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Sufficient conditions are obtained respectively for the asymptotic stability of the 
trivial solution of a(r) + ax(t -5) =x,“, b,x(t, - )S(t - t,), t # t,, and for the exist- 
ence of a nonoscillatory solution; conditions are also obtained for all solutions to 
be oscillatory. The asymptotic behaviour of an impulsively perturbed delay-logistic 
equation is investigated as an extension to a nonlinear equation. 0 1989 Academic 

Press, Inc. 

1. INTRODUCTION 

There exists a well-developed stability theory of delay-differential and 
more general functional differential equations (Bellman and Cooke [2], 
El’sgol’ts and Norkin [6], Hale [lo], Kolmanovskii and Nosov [13]. 
Oscillation theory of delay differential equations has also been developed 
extensively over the past few years. We refer to Arino, Gyori, and Jawahari 
[l], Hunt and Yorke [12], Koplatadze and Canturiya [14], Kusano 
[15], Ladas [16], Lakshmikantham, Ladde, and Zhang [17], Onose 
[ 181, Fukgai and Kusano [7], Shevelo [22], and the references therein for 
the literature concerned with the oscillation of delay differential equations. 
In the opinion of these authors, delay differential equations subjected to 
impulsive perturbations seem to have never been considered either with 
respect to the stability of their steady states or oscillation of their solutions. 
Stability and asymptotic behaviour of certain ordinary differential 
equations with impulses have been considered by Pandit and Deo [19], 
Gurgula [9], Borisenko [3], Perestyuk and Chernikova [20]. 

The purpose of this article is to examine the following aspects of delay 
differential equations with impulses; “if the trivial solution of a delay dif- 
ferential system is asymptotically stable, in the absence of impulsive pertur- 
bations, under what conditions impulsive perturbations can maintain such 
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an asymptotic stability?“; “if all solutions of a delay differential system are 
oscillatory, will they continue to do so when the system is subjected 
impulsive perturbations?” One of the intuitive expectations on the above 
questions is the following: if the impulses do not occur “too often” and if 
the “magnitudes” of the perturbations are not “too large” then the pertur- 
bed system will have the same qualitative behaviour as that of the unper- 
turbed system. Our plan in the following is to consider a simple scalar 
delay differential system whose unperturbed behaviour is known and study 
its behaviour when subjected to impulsive perturbations. Our method 
easily generalises to vector-matrix linear systems. 

2. ASYMPTOTIC STABILITY 

We consider the following delay differential equation with impulses 

dx(t) ~+ax(t-r)= f b,x(r,-)&t-t,) tfti, (2.1) 
j= 1 

where b, (j= 1, 2, . ..) are real numbers, a is a positive number, z, t, 
(j = 1, 2, . ..) are real numbers such that t B 0, 0 < t, < t, < . . < fj --) co as 
j- co. It has been known that when all bj (j== 1,2,3, . ..) are zero, the 
trivial solution of (2.1) is exponentially asymptotically stable whenever 
0 < ar < 742. In fact the characteristic equation associated with (2.1) when 
b, = 0, j = 1, 2, 3, . . . is of the form 

A+ae-‘=O (2.2) 

and one can show that for 0 < az < 742, all the roots of (2.2) have negative 
real parts. Let 

max{Re 11 A+ae~“‘=0} = -rxO, (2.3) 

where c1,, is a positive number. 
By a solution of (2.1) we shall mean a real valued function x defined on 

[ -z, co) which is left continuous on [ -T, co) and is differentiable o,n 
(0, tl), (f,, t,+ 1) (j= 1, 2, 3, . ..) satisfying 

dx(t) 
~+ax(t-t)=O, tE (0, 21) fi (t,, t,+ I). 

j= I 
(2.4) 

The following result provides sufficient conditions for the asymptotic 
stability of the trivial solution of (2.1). 
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THEOREM 2.1. Assume the following: 

(i) 0 < a7 < ~12. 

(ii) tj+ 1 -tj> T>O, j= 1, 2, 3, ,..; and t< T. 

(iii) 1 + lbil < A4 for j= 1, 2, 3, . . . . 

(iv) (l/T) In A4 < u for some c( less then cq,. 

Then the trivial solution of (2.1) is globally exponentially asymptotically 
stable. 

Proof: It is known from Corduneanu and Luca [4] that solutions of 
(2.1) corresponding to initial conditions of the form 

x(t) = rp(th t-co; x(0+)=x0, 

where cp E C( [ -r, 0), R) are given by 

x(t) = U(t)x’ + y(t, cp) + j; U(t -s)h(s) ds 

in which U is defined by 

dU(t) T+aU(t-5)-O, t>O 

and 

U(t) = 0 for tE[-qO);U(O+)=l 

y(t,(p)= -as” U(t-z-s)p(s)ds, t>o 
-z 

h(t)= f bix(ti-)b(t- ti), t > 0. 
j=l 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

w3) 

In the following analysis of (2.5), we can without loss of generality assume 
that q(t) z 0 on [ -r, 0), since for any cp E C( [ - t, 0), R), y(t, cp) + 0 as 
t -P co by the exponential asymptotic stability of the trivial solution of (2.1) 
in the absence of impulses (due to the condition 0 < ar < z/2). It follows 
from (2.5) and (2X), 

x(t) = U(t)x(O+) on CO, t,) (2.9) 

x(t)= U(t)x(O+)+ U(t- t,)b,x(t,-) on [t,, tz). (2.10) 

It is not difficult to see from (2.1) that 

x(tj+)= (1 +bj)x(tj-), j= 1,2, 3, . . . . (2.11) 
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From (2.9), (2.10), (2.11), 

x(r)= U(t)[l +b,]x(O+) on Ct,, td. (2.12) 

Similarly one derives that 

x(t)= U(t)(l +b1)(1 +&)x(0+) on Ctzt t3). (2.13) 

Let us now suppose 

x(t)= U(t) i (1 +b,)x(O+) on Cfk, fk+l). 
j= 1 

For TV [tk+,, tk+J we have then 

j=l 

="(r)j) (l+bj)x(o+)+bk+,U(t-tk+,)U(rk+,) fi (l+bj)x(o+) 
j=l j= 1 

k+l 

= U(t) n (1 + bj)X(O+ ). (2.14) 
j=l 

Thus by induction we have 

x(r)= U(t) fj (1 +b,)x(O+) on CE CL L+l) (2.15) 
j=l 

and hence 

Ix(t)1 d Ke-*’ fi (I+ 1bjl) [x(0+ )I 
j=l 

< Ke-“‘M”“’ 1x(0+ )I \ 

d Ke-“‘exp[n(t) In M] [x(0+)1 

< Ke-“’ exp [ 1 Qp (x(0+)( 
<K[x(O+)) exp[ - (a-y) 11, 
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where rib(t) denotes the number of jumps in the interval (0, t). Now if 
cp & 0 on[-z, 0) then one can easily see from (2.5) and (2.7) that 
y(t, cp) -+ 0 exponentially as t + co. Thus the exponential asymptotic 
stability of the trivial solution of (2.1) follows from (2.16) and the 
hypothesis of the theorem. 

3. OSCILLATION AND NONOSCILLATION 

We consider an impulsive system of the type 

dx(t) 7+p(t)x(t-r)=O t#ti 

X(tj+)-X(ti-)=biX(tj-) (3.1) 

0 < ti < t, < ... < tj-+ 00 as j+oo, 

where z is a positive real number. 
As it is customary, we shall say that a nontrivial solution of (3.1) is non- 

oscillatory if it is eventually positive or eventually negative and otherwise 
it will be called oscillatory. 

THEOREM 3.1. Assume the following: 

(i) p is continuous on [0, co ) and p(t) 2 0 for t 2 0. 

(ii) ti+l - ti2 T; i= 1, 2, 3, . . . . 

(iii) Either 

/it Sup(1 +bi)-’ j,I+‘p(s)ds> 1 

or 

lim sup( 1 + b,)-’ 5”” p(s) ds > 1 
i-cc 1, 

Then all solutions of (3.1) are oscillatory. 

if z2T (3.2) 

if 0 < T < T. (3.3) 

Proof Suppose the result is not true; then there exists a nonoscillatory 
solution of (3.1) say x(t). We shall assume that x(t) > 0 for all t 2 t* (if 
x(t) c 0 eventually then consider -x(t)). Since eventually x(t) > 0, i(t) < 0 
for all large t, x is nonincreasing on intervals of the form ( tj, tj+ 1), 
j= 1,2, 3, . . . . We shall prove the result in the case of o >, T. 
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It follows from (3.1) by an integration on (t,, ti + T), 

x(fi+T)-x(t,+O)+jt’~o=p(s)x(s-r)ds=O. (3.4) 

By the nonincreasing nature of x, we have from (3.4), 

x(ti+ T)-X(tj+O)+ Jlr~oTp(S)dS]X(f,+ T-T)<0 
[. 

and, hence, 

(3.5) 

Now using the jump conditions of (3.1) in (3.5) 

p(s) ds- 1 60. 1 (3.6) 

But (3.6) is impossible due to the eventual positivity of x and (3.2). By a 
similar analysis one can derive a contradiction if (3.3) holds. The proof is 
complete. 

The following result provides a sharper condition than that in the 
previous theorem. 

THEOREM 3.2. Assume the following: 

(i) ti+ , - ti> T; i= 1, 2, 3, . . . and z < T. 

(ii) O<b,dM; i= 1, 2, 3, . . . . 

(iii) p is continuous on [0, CD) and p(t) 2 0 for t > 0. 

(iv) 

lim inf 
I 

l+M 
t-00 ,lp7 p(s)ds>- e (3.7) 

Then every solution of (3.1) is oscillatory. 

Proof: Suppose the result is not true and there exists an eventually 
positive solution say y(t) > 0 for t > t*. Define 

Y(t-2) w(t) = __- 
Y(l) 

for t>t*+z. 
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Considering the interval [t - z, t] and ti E (t - t, t), 

Y(t-7)~Y(li-)=~,y(ti+)~ 
I 

&, y(t), 

implying 

w(r) = YO-t), 1 1 

Y(l) 1 +b,Sx7 
(3.10) 

We shall first show that w(t) is bounded above. Let t, be a jump point in 
[t - 2q t-z]. Integrating (3.1) on [t - ~/2, t], 

y(t)-y 1-i +j' p(s)y(s-z)ds=O. 
( > 

(3.11) 
I- t/2 

It follows from (3.11) that 

2 5 -“p(S)y(s-7)ds+\r 
r-r/2 P(S) Y(S - 7) ds 

tK+r+O 

Y(l-t) * 
aEJ+-,,2 p(s)ds* (3.12) 

On integrating (3.1) over [t - z, t - q/2], 

Thus 

y(t-~)~y(t-~)[c”p(s)~][,I,,,p(s)ds]~ (3.13) 

and, hence, 

~(t - 37/2) l+A4 
y(f--/2) ’ Cs:::” p(s) dsl[j:-.,, p(s) ds] ‘If 

(3.14) 

We have from (3.1) for large enough t, 

s ,‘, ‘$+i,‘., p(s)‘sds=O. (3.15) 
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But 

i- 
’ Y’(S) ds= ‘K-OYYJ) ds+ t 

‘-1 Y(S) I ‘-Z Y(S) I 
Y’(S) ds 

tK+o Y(S) 

&Y(tK-o) Y(f) 

Y(f - 5) Y(fK + 0) 

=ln-$$)&. 
K 

From (3.15) and (3.16), 

In ‘F (1 + bK) = I,‘- T p(s) ‘9 ds. 

if 

1= lim inf w(t) 
r+rn 

then 1 is finite and positive and (3.17) leads to 

ln[(l +M)w(t)l>/l’ p(s)ds 
I--i 

which implies that 

1+M,Wl+Wl, lim inf l -/ 
e s 1 ‘r-em I-T P(S) ds 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

and (3.19) contradicts (3.7). The result follows from such a contradiction 
and the proof is complete. 

It is well known that the autonomous delay differential equation 

d4t) ~+au(t-r)=o (3.20) 

has a nonoscillatory solution if 0 <at < l/e. If Eq. (3.20) is subjected to 
impulsive perturbations, the nonoscillatory solutions of the unperturbed 
system may or may not continue to persist under impulsive perturbations. 
The following result provides a set of sufficient conditions for the existence 
of nonoscillatory solutions of (3.1). 
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THEOREM 3.3. Suppose the parameters of (3.1) satisfy the following: 

(i) there exists a positive number c such that 

aze < 1 - c; 

(ii) b,>O;i=1,2,3 ,... andxz,b,<oo. 

Then (3.1) has a nonoscillatory solution. 

ProoJ: Let t, be a real number and let L,[t, - r, co) denote the space 
of all equivalence classes of real valued functions defined on [to - r, co ) 
such that 

It is known that L, is a complete metric space with the metric p defined 
by 

If(t) -g(t)1 dt. 

Consider a set A c L, defined as 

A= {fELl[to-z, co) I e-~“<f(t)<e-~*‘;pl >p*>O}, (3.21) 

where pL2 satisfies ae @lr< (1 - c)p*. Define a map S, 

s: A + L,[t,-T, oo), 

where 

s ,T [ax(s - T) - 2 bjx(tj- )6(s - tj] ds, tato, 

S(x)(t) = 
j=l 

s 
m ax(s-z)- f bjx(tj-)6(s-tj)] ds, t,-rztttt,. 
kl j=l 

(3.22) 

It is easy to see that S(A) c A; for instance, 

ae’*’ 
S(x)(t) < - e 

P2 

-w+ f bie--P2’<e-lQf, 
n(t) 

(3.23) 

provided aep1’/p2 < 1 -c and &,, , b. < c. This is possible since we can 
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choose t, sufficiently large so that n(t) will be a large enough positive 
integer. There exists a pi > 0 such that 

s(x)(t) 2 
aeM”’ 
-e , --Ir1( > e-!4’ 
Pl 

For instance, if we let p2 = l/t, we get are < 1 - c from aep2’/pZ < 1 -c. It 
is easy to see that S(x) E L, for x E A. Thus S(A) c A. Since S maps the 
bounded closed subset A of L, into itself, S is a compact map. By the 
Schauder’s fixed point theorem, S has a fixed point x* satisfying Sx* =x* 
and this implies that x* is a nonoscillatory solution. 

4. DELAY-LOGISTIC EQUATION WITH IMPULSES 

In this section we consider the impulsively perturbed delay-logistic non- 
linear equation 

dx(t) dr=rx(t) { 1 -F} + f b,[x(t,-)-K-J&t-t,) (4.1) r=l 

in which r, K, r are positive constants; bi, ti are real numbers such that 
o<t,<t,< ..’ < tj + co as j -+ co. We are mainly concerned with the 
asymptotic behaviour of (4.1) and especially the attractivity of the steady 
state K with respect to solutions of (4.1) corresponding to initial conditions 
of the form q(s) 20 on C--r, 0), cp(O)>O, and (PE C[ -5, 01. If we let 
x(t)= K[l +y(t)] in (4.1) then y is governed by 

h(t) -= 
dt 

-rCl+y(t)ly(t-z)+ f b,y(t,-)&t-r,), t # t,, (4.2) 
i= f 

and it is sufficient to consider the attractivity of the trivial solution of (4.2). 
Our strategy for analysing (4.2) is to consider (4.2) as perturbation of 

the familiar delay-logistic equation 

dz 

ii- 
- -r[l +z(t)]z(t-z). (4.3 1 

If z(t) is any solution of (4.3), then the variational equation corresponding 
to z and (4.3) is given by the linear nonautonomous equation 

du(t) -= -rz(t--)u(t)-r[l+z(t)]u(t-r). 
dt 
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It is known from our previous works that if cp is “small” and if 

0 -c rz < n/2 (4.5) 

(for details see Zhang and Gopalsamy [23], Gopalsamy [S]) then every 
solution z(t) of (4.3) exponentially approaches zero as t -+ co. For such z, 
it is known that the trivial solution of (4.4) is uniformly asymptotically 
stable (for details see Driver [S]). That is, there exist positive constants 
M~1anda~Osuchthatfor(t,,cp)~[O,~)~C[-~,0]and“small”cp 

Ilu(t, to, cp)II GM II44 expC-dt-to)l, t&to. (4.6) 

We are now ready to formulate our result. 

THEOREM 4. I. Suppose the positive constants r, t satisfy 0 c rT < n/2. Let 
a be the positive constant as in (4.6). Let N= sup[l + A4 IbJ, i= 1, 2, 3, . ..I. 
Suppose ti, , - ti > T, i = 1, 2, 3, . . . . If furthermore rp is “small” and 

- a + [In N)/T] < 0, (4.7) 

then every solution of (4.2) appraoches zero exponentially as t + co. 

Proof: By the nonlinear variation of constants formula (Shanholt [21], 
Hastings [ll]) we have from (4.2) and (4.3), 

~W=z(r)+j; T( t, s, Ys)x~ f biY(si- )d(s- ti) h 
i=l 

=Z(f) + 1 T(t, tj, Yq)xobjY(tj- h t > 4th (4.8) 
j=l 

where T(t, tj, y,)X, is a solution of (4.4) with initial values satisfying 
u(t) = 0 on [ -r, 0) and u(O+ ) = 1. We have from (4.8), 

Y(f) = z(t) on (0, cl) (4.9) 

y(t) =z(t) + T(tv f,, y,,Fob, y(tl- 1 on (h, t2) (4.10) 

and hence 

Iv(t) < ~4 lIzoIl e-“‘+ M2 lb,1 lIzoIl e-“’ 
+ M lb21 e-‘(‘-‘*) lIzoIl Ml +M IbIlk-“” 

GM1 +M lb,l)(l +M IbAW”’ lIzoIl on (t2, td. (4.12) 

By induction one can prove that 

Iv(t)l G ~4 lIzoIl fi (I+ ~4 l&l W” on (t,, tn+l). (4.13) 
i=l 
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If we let 
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N=sup[l+Mlb,l,i=1,2,3 )... ] 

then (4.13) becomes 

which, on using ti+ , - ti > T and n(t) < t/T, becomes 

(4.14) 

Iv(t) < M lIzoIl expC --crt + (t In W/T1 

= M lIzoIl exp[ - { CI - (In N/T)} tl (4.15) 

and the result follows from (4.15) by virtue of (4.7). 

We conclude with the formulation of the following result whose proof is 
similar to that of Theorem 3.1. 

THEOREM 4.2. In the impulsive delay-logistic system 

44t) 
~+P(t)u +Y(t)l Y(t-~)=O, t#t; 

y(ti+O)-y(t,-O)=biy(ti-O), o<t,<t,< “. -ctj+cc as j-00, 

(4.16) 

assume 

(i) tit, -rig T, r> T; i= 1, 2, 3, 4, . . . . 

(ii) pEC(R+, R+); 

(iii) 
1 1, + T  

lim sup - 
i-Cc 1 + bi 

p(s) ds > 1. 
11 

(4.17) 

Then every solution of (4.16) is oscillatory. 

REFERENCES 

1. 0. ARINO, I. GY~RI, AND A. JAWAHARI, Oscillation criteria in delay equations, J. Differen- 
rid Equations 53 (1984), 115-123. 

2. R. BELLMAN AND K. L. COOKE, “Differential-Difference Equations,” Academic Press, 
New York, 1963. 

3. S. D. B~RISENKO, Asymptotic stability of systems with impulsive action, Ukrain. Mat. Zh. 
35 (1983), 144150. 

4. C. CORDUNEANU AND N. LUCA, The stability of some feedback systems with delay, 

J. Math. Anal. Appl. 51 (1975), 377. 



122 GOPALSAMY AND ZHANG 

5. R. D. DRIVER, Ordinary and delay differential equations, App. Math. Sci. Vol. 20, 
Springer-Verlag, New York, 1977. 

6. L. E. EL’SCDL’TS AND S. B. NORKIN, “Introduction to the Theory and Application of 
Differential Equations with Deviating Arguments,” Academic Press, New York, 1973. 

7. N. FUKAGAI AND T. KUSANO. Oscillation theory of first-order functional differential 
equations with deviating arguments, Ann. Mat. 136 (1984), 95-l 17. 

8. K. GOPALSAMY, On the global attractivity in a generalised delay-logistic differential 
equation, Math. Proc. Cambridge Philos. Sot. 100 (1986), 183-192. 

9. S. I. GURGULA, A study of the stability of solutions of impulse systems by Lyapunov’s 
second method, Ukrain. Mat. Zh. 34 (1982). 

10. J. K. HALE, “Theory of Functional Differential Equations,” Springer-Verlag, New York, 
(1977). 

11. S. P. HASTINGS, Variation of parameters for nonlinear differential-difference equations, 
Proc. Amer. Math. Sot. 19 (1968), 1211-1216. 

12. B. R. HUNT AND J. A. YORKE, When all solutions of x’=x ~7~x(f-r~(r)) oscillate, 
J. Differential Equafions 53 (1984) 139-145. 

13. V. B. KOLMANOVSKII AND V. R. Nosov, “Stability of Functional Differential Equations,” 
Academic Press, New York, 1986. 

14. R. G. KOPLATADZE AND T. A. CANTURIYA, On oscillatory and monotone solutions of first 
order differential equations with deviating arguments, Differentdnye Uraunenija 18 
(1982) 1463-1465. 

15. T. KUSANO, On even order functional differential equations with advanced and retarded 
arguments, J. D$ferentiul Equations 45 (1982), 75-84. 

16. G. LADAS, Sharp conditions for oscillations caused by delays, Appl. Anal. 9 (1979), 93-98. 
17. V. LAKSHMIKANTHAM, G. S. LADDE, AND B. G. ZHANG, “Oscillation Theory of Differential 

Equations with Deviating Arguments, Dekker, New York, in press. 
18. H. ONOSE, Oscillatory properties of lirst order differential inequalities with deviating 

arguments, Kunkciul. Ekuac. 26 (1983), 189-195. 
19. S. G. PANDIT AND S. G. DEO, Differential systems involving impulses, Lecture Notes in 

Math. Vol. 954, Springer-Verlag, New York, 1982. 
20. N. A. PEFWTYUK AND 0. S. CHERNIKOVA. A contribution to the stability problem for 

solutions of systems of differential equations with impulses, Ukrain. Mat. Zh. 36 (1984), 
19CL195. 

21. G. A. SHANHOLT, A nonlinear variation of constants formula for functional differential 
equations, Math. Systems Theory 6 (1972-73), 343-352. 

22. V. N. SHEVELO, “Oscillations of Solutions of Differential Equations with Deviating 
Arguments,” Naukov Dumka, Kiev, 1978. 

23. B. G. ZHANG AND K. GOPALSAMY, Global attractivity in the delay logistic equation with 
variable parameters, Math. Proc. Cambridge Philos. SC., submitted. 


