Linearly ordered extensions of GO spaces *

Takuo Miwa

Department of Mathematics, Shimane University, Matsue 690, Japan

Nobuyuki Kemoto

Department of Mathematics, Faculty of Education, Oita University, Oita 870-11, Japan

Received 14 February 1992

Abstract

We prove a main theorem: Theorem. There always exists a minimal linearly ordered d-extension of a GO space, where a LOTS Y is said to be a linearly ordered d-extension of a GO space \(\langle X, \tau, \prec \rangle \) if Y contains X as a dense subspace and the ordering of Y extends the ordering \(\prec \) of X. As some applications of the Theorem, (1) we give a partial negative answer to a problem: "Does every perfect GO space have a perfect orderable d-extension?" (2) For a discrete space \(\langle X, \tau \rangle \) of cardinality \(\omega_1 \), there is a linear ordering \(\preceq \) of X such that \(\langle X, \tau, \preceq \rangle \) is a GO space and whose every linearly ordered d-extension contains an order preserving copy of the ordinal space \(\omega_1 \) as a dense subspace.

Keywords: GO space; LOTS; (minimal) Linearly ordered d-extension; Orderable space; Perfect GO space.

AMS (MOS) Subj. Class: 54F05, 54A10.

1. Introduction

A linearly ordered topological space (abbreviated LOTS) is a triple \(\langle X, \lambda, \leq \rangle \), where \(\langle X, \leq \rangle \) is a linearly ordered set and \(\lambda \) is the usual interval topology defined by \(\leq \) (i.e., \(\lambda \) is the topology generated by \(\{ (a, \rightarrow): a \in X \} \cup \{ (\leftarrow, a): a \in X \} \) as a subbase), where \((a, \rightarrow) = \{ x \in X: a < x \} \) and \((\leftarrow, a) = \{ a \in X: a > x \} \). Similarly \((a, b) = \{ x \in X: a < x < b \}, [a, b) = \{ x \in X: a \leq x < b \}, [a, b] = \{ x \in X: a \leq x \leq b \} \), etc. If necessary, we write \(\leq_x, (a, b)_X \) instead of \(\leq, (a, b) \). Throughout this paper, \(\lambda \) or \(\lambda_X \)

Correspondence to: Professor H. Kemoto, Department of Mathematics, Faculty of Education, Oita University, Oita 870-11, Japan. E-mail: nkemoto@cc.oita-u.ac.jp.

* Dedicated to Professor Akihito Okuyama on his 60th birthday.
denote the usual interval topology on a linearly ordered set \(\langle X, \leq \rangle \). Furthermore we use the notations \(\mathbb{N}, \mathbb{Z}, \mathbb{R} \) as the set of all natural numbers, all integers, and all real numbers, respectively.

A **generalized ordered space** (abbreviated **GO space**) is a triple \(\langle X, \tau, \leq \rangle \), where \(\langle X, \leq \rangle \) is a linearly ordered set and \(\tau \) is a topology on \(X \) such that \(\lambda \subset \tau \) and \(\tau \) has a base of open sets each of which is order convex, where a set \(A \) of \(X \) is called **order convex** if \(x \in A \) for every \(x \) lying between two points of \(A \). For a GO space \(\langle X, \tau, \leq \rangle \) and \(Y \subset X \), \(\tau|Y \) denotes the subspace topology \(\{U \cap Y : U \in \tau\} \) for \(Y \) and \(\leq |Y \) denotes the restricted ordering of \(\leq \) for \(Y \). If it will cause no confusion, we shall omit to mention of \(\lambda \) (or \(\tau \)) and \(\leq \), and write simply “Let \(X \) be a LOTS (GO space)”. A topological space \(\langle X, \tau \rangle \), where \(\tau \) is a topology on a set \(X \), is said to be **orderable** if \(\langle X, \tau, \leq \rangle \) is a LOTS for some linear ordering \(\leq \) on \(X \). Similarly, we write simply “Let \(X \) be an orderable space” if it will cause no confusion. A LOTS \(Y = \langle Y, \lambda, \leq \rangle \) is said to be a **linearly ordered extension** of a GO space \(X = \langle X, \tau, \leq \rangle \) if \(X \subset Y \), \(\tau = \lambda | X \) and \(\leq = \leq | X \). Furthermore if \(X \) is closed (respectively dense) in the space \(\langle Y, \lambda \rangle \), then \(Y \) is said to be a **linearly ordered c-extension** (respectively **d-extension**) of \(X \). Similarly an orderable space \(Y = \langle Y, \tau_Y \rangle \) is said to be an **orderable** (c-, d-) **extension** of a GO space \(X = \langle X, \tau_X, \leq \rangle \) if \(X \) is a (closed, dense) subset of \(Y \) and \(\tau_X = \tau_Y | X \). Note that every GO space has a compact linearly ordered d-extension \([2,3.12.3]\).

Let \(X = \langle X, \tau, \leq \rangle \) be a GO space and \(\lambda \) the usual order topology on \(X \). Define a subset \(X^* = \langle X, \tau, \leq \rangle^* \) of \(X \times \mathbb{Z} \) by

\[
X^* = X \times \{0\} \cup \{(x, n) : x \in X, (x, \to) \in \tau - \lambda \text{ and } n < 0\}
\cup \{(x, m) : x \subset X, (\prec, x) \subset \tau - \lambda \text{ and } m > 0\}
\]

\([3, \text{Definition 2.5}]\). Then \(X^* \) is considered as a linearly ordered c-extension of \(X \) by identifying \(X = X \times \{0\} \).

For many topological properties \(P \), it is known that a GO space with a property \(P \) has an orderable extension which also has property \(P \). For example, the following are known.

(a) If a GO space \(X \) is metrizable, then so is \(X^* \) \([3, \text{Proposition 5.5}]\).

(b) If a GO space is (hereditarily) paracompact, then so is \(X^* \) \([3, \text{Theorem 4.2}]\). But the situation \(P = \text{"perfect"} \) is unclear, where a topological space is **perfect** if each of its closed subsets is a \(G_\delta \)-set. The following problem was posed in \([1, \text{Question 1}]\).

Problem 1.1. Does every perfect GO space have a perfect orderable extension?

In connection with this, the following is known from \([3, \text{Theorem 5.9} \text{ and Example 7.2}]\).

(c) The Sorgenfrey line \(S \) is a perfect GO space, but does not have a perfect orderable c-extension.
However, S does not provide an example necessary to answer Problem 1.1 negatively, since the LOTS $\mathbb{R} \times (0, 1)$ with the lexicographic ordering is a perfect linearly ordered d-extension of S.

The following problem which is a special case of Problem 1.1 was posed in [4, Question (VI)].

Problem 1.2. Does every perfect GO space have a perfect orderable d-extension?

In this paper, we shall prove in Section 2 that there always exists a minimal linearly ordered d-extension of a GO space. In Section 3, we shall give an example which is a partial negative answer for Problem 1.2. In Section 4, we pose a problem: "What properties are hereditary to linearly ordered d-extensions?", and we shall show: For a discrete space $\langle X, \tau \rangle$ of cardinality ω_1, there is a linear ordering \prec of X such that $\langle X, \tau, \prec \rangle$ is a GO space and whose every linearly ordered d-extension contains an order preserving copy of the ordinal space ω_1 as a dense subspace. This shows that metrizability, hereditary paracompactness and perfectness are not hereditary properties to linearly ordered d-extensions.

2. Existence of a minimal linearly ordered d-extension

First we define a LOTS \tilde{X} for a GO space X. Let $X = \langle X, \tau, \leq \rangle$ be a GO space and let X be the usual order topology on X. Define a subset $\tilde{X} = \langle X, \tau, \leq \rangle$ of $X \times \{0, 1\}$ by

$$\tilde{X} = X \times \{0\} \cup \{ (x, -1): x \in X \text{ and } [x, -) \in \tau - \lambda \} \cup \{ (x, 1): x \in X \text{ and } (,-x) \in \tau - \lambda \}.$$

Throughout this paper, we identify X with $X \times \{0\}$ and consider \tilde{X} as a LOTS by the lexicographic order \preceq on \tilde{X}. The LOTS \tilde{X} is sometimes denoted by $\langle X, \lambda, \preceq \rangle$. Then it is straightforward to show that \tilde{X} is a linearly ordered d-extension of X. Note that X^* is not a linearly ordered extension of \tilde{X} under the natural correspondence, and that $X^* = \tilde{X} = X$ if X is a LOTS.

In the following theorem, we prove that, for a GO space X, \tilde{X} can be considered as a minimal (in the sense of inclusion) linearly ordered d-extension of X.

Theorem 2.1. Let $X = \langle X, \tau, \leq \rangle$ be a GO space, and $Y = \langle Y, \lambda, \leq \rangle$ a linearly ordered d-extension of X. Then there is an order preserving homeomorphism f from \tilde{X} into Y such that $f(x) = x$ for each $x \in X$.

Proof. Using the notation in the definition of \tilde{X}, let λ be the usual order topology on X and $\tilde{X} = \langle X, \lambda, \preceq \rangle$.
Claim 1. If \(x \in X \) and \((x, \rightarrow) \in \tau - \lambda \) (i.e., \((x, -1) \in \tilde{X} \)), then \(x \) has an immediate predecessor \(x_- \) in \(Y \) with \(x_- \notin X \).

Proof. Assume \(x \in X \) and \((x, \rightarrow) \in \tau - \lambda \). Since \((x, \rightarrow) \in \tau \) and \(Y \) is a linearly ordered extension of \(X \), there is \(y, z \in Y \) with \(y <_Y x <_Y z \) such that \((y, z)_Y \in Y \) \((x, -1) \in X \), where \((a, b) \) (respectively \((a, b)_Y \)) denotes the open interval in \(X \) (respectively in \(Y \)). Then it is easy to show that \(y \) is an immediate predecessor \(x_- \) of \(x \) in \(Y \) (i.e., \((y, x)_Y = \emptyset \)) using the fact that \(X \) is dense in \(Y \). It follows from \((x, \rightarrow) \notin \lambda \) that \(x_- \notin X \).

Similarly we have:

Claim 1'. If \(x \in X \) and \((\leftarrow, x) \in \tau - \lambda \) (i.e., \((x, 1) \in \tilde{X} \)), then \(x \) has an immediate successor \(x_+ \) in \(Y \) with \(x_+ \notin X \).

Define a function \(f : \tilde{X} \to Y \) by

\[
 f(z) = \begin{cases}
 z, & \text{if } z = (z, 0) \in X = X \times \{0\}, \\
 x_-, & \text{if } z = (x, 1) \in \tilde{X}, \\
 x_+, & \text{if } z = (x, 1) \in \tilde{X}.
\end{cases}
\]

Obviously, we have \(f(x) = x \) for each \(x \in X \). We show:

Claim 2. \(f \) is order preserving.

Proof. Let \(z = (x, n) \) and \(z' = (x', n') \) be points in \(\tilde{X} \) with \(z < z' \). Then it is clear that \(x < x' \). We shall show \(f(z) <_Y f(z') \). There are six cases: (i) \(x < x' \), \(z = (x, 1), \) \(z' = (x', -1) \), (ii) \(x < x', z = (x, 1), \) \(z' = (x', 0) \), (iii) \(x < x', \) \(z = (x, 0), \) \(z' = (x', -1) \), (iv) \(z = (x, -1), \) \(z' = (x, 0) \), (v) \(z = (x, -1), \) \(z' = (x, 1) \), (vi) \(z = (x, 0), \) \(z' = (x, 1) \). Since the proofs of other cases are much more simpler, we only show the case (i). In this case, we have \(f(z) = x_+ \) and \(f(z') = x_- \). Since \(x < x' \) and \(x_+ \notin X \), we have \(x_+ <_Y x' \). Furthermore, since \(x_- \) is an immediate predecessor of \(x' \) in \(Y \), we have \(x_- <_Y x' \). Assume \(x_+ = x' \). Since \(x_+ \notin X \) by Claim 1, \(x' \) is the immediate successor of \(x \) in \(X \) (i.e., \((x, x') = \emptyset \)). So we have \([x', \rightarrow) = (x, \rightarrow) \in \lambda \). Then by the definition of \(\tilde{X} \), we have \(z' = (x', -1) \notin \tilde{X} \). This is a contradiction. Therefore we have \(f(z) <_Y f(z') \). This completes the proof of Claim 2.

Claim 3. \(f : \tilde{X} \to f(\tilde{X}) \) is a homeomorphism.

Proof. It suffices to show that \(f \) and \(f^{-1} \) are continuous. Note that the topology on \(f(\tilde{X}) \) is the subspace topology of \(\lambda_Y \).

First, it is easy to show the continuity of \(f^{-1} \) from the fact that \(f((x, \rightarrow)^-) = (f(z), \rightarrow)_Y \cap f(\tilde{X}) \) and \(f((\leftarrow, z)^+) = (\leftarrow, f(z))_Y \cap f(\tilde{X}) \) for each \(z \in \tilde{X} \), where \((\leftarrow, \rightarrow)^- = \{u \in \tilde{X} : z \leq u\}, (\leftarrow, \rightarrow)^+ = \{u \in \tilde{X} : u < z\} \).

Secondly, we show the continuity of \(f \). It suffices to show \(f^{-1}((y, \rightarrow)_Y) \) and \(f^{-1}((\leftarrow, y)_Y) \) are open in \((\tilde{X}, \tilde{A}) \) for each \(y \in Y \). We only show the first. Let \(y \in Y \). If \(y \in f(\tilde{X}) \), there is \(u \in \tilde{X} \) with \(f(u) = y \). Then we have \(f^{-1}((y, \rightarrow)_Y) = (u, \tilde{A}) \).
Next, we consider the case "\(y \not\in f(X) \)". It suffices to show the next subclaim.

Subclaim. \(f^{-1}((y, \to)_Y) = \bigcup \{(u, \to) : y <_Y u, u \in X\} \) if \(y \not\in f(X) \).

Proof. The inclusion "\(\subseteq \)" is evident. To show the inclusion "\(\subset \)", let \(z \in f^{-1}((y, \to)_Y) \). Note that \(y <_Y f(z) \).

Fact. \((y, f(z))_Y \neq \emptyset \).

Proof of fact. There are three cases.

Case 1: \(z = (\langle x, 1 \rangle) \) for some \(x \in X \).

In this case, since \(f(z) = x_+ \) is the immediate successor of \(x \) in \(Y \) and \(y \in f(X) \), we have \(x \in (y, f(z))_Y \).

Case 2: \(z = (\langle x, 0 \rangle) (=x) \) for some \(x \in X \).

Assume that \((y, f(z))_Y (= (y, x)_Y) \) is empty. First we show that \(x \) has no immediate predecessor in \(X \) (i.e., \(\{x, \to\} \notin \lambda \)). To show this, let \(x' \) be a point in \(X \) with \(x' < x \). Then we have \(x' = f(x') <_Y y <_Y f(z) = f(x) = x \). It follows from \(y \not\in f(X) \) and \(x' \in X \) that \(y \in (x', x)_Y \). Since \(X \) is dense in \(Y \), there is an \(x'' \in (x', x)_Y \cap X \). Then we have \(x'' < x'' < x \). This shows that \(x \) has no immediate predecessor in \(X \). By the assumption "\((y, x)_Y = \emptyset \)", we have \(\{x, \to\} = (y, \to)_Y \cap X \in \tau \). It follows from the definition of \(X \) that \(\langle x, -1 \rangle \) is a point of \(X \). Since both of \(y \) and \(x_+ \) are immediate predecessors of \(x \) in \(Y \), we have \(y = x_+ \). But this is a contradiction, because \(y \not\in f(X) \) and \(x_+ \in f(X) \). Thus we have \((y, f(z))_Y \neq \emptyset \).

Case 3: \(z = (\langle x, -1 \rangle) \) for some \(x \in X \).

Since \(y \not\in f(X) \) and \(x_+ = f(z) \in f(X) \), we have \(x_+ = f(z) \in (y, x)_Y \). It follows from the density of \(X \) in \(Y \) that \((y, x)_Y \cap X \neq \emptyset \). But since \(f(z) = x_+ \) is the immediate predecessor of \(x \) in \(Y \) and \(x_+ \notin X \), we have \(\emptyset \neq (y, f(z))_Y \cap X \subset (y, f(z))_Y \). This completes the proof of the Fact.

Using this Fact and the density of \(X \) in \(Y \), pick a point \(u \) in \((y, f(z))_Y \cap X \). Then we have \(z \in (u, \to)_Y \). This completes the proof of the Subclaim.

Thus the proof of the theorem is completed. □

Remark 2.2. (1) In Theorem 2.1, we usually identify \(\tilde{X} \) with \(f(X) \). Therefore \(\tilde{X} \) can be considered as a minimal linearly ordered \(d \)-extension of a GO space \(X \).

(2) In general, a GO space \(\langle X, \tau, \leq \rangle \) has many linearly ordered \(d \)-extensions. For example, consider the GO space (in fact, a LOTS) \(X = (0, 1) \) with the usual topology and ordering in \(\mathbb{R} \). Then \((0, 1), [0, 1), (0, 1], [0, 1] \) with the usual topology and ordering are all linearly ordered \(d \)-extensions of \(X \). In this case, \(\tilde{X} = X = (0, 1) \).

3. A partial negative answer for Problem 1.2

In this section, we shall give an example which is a partial negative answer for Problem 1.2. Note that if a GO space \(X \) has countable cellularity, then so does every orderable \(d \)-extension of \(X \), therefore \(X \) is perfect by [3, Theorem 2.10].
Example 3.1. There exists a perfect GO space which does not have any perfect linearly ordered d-extension or any orderable c-extension.

Construction of an example. Let X be the closed unit interval $[0, 1]$ with the usual ordering \leq, and C the Cantor set. The topology τ of X has local bases $\{[x, x + \varepsilon): \varepsilon > 0\}$ for each point $x \in X - C$, and $\{\{x\}\}$ for each point $x \in C$. It is clear that X is a GO space and C is a discrete closed and open subspace of X. We shall prove the following claims.

Claim 1. The space X is perfect.

Proof. Let U be an open set of X. Since C is closed discrete in X, we may assume $U \subset X - C$. For each $x \in U$, there is an $\varepsilon(x) > 0$ such that $[x, x + \varepsilon(x)) \subset U$. Let $G = \bigcup\{(x, x + \varepsilon(x)): x \in U\}$ and $K = U - G$.

Subclaim. $[x, x + \varepsilon(x)) \cap [y, y + \varepsilon(y)) = \emptyset$ whenever $x, y \in K$ with $x \neq y$.

Proof. We may assume that $x < y$. Suppose that there is a point $z \in [x, x + \varepsilon(x)) \cap [y, y + \varepsilon(y))$. Then $x < y \leq z < x + \varepsilon(x)$, so we have $y \in (x, x + \varepsilon(x)) \subset G$. But this is a contradiction, because $y \in K = U - G$. This completes the proof of the Subclaim.

By picking up a rational number in $(x, x + \varepsilon(x))$ for each $x \in K$, it is clear that $|K| \leq \omega$ by the Subclaim. Since $\{(x, x + \varepsilon(x)): x \in U\}$ is an Euclidean open cover of G, there is a countable subset $U' \subset U$ such that $G = \bigcup\{(x, x + \varepsilon(x)): x \in U'\}$. Since K is countable and $U = K \cup \bigcup\{(x, x + \varepsilon(x)): x \in U'\}$, U is an F_σ-set of X. This completes the proof of Claim 1.

It is easy to show that $[x, \to) \in \tau - \lambda$ if and only if $x \in (0, 1]$, and $(\leftarrow, x] \in \tau - \lambda$ if and only if $x \in C - \{1\}$, where λ is the usual order topology on X (so, the Euclidean topology). Therefore \tilde{X} is represented by $X \times \{0\} \cup (0, 1] \times \{-1\} \cup (C - \{1\}) \times \{1\}$.

Next we show:

Claim 2. The space \tilde{X} is not perfect.

Proof. We naturally consider that X is a subset of \tilde{X}. Then the subset C of X is open in \tilde{X}. Suppose that C is an F_σ-set of \tilde{X} such that $C = \bigcup\{F_n: n \in \mathbb{N}\}$ and each F_n is closed in \tilde{X}. Then there is an F_n such that F_n is an infinite subset. Since C is compact in the usual topology of $[0, 1]$, F_n has a cluster point x (in the usual topology of $[0, 1]$) and $x \in C$. Then the points $\langle x, 1 \rangle$ or $\langle x, -1 \rangle$ of \tilde{X} are contained in $\text{cl}_{\tilde{X}} F_n$. But since $F_n = \text{cl}_{\tilde{X}} F_n$ and $F_n \subset C$, this is a contradiction. Thus Claim 2 is completely proved.

Claim 3. Any linearly ordered d-extension Y of X is not perfect.

Proof. Since perfectness is a hereditary property and \tilde{X} is the minimal linearly ordered d-extension of X, it follows from Claim 2 that Y is not perfect.
Claim 4. Any orderable c-extension Y of X is not perfect.

Proof. Suppose that Y is a perfect orderable c-extension of X. Since X is closed in Y, X is a $G_δ$-set of Y. Therefore X is a p-embedded subspace of Y. (For p-embedded, see [3, Definition 5.8].) Since X is submetrizable, X has a $G_δ$-diagonal. By [3, Theorem 5.9], X must be metrizable. But the subspace $(\frac{1}{2}, \frac{3}{2})$ of X is homeomorphic to the Sorgenfrey line, therefore X cannot be metrizable. This is a contradiction. Thus the proof of Claim 4 is completed.

4. Hereditary properties to linearly ordered d-extensions

In this section, we consider the following problem.

Problem 4.1. What properties are hereditary to linearly ordered d-extensions?

For this problem, it is easy to see that separability and countable cellularity are hereditary properties to linearly ordered d-extensions. On the other hand, Example 4.2 below shows that metrizability, hereditary paracompactness and perfectness are not hereditary properties to linearly ordered d-extensions.

Example 4.2. Let $\langle \omega_1, \lambda, \leq \rangle$ be the LOTS with the usual ordering \leq and its interval topology on ω_1. Let $X = \{\alpha < \omega_1; \alpha = 0$ or α is a successor ordinal]. Putting $\tau_X = \lambda \upharpoonright X$ and $\leq_X = \leq \upharpoonright X$, $X = \langle X, \tau_X, \leq_X \rangle$ can be considered as a GO space. Note that the topological space $\langle X, \tau_X \rangle$ is discrete, it is orderable by identifying $X = \omega_1 \times \mathbb{Z}$ with the lexicographic order. But $\langle X, \tau_X, \leq_X \rangle$ is not a LOTS. In fact, let λ_X be the usual interval topology on the ordered set $\langle X, \leq_X \rangle$. Then it is easy to show that the topological space $\langle X, \lambda_X \rangle$ is homeomorphic to the ordinal space ω_1. So $\bar{X} - X \neq \emptyset$. Next we decide \bar{X}. First observe that $(\langle X, \tau_X \rangle X, \leq_X)$ for each $\alpha E X$, where (α, X) denotes the interval in X. Therefore $\langle \alpha, 1 \rangle \notin \bar{X}$ for each $\alpha \in X$.

Claim. For each $\alpha \in X$, $\langle \alpha, \to \rangle \in \tau_X - \lambda_X$ if and only if α is an immediate successor of a limit ordinal α_∞ in ω_1.

Proof. The “only if” part: Assume that $\alpha \in X$ and $\alpha = \alpha_\infty + 1$ for some nonlimit ordinal α_∞ (i.e., $\alpha_\infty \in \lambda_X$). Then we have $\langle \alpha, \to \rangle \in \lambda_X$. The “if” part: Let $\alpha \in X$ and $\alpha = \alpha_\infty + 1$ in ω_1 for some limit ordinal α_∞ (i.e., $\alpha_\infty \in \lambda_X$). Then $\langle \alpha, \to \rangle \in \lambda_X$. Assume $\langle \alpha, \to \rangle \in \lambda_X$. Then there is an immediate predecessor α'' of α in X. Since α' is the immediate predecessor of α in ω_1 and $\alpha' \notin X$, we have $\alpha'' < \alpha'$. Since α' is limit, we have $\alpha'' < \alpha_\infty + 1 < \alpha_\infty < \alpha$. This contradicts that α'' is the immediate predecessor of α in X by $\alpha'' + 1 \notin X$. This completes the proof of the Claim.
By the above observation and the Claim, \tilde{X} can be represented by $X \times \{0\} \cup \{\langle \alpha, -1 \rangle : \alpha \in X \text{ and } \alpha \text{ is the immediate successor of the limit ordinal } \alpha_- \text{ in } \omega_1 \}$. Define $f: \tilde{X} \to \omega_1$ by

$$f(\langle \alpha, n \rangle) = \begin{cases} \alpha, & \text{if } n = 0, \\ \alpha_-, & \text{if } n = -1. \end{cases}$$

Then it is straightforward to show that f is an order preserving isomorphism. So we can identify $\tilde{X} - \omega_1$.

Thus, by Theorem 2.1, every linearly ordered d-extension of the discrete GO space X contains an order preserving copy of the ordinal space ω_1 as a dense subspace. Therefore all linearly ordered d-extensions of X are neither metrizable, hereditarily paracompact nor perfect (cf. The results (a), (b) in Section 1).

The proof of Example 4.2 shows the following.

Theorem 4.3. For every discrete space $\langle X, \tau \rangle$, there is a linear ordering \leq of X such that $\langle X, \tau, \leq \rangle$ is a GO space and whose every linearly ordered d-extension contains an order preserving copy of the ordinal space $|X|$ as a dense subspace.

References

