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I. Introduction 

Consider the initial value problem 

(1.1) x'(t) = f(t, x(t)), x(to) = xo, 

where t and x are real variables and f is a real valued function defined 
and continuous on the rectangle 

R: it-toi<a, ix-xol<b, a, b>O. 

0. Ko01 [1] recently proved the uniqueness of a solution of the pro­
blem ( 1.1) and the uniform convergence of sequences of functions obtained 
by Picard's method of successive approximations to this unique solution 
on an appropriate interval around to if f(t, x) satisfies on R the conditions: 

(1.2) it-toi·if(t,xl)-f(t,x2)i<kixl-x21, k>O, 

(1.3) 

where the constants k, £X and f3 satisfy the inequalities 

(1.4) 0<£X<1, {3<£X and k(1-£X)<1-f3. 

For f3 = 0 we obtain a set of conditions which were recently introduced 
by M. A. KR.AsNOSELSKII and I. G. KREIN [2]. They proved that this 
set of conditions implies the uniqueness of a solution of the problem (1.1). 
In [3], the present author completed this result as he showed that this 
set of conditions also implies the convergence of sequences of functions 
obtained by Picard's method of successive approximations to the unique 
solution of (1.1). As a matter of fact, two proofs of this result were given, 
which in method are both different from the method used by Kooi. The 
object of this paper is to show that one of our methods can be us!:}d to 
prove a general result about contractions, which are defined in generalised 
complete metric spaces (not every two points have necessarily a finite 
distance), and to show how Kooi's more general result can be obtained 
from it. As a consequence of this deduction we obtain the result that the 
sequences of successive approximations converge not only uniformly but 
even in a stronger sense. Furthermore we shall show by means of an 
example that the statement about the convergence of successive approxi-
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mations may be false if k(1-cx):;;;,1-p, even though the problem {1.1) 
has a unique solution. 

2. A Theorem about Contractions 

Let X be an abstract set, the elements of which are denoted by x, y, ... , 
and assume that on the Cartesian product X X X a distance function 
d(x, y) (0 < d(x, y) < oo) is defined, satisfying the following conditions: 

(D1) d(x, y)=O if and only if x=y, 

(D2) d(x, y) = d(y, x) (symmetry), 

(D3) d(x, y) <d(x, z) + d(z, y) (triangle inequality), 

(D4) every d-Cauchy sequence in X is d-convergent, i.e. lim d(xn,Xm) = 0 
n,m--+-oo 

for a sequence Xn EX (n= 1, 2, ... ) implies the existence of an element 
x EX with lim d(x, Xn) = 0, (x is unique by (D1) and (D3)). 

fl-+00 

This concept differs from the usual concept of a complete metric space 
by the fact that not every two points in X have necessarily a finite 
distance. One might call such a space a generalised complete metric space. 

Assume now that Tis a mapping defined on the whole of X, and which 
maps X into itself and satisfies the following conditions: 

(01) There exists a constant O<q< 1, such that 

d(Tx, Ty) < qd(x, y) 

for all (x, y) with d(x, y) < oo. 

(02) For every sequence of successive approximations Xn=TXn-1, 
n= 1, 2, ... , where x0 is an arbitrary element of X, there exists an index 
N(x0 ) such that d(xN, XN+l)<oo for alll=1, 2, .... 

(03) If x and y are two fix points ofT, i.e. Tx=x and Ty=y, then 
d(x, y)<oo. 

Under these conditions we have the following theorem: 

Theorem. The equation Tx=x has one and only one solution, and 
every sequence of successive approximations Xn=Txn-1, n= 1, 2, ... , where 
x0 is an arbitrary element of X, is convergent in distance to this unique 
solution. 

Proof. The existence of a solution of the equation Tx=x can be 
proved as follows: Let xo EX and form the sequence Xn=TXn-1(n= 1,2, ... ); 
then by {02) there exists an index N(xo) such that d(xN, XN+l) < oo, 
l= 1, 2, ... , and hence by (D3) we have d(xn, Xn+l)<oo for n;;;.N and 
l=1,2, .... Then (01) implies d(xN+I,XN+2)<qd(xN,TxN) and generally 
d(xn, Xn+I)<qn-Nd(xN, TxN) for n;;;.N. Since by {D3) we have 

l 

d(xn, Xn+d < 1 d(Xn+i, Xn+i-1), 
i=l 

we obtain by using the preceding inequality, 
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(2.1) d(xn, Xn+z)< {qn-N(1-ql)f(1-q)}d(xN, TxN), n;;.N and l= 1, 2, ... , 

which proves Xn to be a d-Cauchy sequence. From (D4) it follows then 
that there exists an element x EX such that lim d(xn, x) = 0. For this 

f/,--->00 

element x we conclude by means of (D3) that d(x, Tx)<d(Tx, Xn)+ 
+d(xn, x)<;qd(x, Xn-l)+d(xn, x) for n;;.N, and hence d(x, Tx)=O, which 
is equivalent to Tx=x by property (D1) of d. So x is a fix point ofT. 
To complete the proof we have to show that T has only one fix point. 
AssumeTx=x andTy=ywith xo~=y; then by (03) we knowthatd(x,y) <=, 
and hence by (01) we obtain O.;;;d(x,y)=d(Tx,Ty).;;;qd(x,y). This shows 
that d(x, y)=O, which by (D1) contradicts xo~=y. 

Remark l. If we let l tend to infinity in (2.1) we obtain 

(2.2) d(x, Xn)<{qn-Nf(1-q)}d(xN, TxN), 

which gives an estimate of the rate of convergence of the sequence Xn 
to its limit x. 

Remark 2. This theorem is a slightly more general form of the 
usual theorem about contractions one finds in the literature (see e.g. 
PETROVSKII, I. G., V orlesungen iiber die Theorie der Gewohnlichen 
Differentialgleichungen), where it is assumed that dis finite and T satisfies 
condition (01) only, since in this case (02) and (03) are trivially satisfied. 

Remark 3. Condition (03) ofT is necessary for the conclusion that 
the mapping T has at most one fix point, as the following example shows: 
Let X1 and X2 be two complete metric spaces with distance functions 
d1 and d2 respectively. Assume that on X1 and X2 contractions T1 and T2 
are defined, each of which has only one fix point by our theorem. Now 
let X be the union of X1 and X2, and let the following distance function d 
on X be defined: d(x, y) = dl(X, y) if X and y E xl; d(x, y) = d2(X, y) if X 
and y E X2, and d(x, y) =(X) if X E xl and y E x2. Let T be the mapping 
which on X1 coincides with T1 and on X2 coincides with T2. Then all the 
conditions except (03) of our theorem are satisfied, but T has obviously 
two fix points. 

3. Proof of the Theorem of Section 1 

Let R, f(t, x), a, b, <X, {3, k and A be as in section 1 and let M = max(lf(t, x) I; 
(t, x) ER). By I we denote the intervallt-tol<c, where c=min (a, bfM). 
Then we shall prove, by application of the theorem about contractions, 
the existence and uniqueness of a solution, and the convergence of Picard's 
successive approximations of problem (1.1) on this interval I. For this 
purpose we shall exhibit a space X with a metric d and a mapping T 
satisfying the conditions given in the preceding section. For the space X 
we choose the set of all continuous functions q;(t), defined on I and 
satisfying: 

(3.1) q;(to)=xo, lq;(t)-xol<b for all tEl. 
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Then, on the Cartesian product X X X, we define the following distance 
function: 

(3.2) d(qJI, qJ2)=sup (jqJI(t)-qJ2(t)J/Jt-toJPk; Jt-toJ <;c; qJI, qJ2 EX), 

where p > l, but such that pk( l - rx) < l - fJ, which is possible since by 
(1.6) we have k(l-rx) < 1- fJ. It is clear that this d-function satisfies the 
properties (Dl), (D2) and (D3) of section 2. To prove (D4), we first remark 
that if we write 

(3.3) di(qJI.qJ2)=max(jqJI(t)-qJ2(t)J; Jt-toJ<c; qJI,qJ2EX) 

(the metric of uniform convergence), we have 

(3.4) 

This shows that d-convergence implies uniform convergence and d-ean­
vergence is in general stronger than uniform convergence. Now let 
lpn EX, n= I, 2, ... , be ad-Cauchy sequence, i.e. lim d(lpn, lpm)=O. Then, 
there exists a subsequence 'I{Jn such that d('!fln, 'I{Jn+I) < 2-n. The inequality 
(3.3) implies that this sequence '!fln is uniformly convergent to a function 

co 

91(t) on 1, which obviously satisfies (3.I). By putting qJ-'I{Jn= _L ('I{Jk+I-'I{Jk), 
k-n 

dividing through Jt-tojPk and taking the suprema of the absolute values 
of each term of this sum, we obtain 

00 

(3.5) d(qJ, 'I{Jn) < l d('I{Jk, 'I{Jk+I) < 2-n+l, 
k-n 

and hence lim d(qJ, 'I{Jn)=O. By (D3) we have d(qJ, lpn)<d(qJ, 'I{Jk)+d('f{Jk, lpn) 
n-+co 

and the required property lim d(qJ, lpn) = 0 follows. 
n-+CO 

For T we choose the mapping 
t 

(3.6) TqJ(t) =xo+ f f(u, qJ{u))du, qJ EX. 
t, 

Then, by the choice of the interval I, this T maps X into itself. Indeed, 
t 

TqJ(to)=xo is trivial and JTqJ(t)-xol=l f f(u, qJ(u))duJ<MJt-toJ<Mc<;b. 
t, 

Furthermore it is easy to see that a function qJ is a fix point of T if and 
only if qJ is a solution of problem (l.l). If we form the sequence lpn=Tlpn-1, 
n= I, 2, ... , where qJo is an arbitrary element of X, we obtain a sequence 
of successive approximations of Picard 

t 
(3.7) lpn(t) =Xo+ f f(u, lpn-I(u)) du, lpo EX. 

t, 

We shall show now that T satisfies properties (Cl), (C2) and (C3) of 
section 2. 

Proof of (CI). Let qJI, qJ2 be two arbitrary elements of X. Then, by 
property (1.2) of f, we have 
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JTqJ1-T(/J2I <I S Jl(u, qJ1{u))- l(u, (/J2(u))JduJ <k S (JqJ1(u)-qJ2(u)J/Ju-toj)JduJ 
t ~ • 

=k f Ju-t0 JPk-1 (JqJ1(u)-qJ2(u)J/Ju-toJPk)·JduJ. Hence, if d(qJ1, qJ2)<oo, then 
4 t 

JTqJ1-TqJ2J < k d(gJ1, (/)2) f Ju-toJPk-1 JduJ = k d(qJ1, (/)2) (pk)-1 Jt-t0 JPk = p-1 
to 

d(qJ1,qJ2) Jt-t0 JPk. This implies, by the definition of d, that d(TqJ1,TqJ2),;;;; 
,;;;;qd(qJ1, qJ2), where q=p-1< 1, by the choice of p. Hence Tis a contraction. 

Proof of (C2). Let (/!n=TqJn-1, n= 1, 2, ... , qJo EX and arbitrary. 
Then by the boundedness of I we have 

t 

1(/J2(t)-qJ1(t)J< S Jl(u, (/J1(u))-l(u, qJo(u))J·JduJ,;;;;2MJt-toJ, 
~ 

so that by property (1.3) of I we obtain 
t t 

JqJ3(t)-qJ2(t)J< S Jl(u, (/J2(u))-l(u, (/J1(u))J·JduJ,;;;;A f Ju-toJ-IlJ(/J1(u)-qJ2(u)J" 
~ . 
t 

JduJ < A(2M)" f Ju-t0 J"-fl JduJ = A(2M)"'(l +(ex:- ,B))-1Jt-t0 Jl+"-fl,;;;; A(2M)" 
to 

Jt-t0 J1+<>-fl, since ex:- ,8> 0 by (1.4). Generally 

(3. 7) l'(/Jn+l(t)- (/!n(t) I~ Al+o:+ ... +<>"-\2M)""-1Jt- toJ(1-fl)(l+<>+ ... +<>"-2l+<>"-1 < 

< B Jt- toJ(1-/lH1+<>+ ... +<>"-2l+<>"-1' 
1 

where B=A1-"max(2M,1). In view ofpk{1-cx:)<l-,8 there exists an 
index N(p) such that (1-,8)(1+cx:+ ... +cx:n-2)+cx:n-1>pk for all n>N, 
and hence for these values of n, we have 

1(/Jn+l(t)-qJn(t)Jflt-toJPk,;;;;BJt-toJY,., where yn=(1-,8) (1+cx:+ ... +cx:n-2)+ 
+cx:n-1-pk>O. This shows that d(qJn, (/Jn+l)<oo for all n>N(p), which 
completes the proof. 

Proof of (C3). If TqJ1=qJ1 and TqJ2=qJ2, then as in the preceding 
proof we have JqJ2(t)-qJ1(t)J<2MJt-toJ, and by using (1.3) successively 

1-{J 

we obtain I (/)1 ( t) - (/)2( t) I < B J t- to J1- ", where B has the same meaning as in 
the preceding proof. Since pk<(1-,8)/(l-cx:), this implies d(qJ1,(/J2)<oo, 
which finishes the proof of (C3). 

After this verification an application of the theorem about contractions 
in the preceding section gives the desired result. Moreover we have proved 
that the successive approximations (3.7) converge not only uniformly to 
the solution of (1.1), but even in the stronger sense of the metric d (see 
(3.3) and (3.4)). 

Remark. The condition that l(t, x) is continuous may be replaced 
by a weaker condition. It is e.g. sufficient to assume that l(t, x) is a 
Lebesgue measurable function in t for each fixed x, continuous in x if 
t= t0 (this is not necessary if ,8 = 0), and that there exists a positive Lebesgue 
integrable function M(t) on Jt-toJ <;a, such that Jl(t, x)J ,;;;;M(t) for all 
(t, x) E R. Condition (1.2) or (1.3) of I implies that I is a continuous function 
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in x for each t =1 to, and hence f is continuous in x for each t (if fJ = 0 then 
(1.3) already implies this). From these properties of f, it follows that if 
({! is a measurable function, f(t, ({!(t)) is a measurable function oft. In this 
setting the initial value problem has to be read as 

(1.1)' x'(t)=f(t, x(t)) almost everywhere, x(to)=xo. 

t+t. 
If I is the intervaljt-toj<:c, where c=max (jtj; J f M(u)duJ.;;;b), then one 

t, 
can prove, by applying the theorem about contractions, that on this 
interval I the problem has a unique solution among the Lebesgue measur­
able functions satisfying (3.1) on I, and that sequences of successive 
approximations converge uniformly on I to this unique solution. The 
proof of this result is left to the reader since it is formally the same. 

4. An Example 

In this section we shall show by means of an example that if k(l- .x);;;. 
> l- {3, where k, .x and fJ have the same meaning as in section 1 and 
satisfy k > 0, 0 < .x < l and fJ < .x, the sequence of successive approximations 
may be divergent. For this purpose we define a function f(t, x) as follows: 

0 if -l.;;;t.;;;O, -oo<x<oo, 
1-/i 

0 if O<t< 1, t~<;x<oo, 
f(t, x) = cr.-fi 1-/i 

kt~-k'!. if O<t< 1, O.;;;x<t1 -"', 
e<-{3 t 

k t1 -"' if O<t< 1, -oo<x<O. 

It is easy to verify that this function is continuous and that max(jf(t,x) /) = k. 
We consider the initial value problem x'(t)=f(t, x(t)), x(O)=O. In this case 
to=O, a=l, b=oo, c=l and M=k. We shall prove first that f satisfies 
the following conditions: 

jtj·jf(t, X1)- f(t, X2)j <( kjx1-X2j, 

jtjfi jf(t, X1)- j(t, X2)j <( k jx1 -X21cr., 

i.e. f satisfies the conditions (1.2) and (1.3) with A=k. 
For the proof we consider the following cases: 

(i) -1.;;;t<0, X1 and xz arbitrary; then there is nothing to prove. 
1-{3 

(ii) O<t<: l, x1 and xz;>t1 -cr.; then there is also nothing to prove. 
1-/i 1-/i 

(iii) O<t< l, X1;>t1 -cr. and O.;;;x2 .;;;t1 -cr.. Then we have 
1-/i 

t Jf(t, x1)- f(t, xz)! = k(t1 -"' -xz) < k !x1- xz!, 
1-/i 1-/i 1-/i 

fJ (t1-"'-x2) t1-"'-x2 e1 -"'-x t !f(t,xl)-f(t,x2)!=k t1 -fi =k ~ .;;;k U 2 

(t1-"')(1-e<) (t1-"'-x2)1-"' 
1-/i 

= k(tr=.;;-xz)"'.;;;kjxl-x2J"'. 
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(iv) 0<t<;1, x1>t1 -"' and x2.;;;;0. Then we have 
1-{J 1-fJ 

tjf(t,x1)-f(t,x2)j=kt~<klx1-x2! since x1-x2>t1 -"', 

1-{J 

ttJjf(t,x1)-f(t,xz)i=k(t1-"')"'<klx1-x21"' for the same reason. 
1-{J 

(v) O<t< 1, O.;;;;x1, x2.;;;;t1-"'. Then we have 

1-{J 

tfljj(t,x1)-f(t,x2)i=kt8- 1 jx1-x21, and since jx1-x2!<t1 -"' we see that 

tfl-1 < jx1 -xzl"'-1, hence tfl if(t, x1)- f(t, xz)i .;;;k jx1 -xzl"'· 
1-fJ 

(vi) 0<t<;1, O.;;;;x1.;;;t1 -"' and -oo<x2<0. Then we have 

tfljj(t, x1)- j(t,x2)i =k tfl-1x1 .;;;;kxf-1xl = kxf.;;;;k jx1-x2l"' for the same reason. 

Let y = k(1-1X)/(1- {3) and let cpo(t) = 0 for -1 < t.;;;; 1; then the successive 
approximations are for y < 1: 

1-fJ 

tpn(t)=O if -1.;;;;t.;;;;O and tpn(t)=(y-y2+ ... +(-1)n-lyn)t1 -"' if 0<t<;1, 
and for r> 1, 

1-fJ 

tp2n-l(t)=0 if -1.;;;;t.;;;;O and tp2n-1(t)=yt1-"' if 0<t<;1, 

tp2n(t)=0 if -1<;t<;1, n=1, 2, .... 

This shows that if y< 1, the successive approximations converge uni­
formly to the solution 

1-fJ 

(4.1) cp(t)=O if -1.;;;;t.;;;;O, cp(t)={y/(1+y)}t1-"' if O<t<;l. 

If y > 1, there is no convergence at all and the functions tp2n and tp2n-1 
are no solutions of (1.1). The solution of this initial value problem for 
all possible values of y is ( 4.1 ). This solution is unique since to the left 
oft= 0, the function f is equal to zero and to the right oft= 0, this function 
has the property that it is non-increasing in x for each t. It follows that 
in the case y> 1, even if the solution is unique, the successive approxi­
mations are not necessarily convergent. 
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