On the semisimplicity of the cyclotomic Brauer algebras, II

Hebing Rui *, Jie Xu

Department of Mathematics, East China Normal University, 200062 Shanghai, PR China

Received 30 April 2006
Available online 24 March 2007
Communicated by J.T. Stafford
Dedicated to Professor Gordon James on the occasion of his 60th birthday

Abstract

In this paper, we give a necessary and sufficient condition for the semisimplicity of cyclotomic Brauer algebras $B_{m,n}(\delta)$ of types $G(m, 1, n)$ with $m \geqslant 2$. This generalizes [H. Rui, A criterion on the semisimple Brauer algebras, J. Combin. Theory Ser. A 111 (2005) 78–88, 1.2–1.3] and [H. Rui, M. Si, A criterion on the semisimple Brauer algebras, II, J. Combin. Theory Ser. A 113 (2006) 1199–1203, 2.5] on Brauer algebras.

© 2007 Elsevier Inc. All rights reserved.

Keywords: Cyclotomic Brauer algebras; Cellular algebras; Semisimple

1. Introduction

The cyclotomic Brauer algebras $B_{m,n}(\delta)$ have been introduced by Häring–Oldenburg in [10] as classical limits of cyclotomic Birman–Murakami–Wenzl algebras. When $m = 1$, they are Brauer algebras $B_n(\delta)$ [2].

The main purpose of this paper is to give a necessary and sufficient condition for the semisimplicity of $B_{m,n}(\delta)$ under the assumption $m \geqslant 2$. For $m = 1$, such a criterion has been given in [11, 1.2–1.3] and [12, 2.5].

* Corresponding author.
E-mail addresses: hbrui@math.ecnu.edu.cn (H. Rui), 52060601009@student.ecnu.edu.cn (J. Xu).

1 The first author was supported by NSFC No. 10331030, NCET, and the Science Foundation of the Univ. Doctoral Program of Education Department of China.
Unless otherwise stated, we assume that F is a splitting field of $x^m - 1$, which contains $\delta_i, 1 \leq i \leq m$. By assumption, there are $u_i \in F$ such that $x^m - 1 = \prod_{i=1}^{m} (x - u_i)$. Define
\[
e = \begin{cases} +\infty, & \text{if char } F = 0, \\ \text{char } F, & \text{if char } F > 0. \end{cases} \tag{1.1}\]

Following [12], we define $Z_{m,n} = \{ma | a \in \tilde{\mathbb{Z}}_{m,n}\}$, where $\tilde{\mathbb{Z}}_{m,n}$ is given as follows:

1. $\tilde{\mathbb{Z}}_{2,n} = \tilde{\mathbb{Z}}_{1,n} = \{k \in \mathbb{Z} | 3 - n \leq k \leq n - 3\} \cup \{2k - 3 | 3 \leq k \leq n, k \in \mathbb{Z}\}$.
2. $\tilde{\mathbb{Z}}_{m,n} = \tilde{\mathbb{Z}}_{1,n} \cup \{2 - n, n - 2\}$ if $m \geq 3$ and $n \geq 2$.

Suppose that x_1, x_2, \ldots, x_m are indeterminates over F. If F contains ξ, a primitive mth root of unity, then we define
\[
\bar{x}_i = \sum_{j=1}^{m} x_j \xi^{ji}, \quad 0 \leq i \leq m - 1. \tag{1.2}\]

Note that F contains ξ if $e \nmid m$ [8, 8.2]. The following is the main result of this paper.

Theorem A. Fix two positive integers m, n with $m > 1$. Let $\mathcal{B}_{m,n}(\delta)$ be a cyclotomic Brauer algebra over F.

(a) Suppose $n \geq 2$. If $\delta_i \neq 0$ for some $i, 0 \leq i \leq m - 1$, then $\mathcal{B}_{m,n}(\delta)$ is (split) semisimple if and only if
\[
(1) \ e \nmid m \cdot n!, \\
(2) \ \epsilon_{i,0} m - \bar{\delta}_i \notin \mathbb{Z}_{m,n}, 0 \leq i \leq m - 1, \text{ where } \epsilon_{i,0} \text{ is the Kronecker function.}
\]

(b) Suppose $n \geq 2$. If $\delta_i = 0, 0 \leq i \leq m - 1$, then $\mathcal{B}_{m,n}(0)$ is not (split) semisimple.

(c) $\mathcal{B}_{m,1}(\delta)$ is (split) semisimple if and only if $e \nmid m$.

In what follows, we write $\delta_j = \delta_i$ if $i, j \in \mathbb{Z}$ and $i \equiv j \mod m$.

Let $\mathcal{H}_{i,k}$ be the hyperplane in F^m, which is determined by the linear function $\epsilon_{i,0} m - \bar{x}_i = k, 0 \leq i \leq m - 1$ and $k \in \mathbb{Z}_{m,n}$. Condition (2) in Theorem A(a) is equivalent to the fact that $(\delta_0, \delta_1, \ldots, \delta_{m-1}) \notin \cup_{0 \leq i \leq m-1, k \in \mathbb{Z}_{m,n}} \mathcal{H}_{i,k}$. When $m = 1$, $\mathcal{H}_{i,k}$ collapses to a point in 1-dimensional F-space. This result has been proved in [11, 1.2-1.3] and [12, 2.5]. We remark that certain sufficient conditions for semisimplicity of complex Brauer algebras have been given in [3,4,14].

In [6], Graham and Lehrer have introduced the notion of cellular algebra which is defined over a poset Λ. Such an algebra has a nice basis, called a cellular basis. For each $\lambda \in \Lambda$, one can define $\Delta(\lambda)$, called a cell module. Graham and Lehrer have shown that there is a symmetric, associative bilinear form ϕ_λ defined on $\Delta(\lambda)$. It has been proved in [6, 3.8] that a cellular algebra is (split) semisimple if and only if ϕ_λ is non-degenerate for any $\lambda \in \Lambda$. It is well known that a cellular algebra is split semisimple if and only if it is semisimple. Therefore, one can determine whether a cellular algebra is semisimple by deciding if all ϕ_λ are non-degenerate.
In [6], Graham–Lehrer have proved that a Brauer algebra $B_n(\delta)$ over a commutative ring is a cellular algebra over the poset Λ which consists of all pairs (f, λ), with $0 \leq f \leq \lfloor n/2 \rfloor$ and λ being a partition of $n - 2f$. Here $\lfloor n/2 \rfloor$ is the maximal integer which is no more than $n/2$. Therefore, one can study the semisimplicity of $B_n(\delta)$ by deciding whether $\phi_{f,\lambda}$ is non-degenerate or not for any $(f, \lambda) \in \Lambda$. Unfortunately, it is difficult to determine whether $\phi_{f,\lambda}$ is degenerate or not for a fixed (f, λ).

In [11], the first author has proved that the semisimplicity of $B_n(\delta)$ is completely determined by $\phi_{f,\lambda}$ for all partitions λ of $n - 2f$ with $f = 0, 1$. Using [4, 3.3–3.4], he has decided whether such $\phi_{f,\lambda}$’s are degenerate or not in [11]. This gives a complete solution of the problem of semisimplicity of $B_{m,n}(\delta)$ over an arbitrary field. This method will be used to study the semisimplicity of $B_{m,n}(\delta)$ in the current paper.

The contents of this paper are organized as follows. In Section 2, we state some results on cyclotomic Brauer algebras, and complex reflection group $W_{m,2}$. In Section 3, we describe explicitly the zero divisors of the discriminants for certain cell modules. Theorem A will be proved in Section 4.

2. Cyclotomic Brauer algebras

Let R be a commutative ring which contains the identity 1_R and δ_i, $1 \leq i \leq m$. The cyclotomic Brauer algebra $B_{m,n}(\delta)$ with parameters δ_i, $1 \leq i \leq m$, is the associative R-algebra which is free as R-module with basis which consists of all labeled Brauer diagrams [10]. $B_{m,n}(\delta)$ can also be defined as the R-algebra generated by $\{s_i, e_i, t_j | 1 \leq i < n$ and $1 \leq j \leq n\}$ subject to the relations:

(a) $s_i^2 = 1$, for $1 \leq i < n$.
(b) $s_is_j = s_js_i$ if $|i - j| > 1$.
(c) $s_is_{i+1}s_i = s_{i+1}s_is_{i+1}$, for $1 \leq i < n - 1$.
(d) $s_it_j = t_js_i$ if $j \neq i, i + 1$.
(e) $e_i^2 = \delta_0 e_i$, for $1 \leq i < n$.
(f) $s_ie_j = e_is_j$, if $|i - j| > 1$.
(g) $e_ie_j = e_je_i$, if $|i - j| > 1$.
(h) $e_it_j = t_je_i$, if $j \neq i, i + 1$.
(i) $t_it_j = t_jt_i$, for $1 \leq i, j \leq n$.
(j) $s_it_i = t_{i+1}s_i$, for $1 \leq i < n$.
(k) $e_je_i = e_i e_j$, for $1 \leq i < n - 1$.
(l) $s_ie_{i+1}e_i = e_i s_{i+1}e_i$, for $1 \leq i < n - 2$.
(m) $e_{i+1}s_is_{i+1} = e_is_{i+1}s_i$, for $1 \leq i < n - 2$.
(n) $e_je_i e_j = e_j e_i e_j$, if $|i - j| = 1$.
(o) $e_it_it_{i+1} = e_i t_{i+1}e_i$, for $1 \leq i < n$.
(p) $e_it_i^a e_i = \delta_a e_i$, for $1 \leq a \leq m - 1$ and $1 \leq i \leq n - 1$.
(q) $t_i^m = 1$, for $1 \leq i \leq n$.

One can prove that the two definitions of $B_{m,n}(\delta)$ are equivalent by the arguments similar to those for Brauer algebras in [9].

The following result can be proved easily by checking the defining relations of $B_{m,n}(\delta)$.

Lemma 2.1. Let $B_{m,n}(\delta)$ be a cyclotomic Brauer algebra over R. There is an R-linear anti-involution $* : B_{m,n}(\delta) \to B_{m,n}(\delta)$ such that $h^* = h$ for all $h \in \{e_i, s_i, t_j | 1 \leq i < n, 1 \leq j \leq n\}$.

Recall that F is a splitting field of $x^m - 1$. In the remaining part of this section, we assume $e \nmid m \cdot n!$. By [8, 8.2], F contains ξ, a primitive mth root of unity.

We will decompose an $FW_{m,2}$-module in Proposition 2.5, where $W_{m,2}$ is the complex reflection group of type $G(m, 1, n)$. Note that $W_{m,2}$ is generated by s_i, t_i satisfying the relations

- $s_i^2 = t_i^m = 1$ for $1 \leq i \leq n - 1$.

The contents of this paper are organized as follows. In Section 2, we state some results on cyclotomic Brauer algebras, and complex reflection group $W_{m,2}$. In Section 3, we describe explicitly the zero divisors of the discriminants for certain cell modules. Theorem A will be proved in Section 4.
The order of $W_{m,n}$ is $m^n \cdot n!$. By Maschke’s theorem, the group algebra $FW_{m,n}$ is (split) semisimple.

Let $\Lambda^+_m(n)$ be the set of m-partitions of n. When $m = 1$, we use $\Lambda^+(n)$ instead of $\Lambda^+_1(n)$. For any $\lambda \in \Lambda^+_m(n)$, let S^λ be the classical Specht module with respect to λ (see [5, 2.1]).

For any $\lambda \in \Lambda^+(n)$, let $\mu = (\mu_1, \mu_2, \ldots)$ with $\mu_i = \# \{j \mid \lambda_j \geq i \}$. Then μ, which will be denoted by λ', is called the dual partition of λ. If $\lambda = (\lambda^{(1)}, \lambda^{(2)}, \ldots, \lambda^{(m)}) \in \Lambda^+_m(n)$, we write $\lambda' = (\lambda^{(m')}, \lambda^{(m-1')}, \ldots, \lambda^{(1')})$ and call λ' the dual partition of λ.

Remark 2.2. All modules considered in this paper are left modules. I.e. $S^\lambda = FW_{m,n}y_{\lambda'}w_{\lambda'}x_{\lambda}$ if we keep the notation in [5]. In [13], we have assumed $u_i = \xi^i$, $1 \leq i \leq m$. In this paper, we keep this assumption in order to use results in [13] directly.

Since $FW_{m,n}$ is the Ariki–Koike algebra [1] with $q = 1$ and $x_1^m - 1 = \prod_{i=1}^m (x_1 - u_i)$, the following result is a special case of the result in [5].

Lemma 2.3. The set $\{S^\lambda \mid \lambda \in \Lambda^+_m(n)\}$ is a complete set of pairwise non-isomorphic irreducible $FW_{m,n}$-modules.

Definition 2.4. Let m be a positive integer. If m is even, we define $\wp_m(2) = \{\eta_i \mid \frac{m}{2} \leq i \leq m\}$, where

$$
\eta_i = \begin{cases}
(0, \ldots, 0, 2), & \text{if } i = m, \\
(0, \ldots, 0, \frac{m}{2}, \ldots), & \text{if } i = m, \\
(0, \ldots, 0, 1, \ldots, 0, i), & \text{if } \frac{m}{2} < i \leq m - 1.
\end{cases}
$$

If m is odd, we define $\wp_m(2) = \{\eta_i \mid \frac{m+1}{2} \leq i \leq m\}$, where

$$
\eta_i = \begin{cases}
(0, \ldots, 0, 2), & \text{if } i = m, \\
(0, \ldots, 0, 1, \ldots, 0, i), & \text{if } \frac{m+1}{2} \leq i \leq m - 1.
\end{cases}
$$

Proposition 2.5. Let $\mathbb{Z}_m \cdot B_1$ be the subgroup of $W_{m,2}$ generated by s_1, t_1t_2. As $FW_{m,2}$-modules, $\text{Ind}_{\mathbb{Z}_m \cdot B_1}^{W_{m,2}} 1 \cong \bigoplus_{\eta \in \wp_m(2)} S^\eta$.

Proof. Since $\{1, t_1, \ldots, t_1^{m-1}\}$ is a complete set of left coset representatives of $\mathbb{Z}_m \cdot B_1$ in $W_{m,2}$, $\{t_1^k \sum_{i=0}^{m-1} (t_1t_2)^i (1 + s_1) \mid 0 \leq k \leq m - 1\}$ is an F-basis of $\text{Ind}_{\mathbb{Z}_m \cdot B_1}^{W_{m,2}} 1$. By assumption, F contains
a primitive mth root of unity, say ξ. Since we are assuming that $u_i = \xi^i$, $1 \leq i \leq m$, $\text{Ind}_{\mathbb{Z}_m \wr \mathbb{S}_2} \mathbb{C}^1$ has a basis $\{w_i \mid 1 \leq i \leq m\}$, where

$$w_i = \prod_{j \neq i, \ 1 \leq j \leq m} (t_1 - u_j) \sum_{l=0}^{m-1} (t_1 t_2)^l (1 + s_1).$$

Since $\prod_{i=1}^m (t_1 - \xi^i) = 0$,

$$w_i = \prod_{j \neq i} (t_1 - u_j) \prod_{1 \leq j \leq m-1} (u_i t_2 - u_j) (1 + s_1).$$

By rescaling the above elements, $\{v_i \mid 1 \leq i \leq m\}$ is a basis of $\text{Ind}_{\mathbb{Z}_m \wr \mathbb{S}_2} \mathbb{C}^1$, where

$$v_i = \prod_{j \neq i} (t_1 - u_j) \prod_{j \neq m-i} (t_2 - u_j) (1 + s_1).$$

We have:

- Fv_m is an $FW_{m,2}$-module with $s_1 v_m = t_1 v_m = v_m$. By [5, 2.1], $Fv_m \cong S^{n_2}$.

- Suppose $2 \mid m$. If $\frac{m-1}{2} \leq i \leq m-1$, then $\xi^i \neq \xi^{m-i}$. The subspace $Fv_i \oplus Fv_{m-i}$ is an $FW_{m,2}$-module such that $t_1 v_j = u_j v_j$ for $j = i, m - i$, and $s_1 v_i = v_{m-i}$. Therefore, $Fv_i \oplus Fv_{m-i} \cong S^{n_i}$, $\frac{m-1}{2} \leq i \leq m - 1$.

- Suppose $2 \not\mid m$. If $\frac{m}{2} < i \leq m - 1$, then $Fv_i \oplus Fv_{m-i}$ is an $FW_{m,2}$-module such that $t_1 v_j = u_j v_j$ for $j = i, m - i$, and $s_1 v_i = v_{m-i}$. Therefore, $Fv_i \oplus Fv_{m-i} \cong S^{n_i}$, $\frac{m}{2} < i \leq m - 1$.

- Suppose $i = \frac{m}{2}$. Then Fv_i is an $FW_{m,2}$-module such that $s_1 v_i = v_i$ and $t_1 v_i = u_i v_i$. Therefore, $Fv_i \cong S^{n_i}$.

Consequently, $\text{Ind}_{\mathbb{Z}_m \wr \mathbb{S}_2} \mathbb{C}^1 \cong \bigoplus_{\eta \in \mathbb{S}_m(2)} S^{\eta}$ no matter whether m is even or odd.

Remark 2.6. Proposition 2.5 is a special case of [13, (4.4)]. The decomposition given there involves certain m-partitions η. In fact, we have to put more restrictions on η. The reason is that $\sum_{l=0}^{m-1} t_1^l w e_a$ may be equal to zero for general a (Here, we keep the notation in [13]). Therefore, the first equality in [13, (4.3)] is not true in general. If we denote by c_η the multiplicity of S^{η} in $\text{Ind}_{\mathbb{Z}_m \wr \mathbb{S}_{2k}} \mathbb{C}^1$, [13, (4.1), 6.2] are still true although we do not know the explicit description of c_η. Proposition 2.5 gives us the explicit information for η and c_η when $k = 1$.

In the remaining part of this section, we recall the result in [13], which says that $\mathcal{B}_{m,n}(\delta)$ is a cellular algebra in the sense of [6]. We also prove Theorem 2.9, which will play the key role in the proof of Theorem A.

Recall that a dotted Brauer diagram D with k horizontal arcs is determined by a pair of labeled (n, k)-parenthesis diagrams α, β and $w \in W_{m,n-2k}$, and vice versa [13]. In this situation, we write $D = \alpha \otimes w \otimes \beta$ if

- α (respectively β) is the top (respectively bottom) row of D.

- α (respectively β) is the top (respectively bottom) row of D.

- α (respectively β) is the top (respectively bottom) row of D.

- α (respectively β) is the top (respectively bottom) row of D.

- α (respectively β) is the top (respectively bottom) row of D.

- α (respectively β) is the top (respectively bottom) row of D.

- α (respectively β) is the top (respectively bottom) row of D.

- α (respectively β) is the top (respectively bottom) row of D.

- α (respectively β) is the top (respectively bottom) row of D.
• \(w \) corresponds to the dotted Brauer diagram (or braid diagram) which is obtained from \(D \) by removing the horizontal arcs at top and bottom rows of \(D \).

We denote by \(P(n, k) \) the set of all labeled \((n, k)\)-parenthesis diagrams.

A Young diagram \(Y(\lambda) \) for a partition \(\lambda = (\lambda_1, \lambda_2, \ldots) \) is a collection of boxes arranged in left-justified rows with \(\lambda_i \) boxes in the \(i \)th row of \(Y(\lambda) \). Suppose \(\lambda \in \Lambda_m^+/(n) \) with \(\lambda = (\lambda(1), \lambda(2), \ldots, \lambda(m)) \). The Young diagram \(Y(\lambda) = (Y(\lambda(1)), Y(\lambda(2)), \ldots, Y(\lambda(m))) \) is a bijection \(t = (t_1, \ldots, t_{m-1}, t_m) : (Y(\lambda(1)), \ldots, Y(\lambda(m-1)), Y(\lambda(m))) \rightarrow \{1, 2, \ldots, n\} \). If the entries in each \(t_i \), \(1 \leq i \leq m \) increase from left to right in each row and from top to bottom in each column, then \(t \) is called a standard \(\lambda \)-tableau. Let \(T^s(\lambda) \) be the set of all standard \(\lambda \)-tableaux.

Let \(\{y^\lambda_{s,t} | \lambda \in \Lambda_m^+(n), s, t \in T^s(\lambda)\} \) be the Murphy basis for \(FW_{m,n} \) \([5, 2.8]\).

Define

\[
C^{(k,\lambda)}_{(\alpha,s), (\beta,t)} = \alpha \otimes y^\lambda_{s,t} \otimes \beta, \quad \alpha, \beta \in P(n, k), \ s, t \in T^s(\lambda). \tag{2.7}
\]

Recall that \(R \) is a commutative ring containing the identity 1 and \(\delta_1, \ldots, \delta_m \).

Theorem 2.8. (See \([13, 5.11]\).) Suppose \(R \) contains \(u_1, \ldots, u_m \) such that \(x^m - 1 = (x - u_1) \times (x - u_2) \cdots (x - u_m) \). Let \(\Lambda = \{(f, \lambda) | 0 \leq f \leq [n/2], \lambda \in \Lambda_m^+(n - 2f)\} \). Then

\[
\{C^{(k,\lambda)}_{(\alpha,s), (\beta,t)} | \alpha, \beta \in P(n, k), s, t \in T^s(\lambda), (k, \lambda) \in \Lambda\}
\]

is a cellular basis of \(B_{m,n}(\delta) \). The \(R \)-linear anti-involution defined on \(B_{m,n}(\delta) \) is that defined in Lemma 2.1.

Following \([6, 2.1]\), we have the cell modules for \(B_{m,n}(\delta) \) with respect to the cellular basis provided in Theorem 2.8. Let \(\Delta(k, \lambda) \) be the cell module for \(B_{m,n}(\delta) \) with respect to \((k, \lambda) \in \Lambda \). Let \(\Delta(\lambda) \) be the cell module for \(FW_{m,n} \) with respect to the cellular basis \(\{y^\lambda_{s,t} | \lambda \in \Lambda_m^+(n), s, t \in T^s(\lambda)\} \).

It has been proved in \([5, 2.7]\) that \(\Delta(\lambda) \cong S^{\lambda'} \), where \(\lambda' \) is the dual partition of \(\lambda \). By \([6, 2.1]\), \(\Delta(k, \lambda) \) is spanned by \(\alpha \otimes v_j \otimes \alpha_0 \mod B_{m,n}(\delta)^{\rightarrow(k,\lambda)} \), where \(v_j \) ranges over the basis elements of \(S^{\lambda'} \).

Suppose \(\lambda \in \Lambda_m^+(n) \) and \(\mu \in \Lambda_m^+(n - 1) \). If there is a pair \((i, j)\) such that \(\lambda_i^{(j)} = \mu_i^{(j)} + 1 \) and \(\lambda_j^{(k)} = \mu_j^{(k)} \) for any \((k, l) \neq (j, i)\), then we write \(\mu \rightarrow \lambda \) and say that \(\mu \) is obtained from \(\lambda \) by removing a box. In this situation, we also say that \(\lambda \) can be obtained from \(\mu \) by adding a box.

Theorem 2.9. Let \(B_{m,n}(\delta) \) be a cyclotomic Brauer algebra over \(F \). If \(\mu \in \Lambda_m^+(n - 2) \) and \(\lambda \in \Lambda_m^+(n) \), then either \([\Delta(1, \mu') : \Delta(\lambda')] = 0 \) or \([\Delta(1, \mu') : \Delta(\lambda')] = 1 \). Furthermore, \([\Delta(1, \mu') : \Delta(\lambda')] = 1 \) if and only if one of the following conditions holds true.

1. \(\lambda^{(j)} = \mu^{(j)} \), \(j \neq m \) and two boxes in the skew Young diagram \(Y(\lambda^{(m)}/\mu^{(m)}) \) are not in the same column.
2. Suppose that \(m \) is odd. There is an \(i \) with \(\frac{m+1}{2} \leq i \leq m - 1 \) such that \(\mu^{(i)} \rightarrow \lambda^{(i)} \) and \(\mu^{(m-i)} \rightarrow \lambda^{(m-i)} \), and \(\lambda^{(j)} = \mu^{(j)} \) for \(j \neq i, m - i \).
3. Suppose that \(m \) is even. There is an \(i \) with \(\frac{m}{2} < i \leq m - 1 \) such that \(\mu^{(i)} \rightarrow \lambda^{(i)} \) and \(\mu^{(m-i)} \rightarrow \lambda^{(m-i)} \), and \(\lambda^{(j)} = \mu^{(j)} \) for \(j \neq i, m - i \).
4. Suppose that \(m \) is even. \(\lambda^{(j)} = \mu^{(j)}, j \neq m/2 \) and two boxes in the skew Young diagram \(Y(\lambda^{(m)/\mu^{(m)})} \) are not in the same column.
Definition 2.10. Suppose $\mu, \lambda \in \Lambda_m^+(n-2)$ and $\lambda \in \Lambda_m^+(n)$. λ is called μ-admissible if one of the conditions in Theorem 2.9(1)–(4) holds true. Let $\mathscr{A}(\mu)$ be the set of all μ-admissible m-partitions.

3. Zero divisors of certain discriminants

In this section, we assume $\delta_i \in F$ for $1 \leq i \leq m$, where F is a splitting field of $x^m - 1$ and $e \nmid m \cdot n!$. The main purpose of this section is to prove Theorem 3.9, which will give all zero divisors of the discriminants of the Gram matrices $G_{1,\mu'}$ with respect to the cell modules $\Delta(1,\mu')$, $\mu \in \Lambda_m^+(n-2)$.

Recall that $P(n,k)$ is the set of labeled parenthesis Brauer diagrams with k horizontal arcs. In what follows, we assume $\alpha_0 = \text{top}(e_{n-1}) \in P(n,1)$, the top row of e_{n-1}. Define M_1 and M_2 by setting

- $M_1 = \{\alpha \otimes w \otimes \alpha_0 \mid \alpha \in P(n,1), \ w \in W_{m,n-2}\}$.
- $M_2 = \{\alpha \otimes w \otimes \beta \mid \alpha, \beta \in P(n,k), \ w \in W_{m,n-2k}, \ 2 \leq k \leq \lfloor \frac{n}{2} \rfloor \}$.

We consider the quotient F-subspace $V = V_1/V_2$, where V_1 (respectively V_2) is spanned by $M_1 \cup M_2$ (respectively M_2). For convenience, we use $\alpha \otimes w \otimes \alpha_0$ instead of $\alpha \otimes w \otimes \alpha_0 + V_2$.

Recall that any dotted Brauer diagram can be written as $\alpha \otimes w \otimes \beta$ where $\alpha, \beta \in P(n,k)$ and $w \in W_{m,n-2k}$. Let $\tilde{\alpha} \in P(n,k)$ be such that

(a) α and $\tilde{\alpha}$ have the same horizontal arcs.
(b) There are $m-i$ dots on a horizontal arc in $\tilde{\alpha}$ if and only if there are i dots on the corresponding horizontal arc in α.

Define an R-linear isomorphism $\iota: \mathcal{B}_{m,n}(\delta) \to \mathcal{B}_{m,n}(\delta)$ by declaring that

$$
\iota(\alpha \otimes w \otimes \beta) = \tilde{\beta} \otimes w^{-1} \otimes \tilde{\alpha}.
$$

(3.1)
We remark that ι is not an algebraic (anti-)homomorphism since $\iota(e_it^k_i e_i) = \delta_k e_i \neq \delta_{m-k} e_i$ in general. However, by straightforward computation, we have
\[
\iota(w(\alpha \otimes w_1 \otimes \beta)) = \iota(\alpha \otimes w_1 \otimes \beta)w^{-1},
\] (3.2)
for any $\alpha, \beta \in P(n, k), w \in W_{m,n}, w_1 \in W_{m,n-2k}$.

Following [7], we have the following definition.

Definition 3.3. Suppose $\alpha_i \otimes w \otimes \alpha_0 \in V$ for $i = 1, 2$. Let $(\alpha_1 \otimes w_1 \otimes \alpha_0, \alpha_2 \otimes w_2 \otimes \alpha_0)$ be the coefficient of e_{n-1} in the expression of $\iota(\alpha_1 \otimes w_1 \otimes \alpha_0) \cdot (\alpha_2 \otimes w_2 \otimes \alpha_0)$, where ι is defined in (3.1). Let $G_{m,n}(\delta)$ be the $f \times f$-matrix with $f = \dim V$ such that the entry in $(\alpha_1 \otimes w_1 \otimes \alpha_0)$th row, $(\alpha_2 \otimes w_2 \otimes \alpha_0)$th column is $(\alpha_1 \otimes w_1 \otimes \alpha_0, \alpha_2 \otimes w_2 \otimes \alpha_0)$.

If either $h_1 \in M_2$ or $h_2 \in M_2$, then $\iota(h_1)h_2 \in V_2$. Since $e_{n-1} \notin V_2$, $(h_1, h_2) = 0$. Hence, $(\cdot, \cdot) : V \times V \to F$ is a well-defined F-bilinear form on V.

The following lemma can be verified easily.

Lemma 3.4. $G_{m,n}(\delta) = (g_{ij})$ is an $f \times f$ matrix such that $g_{ii} = \delta_0, 1 \leq i \leq f$ and $g_{ij} \in \{0, 1, \delta_1, \ldots, \delta_{m-1}\}$ if $i \neq j$.

Lemma 3.5. $G_{m,n}(\delta) : V \to V$ is a left $FW_{m,n}$-homomorphism and a right $FW_{m,n-2}$ homomorphism.

Proof. We consider $G_{m,n}(\delta)$ as the F-linear endomorphism on V such that
\[
G_{m,n}(\delta)(\alpha_1 \otimes w_1 \otimes \alpha_0) = \sum_{\alpha \in P(n, 1), w \in W_{m,n-2}} (\alpha \otimes w \otimes \alpha_0, \alpha_1 \otimes w_1 \otimes \alpha_0)\alpha \otimes w \otimes \alpha_0.
\]
By (3.2),
\[
\langle w(\alpha_1 \otimes w_1 \otimes \alpha_0), w(\alpha_2 \otimes w_2 \otimes \alpha_0) \rangle = \langle \alpha_1 \otimes w_1 \otimes \alpha_0, \alpha_2 \otimes w_2 \otimes \alpha_0 \rangle.
\]
In other words, $G_{m,n}(\delta) : V \to V$ is a left $FW_{m,n}$-homomorphism.

On the other hand, since $(\alpha_1 \otimes w_1 \otimes \alpha_0)y = \alpha_1 \otimes w_1 y \otimes \alpha_0$ for any $y \in W_{m,n-2}$, e_{n-1} appears in $y^{-1}(\alpha_0 \otimes w_1 \otimes \alpha_0)y$ with non-zero coefficient if and only if $w_1 = 1$. Therefore,
\[
\langle (\alpha_1 \otimes w_1 \otimes \alpha_0)y, (\alpha_2 \otimes w_2 \otimes \alpha_0)y \rangle = \langle \alpha_1 \otimes w_1 \otimes \alpha_0, \alpha_2 \otimes w_2 \otimes \alpha_0 \rangle.
\]
Consequently, $G_{m,n}(\delta) : V \to V$ is a right $FW_{m,n-2}$-homomorphism. \(\square\)

Since we are assuming that F is a splitting field of $x^m - 1$ and $e \nmid m \cdot n!$, $FW_{m,k}$ is (split) semisimple for any $k, 1 \leq k \leq n$. Assume that $\lambda \in \Lambda_m^+(k)$, the classical Specht module S^λ is a direct summand of $FW_{m,k}$. Consequently, $\Delta(1, \lambda')$ can be realized as a submodule of V, which is spanned by $\alpha \otimes v_j \otimes \alpha_0$ (mod V_2), where v_j ranges over the basis elements of S^λ. Note that $G_{m,n}(\delta)$ is a right $FW_{m,n-2}$-module. For any $\lambda \in \Lambda_m^+(n-2)$, the restriction of $G_{m,n}(\delta)$ on $\Delta(1, \lambda')$ induces a linear endomorphism on $\Delta(1, \lambda')$.
Definition 3.6. For \(\mu \in \Lambda_+^m(n - 2) \), define \(g_{\mu} = \prod_{\lambda \in \mathcal{A}(\mu)} g_{\lambda, \mu} \), where

\[
g_{\lambda, \mu} = \left(\tilde{\delta}_0 - m + m \sum_{p \in Y(\lambda/\mu)} c(p) \right)^{m-1} \prod_{i=1}^{m} \left(\tilde{\delta}_i + m \sum_{p \in Y(\lambda/\mu)} c(p) \right).
\]

(3.7)

It follows from [6, 2.3] that there is a unique symmetric bilinear form defined on each cell module \(\Delta(k, \lambda) \). Via such a bilinear form, one can define a Gram matrix \(G_{k, \lambda} \). Let \(\det G_{k, \lambda} \) be the determinant of \(G_{k, \lambda} \). The following result follows from [6, 3.8] and Theorem 2.8, immediately.

Lemma 3.8. \(\mathcal{B}_{m,n}(\delta) \) is (split) semisimple over \(F \) if and only if \(\det G_{k, \lambda} \neq 0 \) for all \((k, \lambda) \in \Lambda \).

In general, it is difficult to compute \(\det G_{k, \lambda} \). Assume \(\delta_i \neq 0 \) for some \(1 \leq i \leq m \). The following result describes all the zero divisors of \(\det G_{1,\lambda} \), \(\lambda \in \Lambda_+^m(n - 2) \). Fortunately, it completely determines \(\mathcal{B}_{m,n}(\delta) \) being (split) semisimple.

Theorem 3.9. Suppose \(\delta_i \neq 0 \) for some \(i, 1 \leq i \leq m \). \(\det G_{1,\mu} = 0 \) if and only if \(g_{\mu} = 0 \).

Proof. \((\Rightarrow)\) If \(\det G_{1,\mu} = 0 \), then we can find an irreducible \(\mathcal{B}_{m,n}(\delta) \)-module \(M \subset \text{Rad} G_{1,\mu}' \), where \(\text{Rad} G_{1,\mu}' = \{ v \in \Delta(1, \mu') \mid G_{1,\mu}'(v) = 0 \} \). It follows from [6, 2.6, 3.4] that any irreducible module of a cellular algebra must be the simple head of a cell module, say \(\Delta(k, \lambda') \). Hence, there is a non-zero homomorphism from \(\Delta(k, \lambda') \) to \(\Delta(1, \mu') \) with \((k, \lambda') < (1, \mu') \). Therefore, either \(k = 1 \) or \(k = 0 \).

Assume that \(k = 1 \). We use [13, 7.4] to get a non-zero homomorphism from \(\Delta(0, \lambda') \) to \(\Delta(0, \mu') \). Notice that, as \(FW_{m,n} \)-modules, \(\Delta(0, \lambda') \cong S^k \). Since \(FW_{m,n} \) is (split) semisimple, we have \(\lambda = \mu \), a contradiction since \((1, \lambda') < (1, \mu') \).

If \(k = 0 \), then there is a non-zero \(\mathcal{B}_{m,n}(\delta) \)-homomorphism from \(\Delta(0, \lambda') \) to \(\Delta(1, \mu') \), forcing \(\lambda \in \mathcal{A}(\mu) \). By [13, 8.6, 8.8], \(g_{\lambda, \mu} = 0 \). We have \(g_{\mu} = 0 \) as required.

\((\Leftarrow)\) Suppose \(g_{\mu} = 0 \). Then there is a \(\lambda \in \mathcal{A}(\mu) \) such that \(g_{\lambda, \mu} = 0 \). Since \(\lambda \in \mathcal{A}(\mu) \), by Theorem 2.9, \([\Delta(1, \mu') : S^k] = 1 \). Hence, there is a unique \(FW_{m,n} \)-submodule of \(\Delta(1, \mu') \) which is isomorphic to \(S^k \). Recall that \(G_{m,n}(\delta)|_{\Delta(1, \mu')} \) is a linear endomorphism on \(\Delta(1, \mu') \). For simplicity, we use \(G_{m,n}(\delta) \) instead of \(G_{m,n}(\delta)|_{\Delta(1, \mu')} \) if there is no confusion.

Since \(G_{m,n}(\delta) \) is an \(FW_{m,n} \)-homomorphism, and \([\Delta(1, \mu') : S^k] = 1 \), \(G_{m,n}(\delta)(M) \subset M \). By Schur’s Lemma, \(G_{m,n}(\delta)|_M = f(\delta)I \), where \(I \) is dim \(M \times \text{dim} M \) identity matrix and \(f(\delta) := f(\delta_0, \delta_1, \ldots, \delta_{m-1}) \) is a polynomial in \(\delta_i, 0 \leq i \leq m - 1 \).

Take a basis of \(M \) and extend it to get a basis of \(V \) via the elements \(\alpha \otimes w \otimes \alpha_0 \). Then \(G_{m,n}(\delta) \) is conjugate to \(\left(\begin{array}{cc} f(\delta)I & 0 \\ * & B \end{array} \right) \), where any entry in the diagonal of \(B \) is \(\delta_0 \), and the term of the entry of \(B \) elsewhere does not contains \(\delta_0 \). Since the degree of \(\delta_0 \) in \(\det G_{m,n}(\delta) \) is dim \(V \) (see Lemma 3.4), the degree of \(\delta_0 \) in \(f(\delta) \) must be 1. In particular, \(f(\delta) \) is not a constant number.

Take the parameters \(\delta_0, \delta_1, \ldots, \delta_{m-1} \) such that \(f(\delta) = 0 \). Then \(G_{m,n}(\delta)|_M = 0 \).

We claim \(e_{n-1}v = 0 \) for any \(v \in M \). Write \(v = \sum_{\alpha \otimes w} a_{\alpha \otimes w} \alpha \otimes w \otimes \alpha_0 \), where there are \(s \) dots at the left endpoint of the unique arc in \(\alpha \otimes w \). We divide \(P(n, 1) \) into three disjoint subsets \(P_1, P_2, P_3 \) as follows. Recall that a point in \(\alpha \otimes w \) is called a fixed point if it is an endpoint of a horizontal arc of \(\alpha \otimes w \). Otherwise, it is called a free point.
• P_1 consists of all $\alpha^x \in P(n, 1)$ such that $(n - 1, n)$ is a unique arc of α^x. Then $e_{n-1}(\alpha^x \otimes w \otimes \alpha_0) = \delta_0 \alpha_0 \otimes w \otimes \alpha_0$.

• P_2 consists of all $\alpha^x \in P(n, 1)$ such that both $n - 1$ and n are free points in α. Then $e_{n-1} \alpha^x \otimes w \otimes \alpha_0 = 0$.

• P_3 consists of all $\alpha^x \in P(n, 1)$ such that either $n - 1$ or n is a fixed point. Let i be the left endpoint of the unique arc in α^x. By assumption, there are s dots at the endpoint i. We define $w_{\alpha^x} \in \mathfrak{S}_{n-2}$ by setting

$$w_{\alpha^x} = \begin{pmatrix} i & i+1 & i+2 & \cdots & n-3 & n-2 \\ n-2 & i & i+1 & \cdots & n-4 & n-3 \end{pmatrix}.$$

Define $y_{\alpha^x} := t_i^i w_{\alpha^x}$. Then $e_{n-1} \cdot (\alpha^x \otimes 1 \otimes \alpha_0) = \alpha_0 \otimes y_{\alpha^x} \otimes \alpha_0$. Therefore, the coefficient of $\alpha_0 \otimes w_1 \otimes \alpha_0$ in $e_{n-1} v$ is

$$\sum_{\alpha^x \in P_3} a_{\alpha^x, y_{\alpha^x}^{-1}} w_1 + \sum_{s=0}^{m-1} \delta_s a_{\alpha^x_0, w_1}.$$

On the other hand, by direct computation, the coefficient of $\alpha_0 \otimes w_1 \otimes \alpha_0$ in $G_{m,n}(\delta)v$ is

$$\sum_{\alpha^x \in P(n,1), w \in W_{m,n-2}} a_{\alpha^x, w}(\alpha_0 \otimes w_1 \otimes \alpha_0, \alpha^x \otimes w \otimes \alpha_0).$$

We have

$$\langle \alpha_0 \otimes w_1 \otimes \alpha_0, \alpha^x \otimes w \otimes \alpha_0 \rangle = \begin{cases} \delta_s, & \text{if } \alpha^x \in P_1, \ w = w_1, \\ 0, & \text{if } \alpha^x \in P_1, \ w \neq w_1, \\ 0, & \text{if } \alpha^x \in P_2, \\ 1, & \text{if } \alpha^x \in P_3 \text{ and } w = y_{\alpha^x}^{-1} w_1, \\ 0, & \text{if } \alpha^x \in P_3 \text{ and } w \neq y_{\alpha^x}^{-1} w_1. \end{cases}$$

Since $G_{m,n}(\delta)v = 0$, the coefficient of $\alpha_0 \otimes w_1 \otimes \alpha_0$ in $G_{m,n}(\delta)v$ is zero. Therefore,

$$\sum_{\alpha^x \in P(n,1), \ w \in W_{m,n-2}} a_{\alpha^x, w}(\alpha_0 \otimes w_1 \otimes \alpha_0, \alpha^x \otimes w \otimes \alpha_0) = \sum_{\alpha^x \in P_3} a_{\alpha^x, y_{\alpha^x}^{-1}} w_1 + \sum_{s=0}^{m-1} \delta_s a_{\alpha^x_0, w_1} = 0,$$

forcing the coefficient of $\alpha_0 \otimes w_1 \otimes \alpha_0$ in $e_{n-1} v$ to be zero for all $w_1 \in W_{m,n-2}$. This completes the proof of the claim.

Therefore, as $\mathcal{B}_{m,n}(\delta)$-module, $M \cong \Delta(0, \lambda')$. We obtain a non-zero $\mathcal{B}_{m,n}(\delta)$-homomorphism from $\Delta(0, \lambda')$ to $\Delta(1, \mu')$. In particular, $\det G_{1,\mu'} = 0$. By [13, 8.6, 8.8] the parameters δ_i’s must satisfy the equation $g_{\lambda, \mu} = 0$, the condition we have assumed. \hfill \Box

4. Proof of Theorem A

In this section, we prove Theorem A, the main result of this paper. Unless otherwise stated, we assume that F is a splitting field of $x^m - 1$, which contains δ_i, $1 \leq i \leq m$. Assume $m > 1$.

Proposition 4.1. Suppose $n \geq 2$. If $0 \neq \delta_i \in F$ for some i, $1 \leq i \leq m$, then $\mathcal{B}_{m,n}(\delta)$ is (split) semisimple if and only if $\delta_i \mid m \cdot n!$ and $\det G_{1,\lambda} \neq 0$ for any $\lambda \in \Lambda^+_m(k - 2)$, $2 \leq k \leq n$.

3 Under our assumption, the group algebra $FW_{m,n}$ is (split) semisimple. Since the proof of [13, 8.6, 8.8] depends only on the fact that $CW_{m,n}$ is (split) semisimple, we can apply these results here.
Proof. \((\Leftarrow)\) Suppose that \(\mathcal{B}_{m,n}(\delta)\) is not (split) semisimple. There is a \((k, \lambda) \in \Lambda\) such that \(\det \mathcal{G}_{k,\lambda} = 0\). Since \(FW_{m,n}\) is (split) semisimple, \(k \neq 0\).

Take an irreducible submodule \(M \subset \mathcal{R} \Delta(k, \mu)\). By [6, 2.6, 3.4], \(M\) must be isomorphic to the simple head of a cell module, say \(\Delta(l, \lambda)\), such that \((l, \lambda) < (k, \mu)\). Furthermore, it results in a non-trivial homomorphism from \(\Delta(l, \lambda)\) to \(\Delta(k, \mu)\).

If \(l = k\), we use [13, 7.4] to get \(\Delta(0, \lambda) \cong \Delta(0, \mu)\). As \(FW_{m,n-2k}\)-modules, \(\Delta(0, \lambda) \cong S^\mu\). Since \(FW_{m,n-2k}\) is (split) semisimple, \(\lambda = \mu\), which contradicts \((l, \lambda) < (k, \mu)\).

Suppose \(l < k\). By [13, 7.4, 7.7], there is a non-trivial homomorphism from \(\Delta(0, \tilde{\lambda})\) to \(\Delta(1, \tilde{\mu})\) for some \(\tilde{\mu} \in \Lambda_m^+(p-2)\) with \(p \leq n\). By assumption, \(\det \mathcal{G}_{1,\tilde{\mu}} \neq 0\). Hence, \(\Delta(1, \tilde{\mu}) = D^{(1, \tilde{\mu})} \cong \Delta(0, \tilde{\lambda})\).

\((\Rightarrow)\) If \(\mathcal{B}_{m,n}(\delta)\) is (split) semisimple, then [6, 3.8] implies that \(\det \mathcal{G}_{k,\lambda} = 0\) for all \(0 \leq k \leq \lceil \frac{n}{2} \rceil\). Therefore, \(FW_{m,n}\) is (split) semisimple, forcing \(e \nmid m \cdot n\).

Suppose \(\det \mathcal{G}_{1,\mu'} = 0\) for some \(\mu' \in \Lambda_m^+(k-2)\). Then \(k < n\). By Theorem 3.9, there is a \(\mu\)-admissible \(m\)-partition \(\lambda\) such that \(\det \mathcal{G}_{k,\mu} = 0\). Equivalently, there is a non-zero \(\mathcal{B}_{m,n}(\delta)\)-homomorphism from \(\Delta(0, \lambda')\) to \(\Delta(1, \mu')\).

Since we are assuming that \(m \geq 2\), we can find an \(i, 1 \leq i \leq m\), such that \(\chi(i) = \mu(i)\). We can add \(l\) boxes to \(\lambda(i)\) so as to get another partition \(\tilde{\lambda}(i) = \tilde{\mu}(i)\). In this situation, \(\tilde{\lambda}(\tilde{i}) = \tilde{\mu}(\tilde{i})\), where \(\tilde{\lambda}\) (respectively \(\tilde{\mu}\)) can be obtained from \(\lambda\) (respectively \(\mu\)) by using \(\tilde{\lambda}(i)\) instead of \(\lambda(i)\) (respectively \(\mu(i)\)). By definition, \(\tilde{\lambda} \in \mathcal{A}(\tilde{\mu})\). If we take \(l\) such that \(|\lambda| + l = n\), then \(\Delta(0, \tilde{\lambda})\) and \(\Delta(1, \tilde{\mu})\) are \(\mathcal{B}_{m,n}(\delta)\)-modules. By Theorem 3.9, \(\det \mathcal{G}_{1,\tilde{\mu}} = 0\). However, since \(\mathcal{B}_{m,n}(\delta)\) is (split) semisimple, \(\det \mathcal{G}_{1,\mu'} \neq 0\), a contradiction. \(\square\)

Corollary 4.2. Let \(\mathcal{B}_{m,n}(\delta)\) be a cyclotomic Brauer algebra over \(F\), where \(F\) contains a non-zero \(\delta_i\) for some \(i, 1 \leq i \leq m\). \(\mathcal{B}_{m,n}(\delta)\) is (split) semisimple if only if \(\det \mathcal{G}_{k,\lambda} \neq 0\) for all \(\lambda \in \Lambda_m^+(n-2k)\), and \(k = 0, 1\).

Proof. Suppose \(\mathcal{B}_{m,n}(\delta)\) is (split) semisimple. It follows from [6, 3.8] that \(\det \mathcal{G}_{k,\lambda} \neq 0\) for all \(0 \leq k \leq \lceil \frac{n}{2} \rceil\). In particular, \(\det \mathcal{G}_{k,\lambda} \neq 0\) with \(k = 0, 1\) and \(\lambda \in \Lambda_m^+(n-2k)\).

Conversely, if \(\det \mathcal{G}_{0,\lambda} \neq 0\) for all \(\lambda \in \Lambda_m^+(n)\), then \(FW_{m,n}\) is (split) semisimple. Suppose that \(\mathcal{B}_{m,n}(\delta)\) is not (split) semisimple. By Proposition 4.1, there is a \(\mu \in \Lambda_m^+(k-2)\) with \(k < n\) such that \(\det \mathcal{G}_{1,\mu} = 0\). From the proof of Proposition 4.1, we can find a \(\tilde{\mu} \in \Lambda_m^+(n-2)\) such that \(\det \mathcal{G}_{1,\tilde{\mu}} = 0\). This contradicts our assumption. \(\square\)

Corollary 4.2 has been stated as a question in [13, p220]. We remark that Corollary 4.2 is not true if \(m = 1\). In fact, the first author has proved that the Brauer algebra \(\mathcal{B}_n(\delta)\) is (split) semisimple over \(F\) if and only if \(e \nmid n\) and \(\det \mathcal{G}_{1,\lambda} \neq 0\) for all \(\lambda \in \Lambda^+(k-2), 2 \leq k \leq n\). By [4, 3.3–3.4], Corollary 4.2 is not true if \(m = 1\).

Definition 4.3. Suppose that \(m, n \in \mathbb{N}\) with \(n \geq 2\). For \(m \geq 2\), define \(\rho_{m,n} = \{ma \mid a \in \tilde{\rho}_{m,n}\}\), where

\[
\tilde{\rho}_{m,n} = \left\{ k \in \mathbb{Z} \mid k = \sum_{p \in Y(\lambda/\mu)} c(p) \mid \mu \in \Lambda_m^+(n-2), \lambda \in \mathcal{A}(\mu) \right\}.
\]
If \(m = 1 \), we define

\[
\tilde{\rho}_{m,n} = \left\{ r \in \mathbb{Z} \mid r = \sum_{p \in Y(\lambda/\mu)} c(p) \mid \mu \in \Lambda^+(k-2), \lambda \in \Lambda^+(k), 2 \leq k \leq n \right\},
\]

where two boxes in \(Y(\lambda/\mu) \) are not in the same column.

At the end of this paper, we will prove \(\tilde{\rho}_{m,n} = \tilde{\mathbb{Z}}_{m,n} \). Hence, \(\rho_{m,n} = \mathbb{Z}_{m,n} \).

Theorem 4.4. Let \(\mathcal{B}_m(n) \) be a cyclotomic Brauer algebra over \(F \), where \(F \) contains a non-zero \(\delta_i \) for some \(i, 1 \leq i \leq m \). Suppose \(n \geq 2 \). \(\mathcal{B}_m(n) \) is (split) semisimple if and only if

\(e \mid m \cdot n! \)

(2) \(\varepsilon_i,0 \rho_{m,n}, 0 \leq i \leq m - 1 \), where \(\varepsilon_{i,0} \) is the Kronecker function.

Proof. The result follows from Theorem 3.9 and Corollary 4.2. \(\square \)

In the remaining part of this section, we deal with the case \(\delta_i = 0 \) for all \(1 \leq i \leq m \). First, we discuss \(\mathcal{B}_{m,3}(0) \).

We want to compute \(\det G_{1,\lambda} \) with \(\lambda = (1, 0, \ldots, 0) \). Note that we have assumed \(u_i = \xi^i \).

\(1 \leq i \leq m \). In this situation, \(y_{\lambda}: w_{\lambda}: x_{\lambda} = g(t_1) = \prod_{i=1}^{m-1} (t_1 - \xi^i) \).

Write \(v_1^{(0)} = \text{top}(e_1) \), \(v_2^{(0)} = \text{top}(s_1 e_2) \) and \(v_3^{(0)} = \text{top}(e_2) \). Let \(v_i^{(k)} \) be obtained from \(v_i^{(0)} \) by putting \(k \) dots at the left endpoint of the unique horizontal arc in \(v_i^{(0)} \). Then \(\Delta(1, \lambda) \) can be considered as a free \(F \)-module with basis \(\{ v_i^{(k)} \otimes g(t_1) \otimes v_i^{(0)} \mid 1 \leq i \leq 3, 0 \leq k \leq m - 1 \} \). Let \(a = \prod_{i=1}^{m-1} (1 - \xi^i) \). The Gram matrix with respect to this basis is

\[
G_{1,\lambda} = \begin{pmatrix}
0 & A & A \\
A & 0 & A \\
A & A & 0
\end{pmatrix},
\]

where \(A = (a_{ij}) \) is the \(m \times m \) matrix with \(a_{ij} = a, 1 \leq i, j \leq m \). Since we are assuming that \(m > 1 \), \(\det G_{1,\lambda} = 0 \). In other words, \(\text{Rad} \Delta(1, \lambda) \neq 0 \). Take an irreducible submodule \(D \) of \(\text{Rad} \Delta(1, \lambda) \). Note that any irreducible module must be the simple head of a cell module, say \(\Delta(k, \mu) \). Therefore, there is a non-trivial homomorphism from \(\Delta(k, \mu) \) to \(\Delta(1, \lambda) \). By [6, 2.6], \((k, \mu) < (1, \lambda) \). This proves the following lemma.

Lemma 4.5. Suppose \(\lambda = (1, 0, \ldots, 0) \). There is a cell module \(\Delta(k, \mu) \) of \(\mathcal{B}_{m,3}(0) \) with \((k, \mu) < (1, \lambda) \) such that there is a non-trivial homomorphism from \(\Delta(k, \mu) \) to \(\Delta(1, \lambda) \).

Let \(J_{m,n}(0) \) be the left ideal of \(\mathcal{B}_{m,n}(0) \) spanned by the dotted Brauer diagrams \(D \) such that \(\{ n - 1, n \} \) is a horizontal arc at the bottom row of \(D \). It is clear that \(J_{m,n}(0) = \mathcal{B}_{m,n}(0)e_{n-1} \).

Following [13], let \(I_{m,n} \) (respectively \(I_{m,n}^k \)) be the vector space generated by \((n, l) \)-dotted Brauer diagrams with \(l \geq k \) (respectively \(l > k \)). Let \(I_{m,n}^k(0) = \mathcal{B}_{m,n}/I_{m,n}^k \). Then \(I_{m,n}^k(0) \) is a \(\mathcal{B}_{m,n}(0) \)-module. Let \(I_{m,n}^k(0) \) be the subspace of \(I_{m,n}^k(0) \) generated by \(\{ \alpha \otimes w \otimes \beta_0 \mid \alpha \in P(n, k) \),
$w \in W_{m,n-2k}$, where $\beta_0 = \text{top}(e_{n-2k+1} \cdots e_{n-3} e_{n-1})$. Let $\mathcal{B}_{m,n}(0)$-mod be the category of the left $\mathcal{B}_{m,n}(0)$-modules. Let $G : \mathcal{B}_{m,n-2}(0)\text{-mod} \rightarrow \mathcal{B}_{m,n}(0)\text{-mod}$ be the tensor functor defined by declaring that $G(M) = J_{m,n}(0) \otimes \mathcal{B}_{m,n-2}(0) M$, for any $\mathcal{B}_{m,n-2}(0)\text{-mod} M$.

Proposition 4.6. Suppose $\lambda \in \Lambda^+_m(n-2k)$.

(a) The functor G sends non-zero $\mathcal{B}_{m,n-2}(0)$-homomorphisms to non-zero ones.

(b) $G(\Delta(k-1, \lambda)) = \Delta(k, \lambda)$.

Proof. Suppose $\phi : M_1 \rightarrow M_2$ is a $\mathcal{B}_{m,n-2}(0)$-module homomorphism. Write $\phi_* = G(\phi)$. For any $D_1 \in \mathcal{B}_{m,n}(0)$, $D \in J_{m,n}(0)$ and $m \in M_1$,

$$
\phi_* (D_1 (D \otimes m)) = \phi_* (D_1 D \otimes m) = (D_1 D) \otimes \phi(m) = D_1 (D \otimes \phi(m)) = D_1 \phi_* (D \otimes m)
$$

Therefore, ϕ_* is a $\mathcal{B}_{m,n}(0)$-homomorphism. For any $\mathcal{B}_{m,n-2}(0)$-module M, define an F-linear map $\alpha : J_{m,n}(0) \otimes \mathcal{B}_{m,n-2}(0) M \rightarrow M$ by setting $\alpha(D \otimes m) = (e_{n-1} D)_0 m$, where $(e_{n-1} D)_0$ is obtained from $e_{n-1} D$ by removing the horizontal arcs $\{n-1, n\}$ at the top and bottom rows of $e_{n-1} D$.

Suppose $D^* = s_{n-2} e_{n-1} \in J_{m,n}(0)$. Then $\alpha(D^* \otimes m) = m$. If $\phi \neq 0$, then there is an $m_1 \in M_1$ such that $\phi(m_1) = m_2 \neq 0$. Consequently, $\alpha(D^* \otimes m_2) = m_2 \neq 0$. We have $\phi_* \neq 0$ since $\phi_*(D^* \otimes m_1) = D^* \otimes m_2 \neq 0$. This completes the proof of (a).

(b) can be proved similarly as [13, 7.2]. We include a proof as follows. First, we claim as ($\mathcal{B}_{m,n}(0)$, $W_{m,n-2k}$)-modules

$$
I^k_{m,n} (0) \cong J_{m,n}(0) \otimes \mathcal{B}_{m,n-2}(0) I^{k-1}_{m,n-2}(0).
$$

(4.7)

For the simplification in exposition and notation, we omit $\mathcal{B}_{m,n-2}(0)$ in what follows.

Suppose $D_1 \otimes D_2 \in J_{m,n}(0) \otimes I^{k-1}_{m,n-2}(0)$. Let $e_{i,j} = \alpha \otimes 1 \otimes \alpha$, where $\alpha \in P(n, 1)$ contains a unique horizontal arc $\{i, j\}$. Define $e_{i,j}^x = t_i^x e_{i,j} t_j^x$. We claim that there is a dotted Brauer diagram D'_1 in $I^{k-1}_{m,n}(0)$ such that $D_1 \otimes D_2 = D'_1 \otimes e_{i_1,j_1}^{s_1,t_1} \cdots e_{i_{k-1},j_{k-1}}^{s_{k-1},t_{k-1}} D_2$, where $e_{i_l,j_l}^{s_l,t_l} \in \mathcal{B}_{m,n-2}(0)$, $1 \leq l \leq k-1$.

In fact, if the bottom row of D_1 contains a horizontal arc $\{i, j\}$, which is different from $\{n-1, n\}$ and if there are t dots at the left endpoint i of $\{i, j\}$, then we can find another horizontal arc $\{i', j'\}$ at the top row of D_1 such that there are s dots at the left endpoint i' of $\{i', j'\}$. Using vertical arcs $\{i, i'\}$ and $\{j, j'\}$ instead of the horizontal arcs $\{i, j\}$ and $\{i', j'\}$ in D_1, we get another dotted Brauer diagram \tilde{D}_1. We have $D_1 = \tilde{D}_1 e_{i,j}^x$. Note that the number of horizontal arcs in $\text{top}(\tilde{D}_1)$ is $k-1$ if the number of horizontal arcs in $\text{top}(D_1)$ is k. Using this method repeatedly, we have $D_1 \otimes D_2 = D'_1 \otimes e_{i_1,j_1}^{s_1,t_1} \cdots e_{i_{k-1},j_{k-1}}^{s_{k-1},t_{k-1}} D_2$.

Since $D_2 \in I^{k-1}_{m,n-2}(0)$, the number of the horizontal arcs in the top row of the composite of $e_{i_1,j_1}^{s_1,t_1} \cdots e_{i_{k-1},j_{k-1}}^{s_{k-1},t_{k-1}}$ and D_2 is at least $k-1$. If it is bigger than k, then $e_{i_1,j_1}^{s_1,t_1} \cdots e_{i_{k-1},j_{k-1}}^{s_{k-1},t_{k-1}} D_2 = 0$
First, we assume that $\prod_{i=1}^{n-1} D_2 = 0$ since $\delta_i = 0$, $0 \leq i \leq m - 1$. We have $D_1 \otimes D_2 = 0$. In the remaining case, $\prod_{i=1}^{n-1} D_2 = w \cdot e_{n-3} e_{n-5} \cdots e_{n-2k+1}$ for some $w \in W_{m,n-2}$. Note that $e_{n-1} w = w e_{n-1}$,

$$
D_1 \otimes D_2 = D_1' \otimes e_{i_1,j_1} \cdots e_{i_{k-1},j_{k-1}} D_2 = D_1' w \otimes e_{n-3} e_{n-5} \cdots e_{n-2k+1}.
$$

Since $(n-1, n)$ is the unique horizontal arc at the bottom row of D_1', $D_1' w = w_1 e_{n-1}$ for some $w_1 \in W_{m,n}$. Hence, $D_1 \otimes D_2 = w_1 e_{n-1} \otimes e_{n-3} e_{n-5} \cdots e_{n-2k+1}$. We can identify $D_1 \otimes D_2$ with $w_1 e_{n-1} e_{n-3} \cdots e_{n-2k+1} \in I_{m,n}^k(0)$ and vice versa. This proves $\dim_F U_0 = \dim_F I_{m,n}^k(0)$, where

$$U_0 = J_{m,n}(0) \otimes_{\mathcal{B}_{m,n-2}} I_{m,n-2}^k(0).$$

On the other hand, for any $\alpha \in I_{m,n-2}^k(0)$, let α_2^{λ} be obtained from α_2 by adding two vertical arcs $\{n-1, n-1\}$ and $\{n, n\}$. The F-linear map $\phi: U_0 \to I_{m,n}^k(0)$ sending $\alpha_1 \otimes \alpha_2$ to $\alpha_1 \cdot \alpha_2$ is surjective. Since $\dim_F U_0 = \dim_F I_{m,n}^k(0)$, it must be injective. By the definition of the product of two dotted Brauer diagrams in [13], we can verify that ϕ is a $(\mathcal{B}_{m,n}(0), W_{m,n-2k})$-homomorphism. This completes the proof of the claim.

By [13, (6.3)], $I_{m,n}^k(0) \otimes_{W_{m,n-2k}} S^\lambda \cong S^{(k, \lambda)}$. Therefore,

$$
G(S^{(k-1, \lambda)}) = \mathcal{B}_{m,n}(0) e_{n-1} \otimes_{\mathcal{B}_{m,n-2}} (I_{m,n-2}^k(0) \otimes_{W_{m,n-2k}} S^\lambda) = \mathcal{B}_{m,n}(0) e_{n-1} \otimes_{\mathcal{B}_{m,n-2}} I_{m,n-2}^k(0) \otimes_{W_{m,n-2k}} S^\lambda \

\cong I_{m,n}^k(0) \otimes_{W_{m,n-2k}} S^\lambda \cong S^{(k, \lambda)}.\quad \Box
$$

The following theorem is Theorem A(b).

Theorem 4.8. If $n \geq 2$, then $\mathcal{B}_{m,n}(0)$ is not (split) semisimple over F.

Proof. First, we assume that n is even. A direct computation shows that the Gram matrix $G_{\mathcal{Z},0}$ with respect to $\Delta(\mathcal{Z}, 0)$ is zero. In particular, $\det G_{\mathcal{Z},0} = 0$. By [6, 3.8], $\mathcal{B}_{m,n}(0)$ is not (split) semisimple. Suppose n is odd. We have $n \geq 3$. By Lemma 4.5, there is a non-zero $\phi \in \text{Hom}_{\mathcal{B}_{m,n}}(\Delta(k, \mu), \Delta(1, \lambda))$, where $\lambda = ((1), 0, 0, \ldots, 0) \in \Delta_m^+(1)$. Write $n = 3 + 2l$ for some $l \in \mathbb{N}$. Applying Proposition 4.6 l times, we get a non-zero homomorphism from $\Delta(k+l, \mu)$ to $\Delta(1+l, \lambda)$. By [6, 3.8], $\mathcal{B}_{m,n}(0)$ is not (split) semisimple. \Box

In order to complete the proof of Theorem A(a), we need verify $\tilde{\rho}_{m,n} = \tilde{\mathcal{Z}}_{m,n}$.

Proposition 4.9. Suppose $m, n \in \mathbb{N}$ with $n \geq 2$.

1. $\tilde{\rho}_{2,n} = \tilde{\rho}_{1,n} = \{k \in \mathbb{Z} \mid 3 - n \leq k \leq n - 3\} \cup \{2k - 3 \mid 3 \leq k \leq n, k \in \mathbb{Z}\}$.
2. $\tilde{\rho}_{m,n} = \tilde{\rho}_{1,n} \cup \{2 - n, n - 2\}$ if $m \geq 3$.

Proof. First, we assume $m = 2$. If $\mu \in \Delta_m^+(n-2)$ and $\lambda \in \mathcal{A}(\mu)$, then either $\lambda^{(1)} = \mu^{(1)}$, $\lambda^{(2)} \in \mathcal{A}(\mu^{(2)})$ or $\lambda^{(2)} = \mu^{(2)}$, $\lambda^{(1)} \in \mathcal{A}(\mu^{(1)})$. We can assume $\lambda^{(1)} \in \mathcal{A}(\mu^{(1)})$ without loss of generality. Suppose $|\mu^{(1)}| = k$. Then k can be any integer between 0 and $n - 2$. If $r = \sum_{p \in \mathcal{Y}(\lambda, \mu)} c(p)$,
then \(r \in \tilde{\rho}_{1,n} \), forcing \(\tilde{\rho}_{2,n} \subseteq \tilde{\rho}_{1,n} \). Identifying \(\lambda \in \Lambda^+(k) \) with bipartition \((\lambda, (n-k))\), we have \(\tilde{\rho}_{2,n} \supseteq \tilde{\rho}_{1,n} \). This proves the first equality in (1). Following [11], we define

\[
\mathcal{Z}(n) = \left\{ r \in \mathbb{Z} \mid r = 1 - \sum_{p \in Y(\lambda/\mu)} c(p), \lambda \in \Lambda^+(k), \mu \in \Lambda^+(k-2), 2 \leq k \leq n \right\},
\]

where two boxes in \(Y(\lambda/\mu) \) are not in the same column. By [12, 2.4],

\[
\mathcal{Z}(n) = \{ i \in \mathbb{Z} \mid 4 - 2n \leq i \leq n - 2 \} \setminus \{ i \in \mathbb{Z} \mid 4 - 2n < i \leq 3 - n, 2 \notdivides i \}.
\]

Therefore, the second equality in (1) follows.

Suppose \(m \geq 3 \). If \(\mu \) and \(\lambda \) satisfy one of the conditions in Theorem 2.9(1) and Theorem 2.9(4), then \(\sum_{p \in Y(\lambda/\mu)} c(p) \in \tilde{\rho}_{1,n} \). If \(\mu \) and \(\lambda \) satisfy the conditions (2) or (3) in Theorem 2.9, then there is an \(i \), such that \(\mu^{(i)} \to \lambda^{(i)} \) and \(\mu^{(m-i)} \to \lambda^{(m-i)} \). In this situation, \(\sum_{p \in Y(\lambda/\mu)} c(p) \in \Xi_a + \Xi_b \) with \(|\mu^{(i)}| = a \) and \(|\mu^{(m-i)}| = b \), where

- \(\Xi_a = \{ \sum_{p \in Y(\lambda/\mu)} c(p) \mid \mu \in \Lambda^+(a), \mu \to \lambda \} \), and
- \(\Xi_a + \Xi_b = \{ i \mid i = x + y, x \in \Xi_a, y \in \Xi_b \} \).

Note that we can choose a suitable \(\mu \) such that \(a + b = i \) for all \(i, 0 \leq i \leq n - 2 \). We claim

\[
\Xi_a = \begin{cases}
\{0\}, & \text{if } a = 0, \\
\{ i \in \mathbb{Z} \mid -a \leq i \leq a \} \setminus \{0\}, & \text{if } a = 1, 2, \\
\{ i \in \mathbb{Z} \mid -a \leq i \leq a \}, & \text{otherwise.}
\end{cases}
\]

In fact, one can verify the above result directly when \(a \in \{0, 1, 2, 3\} \).

Suppose \(\mu \in \Lambda^+(k + 1) \) and \(\mu \to \lambda \). If \(\lambda \) has at least two removable nodes, then we can find a box \(q \) which is a removable node for both \(\lambda \) and \(\mu \). Let \(\tilde{\lambda} \) (respectively \(\tilde{\mu} \)) be obtained from \(\lambda \) (respectively \(\mu \)) by removing \(q \). Then

\[
\sum_{p \in Y(\lambda/\mu)} c(p) = \sum_{p \in Y(\tilde{\lambda}/\tilde{\mu})} c(p) \in \Xi_k = \{-k \leq i \leq k\},
\]

the last equality follows from the induction assumption.

If \(\lambda \) has a unique removable node, then \(\lambda = (\lambda_1, \ldots, \lambda_r) \) with \(\lambda_i = \lambda_j, 1 \leq i, j \leq r \). We have \(\sum_{p \in Y(\lambda/\mu)} c(p) = \lambda_1 - r \). Note that \(-1 - k \leq \lambda_1 - r \leq k + 1 \). In any case, we have \(\Xi_{k+1} \subset \{ i \in \mathbb{Z} \mid -1 - k \leq i \leq 1 + k \} \).

Conversely, by the induction assumption, we can write \(i = \sum_{p \in Y(\lambda/\mu)} c(p) \), for some \(\lambda \in \Lambda^+(k + 1) \) and \(\mu \to \lambda \) if \(-k \leq i \leq k \). Since any Young diagram of a partition has at least two addable nodes, we can choose an addable node \(q \) for both \(\lambda \) and \(\mu \) such that \(q \) and \(\lambda/\mu \) are not in the same row. In other words, \(i \in \Xi_{k+1} \). We have

- \(\sum_{p \in Y(\lambda/\mu)} c(p) = -(k+1) \) if \(\lambda = (1, \ldots, 1) \in \Lambda^+(k+2) \) and \(\mu = (1, \ldots, 1) \in \Lambda^+(k+1) \).
- \(\sum_{p \in Y(\lambda/\mu)} c(p) = k + 1 \) if \(\lambda = (k+2) \) and \(\mu = (k+1) \).
Consequently, $\mathcal{S}_{k+1} \supset \{i \in \mathbb{Z} \mid -k - 1 \leq i \leq k + 1\}$. This completes the proof of the claim. Therefore,

$$\bigcup_{0 \leq a+b \leq n-2} T_a + T_b = \{i \in \mathbb{Z} \mid 2 - n \leq i \leq n - 2\}.$$

Note that $i \in \tilde{\rho}_{1,n}$ if $3 - n \leq i \leq n - 3$. (2) follows immediately. \Box

Proof of Theorem A(a) and (c). Theorem A(a) follows from Theorem 4.4 and Proposition 4.9. Theorem A(c) follows from Maschke’s theorem. \Box

Acknowledgments

We thank the referee for his/her helpful comments.

References

