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Abstract

We show that a polarised manifold with a constant scalar curvature Kähler metric and discrete automor-
phisms is K-stable. This refines the K-semistability proved by S.K. Donaldson.
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1. Introduction

Let (X,L) be a polarised manifold. One of the most striking realisations in Kähler geometry
over the past few years is that if one can find a constant scalar curvature Kähler (cscK) metric g

on X whose (1,1)-form ωg belongs to the cohomology class c1(L) then (X,L) is semistable, in
a number of senses. The seminal references are Yau [14], Tian [18], Donaldson [4,6].

In this paper we are concerned with Donaldson’s algebraic K-stability [6]. This notion was
inspired by Tian’s K-stability for Fano manifolds [18] (we may refer to the latter as analytic
K-stability). It should play a role similar to Mumford–Takemoto slope stability for bundles. The
necessary general theory is recalled in Section 2.

Asymptotic Chow stability (which implies K-semistability, see e.g. [13] Theorem 3.9) for a
cscK polarised manifold was first proved by Donaldson [5] in the absence of continuous auto-
morphisms. Important work in this connection was also done by Mabuchi, see e.g. [10]. From
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the analytic point of view the fundamental result is the lower bound on the K-energy proved by
Chen–Tian [3]. In the case of Kähler–Einstein manifolds with no nonzero holomorphic vector
fields Tian [18] proved analytic K-stability. Much progress on the relationship between analytic
K-stability (i.e. asymptotics of the K-energy) and algebraic K-stability (i.e. the Donaldson–Futaki
invariant) has been made by Paul–Tian, e.g. [11], Phong–Sturm–Ross [12] and others.

A key feature of this paper is that we are able to avoid the hard analysis of the K-energy and
rely instead on a perturbation argument and a well-known theorem of Arezzo–Pacard.

One of the neatest results in the algebraic context seems to be Donaldson’s lower bound on
the Calabi functional, which we now recall.

For a Kähler form ω let S(ω) denote the scalar curvature, Ŝ its average (a topological quan-
tity). Denote by F the Donaldson–Futaki invariant of a test configuration (Definitions 2.1, 2.2).
The precise definition of the norm ‖X ‖ appearing below will not be important for us.

Theorem 1.1. (Donaldson [7].) For a polarised manifold (X,L)

inf
ω∈c1(L)

∫
X

(
S(ω) − Ŝ

)2
ωn � − supX F(X )

‖X ‖ ,

where the supremum is taken with respect to all test configurations (X , L) for (X,L).
Thus, if c1(L) admits a cscK representative, (X,L) is K-semistable (Definition 2.5).

There is a strong analogy here with Hermite–Einstein metrics on holomorphic vector bundles.
By the celebrated results of Donaldson and Uhlenbeck–Yau these are known to exist if and only
if the bundle is slope polystable, namely a semistable direct sum of slope stable vector bundles.

In particular a simple vector bundle endowed with a Hermite–Einstein metric is slope stable.
In this paper we will prove the corresponding result for polarised manifolds. Let us denote by
Aut(X,L) the group of complex automorphisms of X which preserve the polarisation.

Theorem 1.2. If c1(L) contains a cscK metric and Aut(X,L) is discrete then (X,L) is K-stable.

Remark 1.3. Note that while one can construct slope semistable bundles which are simple but
not stable, there is at present no known example of a K-semistable polarised variety (X,L) with
Aut(X,L) discrete which is not K-stable.

Theorem 1.2 proves part of a more general, well-known conjecture.

Conjecture 1.4. (Donaldson [6, p. 294].) If c1(L) contains a cscK metric then (X,L) is K-
polystable (Definition 2.7).

Remark 1.5. While we follow the definition of algebraic K-semistability given by Donaldson, we
emphasise that our definition of K-stability differs from the original one of Donaldson in a way
which is by now quite standard in the literature (see e.g. [13]). Namely we call K-polystable what
Donaldson would simply call stable, and reserve the word K-stable for K-polystable polarised



J. Stoppa / Advances in Mathematics 221 (2009) 1397–1408 1399
manifolds with no nontrivial holomorphic vector fields lifting to the polarisation (this is closer to
geometric invariant theory, but complicates the terminology a bit).

Thus our result confirms this expectation when the group Aut(X,L) is discrete. From a
differential-geometric point of view this means that X has no nontrivial Hamiltonian holomor-
phic vector fields, i.e. holomorphic vector fields that vanish somewhere.

Conjecture 1.4 together with its converse form the Yau–Tian–Donaldson conjecture, some-
times called the Hitchin–Kobayashi correspondence for manifolds. There are no general results
about the converse of Conjecture 1.4, although recently Donaldson gave a proof in the case of
toric surfaces [8].

For the rest of this paper we will assume dim(X) � 2. K-stability for Riemann surfaces is
completely understood thanks to the work of Ross and Thomas [13, Section 6]. In particular
Conjecture 1.4 is known for Riemann surfaces.

Our proof of Theorem 1.2 rests on the general principle that one should be able to perturb
a semistable object (in the sense of geometric invariant theory) to make it unstable – although
this necessarily involves perturbing the problem too (e.g. the linearisation), since the locus of
semistable points for an action on a fixed variety is open. Conversely, in the absence of continuous
automorphisms, the cscK property is open – at least in the sense of small deformations – so cscK
should imply stability. This perturbation strategy for proving 1.4 was first pointed out to the
author by Donaldson and G. Székelyhidi. Of course we need to make this rigorous; in particular
testing small deformations is not enough to prove K-stability.

Thus suppose that (X,L) is strictly K-semistable (Definition 2.8). We will find a natural way
to construct from this a family of K-unstable small perturbations (Xε,Lε) for small ε > 0. Our
choice for Xε is only the blowup X̂ = Blq X at a special point q , with exceptional divisor E.
Only the polarisation changes, and quite naturally Lε = π∗L − εO(E). This would involve tak-
ing ε ∈ Q+ and working with Q-divisors, but in fact we take tensor powers and work with X̂

polarised by Lγ = π∗Lγ − O(E) for integer γ � 1. K-(semi, poly, in)stability is unaffected (by
Definition 2.2).

Proposition 1.6. Let (X,L) be a strictly K-semistable polarised manifold. Then there exists a
point q ∈ X such that the polarised blowup

(
Blq X,π∗Lγ ⊗ O(−E)

)
is K-unstable for γ � 1.

Assume now that a strictly semistable (X,L) also admits a cscK metric ω ∈ c1(L). If
Aut(X,L) is discrete the blowup perturbation problem for ω is unobstructed by a theorem of
Arezzo and Pacard [1], so we would get cscK metrics in c1(π

∗Lγ ⊗ O(−E)) for γ � 1, a con-
tradiction. To sum up the main ingredients for our proof (besides Theorem 1.1) are:

1. A well-known embedding result for test configurations (Proposition 2.9), together with the
algebro-geometric estimate Proposition 3.3;

2. A blowup formula for the Donaldson–Futaki invariant proved by the author [15, Theo-
rem 1.3];

3. A special case of the results of Arezzo and Pacard on blowing up cscK metrics [1].
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2. Some general theory

Let n denote the complex dimension of X.

Definition 2.1 (Test configuration). A test configuration with exponent r for a polarised manifold
(X,L) is a polarised flat family (X , L) → C with (X1, L1) ∼= (X,Lr) endowed with a linearised
C∗-action which covers the natural action of C∗ on C.

Given a test configuration (X , L) for (X,L) denote by Ak the matrix representation of the
induced C∗-action on H 0(X0, Lk

0). By (equivariant) Hirzebruch–Riemann–Roch we can find
expansions

h0(X0, Lk
0

) = a0k
n + a1k

n−1 + O
(
kn−2), (2.1)

tr(Ak) = b0k
n+1 + b1k

n + O
(
kn−1). (2.2)

Definition 2.2 (Donaldson–Futaki invariant). This is the rational number

F(X ) = a−2
0 (b0a1 − a0b1) (2.3)

which is independent of the choice of a lifting of the action to L0.
Equivalently F(X ) is the coefficient F1 in the expansion

tr(Ak)

kh0(X0, Lk
0)

= F0 − F1
1

k
+ O

(
k−2).

Note moreover that F is invariant under taking tensor powers, i.e.

F(X , L) = F
(

X , Lr
)
.

And of course c1(L) contains a cscK metric if and only if all its positive multiples do. Therefore
for the rest of this paper we will assume without loss of generality that L is very ample and the
exponent of the test configuration is 1.

Remark 2.3 (Coverings). Given a test configuration (X , L) we can construct a new one by
pulling X and L back under the d-fold ramified covering of C given by z 	→ zd . This changes
Ak to d · Ak and consequently F to d · F .

Definition 2.4. A test configuration (X , L) is called a product if it is induced in the natural way
by a C∗-action on (X,L).

A product test configuration is called trivial if the associated action on (X,L) is trivial.

The Donaldson–Futaki invariant of a product test configuration coincides (up to a positive
universal constant) with the classical Futaki invariant for holomorphic vector fields.
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Definition 2.5 (K-stability). A polarised manifold (X,L) is K-semistable if for all test configu-
rations (X , L)

F (X ) � 0.

It is K-stable if the strict inequality holds for nontrivial test configurations.

Remark 2.6. It is important to point out that the Donaldson–Futaki invariant of a K-stable po-
larised manifold (X,L) can never be bounded away from 0. For example this can be seen by
considering the test configuration given by degeneration to the normal cone with parameter c

(see [13, Section 4]) and letting c → 0.
In this connection a refinement of K-stability was proposed by G. Székelyhidi. If ω ∈ c1(L)

is cscK there should be a strictly positive lower bound for a suitable normalisation of F over
all nonproduct test configurations. This condition is called uniform K-polystability. In [17, Sec-
tion 3.1.1] it is shown that the correct normalisation in the case of algebraic surfaces coincides
with that appearing in Theorem 1.1, namely F(X )

‖X ‖ . For toric surfaces K-polystability implies
uniform K-polystability with respect to torus-invariant test configurations; this is shown in [17,
Section 4.2].

In Remark 3.5 we will offer an argument in favour of this refinement of K-stability.

In particular if (X,L) is K-stable then the group Aut(X,L) must be discrete. The correct
notion to take care of continuous automorphisms is K-polystability.

Definition 2.7. A polarised manifold (X,L) is K-polystable if it is K-semistable, and moreover
any test configuration (X , L) with F(X ) = 0 is a product.

Definition 2.8. A polarised manifold (X,L) is strictly K-semistable if it is K-semistable and it
admits a nonproduct test configuration with vanishing Donaldson–Futaki invariant.

K-(semi)stability can by checked by 1-parameter flat families induced by projective embed-
dings.

Proposition 2.9. (See e.g. Ross–Thomas [13, Theorem 3.7].) It is enough to check K-
(semi)stability with respect to the test configurations induced by embeddings X ↪→ H 0(X,Lr)∗
and 1-parameter subgroups of GL(H 0(X,Lr)∗) for all positive integers r .

In [15] the author proved a blowup formula for the Donaldson–Futaki invariant. The statement
involves some more terminology.

Definition 2.10 (Hilbert–Mumford weight). Let α be a 1-parameter subgroup of SL(N + 1),
inducing a C∗-action on PN . Choose projective coordinates [x0 : . . . : xN ] such that α is given by
diag(λm0, . . . , λmN ). The Hilbert–Mumford weight of a closed point q ∈ PN is defined by

μ(q,α) = −min{mi : qi 
= 0}.
Note that this coincides with the weight of the induced action on the fibre of the hyperplane line
bundle O(1) over the specialisation limλ→0 λ · q .
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Definition 2.11 (Chow weight). Let (Y,L) be a polarised scheme, y ∈ Y a closed point, and α a
C∗-action on (Y,L). Suppose that L is very ample and α ↪→ SL(H 0(Y,L)∗). The Chow weight
ch(Y,L)(y,α) is defined to be the Hilbert–Mumford weight of y ∈ P(H 0(Y,L)∗) with respect to
the induced action. This definition extends to 0-dimensional cycles on Y .

Theorem 2.12. (See [15, Theorem 1.3].) For points qi ∈ X and integers ai > 0 let Z ⊂ X be the
0-dimensional closed subscheme Z = ⋃

i aiqi . Let Λ be the 0-cycle on X given by
∑

i a
n−1
i qi .

Any 1-parameter subgroup α ↪→ Aut(X,L) induces a test configuration (X̂ , L̂ ) for (BlZ X,

π∗Lγ ⊗ OBlZ X(1)), where OBlZ X(1) denotes the exceptional invertible sheaf. More precisely
let O(Z)− be the closure of the orbit of Z. Then X̂ = BlO(Z)− X and L̂ = π∗Lγ ⊗ O X̂ (1).

Suppose that α acts through SL(H 0(X,L)∗) with Futaki invariant F(X). Then the following
expansion holds as γ → ∞,

F(X̂ ) = F(X) − ch(X,L)(Λ,α)
γ 1−n

2(n − 1)! + O
(
γ −n

)
.

We will need a slight generalisation of this result, covering blowups of non-product test con-
figurations.

Proposition 2.13. Let (X , L) be a test configuration for (X,L), Z = ⋃
i aiqi as above. There

is a test configuration (X̂ , L̂ ) for (BlZ X,π∗Lγ ⊗ OBlZ X(1)) with total space X̂ given by the
blowup of X along O(Z)−. The linearisation is the natural one induced on L̂ = π∗Lγ ⊗ O X̂ (1).

Let qi,0 = limλ→0 λ · qi be the specialisation, Λ0 the 0-cycle on X0 given by
∑

i a
n−1
i qi,0.

Let α denote the induced action on (X0, L0) and suppose that α acts through SL(H 0(X0, L0)
∗).

Then the expansion

F(X̂ ) = F(X ) − ch(X0,L0)(Λ0, α)
γ 1−n

2(n − 1)! + O
(
γ −n

)
holds as γ → ∞.

We emphasise that the relevant Chow weight is computed on the central fibre (X0, L0) with
its induced C∗-action.

Proof. For a unified proof of these results see [16, Sections 3.1, 3.2]. In fact the proof of Theo-
rem 2.12 presented in [15, Section 4] carries over without any change to the case of non-product
test configurations, with only two exceptions:

1. The proof of flatness of the composition X̂ → X → C;
2. The identification of the weight ch(X0,L0)(Λ0) (with respect to the induced action on X0)

with ch(X,L)(Λ,α).

Here we do not care for the latter identification, and indeed it does not make sense for non-
product test configurations since the general fibre is not preserved by the C∗-action.

To prove flatness we use the criterion [9, III, Proposition 9.7]. Thus we need to prove that all
the associated points of X̂ = BlO(Z)− X map to the generic point of the base C. By flatness this
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is true for the morphism X → C, and the blowup π : X̂ → X does not contribute new associated
points, only the Cartier exceptional divisor E = π−1(O(Z)−).

To make this precise let y ∈ X̂ be an associated point of the blowup and denote by {y}− be its
closure, a closed subscheme of X̂ . Suppose that {y}− ⊆ E. This would imply that the maximal
ideal my of the local ring O X̂ ,y contains the image of a local defining equation f for E. But
y being an associated point means precisely that every element of my is a zero divisor (see the
definition following [9, III, Corollary 9.6]). Since E is a Cartier divisor f is not a zero divisor,
a contradiction.

Therefore {y}− � E, or in other words my contains some nontrivial zero divisor orthogonal
to E. Thus the projection π(y) is an associated point of X which in turn maps to the generic
point of C by flatness of X → C. �
Remark 2.14. The assumption that α acts through SL is not restrictive for our purposes. Starting
with a test configuration (X , L) we can construct a new one (X ′, L′) for which the induced
action on H 0(X ′

0, L′
0)

∗ is special linear and such that the Donaldson–Futaki invariant F(X ′)
is a positive multiple of F(X ). To see this start by scaling the linearisation of C∗ on L by a
character ξ , i.e. some integer weight. Then take

(X ′, L′) = ρ∗
d (X , L)

for some positive integer d , where ρd : C → C is taking d th powers. The trace of the induced
action on H 0(X ′

0, L′
0) is given by

d · tr(A1) + ξh0(X0, L0)

and we can always choose the integers ξ and d > 0 to make this vanish. Finally by Remark 2.3
we have F(X ′) = d · F(X ).

3. Proof of Theorem 1.2

It will be enough to prove Proposition 1.6 and to apply the result of Arezzo and Pacard recalled
as Theorem 3.1 below.

For a fixed q ∈ X let

(X̂,Lγ ) = (
Blq X,π∗Lγ ⊗ O(−E)

)
.

We need to show that when (X,L) is strictly semistable there exists q such that (X̂,Lγ ) is K-
unstable for γ � 1. For some special choice of q , we will construct test configurations (X̂ , Lγ )

for (X̂,Lγ ) which have strictly negative Donaldson–Futaki invariant for γ � 1.
By assumption (X,L) is strictly semistable, so it admits a nontrivial test configuration (X , L)

with F(X ) = 0.
Moreover by Remark 2.14 we can assume that the induced C∗-action on H 0(X0, L0)

∗ is
special linear.

We blow X up along the closure O(q)− of the orbit O(q) of q ∈ X1 under the C∗-action
on X , i.e. define

X̂ = BlO(q)− X . (3.1)
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Let O X̂ (1) denote the exceptional invertible sheaf on X̂ . We endow X̂ with the polarisation

Lγ = π∗Lγ ⊗ O X̂ (1). (3.2)

Define the closed point q0 ∈ X0 to be the specialisation

q0 = lim
λ→0

λ · q.

Applying the blowup formula 2.13 in this case gives

F(X̂ , Lγ ) = F(X , L) − ch(X0,L0)(q0)
γ 1−n

2(n − 2)! + O
(
γ −n

)

= −ch(X0,L0)(q0)
γ 1−n

2(n − 2)! + O
(
γ −n

)
.

In Proposition 3.3 below we will prove that for some special q ∈ X1 ∼= X,

ch(X0,L0)(q0) > 0.

This holds thanks to the assumption F(X ) = 0, or more generally F(X ) � 0. This is enough to
prove Proposition 1.6.

The final step for Theorem 1.2 is to show that the perturbation problem is unobstructed pro-
vided Aut(X,L) is discrete. This is precisely the content of a beautiful result of C. Arezzo and
F. Pacard.

Theorem 3.1. (Arezzo–Pacard [1].) Let (X,L) be a polarised manifold with a cscK metric in the
class c1(L). Suppose Aut(X,L) is discrete and let q ∈ X be any point. Then the blowup Blq X

with exceptional divisor E admits a cscK metric in the class γπ∗c1(L) − c1(O(E)) for γ � 1.

Remark 3.2. The Arezzo–Pacard theorem also holds in the non-projective case and, more im-
portantly, even in the presence of nontrivial Hamiltonian holomorphic vector fields, provided a
suitable stability condition is satisfied. We refer to [2,15] for further discussion.

Thus the following proposition will complete our proof(s). We believe it may also be of some
independent interest.

Proposition 3.3. Let (X , L) be a nonproduct test configuration for a polarised manifold
(X,L) with nonpositive Donaldson–Futaki invariant and suppose the induced C∗-action on
H 0(X0, L0)

∗ is special linear. Then there exists q ∈ X1 ∼= X such that ch(X0,L0)(q0) > 0.

Proof. By the embedding Theorem 2.9 we reduce to the case of a nontrivial C∗ acting on PN

for some N , of the form diag(λm0, . . . , λmN ), with

m0 � m1 � · · · � mN.
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Let {Zi}ki=0 be the distinct projective weight spaces, where Zi has weight mi (i.e. the induced
action on Zi is trivial with weight mi ). Each Zi is a projective subspace of PN , and the central
fibre with its reduced induced structure X red

0 is contained in Span(Zi1, . . . ,Zil ), 0 = i1 < i2 <

· · · < il , for some minimal l.

Case 1 < l. In this case the induced action on closed points of X0 is nontrivial. Let q ∈ X1 be
any point with

lim
λ→0

λ · q = q0 ∈ Zil .

Such a point exists by minimality of il and because the specialisation of every point must
lie in some Zj . Since the action on X0 is induced from that on PN , q0 belongs to the to-
tally repulsive fixed locus R = X0 ∩ Zil ⊂ X0. By this we mean that every closed point in
X0 \ R specialises to a closed point in X0 \ R. In particular the natural birational morphism
X0 ��� Proj(

⊕
d H 0(X0, L⊗d

0 )C∗
) blows up along R. So q0 ∈ R is an unstable point for the C∗-

action in the sense of geometric invariant theory. By the Hilbert–Mumford criterion the weight
of the induced action on the line L0|q0 must be strictly positive. Since we are assuming that the
induced action on H 0(X0, L0)

∗ is special linear this weight coincides with the Chow weight, so
ch(X0,L0)(q0) > 0.

Degenerate case. In the rest of the proof we will show that in the degenerate case X red
0 ⊂ Z0

the Donaldson–Futaki invariant is strictly positive. Note that since by assumption the original
C∗-action on PN is nontrivial, Z0 ⊂ PN is a proper projective subspace.

We digress for a moment to make the following observation: for any C∗-action on PN with
ordered weights {mi}, and a smooth nondegenerate manifold Y ⊂ PN , the map ρ : Y � y 	→
y0 = limλ→0 λ · y is rational, defined on the open dense set {y ∈ Y : μ(y) = m0} of points with
minimal Hilbert–Mumford weight. Indeed, in the above notation, generic points specialise to
some point in the lowest fixed locus Z0. In any case the map ρ blows up exactly along loci where
the Hilbert–Mumford weight jumps.

Going back to our discussion of the case X red
0 ⊂ Z0, we see that this means precisely that all

points of X1 have minimal Hilbert–Mumford weight m0, so there is a well-defined morphism

ρ : X1 → Z0.

Moreover ρ is a finite map: the pullback of L0 under ρ is L which is ample, therefore ρ cannot
contract a positive dimensional subscheme. If ρ were an isomorphism on its image, it would
fit in a C∗-equivariant isomorphism X ∼= X × C. Therefore ρ cannot be injective, either on
closed points or tangent vectors. If, say, ρ identifies distinct points x1, x2, this means that the
xi specialise to the same x under the C∗-action; by flatness then the local ring O X0,x contains a
nontrivial nilpotent pointing outwards of Z0, i.e. the sheaf IX0∩Z0/IX0 is nonzero. In other words
X0 is not a closed subscheme of Z0. The case when ρ annihilates a tangent vector produces the
same kind of nilpotent in the local ring of the limit, by specialisation.

To sum up, the central fibre X0 is nonreduced, containing nontrivial Z0-orthogonal nilpotents.
Moreover the induced action on the closed subscheme X0 ∩ Z0 ⊂ X0 is trivial. The proof will be
completed by the following weight computation.
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Donaldson–Futaki invariant in the degenerate case. Suppose Z0 ⊂ PN has projective coor-
dinates [x0 : . . . : xr ], i.e. it is cut out by {xr+1 = · · · = xN = 0}. We change the linearisation by
changing the representation of the C∗-action, to make it of the form

[x0 : . . . : xr : xr+1 : . . . : xN ] 	→ [
x0 : . . . : xr : λmr+1−m0xr+1 : . . . : λmN−m0xN

]
, (3.3)

and recall mr+i > m0 for all i > 0. It is possible that the induced action on H 0(X0, L0)
∗ will not

be special linear anymore, however this does not affect the Donaldson–Futaki invariant.
Note that for all large k,

H 0(PN, O(k)
) → H 0(X0, Lk

0

) → H 1(IX0(k)
) = 0. (3.4)

By (3.4), our geometric description of X0 and the choice of linearisation (3.3) we see that any
section ξ ∈ H 0(X0, Lk

0) has nonpositive weight under the induced Gm-action. The section ξ can
only have strictly negative weight if it is of the form xr+i ·f for some i > 0 (xr+i is now regarded
as a linear form and the sign is opposite to that of the action on PN by duality). Moreover we
know there exists an integer a > 0 such that xa

r+i |X0 = 0 for all i > 0. Let w(k) denote the total
weight of the action on H 0(X0, Lk

0), i.e. the induced weight on the line ΛP(k)H 0(X0, Lk
0), where

P(k) = h0(X0, Lk
0) is the Hilbert polynomial for k � 0. Our discussion implies the upper bound

∣∣w(k)
∣∣ � C

(
P(k − 1) + · · · + P(k − a)

)
(3.5)

for some C > 0, independent of k. In particular,

w(k) = O
(
kn

)
. (3.6)

On the other hand by the presence of Z0-orthogonal nilpotents there exists a section xr+i , i > 0,
with xr+i |X0 
= 0. Multiplying by H 0(X red

0 , Lk−1
0 |X red

0
) and writing Q(k) = h0(X red

0 , Lk
0|X red

0
)

gives the upper bound

w(k) � −C1Q(k − 1) (3.7)

for some C1 > 0 independent of k � 0. Then

w(k)

kP (k)
= w(k)

kQ(k)

Q(k)

P (k)
� −C2

k
(3.8)

holds for k � 0 and some C2 > 0 independent of k. Together with

w(k)

kP (k)
= O

(
k−1) (3.9)

which follows from (3.6) the upper bound we have just proved implies

w(k)

kP (k)
= −C3

k
+ O

(
k−2) (3.10)

for some C3 > 0 independent of k.
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By definition of the Donaldson–Futaki invariant, this immediately implies

F(X ) � C3 > 0,

a contradiction. �
Example 3.4. Consider the test configurations for P1 given by the families of conics X = {xz =
εy2}, X ′ = {ε2xz = y2} ⊂ P2 × C. They are induced by the embedding P1 ↪→ P2 given by
[s : t] 	→ [s2 : st : t2] and the C∗ actions on P2 given respectively by diag(0,0, ε),diag(0, ε,0).
Thus X is nondegenerate (meaning that the induced action on X red

0 = X0 is nontrivial) and the
unique repulsive fixed point for the action on the central fibre {xz = 0} ⊂ P2 is given by [0 : 0 : 1]
(in fact X is isomorphic to the degeneration to the normal cone of [0 : 1] ∈ P1 with parame-
ter c = 1). On the other hand X ′ is degenerate, since the action on the reduced central fibre
{y = 0} ⊂ P2 is trivial. The action is not trivial on the nonreduced central fibre {y2 = 0} ⊂ P2,
however. One checks that, for X , h0(Lk

0) = 2k + 1, tr(Ak) = − k(k+1)
2 , so F(X ) = 1

8 . Similarly,
for X ′, h0(L0) = 2k + 1, tr(Ak) = −k + 1 (note that tr(Ak) has smaller degree in the degenerate
case, as expected). So we find F(X ′) = 1

2 .

Remark 3.5. Suppose we wish to prove an algebraic analogue Theorem 3.1. For simplicity let
us consider the following statement:

If (X,L) is K-stable then the blowup of X along any 0-cycle with the now familiar polarisa-
tions is K-stable.

This is predicted by the Yau–Tian–Donaldson conjecture. By the blowup formula Propo-
sition 2.13 it is clear that we would need a uniform lower bound for the Futaki invariant of
nontrivial test configurations to prove this algebraically. But as we explained in Remark 2.6 this
never holds.

We believe this observation gives an interesting argument in favour of the uniform notion of
K-stability recalled in Remark 2.6.
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