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SUMMARY

Context-specific molecular vulnerabilities that arise
during tumor evolution represent an attractive inter-
vention target class. However, the frequency and
diversity of somatic lesions detected among lung
tumors can confound efforts to identify these targets.
To confront this challenge, we have applied parallel
screening of chemical and genetic perturbations
within a panel of molecularly annotated NSCLC lines
to identify intervention opportunities tightly linked to
molecular response indicators predictive of target
sensitivity. Anchoring this analysis on a matched
tumor/normal cellmodel froma lungadenocarcinoma
patient identified three distinct target/response-indi-
cator pairings that are represented with significant
frequencies (6%–16%) in the patient population.
These include NLRP3 mutation/inflammasome
activation-dependent FLIP addiction, co-occurring
KRAS and LKB1 mutation-driven COPI addiction,
and selective sensitivity to a synthetic indolotriazine
that is specified by a seven-gene expression signa-
ture. Target efficacies were validated in vivo, and
mechanism-of-action studies informed generalizable
principles underpinning cancer cell biology.
INTRODUCTION

Widespread evidence indicates that aberrant cancer cell-regula-

tory frameworks generate collateral vulnerabilities that can be
552 Cell 155, 552–566, October 24, 2013 ª2013 Elsevier Inc.
exploited for therapeutic benefit. These vulnerabilities can be a

consequence of oncogene addiction, gene-specific haploinsuf-

ficiencies, and other genetically and epigenetically derived fragil-

ities in cell-regulatory systems (Jänne et al., 2009; Luo et al.,

2009; Muller et al., 2012). The critical barrier confronting this

opportunity, for many tumor types, is the extreme heterogeneity

of themolecular etiology of neoplastic disease, which confounds

annotation of effective context-selective intervention targets.

For non-small-cell lung cancer (NSCLC), a tumor responsible

for 1 million deaths/year, over 160 nonsynomous somatic muta-

tions are detected per tumor, and the vast majority of these

mutations are nonrecurrent (Cancer Genome Atlas Research

Network, 2012; Imielinski et al., 2012). Actionable mutations

have been identified in epidermal growth factor receptor

(EGFR) and EML4-ALK (Lynch et al., 2004; Soda et al., 2007)

but are present in only 15% of lung adenocarcinomas (Imielinski

et al., 2012), whereas the majority of NSCLC patients are not

associated with any known pharmaceutically addressable

target. This missing coverage underscores the need to develop

new target opportunities that are tightly linked to molecular

response indicators.

To generate a testbed representative of the molecular hetero-

geneity of NSCLC, we assembled a panel of 91 lung tumor-

derived cell lines and 3 immortalized nontumorigenic airway

epithelial cultures. Though limited by the sparse complexity of

the tissue culture environment and therefore limited in the syn-

thetic genetic and chemical interactions that can be observed,

this cell-line panel has been shown to recapitulate genetic pro-

files found in tumors and to recapitulate selective responsive-

ness to molecularly targeted therapies (Gazdar et al., 2010;

Sharma et al., 2010). Beginning with a matched tumor/normal

cell model from a single lung adenocarcinoma patient, 230,000

synthetic small molecules and two independent whole-genome
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arrayed small interfering RNA (siRNA) libraries were used to iden-

tify chemical and genetic perturbations selectively toxic to the

patient’s tumor cell line. These agents were then tested to iden-

tify perturbations that were innocuous to nontumorigenic cells

but had activity in at least 30% of the NSCLC cell lines. The re-

sulting toxicity patterns were correlated with genomic profiles

to identify somatic mutations and expression signatures that

predicted sensitivity or resistance to these perturbations. In

this way, we identified three distinct target/response-indicator

pairings. First, we found that NLRP3 mutations, which occur in

16% of lung adenocarcinomas, drive addiction to the antiapop-

totic protein FLIP. The mechanism of action is through NLRP3-

dependent chronic activation of inflammasome signaling, which

sensitizes these cells to FLIP-dependent restraint of caspase-8-

induced cell death. Second, we found that co-occurring muta-

tions in KRAS and LKB1, present in 6% of lung adenocarcinoma

patients, are sufficient to drive addiction to the coatomer com-

plex I (COPI)-dependent lysosome acidification. This liability

was determined to be a consequence of obligate supply of

TCA-cycle substrates by lysosome-dependent consumption of

extracellular macromolecules. Chemical inhibition of this pro-

cess, with the natural product saliphenylhalamide A, inhibited

KRASmut/LKB1mut tumor cell survival in vitro and in vivo. Finally,

we found that selective sensitivity to a synthetic indolotriazine

defines a subtype of NSCLC cells estimated to occur at a fre-

quency of �10% of lung tumors. Indolotriazine sensitivity corre-

sponded to selective activation of an endoplasmic reticulum

stress response and can be effectively predicted using a

seven-gene quantitative mRNA expression signature.

RESULTS

Public and Private Vulnerabilities in NSCLC
To begin to assess the diversity of selective vulnerabilities that

can arise within lung cancer cell-autonomous regulatory con-

texts, we selected a matched tumor/normal pair (HCC4017/

HBEC30KT), derived from a 62-year-old female smoker with

stage 1A adenocarcinoma, for extensive functional and genomic

interrogation (Figure 1A). Authentic somatic mutations and copy

number variation, in the tumor line as compared to normal

cells, were identified from whole-exome hybridization-capture

sequencing (1303 average read-depth; Table S1 and Data S1

available online). Two hundred and ninety-six nonsynonymous

exonic single-nucleotide somatic variants were detected in

HCC4017 (Figure 1B), 152 of which are predicted to be delete-

rious to protein function (Data S1). Copy number variation was

extensive, as estimated by exon read-depth (Figures 1B and

S1A) and SNP array (Figure S1A), and correlated with relative

mRNA concentrations as determined by RNA sequencing

(RNA-seq) (Data S2; Figure S1A). Two whole-genome arrayed

siRNA libraries and a collection of �230,000 chemical com-

pounds were then screened to identify agents selectively toxic

to HCC4017 versus HBEC30KT (Data S2 and S3).

A Z score cutoff of �3 was used to identify candidate

HCC4017-selective siRNA sensitivities. This thresholding re-

sulted in predominantly nonoverlapping sets of candidates

from each siRNA library, presumably due to a combination of

false-negative and false-positive relationships. As previously
described (Jacob et al., 2011), the former is at least partially an

artifact of assigned selection thresholds. In direct support of

this, the empirical cumulative distribution of the Z scores from

siRNA pools in library 1, corresponding to ‘‘hits’’ from library 2,

indicated a significant enrichment of activity as compared to

the background distribution (Figure S1B). To defend against

false positives, individual oligos were tested for each of the

326 nonredundant hits from the union of the two libraries

together with a K-S statistic that predicts oligonucleotide seed

sequence-specific activity that is independent of target deple-

tion (Tables S2 and S3; Data S4). Eighty-five surviving siRNA

pools that were reproduced in HCC4017 and also innocuous

upon testing in HBEC30KT and two additional telomerase/

CDK4-immortalized nontumorigenic HBEC lines were then

examined across a panel of 21 additional NSCLC cell lines

(Data S5; Figures 1C and S1C).

A striking feature of the response of the cell-line panel to the

siRNA collection was the largely idiosyncratic activity pattern

(Figure 1C). Forty percent of the tested siRNAs had measurable

consequences on the viability of 10% or less of the cell-line

panel, and no single siRNA pool was identified with activity in

over 90% of the panel (Data S5; Figure 1C). Manual curation of

the biological processes served by the siRNA target genes

indicated an enrichment of signal transduction machinery and

transcription factors within the ‘‘private’’ target class and an

enrichment of housekeeping machines (cell-cycle control,

mRNA splicing, ribosomal proteins, and vesicle trafficking) within

the ‘‘public’’ target class (Data S6; Figure 1D). Among the private

targets, small-molecule inhibition of USP8 (Guédat and Colland,

2007) largely recapitulated the selectivity of siRNA-mediated

USP8 depletion, suggesting bona fide selectivity (Figure S1D).

We found significant correlation of the private target class of

HCC4017-sensitive siRNAs with low-target gene expression,

suggesting that the private nature of some targets may be at

least partially a consequence of expression bias (Figure S1E).

As a whole, siRNA targets were recovered evenly from all

genomic loci with the exception of homozygously deleted re-

gions where, as expected, none were located (Figures 1B and

S1F). However, a slightly larger number of hits (CACNA2D4,

POM121L12, TMEM106B, BZW2, RBBP9, HBA1, NUPL2,

SDK1, VSTM2A, C16orf54, and CYC1) were identified from

amplified and overexpressed loci as compared to the rest of

the genome (Figures S1F and S1G). A first-degree interaction

network was constructed to identify potential coherent relation-

ships among HCC4017-selective targets and the somatic muta-

tions detected within that cell line (Figure S1H). Though verifiable

and informative relationships were detected (Figures S1I and

S1J), direct connections to somatic variation appear insufficient

to account for the high frequency of private vulnerabilities iden-

tified within this cell line.

Context-Selective FLIP Addiction
We prioritized relationships found in at least 30% of the NSCLC

panel to afford an opportunity for codetection of genetic

response indicators. Depletion of CFLAR, which encodes the

catalytically inactive caspase-8 analog FLIP (Irmler et al., 1997),

was sufficient to markedly induce apoptosis in HCC4017 cells

and was toxic to multiple additional NSCLC lines as compared
Cell 155, 552–566, October 24, 2013 ª2013 Elsevier Inc. 553
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Figure 1. Public and Private Genetic Vulnerabilities

(A) Schematic of discovery platform for target/biomarker relationships.

(B) Genome-wide view of relative genomic DNA content, mRNA content, and RNAi toxicity in HCC4017 by two independent siRNA libraries (orange

indicates Z < �3).

(C) Penetrance of the HCC4017 RNAi hits in 22 NSCLC lines.

(D) Gene ontology (%) of the private (n = 30; response in 1–2 lines) and public (n = 48; response in > 2 lines) RNAi hits. Subgraphs from the PPI network (see

Figure S1H) are displayed in the boxes.

See also Figure S1, Tables S1, S2, and S3, and Data S1, S2, S4, S5, and S6.
to nontumorigenicbronchial epithelial cells (DataS5;FigureS1C).

Cell lines from the two tails of the toxicity profile, derived from

testing CFLAR depletion in 22 NSCLC lines, were selected for

interrogation of molecular features correlating with sensitivity to

CFLAR depletion (Figure 2A). From whole-genome mRNA

expression profiles, PYCARD, IFIT2, and IFIT3 were identified

as the top-ranked genes commonly upregulated in CFLAR-

dependent versus CFLAR-independent cell lines (Figure 2A,

bottom panel). This expression model was sufficient to predict

additional CFLAR-dependent cell lines from an unsupervised

hierarchical cluster of a panel of 34 lines outside the original dis-
554 Cell 155, 552–566, October 24, 2013 ª2013 Elsevier Inc.
covery set (Figure S2A). FLIP restrains execution of programmed

cell death pathways through direct suppression of caspase-8

(Tschopp et al., 1998). FLIP addiction, therefore, infers the pres-

ence of latent death signals that are released upon removal of

prosurvival restraints. This scenario is akin to the selective sensi-

tivity of cancer cells to chemical mimics of SMAC (second mito-

chondria-derived activator of caspase) in the presence of tumor

necrosis factor (TNF)-dependent apoptotic signaling, which is

the consequence of uncoupling inhibitor of apoptosis proteins

(IAPs) from otherwise active caspases (Tenev et al., 2011). How-

ever, only two of seven FLIP-dependent cell lines examinedwere
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Figure 2. Context-Selective FLIP Addiction

(A) Bar plots indicate toxicity of CFLAR depletion in the most sensitive (relative viability < 0.3) and most resistant NSCLC cell lines (> 0.9) and two nontumorigenic

lines. Heatmap indicates the gene-expression signature with the maximal bimodal distribution between groups. SMAC mimetic responsiveness is indicated as

determined by LD50 (Table S5). Error bars indicate ± standard deviation (SD, n = 3).

(B) The indicated siRNAs were tested for consequences on siCFLAR-dependent toxicity within each of the CFLAR-dependent cell lines. Error bars as in (A).

(C) The indicated siRNAs were tested for consequences on SMAC mimetic-induced toxicity within each of the SMAC mimetic-responsive cell lines. Error

bars as in (A).

(D) Pfam-A domain structure of NALP3 and maps of somatic mutations found.

(E) Empirical CDF plot of PYCARD expression from lung adenocarcinomas with or without highly deleterious mutations in NLRP3 (TCGA).

(F) Consequence of NLRP3 depletion on CFLAR dependency; **p < 0.01, *p < 0.05 by two-sided unpaired Student’s t test. siRNA-mediated NLRP3 gene

depletion is indicated as measured by quantitative PCR (qPCR) (right). Error bars as in (A).

(G) Tumor weights (g) following treatment with either control or CFLAR siRNAs. Error bars indicate ± standard error of the mean (SEM). *p = 0.026 by Wilcoxon

rank sum test.

See also Figure S2 and Table S4.
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additionally sensitive to SMAC-mimetic exposure, suggesting

that FLIP can restrain programmed cell-death signals indepen-

dently of SMAC-responsive IAPs (Figure 2A; Table S4). FLIP

dependence did not correlate with expression of FLIP, its pro-

death partner caspase-8, or SMAC-mimetic-resistant IAP2 (Pe-

tersen et al., 2010) (Figure S2B). However, sensitivity to FLIP

depletion was completely reversed upon caspase-8 codepletion

(Figure 2B). In contrast, SMAC-mimetic sensitivity was minimally

affected by caspase-8 depletion and completely reversed by

depletion of RIP1 kinase, an initiator of ripoptosome assembly

that is negatively regulated by IAPs (Feoktistova et al., 2011;

Tenev et al., 2011) (Figure 2C). Rescue of FLIP addiction by

depletion of individual core components of the ripoptosome, or

other canonical-death-pathway activators implicated in cancer,

was cell line selective (Figure 2B). This suggests multiple distinct

regulatory contexts within the NSCLC panel converge on FLIP-

dependent restraint of caspase-8-initiated cell death. By its

nature, the PYCARD, IFIT1, IFIT2 expression signature is serving

as a common indicator of these distinct contexts (Figure 2A).

IFIT1 and 2 are primary response genes induced by interferon

and may ordinarily mediate cytotoxic responses to pathogen

detection (Wathelet et al., 1988). PYCARD encodes ASC, a

component of the inflammasome whose expression is also

responsive to inflammasome activation signals (Masumoto

et al., 2006; Strowig et al., 2012). Of note, HCC4017 harbors a

somatic nonsense mutation in the inflammasome component

NLRP3 located in the linker region between the N-terminal

NACHT domain andC-terminal leucine-rich repeat (LRR) domain

(p.Y591*, Figure 2D). This alteration is predicted to encode a trun-

cated, constitutively active protein, due to loss of LRR-domain-

mediated repression of the NACHT domain (Hu et al., 2013).

Derepression of NACHT domains promotes promiscuous NALP

oligomerization and interaction with CARD domain proteins like

ASC (Strowig et al., 2012). Somatic exonic NLRP3 mutations

are present in 16% of lung adenocarcinomas (Figure S2C, 21/

129 in the LUAD TCGA samples) (Cerami et al., 2012), and

NLRP3 mutant adenocarcinomas were significantly enriched

for NF-kBactivity (FigureS2D), suggesting thatNLRP3mutations

in this context may be gain-of-function alterations. In support of

this, highly deleterious mutations in NLRP3 are significantly

associated with PYCARD overexpression within the TCGA

adenocarcinoma data set (Figure 2E), and there is an overall sig-

nificant positive correlation between PYCARD and NLRP3

expression (Figure S2E). Targeted sequencing revealed an anal-

ogous nonsensemutation in the FLIP-dependent cell line HCC15

(p.E401*) and a missense mutation in the FLIP-dependent cell

line HCC366 (p.S727Y) (Barretina et al., 2012). Importantly, like

caspase-8, codepletion of NLRP3 relieved sensitivity of NSCLC

lines to FLIP depletion, suggesting that NLRP3 activity helps

drive FLIP addiction (Figure 2F). Furthermore, NLRP3 mutation

status was significantly associated with sensitivity to FLIP deple-

tion (Figure S2F), and two additionalNLRP3mutantNSCLC lines,

identified fromoutside of the original tested panel, were also FLIP

dependent (Figure S2G).

To model conservation of FLIP addiction within a tumorigenic

context, we assessed the effects of CFLAR knockdown in a

mouse xenograft model. Two weeks following subcutaneous in-

jection of HCC15 cells, mice were randomly divided and treated
556 Cell 155, 552–566, October 24, 2013 ª2013 Elsevier Inc.
with siRNAs incorporated into DOPC nanoliposomes (intraperi-

toneal [i.p.] administration) according to the following treatment

groups (n = 10/group): control siRNA/DOPC and CFLAR

siRNA/DOPC for 4 weeks. In comparison to the control siRNA

group, tumors from theCFLAR siRNA group had a 87.2% reduc-

tion in tumor mass (p = 0.026; Figure 2G). These cumulative

observations indicate that FLIP may represent an intervention

opportunity in lung cancer linked to enrollment biomarkers that

include NLRP3 mutation status.

KRAS/LKB1 Mutation Status Specifies Coatomer 1
Addiction
Next, the mutation statuses for five recurrently mutated genes

(TP53, CDKN2A, KRAS, STK11 [LKB1], NRAS), collected by tar-

geted sequencing, were queried for association with each of 85

siRNA toxicity profiles (Table S1; Data S5). Of note, co-occur-

rence of KRAS/LKB1 mutations was significantly associated

with sensitivity to depletion of COPI subunits ARCN1, COPB1,

and COPA (Figure S3A). Approximately 6% of lung adenocarci-

noma patients have co-occurring KRAS/LKB1 mutations (Imie-

linski et al., 2012). COPI participates in retrograde transport, is

required for endosome maturation (Huotari and Helenius,

2011; Razi et al., 2009), and is a CDC42 effector required for

CDC42 transformation (Wu et al., 2000). From the intersection

of the first-degree interaction network of HCC4017-essential

genes (Figure S1H) and the commonality of responsiveness

with the larger NSCLC cell-line panel (Figures 1C and 1D), we

identified a total of five of seven components of the COPI.

NSCLC cell lines representing the two tails of the distribution

of sensitivity to COPI subunit depletion are shown in Figure 3A.

Inhibition of COPI expression in multiple telomerase-immortal-

ized bronchial epithelial cells was relatively innocuous and

comparable to the consequence of COPI depletion in the

COPI-resistant cancer lines (Figures 3A and 3B). Sensitivity to

COPI depletion was recapitulated in soft-agar colony formation

assays (Figure 3C). To assess the therapeutic utility of targeting

the COPI subunit ARCN1, we utilized an orthotopic lung adeno-

carcinoma model capable of spontaneous metastasis. One

week after surgical introduction of A549 cells into the left lung,

mice were randomly divided and treated with siRNAs incorpo-

rated into DOPC nanoliposomes (i.p. administration) according

to the following treatment groups (n = 10/group): control siRNA

or ARCN1 siRNA for 5 weeks. Treatment with ARCN1 siRNAs

led to substantial reductions in primary tumor size (92.9% by

volume, p = 0.0087; 51.3% by left lung mass, p = 0.0032) as

well as metastastic burden (90.4% reduction, p = 0.0015) (Fig-

ures 3D and S3B). This sensitivity correlated with hypophos-

phorylation of Rb and induction of cell-cycle arrest and

apoptosis in vitro (Figures S3C and S3D). HCC4017 was an

outlier with respect to LKB1 mutation status; however, this line

has a defective AMPK response and therefore is the functional

equivalent of COPI-addicted cell lines with compound lesions

in KRAS and LKB1 (Figure 3E). Importantly, co-occurrence of

KRAS and LKB1 mutations was a robust predictor of COPI

addiction when tested in NSCLC cell lines outside the original

discovery panel (Figure 3F), and LKB1 depletion was sufficient

to sensitize KRAS mutant/LKB1 wild-type cell lines to COPI

depletion (Figure 3G).
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Figure 3. KRASmut/LKB1mut Mutation Status Specifies Coatomer 1 Addiction

(A) RNAi toxicity profiles of themost sensitive andmost resistant NSCLC lines to siRNA pools targeting COPI are shown.Mutation statuses of theKRAS and LKB1

are indicated: M (mutant) or WT (wild-type).

(B) The indicated cell lines were transfected with the indicated siRNAs in 96-well plates and incubated for 48 hr followed by transfer to 24-well plates and in-

cubation for an additional 6 days. Crystal violet-stained wells are shown. The immunoblot indicates persistence of target depletion in HBEC3 at the 8 day

time point.

(C) The consequence of COPI depletion on HCC4017 colony formation in soft agar is shown. Error bars indicate ± SD, n = 3.

(D) Therapeutic effects of ARCN1 siRNA in an orthotopic lung adenocarcinoma model (A549). Mets: metastasis. Error bars indicate ± SEM. One-sided Wilcoxon

rank sum test p values were all < 0.01 (**).

(E) Consequence of AICAR on AMPK activation in two COPI-dependent (HCC4017 and H460) and two independent (H2009 and H441) KRAS mutant lines.

(F) Additional NSCLC lines from outside the test panel, with known KRASmut/LKB1mut status, were assayed for BrdU incorporation to detect consequences of

COPI depletion on proliferation as shown. Error bars as in (C).

(G) Consequence of LKB1/COPI codepletion in KRAS mutant cells. Immunoblots indicate target depletion. Error bars as in (C).

See also Figure S3.
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(C) Toxicity profile of the HCC4017 siRNA hits within the HBEC30KT progression series. The 17/85 siRNAs selectively toxic to the KRASmut/LKB1mut cell lines are

shown.

(D) Viability distributions of siRNA pools from 4C across 18 NSCLC lines with the indicated genotypes. Box plot whiskers extend to ± 1.5 interquartile range (IQR).

Two-sided K-S test p values for all pair comparisons against the double mutants are less than 10�10 (**).

(E) The indicated cells were stained with crystal violet as in Figure 3B. Immunoblot indicates persistence of target depletion in resistant cells at the 8 day

time point.

See also Figure S4.
Oncogenic KRAS together with LKB1 Loss Is Sufficient
to Induce COPI Addiction
To evaluate the sufficiency of compound KRAS and LKB1

perturbation for induction of COPI addiction, we engineered a

series of HBEC30KT derivatives with stepwise stable suppres-

sion of p53, stable expression of KRASG12V, and stable suppres-

sion of LKB1 (Figures 4A, S4A, and S4B). Among these, only the

final derivative was tumorigenic in immune-compromised mice,

and tumors presented with mixed adeno/squamous characteris-

tics (Figure 4B). This mixed morphology is strikingly similar to

that observed in spontaneous mouse lung tumors that arise as

a consequence of KrasG12V expression in an Lkb1 null back-

ground (Ji et al., 2007). A screen of 85 siRNA pools correspond-

ing to the HCC4017-essential genes, within the HBEC30KT

isogenic progression series, revealed acquired vulnerability to
558 Cell 155, 552–566, October 24, 2013 ª2013 Elsevier Inc.
17 targets within the KRASmut/LKB1mut background (Figure 4C).

Sensitivity to depletion of these same 17 genes was significantly

enriched in KRASmut/LKB1mut NSCLC cell lines as compared to

that in other NSCLC lines tested (Figure 4D). COPI subunits were

present in this context, indicating that KRASmut/LKB1mut status

is sufficient to specify COPI addiction (Figure 4E).

The KRASmut/LKB1mut NSCLC Subtype Mirrors the
Mesenchymal (Claudin-Low) Subtype of Triple-Negative
Breast Cancer
Gene set enrichment analysis (GSEA) of whole-genome tran-

script profiles from COPI-sensitive versus COPI-resistant cell

lines returned EMT, NF-kB, and tryptophan metabolism as

significantly associated with KRASmut/LKB1mut status (Table

S5; Figure S5A; nominal p < 0.01), though none of these



signatures cleanly segregated the two classes. An siCOPI

toxicity-associated gene-expression signature, with bimodal

distribution, returned a more focused separation centered on

chemokines and cytokines (Figure S5B, FDR < 0.001) reminis-

cent of the oncogenic RAS-induced secretory senescence

phenotype (Coppé et al., 2008). Remarkably, 30% of the top

100 most differentially expressed genes, as defined by signal-

to-noise ratio, intersected the molecular classification signature

for the mesenchymal, or ‘‘claudin-low,’’ subtype of triple-nega-

tive breast cancer (Prat et al., 2010) (Figure 5A, hypergeometric

p < 6.7 3 10�16). Consistent with this, we found that three

‘‘claudin-low’’ breast cancer cell lines (Prat et al., 2010) were

sensitive to COPI depletion as compared to cell lines corre-

sponding to the lumenal A or basal A subtypes (Figure 5B). The

mesenchymal subtype of triple-negative breast cancer is an

aggressive metastatic disease enriched with self-renewing

tumor-initiating cells (Prat et al., 2010). Dichotomization of 272

molecularly and clinically annotated lung tumor samples, using

the expression signature defined by COPI addiction, revealed

significantly reduced overall survival and disease-free survival

for patients harboring signature-positive tumors (Figures 5C

and S5C). Importantly, this relationship was reproducible with

an independent patient cohort and data set (Figure S5D).

To parse molecular correlates that may provoke COPI addic-

tion, we employed a focused suppressor screen that queried

genes and pathways enriched in the COPI-sensitive cell lines

(Figures S5E and S5F; see Experimental Procedures for ratio-

nale). The most significant interaction recovered was inter-

leukin-6 (IL-6) pathway activation (Figure S5E). IL-6 secretion

was significantly elevated in the COPI-sensitive lung and breast

cancer cell lines, including the HBEC30KT progression series

(Figures S5G, S5H, and S5I). Oncogenic RAS expression was

sufficient to induce IL-6 production; however, co-occurring

loss of LKB1 signaling enhanced this phenotype in human

epithelial cells and in mouse tumors (Figures S5I, S5J, and

S5K). Inhibition of IL-6 signaling by IL-6 depletion, IL-6R deple-

tion, or Let-7 expression significantly suppressed COPI addic-

tion (Figures 5D, 5E, 5F, and S5L).

IL-6 has been characterized as a RAS-responsive cytokine

that promotes tumorigenesis in a paracrine fashion by provoking

stromal remodeling of the tumormicroenvironment (Coppé et al.,

2008). Consistent with this, we found that IL-6 secretion was

KRAS dependent in COPI-addicted cell lines (Figure 5G).

Furthermore, the tryptophan metabolism expression signature

associated with COPI-addicted (KRASmut/LKB1mut) cell lines

(Figure S5A) implicated aryl hydrocarbon receptor (AhR)

signaling as amechanism thatmay contribute to IL-6 production.

AhR induces IL-6 production in metastatic glioma, and both

kynurenine and kynurenic acid, produced during tryptophan

synthesis, serve as endogenous AhR ligands (Opitz et al.,

2011). Consistent with this, depletion of AhR or the AhR nuclear

translocator (ARNTL) significantly reduced IL-6 secretion (Fig-

ure 5H). Taken together, these observations suggest that selec-

tion for IL-6 secretion within the tumor microenvironment has

collateral consequences on tumor cell biology that provoke

addiction to COPI function. COPI activity thus becomes a collat-

eral vulnerability that, if targetable, may represent a precision

intervention opportunity.
Lysosomal Maturation Is Required to Support
Mitochondrial Oxidative Phosphorylation and Survival of
KRASmut/LKB1mut NSCLC Cells In Vitro and In Vivo
LKB1/AMPK-dependent repression of acetyl-CoA carboxylases

(ACC1/2) can deflect catastrophic accumulation of oncogenic

RAS-induced reactive oxygen species in cultured cells. This is

thought to occur by limiting consumption of NADPH by ACC

for fatty-acid synthesis, which in turn increases the NADPH/

NADP+ ratio needed to maintain the cellular redox state (Jeon

et al., 2012; Son et al., 2013). This presents a compelling mech-

anistic scenario whereby KRASmut/LKB1mut cells are selectively

sensitized to perturbations that impair reduction of reactive oxy-

gen. In contradiction to this expectation, we found that gluta-

thione or N-acetyl cysteine failed to rescue COPI addiction and

were instead individually toxic (Figure S5F). Furthermore, the

free radical scavenger NDGA displayed synthetic toxicity to

KRASmut/LKB1mut expression in the HBEC30KT background,

consistent with the reported prosurvival role of reactive oxygen

within the context of oncogenic RAS expression (Figure S6A)

(Irani et al., 1997).

To help uncover the mechanistic basis of COPI addiction, we

assembled a panel of chemical probes that (1) intersect biolog-

ical processes coupled to COPI function, (2) inhibit signaling

pathways dysregulated in the KRASmut/LKB1mut background,

or (3) engage cell-stress responses predicted to be induced by

COPI depletion. The dose-dependent toxicity response to these

compounds was then measured across 20 cell lines. Within this

panel, the vacuolar ATPase inhibitor bafilomycin A1 (bafA) was

discovered to have significant selective toxicity against the

KRASmut/LKB1mut cell lines (Figure 6A) independent of ROS

(Figures S6B and S6C). Like COPI depletion, exposure to

50 nM bafA for 48 hr induced CDKI accumulation, Rb hypophos-

phorylation, and caspase activation (Figure S6D). This suggests

that KRASmut/LKB1mut cells may be selectively dependent upon

lysosomal maturation, which is itself dependent upon COPI

complex activity (Huotari and Helenius, 2011; Razi et al., 2009).

A comparison of steady-state organelle accumulation revealed

dramatic enrichment of acidic lysosomes in KRASmut/LKB1mut

cells as compared to COPI-insensitive cells (Figure S6E).

Furthermore, gain of COPI dependency through LKB1 depletion

in a KRAS mutant NSCLC line, H2009, was coupled to the accu-

mulation of the lysosomal membrane protein LAMP2 (Fig-

ure S6F). The elevated lysosomal activity in KRASmut/LKB1mut

cells was reversed upon COPI subunit depletion independently

of detectable morphological perturbation of the Golgi (Figures

6B and S6G) and by bafA concentrations below those required

to inhibit lysosomal acidification of non-KRASmut/LKB1mut

NSCLC cells (Figure S6H). A gene-expression feature (top-

ranked GO term by GSEA) associated with COPI dependency

and KRASmut/LKB1mut status was the enrichment of energy deri-

vation by oxidation (Table S5; Figure S6I). Related to this, we

noted that COPI depletion, exposure to bafA, or exposure to a

structurally distinct vATPase inhibitor, saliphenylhalamide A

(saliPhe) (Lebreton et al., 2008), resulted in the concomitant

appearance of dysmorphic mitochondria in KRASmut/LKB1mut

cells (Figures 6B and 6C) but not in bafA-resistant cells (Fig-

ure S6J). This altered morphology corresponded to reduced ox-

ygen-consumption rates together with increased extracellular
Cell 155, 552–566, October 24, 2013 ª2013 Elsevier Inc. 559
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Figure 5. The KRASmut/LKB1mut NSCLC Subtype Mirrors the Mesenchymal (Claudin-Low) Subtype of Triple-Negative Breast Cancer

(A) Top 100 differentially regulated genes as identified by signal-to-noise ratio between COPI-dependent and -independent cancer lines. Claudin-low signature

genes are indicated in red for upregulated (10/437) and blue (19/370) for downregulated genes, hypergeometric p < 6.7 3 10�16.

(B) Selective consequence of ARCN1 depletion on the viability of breast cancer cell lines. Error bars indicate ± SD, n = 3.

(C) Patient cohorts with the COPI-addicted gene-expression signature (Cluster I) show poor prognosis. Kaplan-Meier plots are shown for overall (left) and cancer-

free survival (right) of the patient populations dichotomized as described in Figure S5C. p values are log-rank test.

(legend continued on next page)
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acidification rates, suggesting impaired oxidative phosphoryla-

tion and concomitant induction of glycolysis (Figures 6D and

S6K). However, this mitochondrial dysfunction was not coupled

to loss of mitochondrial membrane potential (Figure S6L).

Rather, bafA and saliPhe inhibited incorporation of heavy car-

bons from 13C-labeled glucose or glutamine into citrate, consis-

tent with inhibition of the mitochondrial TCA cycle (Figure 6E).

Perhaps through a futile adaptive response, loss of TCA-cycle

activity was paralleled by increased glucose and glutamine con-

sumption concomitant with conversion to secreted lactate and

glutamate (Figures S6M and S6N). This phenotype was also

observed in response to COPI depletion (Figure S6O). Finally,

we found that direct inhibition of vATPase assembly by

ATP6V1B2 depletion was sufficient to prevent lysosomal acidifi-

cation (Figure 6F) and inhibit mitochondrial respiration (Fig-

ure 6G). These observations indicate that lysosomal maturation

is selectively required to support mitochondrial function in

KRASmut/LKB1mut cells. The coupling of this vulnerability to a

genetic background that promotes energetic stress led us to

consider the possibility that KRASmut/LKB1mut cells are selec-

tively dependent upon hydrolysis of lysosomal macromolecules

for supply of mitochondrial TCA-cycle substrates. We found that

delivery of cell-permeable pyruvate (methyl pyruvate, MP) or

a-ketoglutarate (dimethyl-2-oxoglutarate, MOG), two major car-

bon sources fueling the mitochondrial TCA cycle, rescued cell

viability and mitochondrial respiration in the presence of bafA

(Figures 6H and S6P). Importantly, this rescue occurred without

restoration of lysosomal acidification (Figure S6Q), consistent

with the hypothesis that lysosomes support mitochondrial func-

tion through supply of an obligate nutrient source in KRASmut/

LKB1mut cells. Perdurant acetyl-CoA carboxylase activity in the

KRASmut/LKB1mut background is likely a mechanism that helps

drive lysosomal addiction, as ACC1 depletion rescued cell

viability in the presence of bafA (Figure 6I). We suspect that

ACC1 inactivation is facilitating productive fatty-acid beta-

oxidation as an alternate energy source due to depletion of

malonyl-coA, an ACC1 product that inhibitsmitochondrial import

of long-chain fatty acids (Abu-Elheiga et al., 2001). These obser-

vations present a compelling argument for consideration of lyso-

somes as a metabolic bottleneck by which to target energy

homeostasis in KRASmut/LKB1mut lung cancer cells. To model

this in vivo, mice bearing established HCC4017 subcutaneous

xenografts were exposed to saliPhe (12.5 mg/kg/day, n = 5) or

vehicle (n = 4) using osmotic pumps implanted i.p. The pumps

eluted drugs for �17 days, at which time tumors in the vehicle-

treated group were 174% larger, whereas tumors in the

saliPhe-treated animals were 40% of the starting volume. The

effect of saliPhe was durable as tumors were allowed to grow

for an additional 35 days in the absence of further drug exposure,

and tumors in saliPhe-treated animals were 4-fold smaller than

tumors in vehicle-treated animals (0.116 ± 0.27 g versus 0.46 ±

0.13 g; p < 0.05) (Figure 6J).
(D–F) Consequences of codepletion of IL6 (D) and IL6R (E) or exposure to Let-7 f

bars as in (B).

(G and H) IL-6 secretion was measured by ELISA post-transfection of the indica

**p < 0.01, *p < 0.05, two-sided unpaired Student’s t test; error bars as in (B).

See also Figure S5 and Table S5.
A Gene-Expression Model Predicts Sensitivity to a
Synthetic Compound, Indolotriazine
To collect additional chemical probes for detection of subtype-

selective vulnerabilities inNSCLC,we examined 352 compounds

(out of 230,000 screened) that were selectively toxic to HCC4017

cells versusHBEC30KTat 2.5 mM(Figure S7A;DataS3-1 andS3-

2). Two of the 352 compounds displayed bimodal LD50s across

12 NSCLC lines (>3-fold separation of ‘‘sensitive’’ versus ‘‘resis-

tant’’ lines). Among these, an indolotriazine, SW044248, was

selectively toxic in 18/74 NSCLC lines and innocuous up to the

highest testable dose in four different telomerase-immortalized

bronchial epithelial cell lines (Figure 7A; Data S3-3). To inform

the mode of action, resistant HCC4017 subclones were isolated

following long-term exposure to the compound. RNA-seq identi-

fied differential gene-expression responses to SW044248, in

parental versus resistant HCC4017 variants, corresponding to

a strong and selective ER stress-response signature (Figure 7B;

Data S7) (Hetz, 2012). Consistent with this, CHOP and IRE1a

were robustly induced within 24 hr of exposure to SW044248

(Figure 7C). This response was uniform among the SW044248-

sensitive NSCLC lines but absent in resistant lines (Figure 7D).

The latter is most likely a consequence of selective vulnerability

rather than selective exposure as equivalent SW044248 accu-

mulation and stability were observed in both sensitive and resis-

tant cell lines as detected by gas chromatography-mass spec-

trometry (GC-MS) (Figures S7B and S7C).

To identify features that may predispose to the indolotriazine

sensitivity, we searched for gene-expression networks that corre-

lated with the compound responsiveness within the cell-line

panel. Two ER stress-related networks were ranked among the

top discoverable networks by edge flux (EF) and process flux

(PF) values (Figure S7D) (Komurov et al., 2012). In addition, an

elastic net regression model using basal gene-expression

data identified seven genes (C8G, PSG7, ACOT6, DEPDC5,

MMP16, UBR1, and CYP4F22) as robust indicators of indolotria-

zine responsiveness (Figures 7E and S7E). Feature performance

was filtered by a 2003 bootstrapping protocol, fromwhich all fea-

tures were detected at frequencies > 50%. The sum of the

weighted features in this model were used to predict SW044248

sensitivity from a panel of 38 NSCLC lines outside of the training

set. HCC2429 and H1770 represented the two tails (sensitive

and resistant) of the distribution of predicted IC50s, which were

empirically validated with eight-point dose-response curves (Fig-

ure 7F). Twenty-three of 231 lung adenocarcinomas were within

the left-hand tail of the frequency distribution of elastic net scores,

suggesting that �10% of tumors contain expression features

consistent with SW044248 sensitivity (Figure S7F).

DISCUSSION

Widespread evidence indicates that acquired vulnerabilities,

arising in the course of tumor evolution, represent key
amily of miRNA mimics (F) on siRNA toxicity of indicated COPI subunits. Error

ted siRNAs in the indicated cell lines. Values were normalized to cell number.
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therapeutic intervention opportunities. Starting from within the

context of a single lung adenocarcinoma patient, we identified

genetic and chemical vulnerabilities selectively associated with

tumorigenicity. However, the incidence of these vulnerabilities,

within a lineage-restricted panel of NSCLC-derived cell lines,

was highly idiosyncratic. By focusing on perturbations with sig-

nificant activity in a large cell-line panel, we could begin to detect

intervention targets linked to molecular subtypes that specify

target sensitivity and have reasonable frequencies of represen-

tation within the lung cancer patient population.

A robust, but previously unrecognized, genotype/phenotype

relationship uncovered by this approach is the selective addic-

tion of NLRP3 mutant cells to FLIP. FLIP is widely recognized

as a candidate oncology target opportunity due to its role in

deflection of caspase-8-dependent programmed cell death

(Safa and Pollok, 2011), but distinct genetic settings that specify

FLIP dependence had not been elaborated. NLRP3 triggers

inflammasome assembly and consequent activation of NF-kB

and cytokine production upon detection of microbial infection

or cellular injury (Bryant and Fitzgerald, 2009; Manji et al.,

2002). It is constitutively expressed in epithelial cells but, in the

absence of ‘‘danger signals,’’ is thought to exist in an autoinhi-

bited state (Hu et al., 2013). Of note, mutations in NLRP3 result

in persistent cytokine production and are the causal lesions for

CAPS, a group of congenital autoinflammatory diseases (Hoff-

man et al., 2001). In light of NLRP3’s role in innate immune

signaling, it is reasonable to suspect that the frequent NLRP3

alterations found in lung tumors could contribute to tumor

growth by inflammatory signal-mediated recruitment of stromal

cell populations. In this scenario, positive selection for NLRP3

variants that stimulate production of a protumorigenic niche cre-

ates a collateral dependence on FLIP inhibition of apoptosis. The

mechanistic coupling may be direct given recent observations

that the NLRP3 inflammasome can bind and activate caspase-8

(Gringhuis et al., 2012; Pierini et al., 2012; Sagulenko et al., 2013).

Direct chemical inhibition of FLIP is not currently available; how-

ever, a variety of small molecules that inhibit FLIP expression or
Figure 6. Lysosomal Maturation Is Required to Support Mitochondrial

Cells In Vitro and In Vivo

(A) Compound mimic screen. The indicated compounds were tested over 11 dose

versus HBEC30KT and others (n = 14). Area under the curve (AUC) was estimated

were performed to discriminate compounds with selective activity. K-S test p va

(B) HCC44 cells, transfected with the indicated siRNAs were stained with the

Lysotracker negative versus 3.0% of siNC cells; p value < 2.2 x 10�16; Fisher’s e

(C) Confocal imaging of mitochondrial morphology after 42 hr exposure to vATPas

had dysmorphic mitochondria versus 2.7% with DMSO; p value < 2.2 x 10�16 fo

(D) Oxygen consumption rates (OCR) of HCC44 cells exposed to the indicated c

(E) Mass isotopomer analysis of citrate in HCC44 cells cultured with D[U-13C]glu

unlabeled glucose (right for each cell line) after exposure to 10 nM BafA or 1 mM

(F) Live-cell images obtained as in (B) and (C).

(G) As in (D), except that HCC44 cells were transfected with the indicated siRNAs

mitochondria versus 0% of siNC cells; p value < 2.2 x 10�16; Fisher’s exact test;

(H) Caspase-3 and -7 activity was measured after exposure of HCC4017 to DMS

oxoglutarate (MOG, 5 mM), or water (CTL). Error bars as in (B).

(I) Indicated siRNAs were tested for consequences on bafA (10 nM) dependent to

Error bars as in (B).

(J) 2.5 3 106 HCC4017 cells were injected subcutaneously into NOD/SCID mice.

with saliPhe or saline as indicated.

Error bars indicate ± SEM. See also Figure S6 and Table S5.
enhance FLIP degradation have been reported (Safa and Pollok,

2011; Zhao et al., 2011) and may represent a path forward for

pharmacological targeting of NLRP3 mutant lung cancers.

Detection of oncogenic KRAS-linked vulnerabilities is a high-

priority, but often confounding, pursuit in multiple neoplastic

settings because of the frequency of representation of this onco-

gene in human tumors.Within the context of NSCLC cells, loss of

LKB1 activity together with expression of oncogenic KRAS is

required and sufficient to drive COPI addiction. This genetic

interaction reinforces the notion that all KRAS cancers are not

equivalent, and robust mapping of intervention opportunities

must account for distinct collaborative alterations that result in

distinct collateral vulnerabilities. COPI participates in a variety

of dynamic membrane-trafficking events and is well studied for

its role in support of retrograde transport (Lee et al., 2004).

However, we found that the mechanistic basis of COPI addiction

in the KRASmut/LKB1mut background is the obligate contribution

of this protein complex to lysosome acidification. Chemical or

genetic perturbation of lysosome maturation in KRASmut/

LKB1mut cells resulted in mitochondrial malfunction and cell

death. Mitochondrial dependence on lysosomal maturation

was bypassed by supply of cell-permeable TCA-cycle sub-

strates, including pyruvate and a-ketoglutarate. This, together

with the observation thatKRASmut/LKB1mut cells displayed signs

of elevated lysosomal flux, strongly suggests that this molecular

subtype requires consumption and hydrolysis of extracellular

macromolecules for minimal supply of cellular metabolic inter-

mediates. Recognition of lysosomal function as a context-

dependent metabolic bottleneck is reinforced by three additional

recent observations. First, the coupling of lysosome acidification

capacity to mitochondrial health has been defined as a key

determinant of cellular aging in yeast (Hughes and Gottschling,

2012). Second, pancreas cancer cells mount an adaptive

response to glutamine starvation by induction ofmacropinocyto-

sis and consequent consumption of extracellular macromole-

cules as an amino-acid supply route (Commisso et al., 2013).

Third, dysregulation of mTORC1 drives addiction to
Oxidative Phosphorylation and Survival of KRASmut/LKB1mut NSCLC

s (23 serial dilution) for toxicity in HCC4017 and KRASmut/LKB1mut lines (n = 6)

by the sum of % viability over testing doses. One-sided two-sample K-S tests

lues in negative log scale were used to generate the plot.

indicated dyes and antibodies. Seventy-one percent of siARCN1 cells were

xact test.

e inhibitors. Ninety-two percent of bafA-treated and 85% saliPhe-treated cells

r both; Fisher’s exact test.

ompounds. Error bars indicate ± SD, n = 3.

cose and unlabeled glutamine (left for each cell line) or L[U-13C]glutamine and

saliPhe for 16 hr. **p < 0.01, *p < 0.05, two-sided t test, error bars as in (B).

prior to the assay. Ninety-three percent of siATP6V1B2 cells had dysmorphic

error bars as in (B).

O or bafA (5 nM) for 48 hr together with methyl pyruvate (8 mM), dimethyl-2-

xicity in HCC44 and A549. Cells were exposed to bafA 48 hr post-transfection.

Tumor volume versus days post-tumor injection is displayed for mice treated
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Figure 7. A Gene-Expression Model Predicts Sensitivity to an Indolotriazine

(A) AC50 for the HCC4017-selective synthetic indolotriazine derivative against 74 additional NSCLC cell lines and immortalized HBECs.

(B) Top 10 differential gene-expression responses to SW044248 (2 mM, 6 hr) in HCC4017 parental (P) and resistant clones (RS, RW) as detected by RNA-seq

(ANOVA, p < 0.005, Data S7).

(C) Relative accumulation of CHOP, IRE1a, and BiP proteins upon exposure of HCC4017 for the indicated times.

(D) As in (C) except with a 24 hr exposure with indicated cell lines.

(E) Predictive basal gene-expression features for SW044248 sensitivity in 48 NSCLCs by elastic net regression modeling. Compound response (AC50) is indi-

cated in the top row. Predictive gene-expression features (normalized by samplemedian) across 48 NSCLCs are shown. Bar plot on the left indicates the average

weight for the corresponding feature as determined from a 2003 bootstrapping analysis. Frequency of feature occurrence is shown in parenthesis.

(F) Dose-response curves for a predicted sensitive cell line, HCC2429, and a predicted resistant cell line, H1770, based on the expression signature-derived

scoring function. Error bars indicate ± SD, n = 3.

See also Figure S7 and Data S3-1, S3-2, S3-3, and S7.
consumption of exogenous desaturated lipids to support endo-

membrane expansion (Young et al., 2013). The incidence of co-

occurring KRAS and LKB1 mutations in NSCLC is estimated to

be 6% of all lung adenocarcinomas, which corresponds to

5,000 new cancer patients per year in the USA alone. Establish-
564 Cell 155, 552–566, October 24, 2013 ª2013 Elsevier Inc.
ing KRASmut/LKB1mut mutation status as a robust indicator of

COPI addiction presents the opportunity to exploit clinical labo-

ratory-based detection of somatic alterations in these genes as

an enrollment biomarker to stratify patient populations predicted

to respond to chemical perturbation of lysosome maturation.



Screening of a large diversity-based collection of synthetic

small molecules revealed a chemical liability in cancer cell lines

that share distinct gene-expression features. Although the target

of this compound remains to be defined, the mode-of-action

appears to be through selective mobilization of the unfolded pro-

tein response and consequent cell death. Of interest, a relatively

large but highly selective cohort is responsive to the indolotria-

zine SW044248 (24% of cell lines tested). Thus, SW044248

can be described as a chemical discriminator of a distinct

NSCLC subtype. If indolotriazine sensitivity is preserved in the

in vivo setting, this chemical discriminator becomes a lead for

therapeutically relevant pharmacological characterization of

discrete vulnerabilities within this subtype.

In summary, cell-based exploration of lung cancer intervention

opportunities can be a rich source of target discovery given suf-

ficient commonality of sensitivity and resolution of molecular

correlates. Starting with disease-cell-selective vulnerabilities

present in isolates from a single lung cancer patient, two distinct

molecular targets were identified, linked to two distinct genetic

lesions, which together are represented in over 25% of lung

adenocarcinoma patients. In addition, a chemically defined

vulnerability was identified that is associated with an expres-

sion-based biomarker estimated to occur in 10% of lung cancer

patients.

EXPERIMENTAL PROCEDURES

Materials, procedures, and computational analysis including deep sequenc-

ing, high-throughput screening, and associated data processing and analysis;

mouse xenograft studies, mitochondrial respiratory potential, metabolic flux,

pharmacokinetic analysis, and elastic net regression modeling; and other

statistical processing protocols are detailed in the Extended Experimental

Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, seven

figures, five tables, and seven data sets and can be found with this article

online at http://dx.doi.org/10.1016/j.cell.2013.09.041.
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