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Let A=(ay))il7}_, and B=(b,)7w ., be matrices of ranks / and m,
respectively. Suppose that Z=((—1)’a,,)eSC, (sign consistent of order/) and
BeSC,,. Denote by %, y(4, B;v,, .., v,) the set of perfect splines with N knots
which have »n distinct zeros in (0, 1) with multiplicities v, .., v,, respectively, and
satisfy 4P(0)=0, BP(1) =0, where P(a) = (p(a), .., P"~(a))’. We show that there
is a unique P¥e 2 (4, B; v, ... v,) of least uniform norm and that P* is charac-
terized by the equioscillatory property. This is closely related to the optimal
recovery of smooth functions satisfying boundary conditions by using the Hermite

data. © 1994 Academic Press, Inc.

1. INTRODUCTION

A perfect spline P(t) of degree r with knots {&,}1 < (0,1), &, < --- <&y,
has the representation

r—1 N
P()=73 a,—ti+'71'-[t'+2 Y (—l)j(t—fj-)LjI, (1.1)

i=0 j=1

where {a,}; are real constants and, as usual, 7, =max{s, 0}. The set of
all functions of form (1.1) is denoted by 2 .

Let A=(a;):.;%_, and B=(b,)72";"_, be matrices such that

(1) 0<l, m<r, rank A=/, rank B=m,
(i) A=((—1Yayt,_,eSC, BeSC,,

i=1,j=0
where 4 € SC, means that all non-zero u x u subdeterminants of 4 maintain
the same sign, i.e., there exists o, € { —1, 1} such that

[y @
GAA< .l’ ’ .“)209
e Ju
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for every choice of iy, .., i, and j,, .., j,, where A(} j.““) is the subdetermi-
nant of 4 composed of i, .., i, rows and j,, .., j, columns, respectively.
Given A and B as above, we define functionals as follows:

r—1

Af=Y a,fo0), i=1,..1
j=0

r—1 (1.2)
B f=3 b,/ 1), i=1.,m
j=0

For a given set % of functions such that /" "(0) and £~ V(1) exist for
fe #, we denote by F (A4, B) all functions fin & with 4,/=0(i=1, .., 1)
and B, f=0(i=1,.., m)

Some problems related to boundary conditions (1.2) have been considered.
The problem of existence of interpolating spline s with 4,5 = B;s=0
(i=1,..,04 j=1,..,m)is discussed in Ref. [7]. The n-widths of W (A4, B)
in C[0, 1] are obtained [13], where

W ={fIf""" abs. cont. on [0,1], | /). <1}

Given {v,;}7_, such that

1<y, <r, r<

i

vi=N+r—I[l—m,

i
1

NGE

i

we use # (A, B;v,,..,v,) to denote the set of functions in & ,(A4, B)
having n distinct zeros {x,}7_, < (0, 1) with multiplicities {v,}7_,, respec-
tively. This paper is devoted to study the extremal problem:

inf{|[P| | Pe Z, x(4, B; v, ... v,) ), (1.3)

where || = |-l cro.17-

Problem (1.3) has been discussed in [1] for /=m =0 (i.e., no boundary
condition) and [9] for (1.2) being quasi-Hermite conditions, respectively.
We note that [9] only gives proof for the case m < N. As for the case
m= N (note that m< N), we see below that the proof is somewhat more
complicated.

It is well known that perfect splines are very important in the optimal
recovery (see [10, 11]). In fact, as in [5, 10], the intrinsic error of the best
scheme approximating fe W’ (A4, B) in C[0,1] by using information
{(fP%)|i=1,.,n j=0,.,v,— 1} is equal to | P(X, -)||, where P(X, )€
2 y(A4, B;v,, .., v,) vanishes at X={(x,, v,)} (see Lemma 1). Hence, the
zeros of P*e# (4, B; vy, .., v,) that solves problem (1.3) determine the
optimal information. Moreover, spline interpolation at the zeros of P* is
an optimal algorithm (see [5]).
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The main results of this paper are as follows.

THEOREM 1. Let {e,}72] be arbitrary positive numbers. Set ¢, =0, o,=

i=1
i v, k=2, .., n+ 1. Then there exists a unique Pe 2. (A, B; v, .., v,)
with n distinct zeros {x;}7_, and a positive number R such that

i=1
RP(y)=(—1)"*"e,  i=1,.,n+1, (1.4)
where ae { —1, 1} fixed and {y;}72] satisfy
0<Y1<x1<,V2< <xn<yn+1<1

with P'(y;) =0 whenever y,e (0, 1).

THEOREM 2. There exists a unique perfect spline P*e€ %, \(A, B; vy, ..., v,)),
which solves problem (1.3). Moreover, P* is characterized by the equi-
oscillatory property; ie., there exist n+ 1 points { y,}7* ! < [0, 1] such that

P*(y;)

where o, are given as in Theorem 1.

(=177 P*,  i=1,., 0+,

I

2. AUXILIARY LEMMAS

Similar to [2], Li [9] proved the following result by the Hobby—Rice
theorem.

LEMMA 1. Given {x,}7_,<c(0,1), there is a function Pe P (A, B;
Vis e V) Such that P vanishes at X = {(x,, v;}}7_,, where (x;, v;) means that
X; is a zero with multiplicity v,.

Let a=(a));_, e€R"/{0}; S*(a) denotes the maximal number of sign
changes in the sequence a,, ..., a, where zero terms are arbitrarily assigned
values 1 or —1. For example, $*(1,0, 1)=2.

LemMa 2 [12, p. 163]. For any Pe 2 , it holds that
Z(P, (0, 1))SN+r=S*(((=1) PPA0)),_o) = STUPI(1)) o), (21)
where Z (f, I) is the total number of zeros of [ at an interval I counting
multiplicities not greater than r.

We call Pe 2, a perfect spline with maximal number of zeros if equality
holds in (2.1) for P. For such a perfect spline, its zeros and knots satisfy
the so-called interlacing conditions. To be precise, we denote by {z,}{_,



194 CHEN DIRONG

and {¢;}Y , arranged in natural increasing order the zeros of P at (0, 1)
and knots, respectively, where s is the number of zeros of P at (0, 1)
counting multiplicities. Then [5]

zl’*—zo<éi<zi+r—gﬂa (2.2)

whenever the subscripts are meaningful, where a,=S*(((—1)’ P(0))]_,).

It is known that (see, e.g., [13]) for any Pe 2 (4, B), ag=1, Bo=m.
Therefore, any function P in 2 (A4, B; v,, .., v,) is with maximal number
of zeros and oy =1, f,=m.

LemMa 3. If Pe # y is with maximal number of zeros, so is P'e #._ | .

Proof. Set a;=S*(((=1) PP0));_)), B:=ST((PV(1));_), i=0, L
Let x and y be minimal zero and maximal zero of P in (0, 1), respectively.

Now we should distinguish the cases according to the values of x, and
B., i=0, 1. Suppose first that a—a, =1 and f,— f,=0. Since P7(0) 0,
by [12], r=0is a left Rolle point of P (the definition of Rolle point can
be found in [12, p. 287). By the extended Rolle theorem [12, p. 297, there
exists at least a zero of P’ in (0, x). Therefore,

Z, (P00, 1)22Z, (P,(0, 1)+ Z, (P, [x, y])
>1+Z,(P, [X, y])—l =Z,(P, (0, l))
=N+(r—1)—oa,—B,.

This together with Lemma 2 implies that P’ e #_ | , is with maximal
number of zeros. The other cases may be treated similarly. So the proof is
complete.

Now we introduce some notations from [7] for later use. Let

Z={x,0,.,r—1|xe(0, 1)},
Ww=1{0,.,r—1,¢|£e(0, 1)},

and K(z, w) be a function defined on Z x W as follows:
K(x, i) =u;(x)=x",
K(x, &)=(x=¢), ",
o 07
K(J’ €)=5—; K(x’ é)\x=ls
X

K(j, i)=u(x) .
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For given z; < .- <z, w < --- <w,, the Fredholm matrix based on

K(z, w) is

Y2

K( Zys s Z > = (K(Zis wj))ﬁ‘j’;l.

Wi,y en W

If some z; and/or w, coincide, the corresponding columns and/or rows
are determined by successive derivatives (see [7] for the details). It is
shown in [7] that K(z, w) is total positive, i.e.,

detK(Z“ o Bk );0. (2.3)

Wiy ey Wy
for every choice of z, < --- <z, w < - <wy.

Lemma 4. Given any {4} ,, {¥:;}io, <=0, 1) and {ij}}_ ;< {j}/_,
(t+1+m=k+2) each of which is arranged in increasing order, we have
63050 det 420, where o=(—1)"""""Y2 agnd A is a (k+s)x(k+s)
matrix whose jth column is

(uij(tl)s o U (t‘[)9 Alui]’ e Aluij’ Bluils R} Bmuij)T

for j=1, .. k and k + jth column is
(K(tla yj)’ ey K(tra ,V,')’ Oa ety 0’ BIK(_ yj)a ey BmK( - )’/))T

for j=1, .., s, with the same interpretation as in [7] if some t; coincide.

Proof. For ease of notations we assume without loss of generality that
i;=j—1,/=1,.,k It is obvious that 4,u;,=a;j!.

Expanding 4 by minors based on the 7+ 1, ..., t + /th rows (if k <1, then
det 4 =0) we get

. 1,0\
detd=0o y (_1)n+<~+u<’ ,)H(j,»—l)!detdil__‘_‘jl,

I<ji< - <j, <k Jis - i) oy

where 4, is the submatrix of 4 by eliminating its t+ 1, .., T+ /th rows

s St
and j,, .., j, columns. Let {ji}*_/ arranged in increasing order denote the

where
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(1, stands for the t x 7 identity matrix) and

D=K<,, tl,...,.t/,,O,‘..,r——l )
Jj_la"'sjk—l_l’ Yis s Vs

By the Cauchy-Binet formula (see [6, p. 1]) we have

Lo Ky s koo
detd, = 5 C(/(l r+m)D( ) + >

L€kl o heam <ty Y S 1, ..1t+m

From the definition of C it follows that C(,;7*™) is equal to zero

unless 1, .., 7 are all included among the indices {k;};*/" and equal to
B(y,,, _vom. )il k=i i=1,.., 1 Therefore

Lyt iy — 1,0, —1 )

det 4 .
.]l bl 1, “"jk*/_ 1, _y], ey ys

et =0 Z det K (

1€ij< - <iwsr

< 1, ...,m)
x Bl . .
R

(—1)h+ ---+1‘:A( .1,..., l.>=2< .1,..., 1')
Jis o i Jis oo i

we have 03 040 det 4> 0. The proof is complete.

Since (2.3) and

3. PROOF OF THEOREMS

The proof of Theorem 2 may proceed as in [2] by use of Theorem 1. So
we only give the proof of Theorem 1.

Proof of Theorem 1. Let

Polr)= 3 ao,-t‘+%[t'+2 5 (—1)1‘(:—50_,.);} 3.1)
2 ]

j=1

i=

be an arbitrary perfect spline in 2 (A4, B;v,, .., v,) with n distinct zeros
{x0.:}7—1 = (0, 1). Since P, has no other zero than X,= {(x,,, v,)}7_, in
(0, 1), it holds that

(—1)7+% Py(1) 20, re(xo_1,Xoh i=1,.,n+1,

where g€ {—1, 1} fixed, x,,=0and x,,,,;=1.
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In what follows we have to distinguish the cases as we do in proving
Lemma 3. Let «; and f§; be defined as in Lemma 3 for P, (we note that
oo =1, Bo=m). We assume first that a,—a, = f,— ;= 1. By the proof of

Lemma 3, there exist { yo,}7}' any of which is a simple zero of Pj such
that

0<yo1<xp1<yo2< " <Xpu<Yons1 <l
Put

eo, ;= | Po( ¥o ;) j=1,.,n+1,
e;(s)=eo ,;+s(e;— e ), j=1,.,n+1,se[0, 1]

For se [0, 1], we shall construct a function P(s, -)e Z (A4, B; v{, ..., v,),
with parameters a,(s), x;(s), y;(s), £;(s), and R(s) such that

R(s) P(s, y,(s))=(—=1)"""e,(s), i=1,.,n+1 (3.2)

To this end, we consider the system of equations:

POs, D)2 =0 i=1,.,nj=0, ., v,—1,
R(s) P(s, yi(s))=(—1)""7e;(s), i=1,.,n+]1,
P8, D)l =0, i=1,.,n+1, (3.3)
A;P(s, - )=0, i=1,..,1
B;P(s, ) =0, i=1,..,m,

where PY(s, t)=(8//0t’) P(s, t). It is obvious that (P,, R,=1) satisfies
(3.3).

For the ease of computating Jacobian of (3.3) we reorder (3.3) as
follows:

PO s, iz =0, i=1,..,n
P(s, )= =0, i=1,.,n+1,
R(s) P(s, y,(s)) =(=1)7" " e,(s),
PO, D y=0,j=0, ..., v,—2, i=1,..,n, (3.3)
R(s) P(s, pi () =(=1)"" 7" e, ((s),
4,P(s,-) =0, i=1,.,1

BiP(S,')=0, i=1,..., m.
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Denote by A(s) the Jacobi matrix of (3.3') with respect to {x; 372,
{.Vi};zill’ R, {a,—}j;é and {éi};N=l' Then (cf. [2])

n+1

det A(s) =det J(s) ﬁ PUs, x,(5)) H Pi(s, yi(s))

i=1 Jj=1

(see (3.10) below for the explanation that each P* is well defined), where
J(s)isa (N+r+1)x(N+r+ 1) matrix with the first N4+ 7+ 1-/—m rows

R a, a, & Sn
W~ W1V )
( Pisy) Ruplyy) -+ Ru, \(y)) WUW S S '*TrtT))T—(}‘ﬁ;v),l
A1) L 2A-1) N .
0 uylx)) o, (x)) W(-Yﬁs]).' W(M*wh'
s ! 2(/1)1+! 2(‘1‘1%’&'
ey L 1y 2 SEYIMEY L L (x, —EL) ]
0 uy" Nxp) u "xy) (r+1—vlj'x' &) (’.>v|+1’!(xl Ev)
, , W1 W1
Pls,yy) Ruglyy) -+ Ru, \(yy) —(T—l—)’.—-"hﬂ")* W(,‘:*é,vb
. - 2(/”I+l ) . 2"71)10.’\" P
0 uf™ Mxy o wd x)) mhu SEL T m(,‘(l»sx),, !
2R( Iy L 2R(-1)' N .
kP(S,.V,.u) Ruy(y,.1) -+ Ru, U Vai) —(lrr-]v—‘('y"’ligl)’l TT Yrrit ’gv)+‘
and the last /+ m rows
lel (ai/'j!)[xr OIxN
2(_1)j+1
le B‘u'mxr WBK s s
mx | ( 11) (r—l)' i ( g]) N
Expanding det J(s) based on the first column, we get
n+ i
detJ(s)=Y (—1)" P(s, y,) det J(s), (3.4)
i=1

where J,(s) is the submatrix of J(s) eliminated 1 column and g, TOW.
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We use {zo,<zo,< - <2zp,} (p=N+r—I/—m+1) to denote the
sequence

{,Vo,l’ (X015 Vi = 1), Ya,25 s (X005 Va— 1) Yons1 },

which is the set of zeros of Poe # | y counting multiplicities. It follows
from Lemma 3 and (2.2) that

20— 0-11<C0,;<Z0 4 (r—1)—(—1) (3.5)

whenever the subscripts are meaningful.
Given any i, put {z{’}77\'={z,;}7_/{»,} arranged in increasing
order. Then (3.5) yields

(i) () )
20 1<80,<2g s r1- (3.6)

On the other hand we see that J,(s) has the form of matrix given as
in Lemma 4 only different in some rows and columns to some non-zero
constants, respectively, independent of i. It follows from Lemma 4, (3.1),
and (3.4) that

|det J(0)] = 3, |Po(¥o,,)| Idet J,(0)]. (3.7)

i=t

By the proof of Lemma 4 we have for some positive number y that
[det J,(0)[ =y .
I<ii< - <i<r

< ) (l 1
ll,.. l/ =1
I1<ji< - <jm<r

XB(I )dtK(Z{)I)“ ,bop p]l 1» a]m_1>‘
jl"’jm 1’ lr 1 1 éOl"'séO,N

If m <N, then it follows from (3.6) and [7, Theorem 1'] that for any
{ictioand {}oo,,

) z;))pk“j] 1, ...,jm—1)>0 (39)
Lsii =1, 8015 w0 Con

Hence, (3.7), rank A =/ and rank B=m give det J;(0)#0.

If m= N, the interlacing conditions (3.6) cannot guarantee that (3.9)
hold for all {i.};_, and {j.}7_,. However, we also have det J,(0)#0 in
this case. In fact, in view of Lemma 4 and [13, Lemma 10], there exists a
unique function (i.e., zero element) s e I7,(A, B) which satisfies

G
detK(‘f
=

s (x0)=0, i=1,un  j=0,.,v,—1, (3.10)

640,77:2-7
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where

r—t r+N—-1
17,={s ls=Y at'+ 3 ai(t—éol,)Ll}.
i=0 i=r

(We have to say a few words about (3.10). By the method of proof of
Theorem C of [3] we can conclude that any &, ; cannot be a zero of P,
with multiplicity r, i =1, ..., N. Since 11, C"*[0, 11~ C"{[0, 11/{&0.:} -, ),
all sY(x,,) in (3.10) are well defined).

Appealing to [7 Theorem 1’] once again we get two sets of indices
{i¥}'_, and {j¥}7_, such that

1,..,1 1,...m
A > B > 0, 3.11
(ir,..., z;*) (jl*,...,j::,)# (3.11)

JESTE i rin—tom (3.12)

Therefore, it follows from (3.6), (3.12), and [7, Theorem 1'] that (3.9)
holds for {i }4_,={i¥}i_,and {j }7_,= {j¥}¥_,. Noting (3.11) we get
det J,(0)#0.

Since (3.7) and other factors in det A(0) are not zero, we have
det 4(0) # 0. Now we can continue the proof as in Theorem 3.1 in [2] and
get the unique P(-):= P(1,-)eZ (A, B;v,, .., v,) satisfying the theorem.
The detail is omitted and referred to [2].

If og—o; =1 and B, —f, =0, then P has a zero yq,€(0, x,,) and
not zero in (x,,, 1). Instead of (3.3) we consider the following system of
equations:

and

PO, D], - x5y =0, i=1,.,nj=0,.,v,—1,
R(s) P(s, y,(s))=(—1)""¢,(s), i=1,.,n+1,
P(s, t) ysy=0, i=1,.,n,
A, P(s,-)=0, i=1,..1
B,P(s,-)=0, i=1,..,m,

where y,, (s)=1.

As before, we can get a unique PeZ, (4, B; vy, .., v,) satisfying the
theorem. The other cases of a; and §; may be treated similarly. So Theorem
1 is proved.

Remark 1. Since perfect splines and monosplines may be treated in a
unified way (see [4]), Theorems 1 and 2 hold for monosplines. This is
related to optimal quadrature formula.
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Remark 2. It is not difficult to generalize the results of this paper to the

case where separated boundary conditions are replaced by mixed boundary
conditions, which were studied, e.g., in [8].
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