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Abstract

We investigate the relations between finitistic dimensions and restricted flat dimensions (introduced
by Foxby [L.W. Christensen, H.-B. Foxby, A. Frankild, Restricted homological dimensions and Cohen–
Macaulayness, J. Algebra 251 (1) (2002) 479–502]). In particular, we show the following result. (1) If T is
a selforthogonal left module over a left noetherian ring R with the endomorphism ring A, then rfd(TA) �
fdim(AA) � id(RT )+ rfd(TA). (2) If RT is classical partial tilting, then fdim(AA) � fdim(RR)+ rfd(TA).
(3) If A = A0 ⊆ A1 ⊆ · · · ⊆ Am = R are Artin algebras with the same identity such that, for each
0 � i � m − 1, radAi is a right ideal in Ai+1 and rfd(Ai+1Ai

) < ∞ (e.g., Ai+1Ai
is of finite projective

dimension, or finite Gorenstein projective dimension, or finite Tor-bound dimension), then fdim(RR) < ∞
implies fdim(AA) < ∞. As applications, we disprove Foxby’s conjecture [H. Holm, Gorenstein homolog-
ical dimensions, J. Pure Appl. Algebra 189 (2004) 167–193] on restricted flat dimensions by providing a
counterexample and give a partial answer to a question posed by Mazorchuk [V. Mazorchuk, On finitistic
dimension of stratified algebras, arXiv:math.RT/0603179, 6.4].
© 2008 Elsevier Inc. All rights reserved.
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Introduction

Let R be an associative ring with identity. We denote by R- Mod (resp., Mod -R) the category
of all left (resp., right) R-modules and by R- mod (resp., mod -R) the category of all left (resp.,
right) modules possessing finitely generated projective resolutions. The left little (resp., big) fini-
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tistic (projective) dimension of R, denoted by fdim(RR) (resp., Fdim(RR)), is defined as the
supremum of the projective dimensions of all modules in R- mod (resp., R- Mod) of finite pro-
jective dimension. Obviously, fdim(RR) � Fdim(RR). We denote by fdim(RR) and Fdim(RR)

the corresponding right finitistic dimensions of R.
It is known that Fdim(RR) coincides with the Krull dimension of R in case R is commutative

and noetherian and that fdim(RR) = depthR in case R is commutative local and noetherian. So
in the latter case both dimensions are finite, but they coincide if and only if R is Cohen–Macaulay.
There are also examples of commutative noetherian rings with Fdim(RR) = fdim(RR) = ∞.

In case R is an Artin algebra, it is known that the first finitistic dimension conjecture, which
stated that Fdim(RR) = fdim(RR), fails in general and the differences can even be arbitrarily
big. However, the second finitistic dimension conjecture, which states that fdim(RR) < ∞, is
still open. This conjecture is also related to many other homological conjectures and attracts
many algebraists, see for instance [3,19,21].

In this note, we will investigate the finitistic dimension in terms of the restricted flat dimen-
sion.

Let A be a ring, and let TA be a right A-module. Following [6], TA is said to have (big)
restricted flat dimension at most m if for each i > m the functor TorAi (T ,−) vanishes on the
category of modules of finite flat dimension. The little restricted flat dimension is defined cor-
respondingly by considering only modules of finite flat dimension which admit a projective
resolution with finitely generated projectives. Obviously, rfd(TA) � Rfd(TA) � fd(TA) by def-
inition, where fd(TA) denotes the flat dimension of TA. Moreover, restricted flat dimensions are
also smaller than Gorenstein flat dimension and ∗-syzygy dimension (see Lemma 1.1). It was
conjectured by Foxby that the (big) restricted flat dimension of a module is equal to its Goren-
stein flat dimension whenever the latter is finite [11]. The conjecture was proved in case that A

is commutative noetherian [11] and that A is a coherent ring with finite Gorenstein weak dimen-
sion [4].

We find that the restricted flat dimension is a useful tool to describe the finitistic dimension.
For example, we obtain that the left little finitistic dimension of an Artin algebra A is equal to
the little restricted flat dimension of (DA)A, where D denotes the usual duality in Artin algebras
(Corollary 2.7).

Recall that T ∈ R- Mod is selfsmall provided that HomR(T ,T )(X) � HomR(T ,T (X)) canoni-
cally, for any X. RT is selforthogonal if T ∈ KerExti�1

R (T ,−), i.e., T belongs to the category of
all modules M such that ExtiR(T ,M) = 0 for all i � 1. RT is said to be coproduct-selforthogonal

if T (X) ∈ KerExti�1
R (T ,−) for all X.

One of our main results states as follows. The idea comes from [17], where the global dimen-
sion of endomorphism rings is estimated in terms of the flat dimension.

Theorem 0.1. Let R be a ring and T ∈ R- Mod with A = EndR T .

(1) If T is selfsmall and coproduct-selforthogonal, then Rfd(TA) � Fdim(AA) � id(AddR T ) +
Rfd(TA), where id(AddR T ) denotes the supremum of injective dimensions of modules
in AddR T .

(1′) If T is selforthogonal, then rfd(TA) � fdim(AA) � id(RT ) + rfd(TA).
(2) If RT is selfsmall and coproduct-selforthogonal and of finite projective dimension, then

Rfd(TA) � Fdim(AA) � Fdim(RR) + Rfd(TA).
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(2′) If RT is selforthogonal and of finite projective dimension, then fdim(AA) � Fdim(RR) +
rfd(TA). If additionally RT ∈ R- mod, then fdim(AA) � fdim(RR) + rfd(TA).

As applications, we show that, if RT is a classical fdim-test tilting module with A = EndR T ,
then fdim(AA) � fdim(RR) (Proposition 2.8). This gives a partial answer to a question posed by
Mazorchuk [14, 6.4]. The question asks if there is any relation between fdim(RR) and fdim(AA),
where A = EndR T and RT is a classical fdim-test tilting module over a standardly stratified
algebra R such that its Ringel dual is a properly stratified algebra [9, Sections 5 and 6].

We also obtain the following corollary which contains [20, Theorems 1.2], where the conclu-
sion is proved under assumptions that TA is of finite ∗-syzygy dimension (or finite Gorenstein
projective dimension or finite projective dimension).

Corollary 0.2. Let R be a ring and T ∈ R- Mod with A = EndR T .

(1) If RT is selfsmall and projective with Rfd(TA) finite, then Fdim(RR) < ∞ implies that
Fdim(AA) < ∞.

(2) If RT is projective with rfd(TA) finite, then Fdim(RR) < ∞ implies that fdim(AA) < ∞. If
furthermore RT is finitely generated, then fdim(RR) < ∞ implies that fdim(AA) < ∞.

We give examples to show that, in general, the restricted flat dimension of a module may be
strictly smaller than its ∗-syzygy dimension (Gorenstein projective dimension, projective dimen-
sion). In particular, we give a counterexample to Foxby’s conjecture.

Another main result of the note concerns the finitistic dimension of some fixed subrings. The
first part of the following result extends [13, Theorem 6], while the second part can be compared
with [18, Theorem 3.1].

Theorem 0.3.

(1) Let A be a subring of a ring R such that A is an A–A bimodule direct summand of R. Then
Fdim(AA) � Fdim(RR) + Rfd(RA).

(2) Assume that A = A0 ⊆ A1 ⊆ · · · ⊆ Am = R are Artin algebras with the same identity such
that, for each 0 � i � m − 1, radAi is a right ideal in Ai+1 and rfd(Ai+1Ai

) < ∞ (e.g.,
Ai+1Ai

is of finite projective dimension or finite Gorenstein projective dimension), then
fdim(RR) < ∞ implies fdim(AA) < ∞.

1. Preliminaries

Throughout this paper, all rings will be associated with non-zero identity. By a category, we
mean a full subcategory closed under isomorphisms.

In the following, we fix R to be a ring and T ∈ R- Mod with the endomorphism ring A.
Then RTA is an R–A bimodule. We denote by AddR T (resp., addR T ) the class of modules
isomorphic to direct summands of (resp., finite) direct sums of copies of RT .

Let C ⊆ R- Mod be a category and M ∈ R- Mod. We denote by C- dim(RM) the minimal
integer m such that there is an exact sequence 0 → Tm → ·· · → T0 → M → 0 with each Ti ∈ C
and call it the C-dimension of RM . Note that, for some RM , the C-dimension of RM may not
exist. In the latter case, we denote C- dim(RM) = ∞. The category of all modules M ∈ R- Mod
such that C- dim(RM) < ∞ is denoted by Ĉ.
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We define Fdim(RT ) to be the supremum of the AddR T -dimensions of all modules in R- Mod
of finite AddR T -dimension. Similarly, fdim(RT ) is denoted to be the supremum of the addR T -
dimensions of all modules in R- Mod of finite addR T -dimension. It is easy to see that Fdim(RR)

(resp., fdim(RR)) is just the left big (resp., little) finitistic dimension of R defined in the intro-
duction.

Similarly to the notion KerExti�1
R (T ,−) defined in the introduction, we denote by

KerTorAi�1(T ,−) the category of all modules M ∈ A- Mod such that TorAi (T ,M) = 0 for
all i � 1.

It is well known that (T ⊗A -,HomR(T ,−)) is a pair of adjoint functors and there are the
following canonical homomorphisms for any R-module M and any A-module N :

ρM : T ⊗A HomR(T ,M) → M, by t ⊗ f → f (t);
σN : N → HomR(T ,T ⊗A N), by n → [t → t ⊗ n].

Moreover, for any M ∈ R- Mod, the composition

HomR(T ,M)
σHomR(T ,M)−−−−−−−→ HomR

(
T ,T ⊗A HomR(T ,M)

) HomR(T ,ρM)−−−−−−−−→ HomR(T ,M)

is the identity. Similarly, the composition (T ⊗A σN) ◦ ρT ⊗AN = 1T ⊗AN , for any N ∈ A- Mod
(see for instance [16]).

Throughout the paper, we denote by pd(RT ) (resp., id(RT ), fd(TA)) the projective (resp.,
injective, flat) dimension of the module RT (resp., RT , TA).

Let A be a ring and T ∈ Mod -A. TA is said to be Gorenstein projective provided there is an
exact sequence of projective modules · · · → P1 → P0 → P−1 → ·· · such that T � Im(P1 → P0)

and such that HomA(−,Q) leaves the sequence exact whenever QA is a projective module.
T is said to be Gorenstein flat provided there is an exact sequence of flat modules · · · → F1 →
F0 → F−1 → ·· · such that T � Im(F1 → F0) and such that − ⊗A I leaves the sequence exact
whenever AI is an injective module. TA is said to be a ∗-syzygy module if, for all d , TA is always
isomorphic to a direct summand of a d-syzygy of a projective resolution of some right A-module.

The Gorenstein projective (resp., Gorenstein flat, ∗-syzygy) dimension of TA is denoted by
Gpd(TA) (resp., Gfd(TA), ∗- sd(TA)).

Lemma 1.1. Let A be a ring and TA ∈ Mod -A.

(1) Rfd(TA) � ∗- sd(TA) � Gpd(TA) � pd(TA). If pd(TA) < ∞, then Gpd(TA) = pd(TA).
(2) Rfd(TA) � Gfd(TA) � fd(TA). If A is coherent and fd(TA) < ∞, then Gfd(TA) = fd(TA).

Proof. (1) By definitions and [11, Proposition 2.27].
(2) The first part is shown in [11, Theorem 3.19]. The second part is easily obtained from

[11, Theorem 3.6] and the dual part of [11, Proposition 2.27], together with relations between
injective and flat modules. �

We will see in the next section that both inequalities Rfd(TA) � ∗- sd(TA) and Rfd(TA) �
Gfd(TA) can be strict. It is not known to us if Gfd(TA) = fd(TA) over any ring whenever the
latter is finite.

Finally, we recall the definitions of tilting modules.
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Let R be a ring and RT ∈ R- Mod. We say RT is tilting if (i) pd(RT ) < ∞, (ii) RT is
coproduct-selforthogonal and (iii) there is an exact sequence 0 → R → T0 → ·· · → Tn → 0 for
some n with each Ti ∈ AddR T (see for instance [2]). RT is classical tilting if (i) pd(RT ) < ∞
and RT ∈ R- mod, (ii) RT is selforthogonal and (iii) there is an exact sequence 0 → R → T0 →
·· · → Tn → 0 for some n with each Ti ∈ addR T (see for instance [10,15]). We say RT is clas-
sical partial tilting if it satisfies the condition (i) and (ii) in the definition of classical tilting
modules.

Lemma 1.2. Let R be a ring and RT ∈ R- Mod with A = EndR T .

(1) If RT is tilting, then there is T ′ � T (X) for some X such that R � End(T ′
A′) and T ′

A′ is
classical partial tilting, where A′ = EndR T ′. In particular, R � End(TA).

(2) If RT is classical tilting, then TA is classical tilting too. Moreover, pd(RT ) = pd(TA).

Proof. (1) By definition, there is an exact sequence 0 → R → T0 → ·· · → Tn → 0 for some n

with each Ti ∈ AddR T . Now take T (X) � (
⊕

Ti) ⊕ T ′′ for some T ′′. It is easy to see that
T ′ = T (X) satisfies the conditions (ii) and (iii) in the definition of classical tilting modules. It
follows from [15, Proposition 1.4(2)], that R � End(T ′

A′) and T ′
A′ is classical tilting. In particular,

by [1, 14.2], we have that R � BiEnd(T (X)) � BiEnd(T) (= End(TA)) canonically.
(2) See for instance [15, Theorem 1.5]. �

2. Finitistic dimension of endomorphism rings

We first note the following relations between finitistic dimensions and restricted flat dimen-
sions.

Lemma 2.1. Assume that A is a ring and TA ∈ Mod -A.

(1) Rfd(TA) � Fdim(AA).
(2) rfd(TA) � fdim(AA).

Proof. Clearly we need only to show that if Fdim(AA) = n < ∞ (resp., fdim(AA) = n < ∞),
then Rfd(TA) � n (resp., rfd(TA) � n).

(1) By the definition of the big restricted flat dimension, it is sufficient to show that
TorAn+1(T ,M) = 0 for any AM with finite flat dimension. Since Fdim(AA) = n < ∞, we obtain
that every module with finite flat dimension has finite projective dimension, by [12, Proposi-
tion 6]. It follows that pd(AM) � n. Hence TorAn+1(T ,M) = 0.

(2) Note that the flat dimension coincides with the projective dimension for every AM ∈
A- mod. So the conclusion follows by definition. �
Lemma 2.2. Let R be a ring and RT ∈ R- Mod.

(1) If RT is selfsmall and coproduct-selforthogonal, then
(i) AddR T - dim(RM) = pd(AHomR(T ,M)), for any M ∈ ̂AddR T .

(ii) Fdim(RT ) � id(AddR T ).
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(2) If RT is selforthogonal, then
(i) addR T - dim(RM) = pd(AHomR(T ,M)), for any M ∈ ̂addR T .

(ii) fdim(RT ) � id(RT ).

Proof. See for instance [17, Lemmas 2.1 and 2.2]. �
Lemma 2.3. Let R be a ring and RT ∈ R- Mod with A = EndR T .

(1) If RT is selfsmall and coproduct-selforthogonal, then, for any Y ∈ A- Mod such that
TorA

i�1(T ,Y ) = 0 and pd(AY ) < ∞, it holds that Y � HomR(T ,T ⊗A Y) canonically and
AddR T - dim(T ⊗A Y) < ∞.

(2) If RT is selforthogonal, then, for any Y ∈ A- mod such that TorA
i�1(T ,Y ) = 0 and pd(AY ) <

∞, it holds that Y � HomR(T ,T ⊗A Y) canonically and addR T - dim(T ⊗A Y) < ∞.

Proof. (1) Since pd(AY ) < ∞, we can take a finite projective resolution of AY , say,

0 → Py→·· ·→P1→P0→Y → 0

with each Pi projective. Note AY ∈ KerTorA
i�1(T ,−) and KerTorA

i�1(T ,−) is closed under
kernels of epimorphisms, so we obtain the following exact sequence, by applying the functor
T ⊗A −:

0 → T ⊗A Py → ·· · → T ⊗A P0 → T ⊗A Y → 0.

Denote Ti := T ⊗A Pi for 0 � i � y. Then each Ti ∈ AddR T . It follows that AddR T -
dim(T ⊗A Y) < ∞. Moreover, by applying the functor HomR(T ,−), we obtain the following
exact sequence:

0 → HomR(T ,T ⊗A Py) → ·· · → HomR(T ,T ⊗A P0) → HomR(T ,T ⊗A Y) → 0,

as T is coproduct-selforthogonal and KerExti�1
R (T ,−) is closed under cokernels of monomor-

phisms. Since T is also selfsmall, we have that Pi � HomR(T ,T ⊗A Pi) canonically, for each i.
It follows that AY � A HomR(T ,T ⊗A Y) canonically.

(2) Similarly. �
The following is one of our main results.

Theorem 2.4. Let R be a ring and RT ∈ R- Mod with A = EndR T .

(1) If RT is selfsmall and coproduct-selforthogonal, then Rfd(TA) � Fdim(AA) � Fdim(RT ) +
Rfd(TA).

(2) If RT is selforthogonal, then rfd(TA) � fdim(AA) � fdim(RT ) + rfd(TA).

Proof. (1) If Fdim(RT ) or Rfd(TA) is infinite, then we have nothing to say in this case. So we
assume that Fdim(RT ) = r < ∞ and Rfd(TA) = t < ∞. Obviously we need only to show that
Fdim(AA) � r + t .
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Let AY ∈ A- Mod with pd(AY ) < ∞. By taking the projective resolution of AY , we obtain an
exact sequence

0 → Ps
fs−→ · · · f2−→ P1

f1−→ P0
f0−→ Y → 0

with Pi projective for each 0 � i � s. Denote by Yi the ith syzygy, for each i. We claim now
pd(AYt ) � r and so pd(AY ) � t + r . Then the conclusion will be followed from the arbitrarity of
the choice of AY .

Indeed, since Rfd(TA) = t , we easily obtain that AYt ∈ KerTorA
i�1(T ,−). It is obvious that

pd(AYt ) < ∞. Hence, by Lemma 2.3, we have that AYt � A HomR(T ,T ⊗A Yt ) canonically and
AddR T - dim(T ⊗A Yt ) < ∞. It follows that AddR T - dim(T ⊗A Yt ) � Fdim(RT ) = r . Now, by
Lemma 2.2, we obtain that pd(AYt ) = pd(AHomR(T ,T ⊗A Yt )) � r , as desired.

(2) Similarly. �
Immediately by Lemma 2.2 and Theorem 2.4, we have the following corollary which extends

[17, Theorem 2.5] where the global dimension is considered.

Corollary 2.5. Let R be a ring and RT ∈ R- Mod with A = EndR T .

(1) If RT is selfsmall and coproduct-selforthogonal, then Rfd(TA) � Fdim(AA) � id(AddR T )+
Rfd(TA), where id(AddR T ) denotes the supremum of injective dimensions of modules in
AddR T .

(2) If RT is selforthogonal, then rfd(TA) � fdim(AA) � id(RT ) + rfd(TA).

More special case of Theorem 2.4 is the following.

Corollary 2.6. Let R be a ring and RT ∈ R- Mod with A = EndR T .

(1) If RT is selfsmall and coproduct-selforthogonal with AddR T closed under cokernels of
monomorphisms, then Fdim(AA) = Rfd(TA).

(2) If RT is selforthogonal with addR T closed under cokernels of monomorphisms, then
fdim(AA) = rfd(TA).

Proof. It is easy to see that Fdim(RT ) = 0 in (1) and fdim(RT ) = 0 in (2). �
Of course, (selfsmall) injective modules over left noetherian rings satisfy assumptions in the

above corollary (2) (resp., (1)). In particular, if A is an Artin algebra, then A(DA) is injective with
A � EndA(DA), where D is the usual duality in Artin algebras. Hence we have the following.

Corollary 2.7. If A is an Artin algebra, then

(1) Fdim(AA) = Rfd(DA)A.
(2) fdim(AA) = rfd(DA)A.

Let R be a left noetherian ring and RT ∈ R- Mod. We say RT is fdim-test tilting if RT is
tilting such that KerExti�1

R (T ,−) = KerExti�1
R (P<∞,−), where P<∞ is the category of mod-

ules in R- mod of finite projective dimension. The fdim-test tilting modules were studied in [3],



J. Wei / Journal of Algebra 320 (2008) 116–127 123
where it was proved that fdim(RR) < ∞ if and only if there exists a fdim-test tilting module RT

[3, Theorem 2.6]. In this case, fdim(RR) = pd(RT ). If R is an Artin algebra, then there exists
a classical fdim-test tilting module RT if and only if P<∞ is contravariantly finite in R- mod
[3, Theorem 4.2].

Proposition 2.8. Let R be an Artin algebra. Assume that there is a classical fdim-test tilting
module RT with A = EndR T . Then addR T is closed under cokernels of monomorphisms. In
particular, fdim(AA) = rfd(TA) � pd(RT ) = fdim(RR).

Proof. Let 0 → T0 → T1 → M → 0 be exact with T0, T1 ∈ addR T . Then RM ∈ R- mod
and pd(RM) < ∞, that is, M ∈ P<∞. Since RT is fdim-test tilting, we have that RT ∈
KerExti�1

R (T ,−) = KerExti�1
R (P<∞,−) ⊆ KerExti�1

R (M,−). It follows that Ext1R(M,T ) = 0.
Hence the above exact sequence splits and RM ∈ addR T , i.e., addR T is closed under cokernels
of monomorphisms.

The remained part follows from Lemma 1.2(2) and Corollary 2.6. �
Remark 2.9. Following [9], if R is a standardly stratified algebra such that its Ringel dual is
a properly stratified algebra, then there is a classical fdim-test tilting module RT . It was asked
in [14, 6.4] if there is any relation between fdim(RR) and fdim(AA), where A = EndR T . The
above result gives a partial answer to this question.

We now apply Theorem 2.4 to (coproduct-)selforthogonal modules of finite projective dimen-
sion.

Proposition 2.10. Let R be a ring and RT ∈ R- Mod with A = EndR T .

(1) If RT is selfsmall and coproduct-selforthogonal and of finite projective dimension, then
Rfd(TA) � Fdim(AA) � Fdim(RR) + Rfd(TA).

(2) If RT is selforthogonal and of finite projective dimension, then rfd(TA) � fdim(AA) �
Fdim(RR) + rfd(TA). If additionally RT ∈ R- mod, i.e., RT is classical partial tilting, then
rfd(TA) � fdim(AA) � fdim(RR) + rfd(TA).

Proof. (1) By Theorem 2.4, it is sufficient to show that Fdim(RT ) � Fdim(RR). Obviously, we
may assume that Fdim(RR) = t < ∞.

For any M ∈ ̂AddR T , we have an exact sequence

0 → Tm
fm−−→ · · · f2−→ T1

f1−→ T0
f0−→ M → 0

with each Ti ∈ AddR T . Since pd(RT ) < ∞, pd(RM) < ∞ too. Hence pd(RM) � t . More-
over, we have that each Imfi ∈ KerExti�1

R (T ,−), as T is coproduct-selforthogonal. Suppose
now m > t , then we obtain that Ext1R(Imft , Imft+1) � Extt+1

R (M, Imft+1) = 0 by the dimen-
sion shifting. It follows that Imft ∈ AddR T and consequently, AddR T - dim(RM) � t . Hence
Fdim(RT ) � Fdim(RR) by definition.

(2) Similarly. �
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In particular, we obtain the following corollary which contains [20, Theorems 1.2], where the
conclusion is proved under assumptions that TA is of finite ∗-syzygy dimension (or Gorenstein
projective dimension or projective dimension).

Corollary 2.11. Let R be a ring and RT ∈ R- Mod with A = EndR T .

(1) If RT is selfsmall and projective, then Fdim(AA) � Fdim(RR) + Rfd(TA).
(2) If RT is projective, then fdim(AA) � Fdim(RR) + rfd(TA). If additionally RT is finitely

generated, then fdim(AA) � fdim(RR) + rfd(TA).

We note that, in general, the restricted flat dimension may be strictly smaller than the ∗-syzygy
dimension (Gorenstein projective dimension, projective dimension), as the following example
shows.

Example 2.12. There exists a finite dimensional algebra A satisfying the following statement.

(1) There is a right A-module TA such that rfd(TA) = Rfd(TA) < Gpd(TA) = pd(TA) < ∞.
(2) There is a right A-module UA such that rfd(UA) = Rfd(UA) < ∗- sd(UA) strictly.

Proof. By [8], for any arbitrary finite numbers m and n, there is a finite dimensional algebra A

with fdim(AA) = Fdim(AA) = m and fdim(AA) = Fdim(AA) = n. Let us take m = 0 and n > 0.
Thus rfd(TA) = Rfd(TA) = 0 for all right A-module T , by Lemma 2.1.

For (1), we can take TA ∈ mod -A to be of projective dimension exactly n. Combining with
Lemma 1.1, we obtain that 0 = rfd(TA) = Rfd(TA) < Gpd(TA) = pd(TA) < ∞.

For (2), we take UA = (DA)A. We need only to show that (DA)A is not a ∗-syzygy mod-
ule and it then follows that 0 = rfd(UA) = Rfd(UA) < ∗- sd(UA) strictly. Suppose UA is a
∗-syzygy module, then there is a monomorphism UA → A′ with A′

A projective by definition.
Since UA = (DA)A is injective, we obtain that UA is a direct summand of A′ and hence is pro-
jective. Consequently, every injective right module is projective. Hence A is self-injective by the
Faith–Walker Theorem. It then follows fdim(AA) = 0, a contradiction. �
Remark 2.13. It was conjectured in [6] that, for any ring A, if Gfd(TA) is finite, then Gfd(TA) =
Rfd(TA). The conjecture was proved in case that A is commutative noetherian [11] and that A is
a coherent ring with finite Gorenstein weak dimension [4]. However, by the above example, one
sees that the conjecture fails in general (note that Gfd(TA) = pd(TA) in case TA ∈ mod -A, A is
noetherian and pd(TA) < ∞, by Lemma 1.1).

Recall that for an Artin algebra R, RT ∈ R- mod is classical cotilting if (i) id(RT ) < ∞,
(ii) RT is selforthogonal and (iii) there is an exact sequence 0 → Tn → ·· · → T0 → R(DR) → 0
for some n with each Ti ∈ addR T , where D is the usual duality in Artin algebras. It is easy to
see that RT is classical tilting if and only if (DT )R is classical cotilting. Note that all classical
tilting modules are classical cotilting when the global dimension of R is finite.

Let R be an Artin algebra. A well-known result in the classical tilting theory is that gdR −
pdR T � gdA � gdR + pdR T in case T is classical tilting with A = EndR T , where gdR and
gdA denote respectively the global dimensions of R and A, see for instance [10] or [15]. The
result was improved in [7] where it was shown that idR T � gdA � pdR T + idR T . The following
proposition is a generalization of the latter result to finitistic dimension.
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Proposition 2.14. Let R,A be Artin algebras and T ∈ R- mod with A = EndR T . If RT is clas-
sical tilting and cotilting, then

max
{
fdim(RR) − id(RT ), id(RT )

}
� fdim(AA) � pd(RT ) + id(RT ).

Proof. Since rfd(TA) � pd(TA) = pd(RT ), the upper-bound part follows from Corollary 2.5.
Consider now the classical tilting and cotilting module A(DT )R , then we have that fdim(RR) �
fdim(AA) + rfd((DT )R) � fdim(AA) + pd((DT )R) by Proposition 2.10. It follows that
fdim(RR) − pd((DT )R) � fdim(AA). Note that pd((DT )R) = id(RT ), so we have that
fdim(RR) − id(RT ) � fdim(AA). Note also that fdim(AA) � pd(A(DT )) = pd((DT )R) =
id(RT ), so the lower-bound part follows. �
3. Finitistic dimension of fixed subrings

The section concerns the finitistic dimension of some fixed subrings.
Let A be a ring and T ∈ Mod -A. We define the Tor-bound dimension of TA, denoted by

Tbd(TA), to be the minimal nonnegative integer n such that TorAp (T ,M) = 0 for all p � n + 1
whenever TorAp (T ,M) = 0 for all p sufficiently large. The Tor-bound dimension of TA is nothing
but the minimal bound on the vanishing of TorA(T ,−), see [13].

The following lemma shows that the Tor-bound dimension is a refinement of flat dimension.

Lemma 3.1. Let A be a ring and T ∈ Mod -A. Then Rfd(TA) � Tbd(TA) � fd(TA). If
fd(TA) < ∞, then Tbd(TA) = fd(TA).

Proof. The inequality is obvious. If fd(TA) < ∞, then TorAp (T ,M) = 0 for all p � fd(TA) + 1
and all modules AM . It follows that TorAp (T ,M) = 0 for all p � Tbd(TA) + 1 and all mod-
ules AM , by the definition of the Tor-bound dimension. The latter is indeed equivalent to say that
fd(TA) � Tbd(TA). �

Combining the above result and Example 2.12, we see that the restricted flat dimension is
often strictly smaller than the Tor-bound dimension. In view of this point, most results in [13]
can be extended. For example, the following proposition is a generalization of [13, Theorem 6].

Proposition 3.2. Let A be a subring of a ring R such that A is an A–A bimodule direct summand
of R. Then

(1) Fdim(AA) � Fdim(RR) + Rfd(RA).
(2) fdim(AA) � fdim(RR) + rfd(RA).

Proof. The proof is just similar to that of [13, Theorem 6]. �
In the rest, we concentrate ourself on Artin algebras.
Let A,R be both Artin algebras. Following [18], we say that R is a left (resp., right) idealized

extension of A if A ⊆ R has the same identity and radA is a left (resp., right) ideal in R. The
following result is very important in studying the finitistic dimension conjecture in Artin algebras
in connection with idealized extensions.
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Lemma 3.3. (See [18, Erratum, Lemma 0.1].) Let R be a left (resp., right) idealized extension
of A. If X ∈ A- mod (resp., X ∈ mod -A), then Ω2

A(X) ∈ R- mod (resp., Ω2
A(X) ∈ mod -R). Here-

after, the symbol Ωi
A(X) denotes the ith syzygy of the A-module X.

Let A,R be both k-algebras such that R is a left idealized extension of A, where k is the
residue field of a discrete valuation ring. It was shown in [18] that, if fdim(RR) < ∞ implies
fdim(AA) < ∞ for all A,R satisfying the above assumptions, then fdim(AA) < ∞ for all k-
algebras A.

Proposition 3.4. Let R be a left idealized extension of A. Then fdim(AA) � fdim(RR) +
pd(AR) + max{rfd(RA),2}. In particular, if both AR and RA are of finite projective dimension,
then fdim(AA) is finite provided that fdim(RR) is finite.

Proof. Let t = max{rfd(RA),2} and r = fdim(RR). Then, for any AM of finite projective di-
mension, we obtain that AMt := Ωt

A(M) ∈ KerTorA
i�1(R,−) by the dimension shifting, since

t � rfd(RA). Let 0 → Am → ·· · → A0 → Mt → 0 be exact with each AAi projective. Then we
have an induced exact sequence 0 → RR ⊗A Am → ·· · → RR ⊗A A0 → RR ⊗A Mt → 0. Obvi-
ously, RR ⊗A Ai ∈ addR R for all i � 0. It follows that pd(RR ⊗A Mt) � fdim(RR) = r . Conse-
quently, we have an exact sequence 0 → Rr → ·· · → R0 → RR ⊗A Mt → 0 with each RRi pro-
jective. It restricts to an exact sequence in A-modules 0 → Rr → ·· · → R0 → AR ⊗A Mt → 0,
since A ⊆ R has the same identity. Thus we have that pd(AR ⊗A Mt) � pd(AR) + r . Since
t � 2, AMt is also a left R-module by Lemma 3.3. Consequently, AMt � A HomR(RRA,Mt).
Note that the canonical homomorphism A HomR(RRA,Mt) (� AMt) → HomR(RRA,RR ⊗A

HomR(RRA,Mt)) (� HomR(RRA,RR ⊗A Mt) � AR ⊗A Mt) is a split monomorphism, so that
AMt is a direct summand of AR ⊗A Mt . It follows that pd(AMt) � pd(AR) + r . Therefore,
pd(AM) � pd(AR) + r + t . �
Corollary 3.5. Assume that A0 ⊆ · · · ⊆ Am are Artin algebras such that Ai+1 is a left idealized
extension of Ai , for each 0 � i � m − 1. If

Ai
Ai+1 and Ai+1Ai

are of finite projective dimension,
for all 0 � i � m − 1, then fdim(

A0
A0) is finite provided that fdim(

Am
Am) is finite.

The following result can be compared with [19, Theorem 3.1], which states that, if A0 ⊆ · · ·
⊆ Am are Artin algebras such that, for each 0 � i � m − 1, Ai+1 is a left idealized extension of
Ai and

Ai
Ai+1 is of finite projective dimension, then fdim(

A0
A0) is finite provided that gd(Am)

is finite, where gd(Am) denotes the global dimension of Am.

Theorem 3.6. Let R be a right idealized extension of A. Then fdim(AA) � fdim(RR) +
rfd(RA) + 2. In particular, if RA is of finite projective dimension (or finite ∗-syzygy dimension
or finite Gorenstein projective dimension or finite Tor-bound dimension), then fdim(AA) is finite
provided that fdim(RR) is finite.

Proof. Let t = rfd(RA) and r = fdim(RR). Similarly as in the proof of Proposition 3.4, for any
AM of finite projective dimension, we obtain that AMt := Ωt

A(M) ∈ KerTorA
i�1(R,−) and that

pd(RR ⊗A Mt) � fdim(RR) = r .

Claim. Ω−2
A (Y ) ∈ R- mod, for any AY ∈ A- mod, where Ω−2

A (Y ) denotes the second cosyzygy
in the minimal injective resolution of AY .
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Proof of the Claim. Note that (DY)A ∈ mod -A, where D is the usual duality in Artin algebras.
Thus Ω2

A(DY) ∈ mod -R by Lemma 3.3. It follows that Ω−2
A (Y ) � DΩ2

A(DY) ∈ R- mod. �
Now, for any AY ∈ A- mod, we obtain that Extr+3

A (Mt ,Y ) � Extr+1
A (Mt ,Ω

−2
A (Y )) �

Extr+1
R (RR ⊗A Mt,Ω

−2
A (Y )) = 0, by the above arguments and [5, Chapter VI, Proposition 4.1.3,

p. 118]. It follows that pd(AMt) � r + 2 and consequently, pd(AM) � t + r + 2. �
Corollary 3.7. Assume that A0 ⊆ · · · ⊆ Am are Artin algebras such that, for each 0 � i � m− 1,
Ai+1 is a right idealized extension of Ai and rfd(Ai+1Ai

) < ∞ (e.g., Ai+1Ai
is of finite projective

dimension, or finite ∗-syzygy dimension, or finite Gorenstein projective dimension, or finite Tor-
bound dimension), then fdim(

A0
A0) is finite provided that fdim(

Am
Am) is finite.

References

[1] F.D. Anderson, K.R. Fuller, Rings and Categories of Modules, first ed., Springer-Verlag, New York, 1974.
[2] L. Angeleri-Hügel, F.U. Coelho, Infinitely generated tilting modules of finite projective dimension, Forum Math. 13

(2001) 239–250.
[3] L. Angeleri-Hügel, J. Trlifaj, Tilting theory and the finitistic dimension conjecture, Trans. Amer. Math. Soc. 354 (11)

(2002) 4345–4358.
[4] D. Bennis, N. Mahdou, Global Gorenstein dimensions, arXiv:math.AC/0611358.
[5] H. Cartan, S. Eilenberg, Homological Algebra, Princeton University Press, 1956.
[6] L.W. Christensen, H.-B. Foxby, A. Frankild, Restricted homological dimensions and Cohen–Macaulayness, J. Al-

gebra 251 (1) (2002) 479–502.
[7] S. Gastaminza, D. Happel, M.I. Platzack, M.J. Redondo, L. Unger, Global dimension for endomorhpism algebras

of tilting modules, Arch. Math. 75 (2000) 247–255.
[8] E.L. Green, E. Kirmann, J. Kuzmanovich, Finitistic dimensions of finite monomial algebras, J. Algebra 136 (1991)

37–50.
[9] A. Frisk, V. Mazorchuk, Properly stratified algebras and tilting, Proc. London Math. Soc. 92 (3) (2006) 29–61.

[10] D. Happel, Triangulated Categories in the Representation Theory of Finite Dimension Algebras, London Math. Soc.
Lecture Note Ser., vol. 119, Cambridge University Press, Cambridge, 1988.

[11] H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra 189 (2004) 167–193.

[12] C.U. Jensen, On the vanishing of
lim(i)−→ , J. Algebra 15 (1970) 151–166.

[13] E. Kirmann, J. Kuzmanovich, On the finitistic dimension of fixed subrings, Comm. Algebra 22 (12) (1994) 4621–
4635.

[14] V. Mazorchuk, On finitistic dimension of stratified algebras, arXiv:math.RT/0603179.
[15] Y. Miyashita, Tilting modules of finite projective dimension, Math. Z. 193 (1986) 113–146.
[16] M. Sato, On equivalences between module categories, J. Algebra 59 (2) (1979) 412–420.
[17] J. Wei, Global dimension of the endomorphism ring and ∗n-modules, J. Algebra 291 (2005) 238–249.
[18] C. Xi, On the finitistic dimension conjecture I: Related to representation-finite algebras, J. Pure Appl. Algebra 193

(2004) 287–305, Erratum: J. Pure Appl. Algebra 202 (1–3) (2005) 325–328.
[19] C. Xi, On the finitistic dimension conjecture II: Related to finite global dimension, Adv. Math. 201 (2006) 116–142.
[20] C. Xi, On the finitistic dimension conjecture III: Related to the pair eAe ⊆ A, J. Algebra 319 (2008) 3666–3688.
[21] B. Zimmermann-Huisgen, The finitistic dimension conjectures—A tale of 3.5 decades, in: Abelian Groups and

Modules, Kluwer, Dordrecht, 1995, pp. 501–517.


