$. It follows that $\operatorname{Add}_R T$ -dim($T \otimes_A Y_t$) $\leq \operatorname{Fdim}(RT) = r$. Now, by Lemma 2.2, we obtain that $\operatorname{pd}({}_AY_t) = \operatorname{pd}({}_A\operatorname{Hom}_R(T, T \otimes_A Y_t)) \leq r$, as desired.

(2) Similarly. \Box

Immediately by Lemma 2.2 and Theorem 2.4, we have the following corollary which extends [17, Theorem 2.5] where the global dimension is considered.

Corollary 2.5. Let R be a ring and $_RT \in R$ -Mod with $A = \operatorname{End}_R T$.

- (1) If $_RT$ is selfsmall and coproduct-selforthogonal, then $Rfd(T_A) \leq Fdim(_AA) \leq id(Add_RT) + Rfd(T_A)$, where $id(Add_RT)$ denotes the supremum of injective dimensions of modules in Add_RT .
- (2) If $_RT$ is selforthogonal, then $\mathrm{rfd}(T_A) \leqslant \mathrm{fdim}(_AA) \leqslant \mathrm{id}(_RT) + \mathrm{rfd}(T_A)$.

More special case of Theorem 2.4 is the following.

Corollary 2.6. *Let* R *be a ring and* $_RT \in R$ -Mod *with* $A = \operatorname{End}_R T$.

- (1) If $_RT$ is selfsmall and coproduct-selforthogonal with Add_RT closed under cokernels of monomorphisms, then $Fdim(_AA) = Rfd(T_A)$.
- (2) If $_RT$ is selforthogonal with add_RT closed under cokernels of monomorphisms, then $\operatorname{fdim}(_AA) = \operatorname{rfd}(T_A)$.

Proof. It is easy to see that $F\dim(_RT) = 0$ in (1) and $f\dim(_RT) = 0$ in (2). \Box

Of course, (selfsmall) injective modules over left noetherian rings satisfy assumptions in the above corollary (2) (resp., (1)). In particular, if A is an Artin algebra, then A(DA) is injective with $A \simeq \operatorname{End}_A(DA)$, where D is the usual duality in Artin algebras. Hence we have the following.

Corollary 2.7. If A is an Artin algebra, then

- (1) $\operatorname{Fdim}(_A A) = \operatorname{Rfd}(DA)_A$.
- (2) $fdim(_AA) = rfd(DA)_A$.

Let R be a left noetherian ring and $RT \in R$ -Mod. We say RT is fdim-test tilting if R is tilting such that $\operatorname{KerExt}_R^{i\geqslant 1}(T,-)=\operatorname{KerExt}_R^{i\geqslant 1}(\mathcal{P}^{<\infty},-)$, where $\mathcal{P}^{<\infty}$ is the category of modules in R-mod of finite projective dimension. The fdim-test tilting modules were studied in [3],

where it was proved that $f\dim({}_RR) < \infty$ if and only if there exists a fdim-test tilting module ${}_RT$ [3, Theorem 2.6]. In this case, $f\dim({}_RR) = pd({}_RT)$. If R is an Artin algebra, then there exists a classical fdim-test tilting module ${}_RT$ if and only if $\mathcal{P}^{<\infty}$ is contravariantly finite in R-mod [3, Theorem 4.2].

Proposition 2.8. Let R be an Artin algebra. Assume that there is a classical fdim-test tilting module $_RT$ with $A = \operatorname{End}_RT$. Then add_RT is closed under cokernels of monomorphisms. In particular, $\operatorname{fdim}(_AA) = \operatorname{rfd}(T_A) \leq \operatorname{pd}(_RT) = \operatorname{fdim}(_RR)$.

Proof. Let $0 \to T_0 \to T_1 \to M \to 0$ be exact with $T_0, T_1 \in \operatorname{add}_R T$. Then ${}_RM \in R$ -mod and $\operatorname{pd}({}_RM) < \infty$, that is, $M \in \mathcal{P}^{<\infty}$. Since ${}_RT$ is fdim-test tilting, we have that ${}_RT \in \operatorname{KerExt}_R^{i \geqslant 1}(T, -) = \operatorname{KerExt}_R^{i \geqslant 1}(\mathcal{P}^{<\infty}, -) \subseteq \operatorname{KerExt}_R^{i \geqslant 1}(M, -)$. It follows that $\operatorname{Ext}_R^1(M, T) = 0$. Hence the above exact sequence splits and ${}_RM \in \operatorname{add}_R T$, i.e., $\operatorname{add}_R T$ is closed under cokernels of monomorphisms.

The remained part follows from Lemma 1.2(2) and Corollary 2.6. \Box

Remark 2.9. Following [9], if R is a standardly stratified algebra such that its Ringel dual is a properly stratified algebra, then there is a classical fdim-test tilting module $_RT$. It was asked in [14, 6.4] if there is any relation between $f\dim(_RR)$ and $f\dim(_AA)$, where $A = \operatorname{End}_RT$. The above result gives a partial answer to this question.

We now apply Theorem 2.4 to (coproduct-)selforthogonal modules of finite projective dimension.

Proposition 2.10. Let R be a ring and $_RT \in R$ - Mod with $A = \operatorname{End}_R T$.

- (1) If $_RT$ is selfsmall and coproduct-selforthogonal and of finite projective dimension, then $Rfd(T_A) \leq Fdim(_RA) \leq Fdim(_RR) + Rfd(T_A)$.
- (2) If $_RT$ is selforthogonal and of finite projective dimension, then $\mathrm{rfd}(T_A) \leqslant \mathrm{fdim}(_RA) \leqslant \mathrm{Fdim}(_RR) + \mathrm{rfd}(T_A)$. If additionally $_RT \in R$ mod, i.e., $_RT$ is classical partial tilting, then $\mathrm{rfd}(T_A) \leqslant \mathrm{fdim}(_AA) \leqslant \mathrm{fdim}(_RR) + \mathrm{rfd}(T_A)$.

Proof. (1) By Theorem 2.4, it is sufficient to show that $\operatorname{Fdim}(_R T) \leq \operatorname{Fdim}(_R R)$. Obviously, we may assume that $\operatorname{Fdim}(_R R) = t < \infty$.

For any $M \in \widehat{\mathrm{Add}}_R T$, we have an exact sequence

$$0 \to T_m \xrightarrow{f_m} \cdots \xrightarrow{f_2} T_1 \xrightarrow{f_1} T_0 \xrightarrow{f_0} M \to 0$$

with each $T_i \in \operatorname{Add}_R T$. Since $\operatorname{pd}(_R T) < \infty$, $\operatorname{pd}(_R M) < \infty$ too. Hence $\operatorname{pd}(_R M) \leqslant t$. Moreover, we have that each $\operatorname{Im} f_i \in \operatorname{KerExt}_R^{t \geqslant 1}(T, -)$, as T is coproduct-selforthogonal. Suppose now m > t, then we obtain that $\operatorname{Ext}_R^1(\operatorname{Im} f_t, \operatorname{Im} f_{t+1}) \simeq \operatorname{Ext}_R^{t+1}(M, \operatorname{Im} f_{t+1}) = 0$ by the dimension shifting. It follows that $\operatorname{Im} f_t \in \operatorname{Add}_R T$ and consequently, $\operatorname{Add}_R T - \dim(_R M) \leqslant t$. Hence $\operatorname{Fdim}(_R T) \leqslant \operatorname{Fdim}(_R R)$ by definition.

(2) Similarly. \Box

In particular, we obtain the following corollary which contains [20, Theorems 1.2], where the conclusion is proved under assumptions that T_A is of finite *-syzygy dimension (or Gorenstein projective dimension or projective dimension).

Corollary 2.11. *Let* R *be a ring and* R $T \in R$ -Mod *with* $A = \operatorname{End}_R T$.

- (1) If $_RT$ is selfsmall and projective, then $\operatorname{Fdim}(_AA) \leq \operatorname{Fdim}(_RR) + \operatorname{Rfd}(T_A)$.
- (2) If $_RT$ is projective, then $fdim(_AA) \leq Fdim(_RR) + rfd(T_A)$. If additionally $_RT$ is finitely generated, then $fdim(_AA) \leq fdim(_RR) + rfd(T_A)$.

We note that, in general, the restricted flat dimension may be strictly smaller than the *-syzygy dimension (Gorenstein projective dimension, projective dimension), as the following example shows.

Example 2.12. There exists a finite dimensional algebra A satisfying the following statement.

- (1) There is a right A-module T_A such that $\mathrm{rfd}(T_A) = \mathrm{Rfd}(T_A) < \mathrm{Gpd}(T_A) = \mathrm{pd}(T_A) < \infty$.
- (2) There is a right A-module U_A such that $rfd(U_A) = Rfd(U_A) < *-sd(U_A)$ strictly.

Proof. By [8], for any arbitrary finite numbers m and n, there is a finite dimensional algebra A with $fdim(_AA) = Fdim(_AA) = m$ and $fdim(_AA) = Fdim(_AA) = n$. Let us take m = 0 and n > 0. Thus $rfd(T_A) = Rfd(T_A) = 0$ for all right A-module T, by Lemma 2.1.

For (1), we can take $T_A \in \text{mod} - A$ to be of projective dimension exactly n. Combining with Lemma 1.1, we obtain that $0 = \text{rfd}(T_A) = \text{Rfd}(T_A) < \text{Gpd}(T_A) = \text{pd}(T_A) < \infty$.

For (2), we take $U_A = (DA)_A$. We need only to show that $(DA)_A$ is not a *-syzygy module and it then follows that $0 = \text{rfd}(U_A) = \text{Rfd}(U_A) < *-\text{sd}(U_A)$ strictly. Suppose U_A is a *-syzygy module, then there is a monomorphism $U_A \to A'$ with A'_A projective by definition. Since $U_A = (DA)_A$ is injective, we obtain that U_A is a direct summand of A' and hence is projective. Consequently, every injective right module is projective. Hence A is self-injective by the Faith–Walker Theorem. It then follows $\text{fdim}(A_A) = 0$, a contradiction. \square

Remark 2.13. It was conjectured in [6] that, for any ring A, if $Gfd(T_A)$ is finite, then $Gfd(T_A) = Rfd(T_A)$. The conjecture was proved in case that A is commutative noetherian [11] and that A is a coherent ring with finite Gorenstein weak dimension [4]. However, by the above example, one sees that the conjecture fails in general (note that $Gfd(T_A) = pd(T_A)$ in case $T_A \in mod - A$, A is noetherian and $pd(T_A) < \infty$, by Lemma 1.1).

Recall that for an Artin algebra R, $_RT \in R$ -mod is classical cotilting if (i) $\mathrm{id}(_RT) < \infty$, (ii) $_RT$ is selforthogonal and (iii) there is an exact sequence $0 \to T_n \to \cdots \to T_0 \to _R(DR) \to 0$ for some n with each $T_i \in \mathrm{add}_RT$, where D is the usual duality in Artin algebras. It is easy to see that $_RT$ is classical tilting if and only if $(DT)_R$ is classical cotilting. Note that all classical tilting modules are classical cotilting when the global dimension of R is finite.

Let R be an Artin algebra. A well-known result in the classical tilting theory is that $\operatorname{gd} R - \operatorname{pd}_R T \leqslant \operatorname{gd} A \leqslant \operatorname{gd} R + \operatorname{pd}_R T$ in case T is classical tilting with $A = \operatorname{End}_R T$, where $\operatorname{gd} R$ and $\operatorname{gd} A$ denote respectively the global dimensions of R and A, see for instance [10] or [15]. The result was improved in [7] where it was shown that $\operatorname{id}_R T \leqslant \operatorname{gd} A \leqslant \operatorname{pd}_R T + \operatorname{id}_R T$. The following proposition is a generalization of the latter result to finitistic dimension.

Proposition 2.14. Let R, A be Artin algebras and $T \in R$ - mod with $A = \operatorname{End}_R T$. If R is classical tilting and cotilting, then

$$\max\{\operatorname{fdim}(_RR) - \operatorname{id}(_RT), \operatorname{id}(_RT)\} \leqslant \operatorname{fdim}(_AA) \leqslant \operatorname{pd}(_RT) + \operatorname{id}(_RT).$$

Proof. Since $\operatorname{rfd}(T_A) \leq \operatorname{pd}(T_A) = \operatorname{pd}(_RT)$, the upper-bound part follows from Corollary 2.5. Consider now the classical tilting and cotilting module $_A(DT)_R$, then we have that $\operatorname{fdim}(_RR) \leq \operatorname{fdim}(_AA) + \operatorname{rfd}((DT)_R) \leq \operatorname{fdim}(_AA) + \operatorname{pd}((DT)_R)$ by Proposition 2.10. It follows that $\operatorname{fdim}(_RR) - \operatorname{pd}((DT)_R) \leq \operatorname{fdim}(_AA)$. Note that $\operatorname{pd}((DT)_R) = \operatorname{id}(_RT)$, so we have that $\operatorname{fdim}(_RR) - \operatorname{id}(_RT) \leq \operatorname{fdim}(_AA)$. Note also that $\operatorname{fdim}(_AA) \geq \operatorname{pd}(_A(DT)) = \operatorname{pd}((DT)_R) = \operatorname{id}(_RT)$, so the lower-bound part follows. \square

3. Finitistic dimension of fixed subrings

The section concerns the finitistic dimension of some fixed subrings.

Let A be a ring and $T \in \text{Mod}-A$. We define the Tor-bound dimension of T_A , denoted by $\text{Tbd}(T_A)$, to be the minimal nonnegative integer n such that $\text{Tor}_p^A(T, M) = 0$ for all $p \ge n + 1$ whenever $\text{Tor}_p^A(T, M) = 0$ for all p sufficiently large. The Tor-bound dimension of T_A is nothing but the minimal bound on the vanishing of $\text{Tor}^A(T, -)$, see [13].

The following lemma shows that the Tor-bound dimension is a refinement of flat dimension.

Lemma 3.1. Let A be a ring and $T \in \text{Mod-}A$. Then $\text{Rfd}(T_A) \leqslant \text{Tbd}(T_A) \leqslant \text{fd}(T_A)$. If $\text{fd}(T_A) < \infty$, then $\text{Tbd}(T_A) = \text{fd}(T_A)$.

Proof. The inequality is obvious. If $\operatorname{fd}(T_A) < \infty$, then $\operatorname{Tor}_p^A(T, M) = 0$ for all $p \ge \operatorname{fd}(T_A) + 1$ and all modules ${}_AM$. It follows that $\operatorname{Tor}_p^A(T, M) = 0$ for all $p \ge \operatorname{Tbd}(T_A) + 1$ and all modules ${}_AM$, by the definition of the Tor-bound dimension. The latter is indeed equivalent to say that $\operatorname{fd}(T_A) \le \operatorname{Tbd}(T_A)$. \square

Combining the above result and Example 2.12, we see that the restricted flat dimension is often strictly smaller than the Tor-bound dimension. In view of this point, most results in [13] can be extended. For example, the following proposition is a generalization of [13, Theorem 6].

Proposition 3.2. Let A be a subring of a ring R such that A is an A–A bimodule direct summand of R. Then

- (1) $\operatorname{Fdim}(_A A) \leq \operatorname{Fdim}(_R R) + \operatorname{Rfd}(R_A)$.
- (2) $fdim(_A A) \leq fdim(_R R) + rfd(R_A)$.

Proof. The proof is just similar to that of [13, Theorem 6]. \Box

In the rest, we concentrate ourself on Artin algebras.

Let A, R be both Artin algebras. Following [18], we say that R is a left (resp., right) idealized extension of A if $A \subseteq R$ has the same identity and rad A is a left (resp., right) ideal in R. The following result is very important in studying the finitistic dimension conjecture in Artin algebras in connection with idealized extensions.

Lemma 3.3. (See [18, Erratum, Lemma 0.1].) Let R be a left (resp., right) idealized extension of A. If $X \in A$ - mod (resp., $X \in \text{mod} - A$), then $\Omega_A^2(X) \in R$ - mod (resp., $\Omega_A^2(X) \in \text{mod} - R$). Hereafter, the symbol $\Omega_A^i(X)$ denotes the ith syzygy of the A-module X.

Let A, R be both k-algebras such that R is a left idealized extension of A, where k is the residue field of a discrete valuation ring. It was shown in [18] that, if $\mathrm{fdim}(_RR) < \infty$ implies $\mathrm{fdim}(_AA) < \infty$ for all A, R satisfying the above assumptions, then $\mathrm{fdim}(_AA) < \infty$ for all k-algebras A.

Proposition 3.4. Let R be a left idealized extension of A. Then $fdim(_AA) \leq fdim(_RR) + pd(_AR) + max\{rfd(R_A), 2\}$. In particular, if both $_AR$ and R_A are of finite projective dimension, then $fdim(_AA)$ is finite provided that $fdim(_RR)$ is finite.

Proof. Let $t = \max\{\text{rfd}(R_A), 2\}$ and $r = \text{fdim}(_RR)$. Then, for any $_AM$ of finite projective dimension, we obtain that $_AM_t := \Omega_A^t(M) \in \text{KerTor}_{i\geqslant 1}^A(R, -)$ by the dimension shifting, since $t\geqslant \text{rfd}(R_A)$. Let $0\to A_m\to\cdots\to A_0\to M_t\to 0$ be exact with each $_AA_i$ projective. Then we have an induced exact sequence $0\to_RR\otimes_AA_m\to\cdots\to_RR\otimes_AA_0\to_RR\otimes_AM_t\to 0$. Obviously, $_RR\otimes_AA_i\in \text{add}_RR$ for all $i\geqslant 0$. It follows that $\text{pd}(_RR\otimes_AM_t)\leqslant \text{fdim}(_RR)=r$. Consequently, we have an exact sequence $0\to R_r\to\cdots\to R_0\to_RR\otimes_AM_t\to 0$ with each $_RR_i$ projective. It restricts to an exact sequence in A-modules $0\to R_r\to\cdots\to R_0\to_AR\otimes_AM_t\to 0$, since $A\subseteq R$ has the same identity. Thus we have that $\text{pd}(_AR\otimes_AM_t)\leqslant \text{pd}(_AR)+r$. Since $t\geqslant 2$, $_AM_t$ is also a left R-module by Lemma 3.3. Consequently, $_AM_t\simeq_A\text{Hom}_R(_RR_A,M_t)$. Note that the canonical homomorphism $_A\text{Hom}_R(_RR_A,M_t)$ (\simeq_AM_t) \to Hom $_R(_RR_A,_RR\otimes_AM_t)$ (\simeq_AM_t) \to Hom $_R(_RR_A,_RR\otimes_AM_t)$ (\simeq_AM_t) is a split monomorphism, so that $_AM_t$ is a direct summand of $_AR\otimes_AM_t$. It follows that $_AM_t$ is a direct summand of $_AR\otimes_AM_t$. It follows that $_AM_t$ is a direct summand of $_AR\otimes_AM_t$. It follows that $_AM_t$ \otimes_AM_t \otimes_AM_t . Therefore, $_AM_t$ \otimes_AM_t \otimes_AM_t \otimes_AM_t \otimes_AM_t .

Corollary 3.5. Assume that $A_0 \subseteq \cdots \subseteq A_m$ are Artin algebras such that A_{i+1} is a left idealized extension of A_i , for each $0 \leqslant i \leqslant m-1$. If $A_i A_{i+1}$ and $A_{i+1}A_i$ are of finite projective dimension, for all $0 \leqslant i \leqslant m-1$, then $\operatorname{fdim}(A_0 A_0)$ is finite provided that $\operatorname{fdim}(A_m A_m)$ is finite.

The following result can be compared with [19, Theorem 3.1], which states that, if $A_0 \subseteq \cdots \subseteq A_m$ are Artin algebras such that, for each $0 \le i \le m-1$, A_{i+1} is a left idealized extension of A_i and A_i and A_i is of finite projective dimension, then $\operatorname{fdim}(A_0, A_0)$ is finite provided that $\operatorname{gd}(A_m)$ is finite, where $\operatorname{gd}(A_m)$ denotes the global dimension of A_m .

Theorem 3.6. Let R be a right idealized extension of A. Then $fdim(A) \leq fdim(R) + rfd(R_A) + 2$. In particular, if R_A is of finite projective dimension (or finite *-syzygy dimension or finite Gorenstein projective dimension or finite Tor-bound dimension), then fdim(A) is finite provided that fdim(R) is finite.

Proof. Let $t = \operatorname{rfd}(R_A)$ and $r = \operatorname{fdim}(R_R)$. Similarly as in the proof of Proposition 3.4, for any AM of finite projective dimension, we obtain that $AM_t := \Omega_A^t(M) \in \operatorname{KerTor}_{i \geqslant 1}^A(R, -)$ and that $\operatorname{pd}(R_R \otimes_A M_t) \leqslant \operatorname{fdim}(R_R) = r$.

Claim. $\Omega_A^{-2}(Y) \in R$ -mod, for any $AY \in A$ -mod, where $\Omega_A^{-2}(Y)$ denotes the second cosyzygy in the minimal injective resolution of AY.

Proof of the Claim. Note that $(DY)_A \in \text{mod} - A$, where D is the usual duality in Artin algebras. Thus $\Omega_A^2(DY) \in \text{mod} - R$ by Lemma 3.3. It follows that $\Omega_A^{-2}(Y) \simeq D\Omega_A^2(DY) \in R$ - mod. \square

Now, for any ${}_AY \in A$ -mod, we obtain that $\operatorname{Ext}_A^{r+3}(M_t,Y) \simeq \operatorname{Ext}_A^{r+1}(M_t,\Omega_A^{-2}(Y)) \simeq \operatorname{Ext}_R^{r+1}({}_RR \otimes_A M_t,\Omega_A^{-2}(Y)) = 0$, by the above arguments and [5, Chapter VI, Proposition 4.1.3, p. 118]. It follows that $\operatorname{pd}({}_AM_t) \leqslant r+2$ and consequently, $\operatorname{pd}({}_AM) \leqslant t+r+2$. \square

Corollary 3.7. Assume that $A_0 \subseteq \cdots \subseteq A_m$ are Artin algebras such that, for each $0 \le i \le m-1$, A_{i+1} is a right idealized extension of A_i and $\mathrm{rfd}(A_{i+1_{A_i}}) < \infty$ (e.g., $A_{i+1_{A_i}}$ is of finite projective dimension, or finite *-syzygy dimension, or finite Gorenstein projective dimension, or finite Torbound dimension), then $\mathrm{fdim}(A_0 \cap A_0)$ is finite provided that $\mathrm{fdim}(A_0 \cap A_0)$ is finite.

References

- [1] F.D. Anderson, K.R. Fuller, Rings and Categories of Modules, first ed., Springer-Verlag, New York, 1974.
- [2] L. Angeleri-Hügel, F.U. Coelho, Infinitely generated tilting modules of finite projective dimension, Forum Math. 13 (2001) 239–250.
- [3] L. Angeleri-Hügel, J. Trlifaj, Tilting theory and the finitistic dimension conjecture, Trans. Amer. Math. Soc. 354 (11) (2002) 4345–4358.
- [4] D. Bennis, N. Mahdou, Global Gorenstein dimensions, arXiv:math.AC/0611358.
- [5] H. Cartan, S. Eilenberg, Homological Algebra, Princeton University Press, 1956.
- [6] L.W. Christensen, H.-B. Foxby, A. Frankild, Restricted homological dimensions and Cohen–Macaulayness, J. Algebra 251 (1) (2002) 479–502.
- [7] S. Gastaminza, D. Happel, M.I. Platzack, M.J. Redondo, L. Unger, Global dimension for endomorhpism algebras of tilting modules, Arch. Math. 75 (2000) 247–255.
- [8] E.L. Green, E. Kirmann, J. Kuzmanovich, Finitistic dimensions of finite monomial algebras, J. Algebra 136 (1991) 37–50.
- [9] A. Frisk, V. Mazorchuk, Properly stratified algebras and tilting, Proc. London Math. Soc. 92 (3) (2006) 29-61.
- [10] D. Happel, Triangulated Categories in the Representation Theory of Finite Dimension Algebras, London Math. Soc. Lecture Note Ser., vol. 119, Cambridge University Press, Cambridge, 1988.
- [11] H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra 189 (2004) 167–193.
- [12] C.U. Jensen, On the vanishing of $\stackrel{\lim^{(i)}}{\longrightarrow}$, J. Algebra 15 (1970) 151–166.
- [13] E. Kirmann, J. Kuzmanovich, On the finitistic dimension of fixed subrings, Comm. Algebra 22 (12) (1994) 4621– 4635.
- [14] V. Mazorchuk, On finitistic dimension of stratified algebras, arXiv:math.RT/0603179.
- [15] Y. Miyashita, Tilting modules of finite projective dimension, Math. Z. 193 (1986) 113–146.
- [16] M. Sato, On equivalences between module categories, J. Algebra 59 (2) (1979) 412-420.
- [17] J. Wei, Global dimension of the endomorphism ring and **n-modules, J. Algebra 291 (2005) 238–249.
- [18] C. Xi, On the finitistic dimension conjecture I: Related to representation-finite algebras, J. Pure Appl. Algebra 193 (2004) 287–305, Erratum: J. Pure Appl. Algebra 202 (1–3) (2005) 325–328.
- [19] C. Xi, On the finitistic dimension conjecture II: Related to finite global dimension, Adv. Math. 201 (2006) 116–142.
- [20] C. Xi, On the finitistic dimension conjecture III: Related to the pair $eAe \subseteq A$, J. Algebra 319 (2008) 3666–3688.
- [21] B. Zimmermann-Huisgen, The finitistic dimension conjectures—A tale of 3.5 decades, in: Abelian Groups and Modules, Kluwer, Dordrecht, 1995, pp. 501–517.