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We study the properties of Q-balls dominated by the thermal logarithmic potential analytically instead 
of estimating the characters with only some specific values of model variables numerically. In particular,
the analytical expressions for radius and energy of this kind of Q-ball are obtained. According to these 
explicit expressions we demonstrate strictly that the large Q-balls enlarge and the small ones become 
smaller in the background with lower temperature. The energy per unit charge will not be divergent if 
the charge is enormous. We find that the lower temperature will lead the energy per unit charge of Q-ball 
smaller. We also prove rigorously the necessary conditions that the model parameters should satisfy to 
keep the stability of the Q-balls. When one of model parameters of Q-balls, K , is positive, the Q-balls 
will not form or survive unless the temperature is high enough. In the case of negative K , the Q-balls are 
stable no matter the temperature is high or low.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The Q-balls as nontopological solitons have attracted a lot of at-
tention. This kind of nontopological solitons possess a conserved 
Noether charge because of a symmetry of their Lagrangian and 
appear in extended localized solutions of models with certain self-
interacting complex scalar field [1,2]. The charge of these nontopo-
logical solitons and that their mass is smaller than the mass of a 
collection of scalar fields keep them stable. In general the Q-balls 
have self-interaction potential with absolute minima and the shape 
of potential determines the properties of the Q-ball. The Q-balls 
have been studied in many areas of physics in order to explain the 
origin of dark matter and the baryon asymmetry which cannot be 
explained by the standard model of elementary particle physics. 
The Affleck–Dine mechanism produces a scalar field condensat-
ing with baryon number while generating the baryon asymmetry 
[3]. These kinds of nontopological solitons may be considered as 
candidates of dark matter [4]. Recently the scalar field configura-
tion of the Q-ball with a step function was considered to calculate 
the ratio of the Q-ball decay into the candidates for dark matter 
[5]. More attention from cosmology was paid to the Q-balls [6–9]. 
In the process of expanding universe with the sufficiently low 
temperature the Q-balls build up quickly with absorbing charged 
particles from the outside to result in a new kind of first-order 
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phase transition [10]. In the cosmological context, the existence of 
the Q-balls was formulated and these kinds of Q-balls were fur-
ther discussed to estimate the net baryon number of the universe, 
its dark matter and the ratio of the baryon to cold dark matter 
[11]. The solitosynthesis will lead the formation of large Q-balls 
in the process of graduate charge accretion if some primordial 
charge asymmetry and initial seed-like Q-balls exist [12]. It was 
also discussed that the phase transitions induced by solitosynthe-
sis are possible [13]. We also probed the nontopological solitons 
in de Sitter and anti de Sitter spacetimes respectively to show 
the constrains from background on the models [14]. The Q-balls 
can become Boson stars as flat spacetime limits [15]. The compact 
Q-balls in the complex Signum–Gordon model were also discussed 
[16]. The Affleck–Dine field fragments into Q-balls which formed in 
the early universe and change the scenario of Affleck–Dine baryo-
genesis significantly [17].

A lot of efforts certainly have been contributed to the for-
mation of Q-balls. The Q-ball generates naturally in the context 
of supersymmetry, in particular, in Affleck–Dine mechanism for 
baryogenesis [3,18–23]. During the process the homogeneous field 
as Q-ball solution begins to fluctuate and transforms into lumps. 
With calculations to the full non-linear dynamics of the complex 
scalar field, it was shown that the some flat directions consisting of 
combination of squarks and sleptons carry the baryonic charge in 
MSSM in the frame of the gravity-mediated supersymmetry break-
ing scenario [22]. According to the Affleck–Dine baryogenesis in 
the minimal supersymmetric standard model with gauge-mediated 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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supersymmetry breaking, it was found that the Affleck–Dine field 
is naturally deformed into the form of the Q-ball when the temper-
ature is high [23]. The Q-ball formation in the expanding universe 
was studied by means of 1D, 2D and 3D lattice simulations re-
spectively [24]. The evolution of universe is associated with change 
of temperature. The thermal effects may control the potential for 
Q-balls. It is necessary to research on the Q-ball at finite tempera-
ture. The Q-ball formation in the thermal logarithmic potential was 
investigated in virtue of the lattice simulation [24]. The logarith-
mic potential appears during the reheating epoch. The evolution 
of the universe certainly provides the potential with the thermal 
correction [25]. It is found that the Q-ball subject to the gravity-
mediation potential will transform from the thick-wall type to the 
thin-wall ones as the temperature decreases and will be destroyed 
at last when the temperature drops sufficiently.

It is significant to investigate the Q-ball in the thermal loga-
rithmic potential by means of virial theorem. This kind of Q-balls 
evolving in the expanding universe could become candidates for 
baryon asymmetry and dark matter. The formation and proper-
ties of this kind of Q-ball has been estimated numerically [25,26]. 
The conclusions from numerical estimation are certainly impor-
tant. It is also fundamental to find the analytical expressions for 
Q-ball’s charge, radius and energy to show how the Q-balls evolve 
with the change of temperature in detail because the field equa-
tions for Q-balls are nonlinear and the reliable and explicit relation 
among the more model parameters as the existence of Q-balls is 
difficult to be revealed by performing the burden numerical cal-
culation repeatedly. To our knowledge little contribution was paid. 
A generalized virial relation for Q-balls with general potential in 
the spacetime with arbitrary dimensionality was obtained [27]. 
The analytical description instead of a series of curves for Q-balls 
was derived [27]. The analytical expressions can show clearly how 
the model variables influence on the Q-balls and the fate of these 
kinds of nontopological solitons. Here we will follow the procedure 
of Ref. [27] to study the Q-balls controlled by the thermal loga-
rithmic potential. We hope to understand how this kind of Q-balls 
evolve with the decreasing temperature.

In this paper we investigate the Q-ball in the thermal logarith-
mic potential with virial theorem. It is difficult to solve the field 
equation of Q-balls with thermal log-type potential. A virial rela-
tion for this kind of Q-balls is found. We look for the analytical 
descriptions of the radius and energy of these Q-balls to estimate 
their properties in the case of large radius and small ones respec-
tively and to show the relation between their existence and the 
expansion of the universe. We emphasize the results in the end.

2. The virial relation for Q-balls in the thermal logarithmic 
potential

We start to consider the Lagrangian density of this system as 
follows:

L = ∂μ�+∂μ� − V (��+) (1)

where � = �(x) is a complex scalar field. The index μ = 0, 1, 2,

· · ·, d and the signature is (+, −, −, · · ·). In the Affleck–Dine sce-
nario the homogeneous field begins rotation with large amplitude 
in order to fluctuate and transform into lumps, so the two-loop 
thermal effects on the potential are crucial [28,29]. In the case of 
large field values, the potential is assumed to be

V (�) = V T (�) + Vm(�) (2)

where

V T (�) = T 4 ln(1 + |�|2
2

) (3)

T

Vm(�) = m2
3
2
|�|2[1 + K ln(

|�|2
M2

)] (4)

with a global minimum at � = 0 and T is temperature. m 3
2

is 
the gravitino mass. The parameter K is negative [19,20,29]. Here 
M is a normalization scale. This potential admits the formation 
of Q-balls. Under this potential Q-balls are nonperturbative ex-
citation about this global vacuum state carrying a net particle 
number called Q which is conserved. Here the energy of the 
Q-ball E Q is smaller than Q m� with m2

� = V ′′(0) because the 
condition will keep the Q-ball to be stable although that is en-
ergetically preferred. The Lagrangian of the Q-ball constrained by 
the thermal logarithmic potential has a conserved U (1) symme-
try under the global transformation �(x) −→ eiα�(x) where α
is a constant. The associated conserved current density is defined 
as jμ ≡ −i(�+∂μ� − �∂μ�+) and the corresponding conserved 
charge can be given by Q = ∫

ddxj0. We introduce the ansatz for 
field configuration with lowest energy,

�(x) = 1√
2

F (r)eiωt (5)

Here the field F (r) can be taken to be spherically symmetry mean-
ing F (r) = F (r) and {r} represents the spatial components of coor-
dinates of coordinates and certainly r = |r|. The field equation for 
this Q-ball can read,

(∇2
d + ω2)F − m2

3
2

K F − 2T 4

F 2 + 2T 2
F − m2

3
2
(1 + K ln

F 2

2M2
)F = 0

(6)

From Lagrangian (1), the total energy of the system is,

E[F ] =
∫

ddx[1

2
(∇d F )2 + 1

2
ω2 F 2 + V (F 2)] (7)

According to Ref. [27], the virial relation is a generalization of Der-
rick’s theorem for Q-balls in the (d +1)-dimensional spacetime can 
be expressed as,

d〈V 〉 = (2 − d)〈1

2
(∇d F )2〉 + d

2

Q 2

〈F 2〉 (8)

Since 〈V 〉 ≥ 0, the absolute lower bound for Q-balls to be a pre-
ferred energy state is shown as,

Q 2 ≥ 2(d − 2)

d
〈F 2〉〈1

2
(∇d F )〉 (9)

leading to

E

Q
= ω(1 + 1

d − 2 + d 〈V 〉
〈 1

2 (∇d F )2〉
) ≤ mφ (10)

In the four-dimensional spacetimes, the energy per unit charge can 
be written as,

E

Q
= ω(1 + 1

1 + 3〈V 〉
〈 1

2 (∇ F )2〉
) (11)

where 〈· · ·〉 = ∫ · · ·d3x and

〈V 〉 =
∫

[T 4 ln(1 + F 2

2T 2
) + m 3

2
(1 + K ln

F 2

2M2
)F 2]d3x (12)

The total charge of the Q-balls is,

Q = ω

∫
F 2d3x (13)
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The condition (11) is fundamental to Q-balls’ stability. Because the 
potential has terms associated with the temperature, the cosmic 
temperature decreases and so does the thermal logarithmic po-
tential during the process of the Universe expansion. According to 
Eqs. (11) and (12) the properties including the structure and sta-
bility of thermal log-type Q-ball will change with time.

3. The variational approach for large Q-balls with the thermal 
logarithmic potential

Here we focus on the Q-balls dominated by the thermal log-
type potential in the case of large charge and radius. First of all 
we make use of the Coleman issue [2] to probe this kind of large 
Q-balls. We choose the scalar field composing the Q-balls to be a 
step function which is equal to be a constant denoted as Fc within 
the model and vanishes outside the ball’s volume v . The system 
energy is,

E = 1

2

Q 2

F 2
c v

+ v V (Fc) (14)

and V (Fc) = 1
2 m 3

2
2 (1 + K ln F 2

c
2M2 )F 2

c + T 4 ln(1 + F 2
c

2T 2 ). Having ex-

tremized the expression (14) with respect to the volume v , we 
obtain the minimum energy per unit charge and the condition for 
thermal log-type Q-ball’s stability as follows:

Emin

Q
=

√
2

Fc

√
V (Fc) < mφ (15)

It is interesting that the minimum energy per unit charge will be 
lower with decreasing temperature, which keeps the energy den-
sity lower than the kinetic energy which is necessary for the Q-ball 
to disperse. This kind of Q-balls can survive.

In order to describe the true large Q-balls with the potential 
possessing the thermal logarithmic terms, we introduce the field 
profile,

F (r) =
{

Fc r < R
Fce−α(r−R) r ≥ R

(16)

where α is a variational parameter and R represents a region 
where the field configuration keeps constant instead of diminish-
ing quickly. The scalar field of Q-balls can distribute a little widely. 
According to the large-Q-ball ansatz (16), the energy of model 
reads,

E = 1

2

Q 2

〈F 2〉 + 1

2
〈(∇ F )2〉 + 〈V (F )〉

= 1

2
Q 2[4π

3
F 2

c R3 + 8π F 2
c (

1

8α3
+ R

4α2
+ R2

4α
)]−1

+ 4πα2 F 2
c (

1

8α3
+ R

4α2
+ R2

4α
)

+ 2π

3
m2

3
2

F 2
c (1 + K ln

F 2
c

2M2
)R3

+ 4πm2
3
2

F 2
c [1 + K (ln

F 2
c

2M2
+ 2αR)][ 1

(2α)3
+ R

(2α)2
+ R2

4α
]

− 12ππm2
3
2

K F 2
c [ 1

(2α)3
+ R

(2α)2
+ R2

4α
+ R3

6
]

+ 4π

3
R3T 4 ln(1 + F 2

c

2T 2
)

+ 4π T 4
∞∑

n=1

(−1)n+1

n
(

F 2
c

2T 2
)n[ 2

(2nα)3
+ 2R

(2nα)2
+ R2

2nα
]

(17)
where the conserved charge is,

Q = ω

∫
F 2d3x

= 4π

3
ωF 2

c R3 + 8πωF 2
c (

1

8α3
+ R

4α2
+ R2

4α
) (18)

The above expression means that the topological charge can take 
the place of the frequency ω. In order to further discuss the prop-
erties such as the stability of this kind of Q-ball controlled by the 
cosmic temperature, we just leave several dominant terms in the 
expressions of the energy and this approximation is acceptable for 
large Q-balls. Combining the conserved charge and reduced energy, 
we have,

E Q ≤ 3Q 2

8π F 2
c

R−3 + [2π

3
m2

3
2

F 2
c (1 + K ln

F 2
c

2M2
)

+ 4π

3
T 4 ln(1 + F 2

c

2T 2
)]R3

+ [παF 2
c + π

α
m2

3
2

F 2
c (1 + K ln

F 2
c

2M2
− K )

+ 2π

α
T 4

∞∑
n=1

(−1)n+1

n2
(

F 2
c

2T 2
)n]R2 (19)

It should be pointed out that the variables such as radius R and 
coefficient α do not belong to the model described by Lagrangian 
(1) although the energy of model depends on these variables. We 
extremize the reduced energy expression (19) with respect to R
and α respectively. We proceed performance ∂ E

∂ R |R=Rcl = 0 to find 
the equation that the critical radius Rcl of Q-balls satisfies,

3C R6
cl + 2B R5

cl − 3A = 0 (20)

where

A = 3

8π

Q 2

F 2
c

(21)

B = παF 2
c + π

α
m2

3
2

F 2
c [1 + K (ln

F 2
c

2M2
) − K ]

+ 2π T 4

α

∞∑
n=1

(−1)n+1

n2
(

F 2
c

2T 2
)n (22)

C = 2π

3
m2

3
2

F 2
c (1 + K ln

F 2
c

2M2
) + 4π

3
T 4 ln(1 + F 2

c

2T 2
) (23)

The approximate solution to Eq. (20) is,

Rcl ≈ (
3

8π

Q 2

F 2
c

)
1
6 [2π

3
m2

3
2

F 2
c (1 + K ln

F 2
c

2M2
)

+ 4π

3
T 4 ln(1 + F 2

c

2T 2
)]− 1

6

− 1

9
[παF 2

c + π

α
m2

3
2

F 2
c [1 + K (ln

F 2
c

2M2
) − K ]

+ 2π T 4

α

∞∑
n=1

(−1)n+1

n2
(

F 2
c

2T 2
)n]

× [2π

3
m2

3
2

F 2
c (1 + K ln

F 2
c

2M2
)

+ 4π

3
T 4 ln(1 + F 2

c

2T 2
)]−1 (24)

and this solution is valid for large Q-balls at finite temperature. 
It is interesting that the radius of Q-ball becomes larger as the 
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temperature decreases. Certainly the larger Q-balls have larger size. 
We can also impose the condition ∂ E Q

∂α |α=αc = 0 into Eq. (19) to 
obtain,

α2
c = m2

3
2
(1 + K ln

F 2
c

2M2
− K ) + 2T 4

F 2
c

∞∑
n=1

(−1)n+1

n2
(

F 2
c

2T 2
)n (25)

According to Eq. (25),

2T 4

F 2
c

∞∑
n=1

(−1)n+1

n2
(

F 2
c

2T 2
)n > m2

3
2
(1 − K ln

F 2
c

2M2
+ K ) (26)

where ln F 2
c

2M2 < 0. If K < 0, the inequality (26) can certainly be 
satisfied no matter whether the temperature is high or low. In the 
case of positive parameter K , the temperature cannot be so low 
that the αc will be complex, then the field will oscillate outside 
the core to make the Q-ball to disperse. The large Q-balls with 
positive parameter K will not be stable when the temperature is 
lower than a critical magnitude. The inequality (26) can help us to 
estimate the critical temperature for any large Q-balls with a set of 
parameters. Here we prove analytically that the Q-ball should obey 
the necessary conditions from Refs. [17,24–26] instead of solving 
the nonlinear differential equation numerically a lot of times corre-
sponding to various values of Q-ball model parameters. Our results 
for positive K are also consist with the relevant conclusions in 
Ref. [11]. Combining Eqs. (19), (24) and (25), we find the mini-
mum energy of large Q-balls per unit charge,

E Q [Fc]|Rc ,αc

Q
= [m2

3
2

+ m2
3
2

K ln
F 2

c

2M2

+ 2T 4

F 2
c

ln(1 + Fc

2T 2
)] 1

2 (1 + ξc Q − 1
3 ) (27)

where

ξc = (
9π

2
F 2

c )[m2
3
2
(1 + K ln

F 2
c

2M2
− K )

+ 2T 4

F 2
c

∞∑
n=1

(−1)n+1

n2
(

F 2
c

2T 2
)n]

× [m2
3
2

+ m2
3
2

K ln
F 2

c

2M2
+ 2T 4

F 2
c

ln(1 + Fc

2T 2
)]− 5

6 (28)

The asymptotic behavior of the minimum energy of large Q-balls 
with huge charge Q per unit charge is

lim
Q −→∞

E Q [Fc]|Rc ,αc

Q

=
√

m2
3
2

+ m2
3
2

K ln
F 2

c

2M2
+ 2T 4

F 2
c

ln(1 + Fc

2T 2
) (29)

Here we obtain the explicit expression for the minimum energy 
of large Q-balls. We can discuss the influence from the model vari-
ables and the temperature. Having compared Eq. (15) with Eq. (27), 
we discover that the lower bound on the energy per one particle 
in large Q-balls with description (16) is larger than that of Cole-
man’s issue because of the ξc-term. The minimum energy over 
total charge is finite even the number of particles is extremely 
large. We show the dependence of the minimum energy per unit 
charge of Q-balls with thermal logarithmic potential on the cosmic 
temperature for a definite charge in Fig. 1. It is clear the minimum 
energy per unit charge is a decreasing function of temperature, 
which means that the decreasing temperature due to the expand-
ing universe leads the thermal log-type Q-balls more stable. For 
various magnitudes of temperature T , the shapes of curves of min-
imum energy over our charge are similar.
Fig. 1. The solid, dot and dashed curves of the minimum energy per unit charge 
of large Q-balls in the thermal logarithmic potential as functions of charge Q for 
temperature T = 10, 20, 30.

4. The variational approach for small Q-balls with the thermal 
logarithmic potential

Now we pay attention to the small thermal log-type Q-balls. 
The small Q-balls with radii R ≥ m−1

� cannot be described well 
with the help of thin-wall approximation. We bring about a Gaus-
sian ansatz in order to consider the small Q-balls subject to ther-
mal logarithmic potential,

F (r) = F (r) = Fce
− r2

R2 (30)

Substituting the ansatz (30) into the expression (7), we write the 
total energy in the case of small Q-balls at finite temperature as 
follows:

E =
∫

d3x[1

2
ω2 F 2 + 1

2
(∇ F )2 + V (F 2)]

=
√

2Q 2

π
3
2 F 2

c R3
+ 3π

3
2

2
5
2

F 2
c R

+ 1

2
(
π

2
)

3
2 m2

3
2

F 2
c R3[1 + K ln F 2

c − (
3

2
+ ln 2M2)K ]

+ [(π
2

)
3
2 T 4

∞∑
n=1

(−1)n+1

n
5
2

(
F 2

c

2T 2
)n]R3 (31)

According to Gaussian ansatz, the charge is,

Q = ω(
π

2
)

3
2 F 2

c R3 (32)

replacing the frequency ω. The energy for small Q-balls controlled 
by thermal log-type potential just involve the dominant terms. 
In order to establish the equation for the critical radius Rc , we 
extremize the expression of the energy with respect to R like 
∂ E Q
∂ R |R=Rcs = 0, then

3cR6
cs + bR4

cs − 3a = 0 (33)

where

a = 1

2

Q 2

(π )
3
2 F 2

(34)

2 c
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b = 3

2
(
π

2
)

3
2 F 2

c (35)

c = 1

2
(
π

2
)

3
2 m2

3
2

F 2
c [1 + ln F 2

c − (
3

2
+ ln 2M2)K ]

+ (
π

2
)

3
2 T 4

∞∑
n=1

(−1)n+1

n
5
2

(
F 2

c

2T 2
)n (36)

Similarly the acceptable approximate solution reads,

Rcs = [1 − b

2(9cR2
0 + 2b)

]R0 (37)

where

R0 = [1

2

Q 2

(π
2 )

3
2 F 2

c

] 1
6 {1

2
(
π

2
)

3
2 m2

3
2

F 2
c [1 + ln F 2

c − (
3

2
+ ln 2M2)K ]

+ (
π

2
)

3
2 T 4

∞∑
n=1

(−1)n+1

n
5
2

(
F 2

c

2T 2
)n}− 1

6 (38)

The critical radius of small thermal-logarithmic-potential con-
trolled Q-ball is shown as a function of temperature with a definite 
charge Q . The lower temperature will lead the small Q-balls to 
shrink. The minimum energy per unit charge for small Q-balls can 
be expressed in terms of the critical radius as,

E[Fc]|R=Rcs

Q
= (

ã

c
)

1
2 [2c + b(

ã

c
)−

1
3 Q − 2

3 − b2

18
(ã2c)−

1
3 Q − 4

3 ] (39)

where

ã = 1

2(π
2 )

3
2 F 2

c

(40)

In the limit of too much charge, the minimum energy per unit 
charge for small Q-balls becomes,

lim
Q −→∞

E[Fc]|R=Rcs

Q
= 2

√
ãc (41)

It should also be pointed out that the variable c must keep posi-
tive according to Eq. (36) and Eq. (39). When the model parameter 
K is negative, the variable c is certainly positive. For the Q-balls 
with positive K , only the sufficiently high temperature can keep 
the variable c positive. The weaker thermal corrections must re-
sult in the nonexistence of the small Q-balls containing positive K . 
The powers of charge Q in the terms are negative in Eq. (39), so 
the energy over charge will not be divergent if the charge becomes 
huge. In Fig. 2, for simplicity we also choose Fc = 1 without los-
ing generality and show that the minimum energy per unit charge 
E[�c ]|R=Rcs

Q also decreases in the process of universe expanding. 
Certainly the energy of one particle remains smaller than the ki-
netic energy of a free particle as the temperature becomes lower, 
which keeps the stability of small Q-balls in the colder universe.

5. Summary

In this work we research on the Q-balls with the thermal log-
arithmic potential by means of variational estimation instead of 
lattice simulation. Some numerical solutions to the nonlinear field 
equation with respect to several given values of the model pa-
rameters cannot be reliable and only these numerical solutions 
cannot reveal the relations between the characters of the Q-balls 
and their construction completely. Here we obtain the analytical 
results on the Q-balls properties such as radii, energies related to 
the temperature and their stability without solving the nonlinear 
field equation numerically. Our analytical estimations help us to 
Fig. 2. The solid, dot and dashed curves of the minimum energy per unit charge 
of small Q-balls in the thermal logarithmic potential as functions of charge Q for 
temperature T = 10, 20, 30.

discuss the thermal log-type Q-balls in detail and their accuracy 
is acceptable. We also declare that the Q-balls minimum energy 
per unit charge will not be divergent if the charge is extremely 
large and the minimum energy over charge decrease to a quan-
tity depending on the model parameters excluding the charge Q
during which the universe expands. In the colder and colder back-
ground the energy per unit charge of Q-balls subject to the thermal 
logarithmic potential becomes lower, so the Q-balls remain stable. 
We also prove rigorously the necessary conditions that the model 
parameters should obey for the formation and stability of Q-balls 
under the influence from background temperature. The Q-balls in-
volving negative parameter K will survive no matter whether the 
temperature is high or low. The sufficiently low temperature makes 
the Q-balls with positive parameter K to disappear. The expanding 
universe with decreasing temperature leads the large Q-balls en-
large and small ones contract. We can further study the related 
topics.
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