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We consider higher-order derivative interactions beyond second-order generalized Proca theories that 
propagate only the three desired polarizations of a massive vector field besides the two tensor 
polarizations from gravity. These new interactions follow the similar construction criteria to those 
arising in the extension of scalar–tensor Horndeski theories to Gleyzes–Langlois–Piazza–Vernizzi (GLPV) 
theories. On the isotropic cosmological background, we show the existence of a constraint with a 
vanishing Hamiltonian that removes the would-be Ostrogradski ghost. We study the behavior of linear 
perturbations on top of the isotropic cosmological background in the presence of a matter perfect fluid 
and find the same number of propagating degrees of freedom as in generalized Proca theories (two tensor 
polarizations, two transverse vector modes, and two scalar modes). Moreover, we obtain the conditions 
for the avoidance of ghosts and Laplacian instabilities of tensor, vector, and scalar perturbations. We 
observe key differences in the scalar sound speed, which is mixed with the matter sound speed outside 
the domain of generalized Proca theories.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

General Relativity (GR) is still the fundamental theory for de-
scribing the gravitational interactions even after a century. Cosmo-
logical observations [1–3] led to the standard model yielding an 
accelerated expansion of the late Universe driven by the cosmo-
logical constant. The standard model of particle physics describes 
the strong and electro-weak interactions with an exquisite experi-
mental success marking the milestone in high-energy physics. It is 
still a big challenge to unify gravity with the known forces in Na-
ture and to merge these two standard models into a single theory. 
Moreover, employing the usual techniques of quantum field the-
ory, we are not able to explain the small observed value of the 
cosmological constant. On the other hand, this has motivated to 
consider infra-red modifications of gravity which could account for 
an appropriate screening of the cosmological constant. On a similar 
footing, one can also consider infra-red gravitational modifications 
to realize an effective negative pressure against gravity in form of 
dark energy [4].

The simplest and mostly studied large-distance modification 
of gravity is attributed to an additional scalar field beyond the 
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standard model of particle physics, e.g., the DGP braneworld [5], 
Galileons [6], and massive gravity [7]. The scalar field arising in 
such theories can have non-trivial self-interactions but also it can 
be generally coupled to gravity [8,9]. These interactions have to be 
constructed with great caution to guarantee the absence of ghost-
like Ostrogradski instability [10], which otherwise would yield an 
unbounded Hamiltonian from below.

It is well known that matter fields have to be coupled to the 
Lovelock invariants or to the divergence-free tensors constructed 
from the Lovelock invariants. Hence they can for instance couple to 
the volume element 

√−g and to the Ricci scalar R which are the 
only two non-trivial Lovelock invariants, since the Gauss–Bonnet 
term is topological in four dimensions. Furthermore, they can cou-
ple to the divergence-free metric gμν , Einstein tensor Gμν , and the 
double dual Riemann tensor Lμναβ . In flat space–time the ghost-
free scalar interactions with derivatives acting on them are known 
as the Galileon interactions [6]. If one would naively promote the 
partial derivatives to covariant derivatives, this procedure would 
yield the equations of motion higher than second order [10]. The 
appearance of higher-order derivative terms can be avoided by in-
troducing non-minimal couplings to gravity through the Lovelock 
invariants or the divergence-free tensors.

Horndeski theories [11] constitute the most general scalar–
tensor interactions with second-order equations of motion. In 
these theories there is only one scalar degree of freedom (DOF) 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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besides two graviton polarizations without having the Ostrogradski 
instability [12]. It is a natural question to ask whether abandoning 
the requirement of second-order equations of motion inevitably 
alters the propagating DOF. Allowing interactions beyond the Horn-
deski domain will introduce derivative interactions higher than 
second order. However, this does not necessarily mean that the 
number of propagating DOF increases. Exactly this spirit was fol-
lowed in GLPV theories [13], where they expressed the Horndeski 
Lagrangian in terms of the 3 + 1 Arnowitt–Deser–Misner (ADM) 
decomposition of space–time in the unitary gauge [14] and did 
not impose the two conditions that Horndeski theories obey. The 
Hamiltonian analysis in the unitary gauge revealed that there is 
still only one scalar DOF [15]. The cosmology and the spherically 
symmetric solutions in GLPV theories have been extensively stud-
ied in Refs. [16–19]. The ghost freedom beyond the unitary gauge 
and beyond a conformal and disformal transformation is still an 
ongoing research investigation in the literature [20–25].

Even if the large-distance modifications of gravity through a 
scalar field are simpler, considerations in form of a vector field 
can yield interesting phenomenology for the cosmic expansion and 
growth of large-scale structures. Furthermore, the presence of the 
vector field might explain the anomalies reported in CMB ob-
servations [26]. For a gauge-invariant vector field, the only new 
interaction is via a coupling of the field strength tensor to the dou-
ble dual Riemann tensor. Unfortunately, the existence of derivative 
self-interactions similar to those arising for covariant Galileons is 
forbidden for a massless, Lorentz-invariant vector field coupled to 
gravity [27].

However, this negative result does not apply to massive vec-
tor fields, for which one can successfully construct derivative self-
interactions due to the broken U (1) symmetry. The idea was to 
construct interactions with only three propagating degrees of free-
dom, out of which two would correspond to the transverse and 
one to the longitudinal mode of the vector field. This was sys-
tematically constructed in Ref. [28] together with the Hessian and 
Hamiltonian analysis. The key point is the requirement that the 
longitudinal mode belongs to the class of Galileon/Horndeski theo-
ries. This constitutes the generalized Proca theories up to the quin-
tic Lagrangian on curved space–time with second-order equations 
of motion, which is guaranteed by the presence of non-minimal 
couplings to the Lovelock invariants in the same spirit as in the 
scalar Horndeski theories [28–31].

One can also construct the sixth-order derivative interactions, if 
one allows for trivial interaction terms for the longitudinal mode 
[30,31]. Its generalization to curved space–time contains the dou-
ble dual Riemann tensor, which keeps the equations of motion up 
to second order [31]. In fact, this sixth-order Lagrangian accommo-
dates similar vector–tensor theories constructed by Horndeski in 
1976 [32]. We refer the reader to Refs. [33–41] for related works. 
The second-order massive vector theories up to the sixth-order 
Lagrangian studied in Refs. [31,40,41] constitute the generalized 
Proca theories.

It is a natural follow-up question to ask whether or not the 
extension of generalized Proca theories is possible in such a way 
that there are still three propagating vector DOF even with deriva-
tives higher than second order. In the GLPV extension of Horndeski 
theories, the Lagrangians of two additional scalar derivative inter-
actions can be expressed in terms of the anti-symmetric Levi-Civita 
tensor. Outside the domain of generalized Proca theories, one can 
also construct generalized Lagrangians by using the Levi-Civita ten-
sor. It is then expected that, in beyond-generalized Proca theories, 
the longitudinal vector mode would have some correspondence 
with the scalar mode in GLPV theories, but there will be also new 
interactions corresponding to the purely intrinsic vector modes.
In this Letter, we will propose candidates for new beyond-
generalized Proca Lagrangians in Sec. 2 to study the possibility of 
the healthy extension of generalized Proca theories. In Sec. 3 we 
derive the background equations of motion on the flat Friedmann–
Lemaître–Robertson–Walker (FLRW) background and the associ-
ated Hamiltonian H. We see that, even in the presence of these 
new interactions, there exists a second class constraint (H = 0) 
that removes the Ostrogradski ghost. In Sec. 4 we consider lin-
ear cosmological perturbations on the flat FLRW background and 
show that the number of DOF in beyond-generalized Proca the-
ories is not altered relative to that in generalized Proca theories. 
We also study what kinds of differences arise for the stability of 
perturbations by extending generalized Proca theories to beyond-
generalized Proca theories. Sec. 5 is devoted to conclusions and 
future outlook.

2. Extension of generalized Proca theories to beyond-generalized 
Proca theories

The generalized Proca theories are characterized by second-
order interactions with two transverse and one longitudinal po-
larizations of a vector field Aμ coupled to gravity. Introducing 
the field tensor Fμν = ∇μ Aν − ∇ν Aμ , where ∇μ is the covari-
ant derivative operator, the four-dimensional action of generalized 
Proca theories is given by

Sgen.Proca =
∫

d4x
√−g

6∑
i=2

Li , (2.1)

where g is the determinant of the metric tensor gμν , and

L2 = G2(X, F , Y ) , (2.2)

L3 = G3∇μ Aμ , (2.3)

L4 = G4 R + G4,X

[
(∇μ Aμ)2 − ∇ρ Aσ ∇σ Aρ

]
, (2.4)

L5 = G5Gμν∇μ Aν − 1

6
G5,X [(∇μ Aμ)3

− 3∇μ Aμ∇ρ Aσ ∇σ Aρ + 2∇ρ Aσ ∇γ Aρ∇σ Aγ ]
− g5 F̃ αμ F̃ β

μ∇α Aβ , (2.5)

L6 = G6Lμναβ∇μ Aν∇α Aβ

+ 1

2
G6,X F̃ αβ F̃ μν∇α Aμ∇β Aν . (2.6)

The function G2 depends on the following three quantities

X = − Aμ Aμ

2
, F = − Fμν F μν

4
, Y = Aμ Aν Fμ

α Fνα , (2.7)

while G3,4,5,6 and g5 are arbitrary functions of X with the notation 
Gi,X ≡ ∂Gi/∂ X . The vector field is coupled to the Ricci scalar R and 
the Einstein tensor Gμν through the functions G4(X) and G5(X). 
The Lμναβ and F̃ μν are the double dual Riemann tensor and the 
dual strength tensor defined, respectively, by

Lμναβ = 1

4
Eμνρσ Eαβγ δ Rρσγ δ , F̃ μν = 1

2
Eμναβ Fαβ , (2.8)

where Rρδγ δ is the Riemann tensor and Eμνρσ is the Levi-Civita 
tensor obeying the normalization Eμνρσ Eμνρσ = −4!. We can po-
tentially include the dependence of the quantity F μν F̃μν in the 
function G2 [28,36]. If we impose the parity invariance, however, 
it does not contribute to the perturbations at linear order, so we 
do not take into account such dependence in G2.

The action (2.1) was constructed to keep the equations of mo-
tion up to second order to avoid the appearance of an extra DOF 
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besides two transverse and one longitudinal modes of the vector 
field [28]. Each Lagrangian density can be expressed in terms of 
the Levi-Civita tensor Eμ1μ2μ3μ4 and the first derivatives of Aμ . 
The anti-symmetric property of Eμ1μ2μ3μ4 allows us to eliminate 
the terms containing time derivatives of the temporal vector com-
ponent A0, such that the additional DOF does not propagate. In 
this set up the derivatives of Aμ higher than first-order are not 
taken into account, as they give rise to the derivatives of a scalar 
field π higher than second order in the Lagrangian by taking the 
limit Aμ → ∇μπ .

The action (2.1) consists of three parts. The first part corre-
sponds to the Lagrangian densities (with the index i = 0, 1, 2, 3):

LGa
i+2 = gi+2 δ̂

β1···βiγi+1···γ4
α1···αiγi+1···γ4∇β1 Aα1 · · ·∇βi Aαi , (2.9)

where gi+2 are functions of X and we have introduced the opera-
tor δ̂β1···βiγi+1···γ4

α1···αiγi+1···γ4 = Eα1···αiγi+1···γ4Eβ1···βiγi+1···γ4 . They recover those 
of Minkowski Galileons from the scalar part π of Aμ for the func-
tions g2,3,4,5 ∝ X . The second part arises from the terms derived 
by exchanging some of the indices in LGa

4,5, i.e.,

LV
4 = h̃4 δ̂

β1β2γ3γ4
α1α2γ3γ4∇β1 Aβ2∇α1 Aα2 , (2.10)

LV
5 = h̃5δ̂

β1β2β3γ4
α1α2α3γ4∇α1 Aα2∇β1 Aβ2∇α3 Aβ3 , (2.11)

with again δ̂β1β2γ3γ4
α1α2γ3γ4 = Eα1α2γ3γ4Eβ1β2γ3γ4 and general functions h̃4

and h̃5 depending on X . These interactions can be regarded as the 
intrinsic vector modes that vanish in the scalar limit Aμ → ∇μπ . 
The Lagrangian density L6 contains the intrinsic vector contribu-
tion

LV
6 = h̃6 δ̂

β1β2β3β4
α1α2α3α4∇β1 Aβ2∇α1 Aα2∇β3 Aα3∇β4 Aα4 . (2.12)

The third part corresponds to the non-minimal coupling terms 
G4(X)R , G5(X)Gμν∇μ Aν , and G6(X)Lμναβ∇μ Aν∇α Aβ , which are 
required to keep the equations of motion up to second order [28,
31].

If we try to make the minimal extension of the above general-
ized Proca theories, we can take into account terms containing the 
products of Aα1 Aβ1 and the first derivatives of Aμ . Let us consider 
the following new Lagrangian densities

LN
4 = f4δ̂

β1β2β3γ4
α1α2α3γ4 Aα1 Aβ1∇α2 Aβ2∇α3 Aβ3 , (2.13)

LN
5 = f5δ̂

β1β2β3β4
α1α2α3α4 Aα1 Aβ1∇α2 Aβ2∇α3 Aβ3∇α4 Aβ4 , (2.14)

L̃N
5 = f̃5δ̂

β1β2β3β4
α1α2α3α4 Aα1 Aβ1∇α2 Aα3∇β2 Aβ3∇α4 Aβ4 , (2.15)

with the functions f4,5 and f̃5 depending on X . If we take the 
limit Aμ → ∇μπ , the Lagrangian densities LN

4 and LN
5 for the 

scalar field π are equivalent to those appearing in GLPV theo-
ries [13]. Thus, the above construction of new derivative inter-
actions is analogous to the GLPV extension of scalar Horndeski 
theories, but in our case the situation is more involved due to 
the existence of transverse vector modes. We also need to take 
into account the intrinsic vector term L̃N

5 derived after exchang-
ing the indices β2 and α3 in LN

5 . Note, that we did not include the 
term L̃N

4 = f̃4δ̂
β1β2β3γ4
α1α2α3γ4 Aα1 Aβ1∇α2 Aα3∇β2 Aβ3 , since it is already in-

cluded in L2. For the sixth-order interaction, we run out of the 
indices to make the product Aα1 Aβ1 . Instead, we consider the fol-
lowing Lagrangian density

LN
6 = f̃6δ̂

β1β2β3β4
α1α2α3α4∇β1 Aβ2∇α1 Aα2∇β3 Aα3∇β4 Aα4 , (2.16)

with f̃6(X). This is of the same form as Eq. (2.12), but the differ-
ence from generalized Proca theories is that the relative coefficient 
to the non-minimal coupling term Lμναβ∇μ Aν∇α Aβ is detuned 
in beyond-generalized Proca theories, which generates derivatives 
higher than second order. Then, the new Lagrangian densities in 
our set up are given by

LN = LN
4 +LN

5 + L̃N
5 +LN

6 . (2.17)

To study the effect of derivative interactions in beyond-generalized 
Proca theories, we consider the following action

S =
∫

d4x
√−g

(
6∑

i=2

Li +LN +LM

)
, (2.18)

where LM is the matter Lagrangian density.
In the following, we would like to analyze the possible number 

of propagating DOF in beyond-generalized Proca theories explained 
above. The worry is that the new terms (2.17) might induce the 
propagation of a ghostly DOF associated with the Ostrogradski in-
stability. For this purpose, we shall focus on the study for both the 
background (Sec. 3) and the linear perturbation (Sec. 4) on top of 
the isotropic FLRW background.

Note that this first analysis does not necessarily guarantee the 
absence of ghostly DOF on more general backgrounds. For a com-
plete proof of the absence of extra DOF, the full 3 + 1 ADM Hamil-
tonian analysis is needed without fixing the gauge.

3. Background equations of motion and the Hamiltonian

3.1. Background and perturbed quantities

To derive the background and perturbation equations of motion 
on the isotropic cosmological background, we consider the general 
perturbed metric in the form [42]

ds2 = −(1 + 2α)dt2 + 2
(
χ|i + V i

)
dt dxi

+ a2(t)
[
(1 + 2ψ)δi j + 2E |i j + 2Fi| j + hij

]
dxidx j, (3.1)

where α, χ, ψ, E are scalar metric perturbations, V i, Fi are vec-
tor perturbations, and hij is the tensor perturbation. The index 
“ |” represents the covariant derivative with respect to the three-
dimensional spatial metric. Expanding the action (2.18) up to first 
order in scalar perturbations, we can obtain the background equa-
tions of motion on the flat FLRW background described by the line 
element ds2 = −dt2 + a2(t)δi jdxidx j . The linear perturbation equa-
tions also follow from the action (2.18) expanded up to second 
order in scalar, vector, and tensor perturbations. Before doing so, 
we first remove redundant gauge DOFs.

Under a scalar gauge transformation t → t + δt and xi → xi +
δi jδx| j , the scalar perturbations ψ and E transform, respectively, 
as ψ → ψ − Hδt and E → E − δx [43], where H = ȧ/a is the Hub-
ble expansion rate and a dot represents a derivative with respect 
to t . Under a vector gauge transformation xi → xi + δxi , the vector 
perturbation Fi transforms as Fi → Fi − δxi . If we choose the flat 
gauge

ψ = 0 , E = 0, Fi = 0 , (3.2)

then the time slicing δt , the spatial threading δx, and the infinites-
imal vector δxi are unambiguously fixed.

In what follows, we shall derive the equations of motion for 
the background and cosmological perturbations under the gauge 
choice (3.2). By fixing the gauge in this way, we already removed 
the extra gauge DOFs from the beginning. We have also expanded 
the action (2.18) up to second order in perturbations without fix-
ing the gauge from the beginning and have derived the equations 
of motion from the general gauge-invariant Lagrangian. Choosing 
the flat gauge (3.2) in the equations of motion at the end, we con-
firmed that the resulting dynamical equations for tensor, vector, 
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and scalar perturbations are equivalent to those derived by fixing 
the gauge from the beginning in the Lagrangian.

The vector perturbation satisfies the transverse condition
∂ i V i = 0, where ∂ i represents the spatial derivative. The ten-
sor perturbation hij obeys the transverse and traceless conditions 
∂ ihi j = 0 and hi

i = 0. We express the temporal and spatial compo-
nents of the vector field Aμ , as

A0 = φ(t) + δφ , Ai = 1

a2(t)
δi j (∂ jχV + E j

)
, (3.3)

where φ(t) is the background value of the temporal vector compo-
nent, δφ and χV are the scalar perturbations, and E j is the intrin-
sic vector perturbation obeying the transverse condition ∂ j E j = 0.

For the matter sector, we take into account a perfect fluid de-
scribed by the Schutz–Sorkin action [44]:

SM = −
∫

d4x

[
√−g ρM(n) + Jμ

(
∂μ� +

2∑
i=1

Ai∂μBi

)]
. (3.4)

The energy density ρM depends on the fluid number density n =√
Jμ Jμ/g , where the temporal and spatial components of Jμ can 

be decomposed, respectively, as

J 0 = N0 + δ J , J i = 1

a2
δik (∂kδ j + Wk) , (3.5)

where N0 is a constant associated with the total background par-
ticle number (related with the background number density n0 as 
N0 = n0a3), δ J and δ j are the scalar perturbations, and Wk is the 
vector perturbation satisfying ∂k Wk = 0.

The scalar quantity � can be decomposed as � = �0 − ρM,n v , 
where the background value �0 obeys the relation ∂0�0 = −ρM,n ≡
−∂ρM/∂n and v is the perturbation associated with the velocity 
potential. Then, we can write � in the form � = − 

∫ t
ρM,n(t̃) dt̃ −

ρM,n v .
The terms Ai and Bi in Eq. (3.4) correspond to vector per-

turbations obeying the transverse conditions. It is sufficient to 
consider the x, y components of Ai whose perturbations depend 
on t and z alone, i.e., A1 = δA1(t, z) and A2 = δA2(t, z). One 
can extract the required property of the vector mode by choos-
ing B1 = x + δB1(t, z) and B2 = y + δB2(t, z). Varying the matter 
action (3.4) with respect to Jμ , it follows that

Jμ = n
√−g

ρM,n

(
∂μ� +

2∑
i=1

Ai∂μBi

)
, (3.6)

which is related with the fluid four-velocity uμ , as uμ = Jμ/

(n
√−g). The spatial part of uμ can be expressed as

ui = −∂i v + vi , (3.7)

where vi is the transverse vector perturbation associated with δAi , 
as δAi = ρM,n vi .

At the background level, the fluid action (3.4) reads

S(0)
M =

∫
d4x

√−g P M(n0) , P M(n0) = n0ρM,n − ρM , (3.8)

where P M corresponds to the fluid pressure. As far as the scalar 
perturbation is concerned, the perfect fluid can be also described 
by the k-essence action [45]

SM =
∫

d4x
√−g P M(Z) , Z = −1

2
gμν∂μσ∂νσ , (3.9)

where the pressure P M depends on the kinetic term of a scalar 
field σ (see also Refs. [46]). At the background level the matter 
energy density is given by ρM = 2Z P M,Z − P M , so there is the 
correspondence n0ρM,n → 2Z P M,Z = ρM + P M . From the k-essence 
action (3.9) we obtain the density perturbation δρM , the pressure 
perturbation δP M , and the velocity potential v , respectively, as

δρM = (
P M,Z + 2Z P M,Z Z

)
δZ ,

δP M = P M,Z δZ ,

v = δσ

σ̇
, (3.10)

where δZ corresponds to

δZ = σ̇ δσ̇ − σ̇ 2α . (3.11)

As far as the tensor and scalar perturbations are concerned, we can 
employ either the Schutz–Sorkin action or the k-essence action, 
but for the computation of vector perturbations we need to resort 
to the Schutz–Sorkin action.

We shall expand the action (2.18) together with the Schutz–
Sorkin action (3.4) up to second-order in perturbations on the flat 
FLRW background to discuss the propagating DOF. In doing so, we 
perform the following field redefinitions:

Zi = Ei + φ(t)V i ,

ψ = χV + φ(t)χ ,

δρM = ρM,n

a3
δ J , (3.12)

where Zi and ψ correspond to the vector and scalar parts of Ai re-
spectively, and δρM is the matter density perturbation. The vector 
field Zi obeys the transverse condition ∂ i Zi = 0, so there are two 
independent components. At first order, the perturbation δn of the 
fluid number density is equivalent to δρM/ρM,n .

3.2. Background equations

Expanding the action (2.18) up to first order in scalar perturba-
tions, the resulting first-order action is given by

S(1) = a3 (C1α + C2δφ + C3 v) , (3.13)

where we introduced the following short-cuts for convenience

C1 = G2 + G2,Xφ2 + 3G3,X Hφ3 + 6(G4 + G4,X Xφ4)H2

−
(

G5,X + G5,X Xφ2
)

H3φ3 − ρM

+ 6
[

3 f4 + f4,Xφ2 + Hφ
(

3 f5 + f5,Xφ2
)]

H2φ4 , (3.14)

C2 = φ{G2,X + 3G3,X Hφ + 6(G4,X + G4,X Xφ2)H2

− (3G5,X + G5,X Xφ2)H3φ

+ 6[4 f4 + f4,Xφ2 + (5 f5 + f5,Xφ2)Hφ]H2φ2} , (3.15)

C3 = −N0

a3

(
ρ̇M,n + 3H

N0

a3
ρM,nn

)
, (3.16)

where H = ȧ/a is the Hubble expansion rate. Variations of the ac-
tion (3.13) with respect to α, δφ, v give rise to the background 
equations

Ci = 0 (i = 1,2,3), (3.17)

respectively. On using the properties N0 = n0a3 and n0ρM,n =
ρM + P M , the third equation (C3 = 0) corresponds to the matter 
continuity equation

ρ̇M + 3H (ρM + P M) = 0 . (3.18)
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In the k-essence description of the perfect fluid, the third term 
on the r.h.s. of Eq. (3.13) is replaced by a3 P M,Z σ̇ ˙δσ . Varia-
tion with respect to δσ leads to the matter equation of motion 
d
dt (a

3 P M,Z σ̇ ) = 0, i.e.,(
P M,Z + σ̇ 2 P M,Z Z

)
σ̈ + 3H P M,Z σ̇ = 0 . (3.19)

Using the correspondence ρM = 2Z P M,Z − P M , the continuity 
Eq. (3.18) follows from Eq. (3.19).

The terms containing f4 and f5 in Eqs. (3.14) and (3.15) cor-
respond to the new terms arising from the Lagrangians (2.13)
and (2.14). They originate from the longitudinal component of the 
vector field, so it is expected that the equations of motion can be 
written in terms of the quantities similar to those appearing in 
GLPV theories [13]. To see the correspondence with GLPV theories, 
we introduce the following quantities

A2 = G2 , A3 = (2X)3/2 E3,X ,

A4 = −G4 + 2XG4,X + 4X2 f4 ,

A5 = −√
2X3/2

(
1

3
G5,X − 4X f5

)
,

B4 = G4 , B5 = (2X)1/2 E5 , (3.20)

where E3(X) and E5(X) are auxiliary functions [14] satisfying

G3 = E3 + 2X E3,X , G5,X = E5

2X
+ E5,X . (3.21)

Then, the two background equations C1 = 0 and C2 = 0 can be 
written in compacts forms:

A2 − 6H2 A4 − 12H3 A5 = ρM , (3.22)

φ
(

A2,X + 3H A3,X + 6H2 A4,X + 6H3 A5,X

)
= 0 . (3.23)

Taking the time derivative of Eq. (3.22) and using Eq. (3.18), it fol-
lows that

Ȧ3 + 4Ḣ A4 + 4H Ȧ4 + 12H Ḣ A5 + 6H2 Ȧ5 = ρM + P M . (3.24)

The background Eqs. (3.22) and (3.24) are of the same forms as 
those in GLPV theories (see Eqs. (2.15) and (2.16) of Ref. [17]) 
with the particular relation (3.23). In GLPV theories the con-
straint (3.23) is absent, but in beyond-generalized Proca theories 
the relation (3.23) gives the constraint on the background trajec-
tory with φ always related to H [40] (e.g., analogous to the tracker 
solution [47] found for scalar Galileons).

From Eq. (3.20) there are two particular relations

A4 + B4 − 2X B4,X = 4X2 f4 ,

A5 + 1

3
X B5,X = (2X)5/2 f5 . (3.25)

In generalized Proca theories the Lagrangians LN
4 and LN

5 are 
absent, so that f4 = 0 and f5 = 0. In this case, the functions 
B4 and B5 are related with A4 and A5 according to the rela-
tions A4 + B4 − 2X B4,X = 0 and A5 + X B5,X/3 = 0. In beyond-
generalized Proca theories the functions f4 and f5 are non-zero, 
so there are two more free functions B4 and B5 than those in gen-
eralized Proca theories. This situation is analogous to the extension 
of Horndeski theories to GLPV theories [13]. We recall that the La-
grangians L6, L̃N

5 , and LN
6 , which correspond to the intrinsic vector 

mode, do not contribute to the background equations of motion.
Since the background Eqs. (3.22)–(3.24) do not contain the 

functions B4 and B5, beyond-generalized Proca theories cannot be 
distinguished from generalized Proca theories at the background 
level (as it happens in the GLPV extension of Horndeski theories 
[17,48]). However, as we will discuss in Sec. 4, this situation is dif-
ferent at the level of cosmological perturbations.
3.3. Hamiltonian

The discussion in Sec. 3.2 shows that, at the background level, 
beyond-generalized Proca theories do not give rise to additional 
ghostly DOF to that in generalized Proca theories. It is also pos-
sible to see the absence of the Ostrogradski ghost by computing 
the Hamiltonian of the system. In doing so, we consider the line 
element

ds2 = −N2(t)dt2 + a2(t)δi jdxidx j , (3.26)

which contains the lapse function N(t). For the vector field given 
by Aμ = (φ(t)/N(t), 0, 0, 0), the action (2.18) reduces to S =∫

d4x L, with

L = Na3G2 − a3G3,Xφ2φ̇ − 6aȧ2G4

N
+ 6aȧ2G4,Xφ2

N

− G5,Xȧ3φ3

N2
+ 6aȧ2 f4φ

4

N
+ 6ȧ3 f5φ

5

N2
+ Na3 P M , (3.27)

where we have carried out the integration by parts. Since the La-
grangian (3.27) does not contain the time derivative of N , there 
exists a Hamiltonian constraint. In fact, the variation of L with re-
spect to N leads to

∂L

∂N
= −H

N
= 0 , (3.28)

where H = �μȮμ − L is the Hamiltonian with �μ = ∂L/∂Ȯμ and 
Oμ = (N(t), φ(t), a(t)). The explicit form of H is given by

H = −Na3
(

G2 + 6H2G4 − 6G4,X H2φ2 + 2G5,X H3φ3

− 6 f4 H2φ4 − 12 f5 H3φ5 − ρM

)
, (3.29)

which does not contain any time derivatives of φ. Equation (3.28)
shows that H = 0 exactly. Hence there is no Ostrogradski instabil-
ity associated with the Hamiltonian unbounded from below. Exis-
tence of the constraint (3.28) removes the would-be ghostly DOF 
associated with the time derivatives of φ.

The Hamiltonian constraint H = 0 follows from the background 
Eqs. (3.17). In fact, after eliminating the term G2,X from the two 
equations C1 = 0, C2 = 0 and setting N = 1, we obtain the con-
straint equation H = 0. Moreover, varying the Lagrangian (3.27)
with respect to φ, the resulting equation of motion is equivalent 
to C2 = 0.

What we have shown in this section is by no means a full proof 
of the absence of extra ghostly DOF on arbitrary backgrounds. 
A full ADM Hamiltonian analysis is needed for this purpose. Even 
though this proof is not the goal of the present work, we will con-
sider linear perturbations on the FLRW background in Sec. 4 and 
investigate the propagating DOF.

4. Dynamics of linear perturbations

In this section we expand the action (2.18) up to second order 
in tensor, vector, and scalar perturbations to study the number of 
DOFs as well as no-ghost and stability conditions for linear cosmo-
logical perturbations.

4.1. Tensor perturbations

We begin with the derivation of the second-order action for 
tensor perturbations hij . We can express hij in terms of two po-
larization modes h+ and h× , as hij = h+e+

i j + h×e×
i j . The unit bases 

e+ and e× satisfy the normalization conditions e+(k)e+(−k)∗ = 1, 
i j i j i j i j
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e×
i j (k)e×

i j (−k)∗ = 1, and e+
i j (k)e×

i j (−k)∗ = 0 in Fourier space, where 
k is the comoving wave number. Expanding the action (2.18) up 
to quadratic order in tensor perturbations, the second-order action 
reads

S(2)
T =

∑
λ=+,×

∫
dt d3x a3 qT

8

[
ḣ2

λ − c2
T

a2
(∂hλ)

2

]
, (4.1)

where

qT = 2G4 − 2G4,Xφ2 + G5,X Hφ3 − 2 f4φ
4 − 6 f5 Hφ5

= −2 (A4 + 3H A5) , (4.2)

c2
T = 2G4 + G5,Xφ2φ̇

qT
= − 2B4 + Ḃ5

2(A4 + 3H A5)
. (4.3)

In the second equalities of Eqs. (4.2) and (4.3) we have used the 
quantities defined by Eq. (3.20). The Lagrangians LN

4 and LN
5 lead 

to the modification of qT , which on the other hand can be ex-
pressed in terms of A4 and A5 alone. The numerator of c2

T contains 
the terms B4 and Ḃ5, so beyond-generalized Proca theories give 
rise to the tensor propagation speed different from that in gen-
eralized Proca theories. The expressions of qT and c2

T are of the 
same forms as those in GLPV theories [48]. The action (4.1) does 
not contain the derivative terms higher than second order, so the 
dynamical DOF of the tensor mode remain two.

4.2. Vector perturbations

Let us proceed to the discussion of vector perturbations. Due 
to the transverse conditions of the vector mode (e.g., ∂ i Zi = 0), 
we can choose the components of these fields as Zi = (Z1(t, z),
Z2(t, z), 0) without losing the generality. The second-order mat-
ter action (S(2)

M )V of the vector mode is the same as that de-

rived in Refs. [40,41]. Varying the action (S(2)
M )V with respect to 

W i, δAi, δBi , we obtain the following relations

W i = N0 (vi − V i) , (4.4)

δAi = ρM,n vi = Ci , (4.5)

where Ci are constants in time, and

vi = V i − a2 ˙δBi . (4.6)

After integrating out the fields W i and δAi , the full second-
order action derived by expanding Eq. (2.18) in vector perturba-
tions reads

S(2)
V =

∫
dtd3x

2∑
i=1

[
aqV

2
Ż 2

i − 1

2a
α1(∂ Zi)

2 − a

2φ2
α2 Z 2

i

+ φ

2a
α3∂V i∂ Zi + qT

4a
(∂V i)

2 + 1

2
a(ρM + P M)v2

i

]
, (4.7)

where

qV = G2,F + 2G2,Y φ2 − 4g5 Hφ + 2G6 H2

+ 2G6,X H2φ2 + 4 f̃6 H2φ2 , (4.8)

α1 = qV + 2[G6 Ḣ − G2,Y φ2 − f̃5 Hφ3

− (Hφ − φ̇)(G6,X Hφ − g5 + 2 f̃6 Hφ)] , (4.9)

α2 = 4G4 Ḣ − 4G4,X Hφφ̇ + 2G5,X H2φ2φ̇

+ ρM + P M , (4.10)

α3 = 2G4,X − G5,X Hφ + 2 f4φ
2 + 6 f5 Hφ3

= 2
2 (A4 + B4 + 3H A5) . (4.11)
φ

The structure of the action (4.7) is the same as that derived in 
generalized Proca theories [40,41] with the different coefficients 
qV , α1, α2, α3. Hence the new Lagrangians (2.13)–(2.16) do not give 
rise to any additional DOF associated with vector perturbations.

Varying the action (4.7) with respect to V i yields

qT

2

k2

a2
V i = −(ρM + P M)vi − α3φ

2

k2

a2
Zi , (4.12)

and similarly with respect to Zi :

Z̈ i +
(

H + q̇V

qV

)
Ż i + 1

qV

(
α1

k2

a2
+ α2

φ2

)
Zi

− α3φ

2qV

k2

a2
V i = 0 . (4.13)

In the small-scale limit (k → ∞) we can neglect the matter con-
tribution in Eq. (4.12), so we obtain the approximate relation 
V i 	 −(α3φ/qT )Zi . Substituting this into Eq. (4.13), the dynami-
cal vector field Zi obeys

Z̈ i +
(

H + q̇V

qV

)
Ż i + c2

V
k2

a2
Zi 	 0 , (4.14)

where the vector propagation speed squared is given by

c2
V = α2

3φ2

2qT qV
+ α1

qV

= 1 + 2(A4 + B4 + 3H A5)
2

φ2qT qV

+ 2(G6 Ḣ − G2,Y φ2 − f̃5 Hφ3)

qV

− 2(Hφ − φ̇)(G6,X Hφ − g5 + 2 f̃6 Hφ)

qV
. (4.15)

To avoid the ghost and the Laplacian instability on small scales, 
we require the conditions qV > 0 and c2

V > 0. All the new La-
grangian densities (2.13)–(2.16) affect cV through the changes of 
coefficients (4.8)–(4.11), while qV is only modified by the term LN

6 . 
In spite of these modifications, the DOF of vector perturbations re-
main two as those in generalized Proca theories.

4.3. Scalar perturbations

For scalar perturbations, we first expand the Schutz–Sorkin ac-
tion (3.4) up to second order by using the matter perturbation δρM
defined in Eq. (3.12). Varying this action with respect to δ j, we ob-
tain

∂δ j = −a3n0 (∂v + ∂χ) . (4.16)

On using this relation and the background equation of motion, the 
second-order matter action reduces to

(SM)
(2)
S =

∫
dtd3x a3

[
− n0ρM,n

2a2
(∂v)2 + n0ρM,n v

∂2χ

a2

+ v̇ δρM − 3Hc2
M v δρM − c2

M

2n0ρM,n
(δρM)2 − αδρM

]
,

(4.17)

where c2
M is the matter sound speed squared defined by

c2
M ≡ P M,n

ρM,n
= n0ρM,nn

ρM,n
. (4.18)

Expansion of the full action (2.18) up to second order in scalar 
perturbations gives
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S(2)
S =

∫
dtd3x a3

{(
w1α + w2δφ

φ

)
∂2χ

a2
− w3

(∂α)2

a2

+ w4α
2 − w3

4

(∂δφ)2

a2φ2
+ w5

(δφ)2

φ2
− w3

4φ2

(∂ψ̇)2

a2

+ w7

2

(∂ψ)2

a2
− (3H w1 − 2w4)α

δφ

φ

+ α

[
w3

∂2(δφ)

a2φ
+ w3

∂2ψ̇

a2φ
− w6

∂2ψ

a2

]

− (
w8ψ − w3ψ̇

) ∂2(δφ)

2a2φ2

}
+ (SM)

(2)
S , (4.19)

where we introduced the following variables for compactness

w1 = −A3,Xφ2 + 4H(A4 − A4,Xφ2)

+ 6H2(2A5 − A5,Xφ2) , (4.20)

w2 = w1 + 2HqT , (4.21)

w3 = −2φ2qV , (4.22)

w4 = 3H(w2 − HqT ) + w5 , (4.23)

w5 = 1

2
φ4

(
A2,X X + 3H A3,X X

+ 6H2 A4,X X + 6H3 A5,X X

)
, (4.24)

w6 = − 1

2φ
[4H(qT − 2B4) − w8] , (4.25)

w7 = 2(qT − 2B4)

φ2
Ḣ + w8

2φ3
φ̇ , (4.26)

w8 = 2w2 + 4Hφ2 (
2B4,X − H B5,X

)
. (4.27)

The coefficients w1, w2, w4, w5 only contain the functions Ai and 
their derivatives, but there exist the functions B4,5 and their 
derivatives in w6, w7, w8. Hence the difference from generalized 
Proca theories arises through the terms containing w6, w7, w8. In 
particular we have the following relation

w8 − (w6φ + w2) = −4H(A4 + B4 − 2X B4,X )

− 4H2(3A5 + X B5,X )

= −4Hφ4 ( f4 + 3Hφ f5) , (4.28)

where we have used Eq. (3.25). In generalized Proca theories stud-
ied in Refs. [40,41] we have that f4 = f5 = 0, so there is the 
specific relation w8 = w6φ + w2. In beyond-generalized Proca the-
ories, w8 is different from w6φ + w2.

While the presence of the Lagrangians LN
4 and LN

5 manifests 
themselves through the modifications of the functions B4,5, the 
effect of LN

6 arises through the modification of the term w3 =
−2φ2qV . The existence of L̃N

5 does not affect the second-order ac-
tion of scalar perturbations.

The structure of the action (4.19) is the same as that in general-
ized Proca theories derived in Refs. [40,41], so the new Lagrangian 
densities (2.13)–(2.16) do not give rise to any additional DOF. As 
in the GLPV extension of Horndeski theories [13], there are no 
derivatives higher than second order in the scalar action (4.19). 
Since this second-order property also holds for tensor and vec-
tor perturbations, beyond-generalized Proca theories with the new 
terms (2.13)–(2.16) are not prone to the Ostrogradski instability on 
the flat FLRW background.
As we will see in the following, beyond-generalized Proca the-
ories can be distinguished from generalized Proca theories by dif-
ferent evolution of the scalar propagation speed cS . This situation 
should be analogous to that in GLPV theories where the new La-
grangians beyond the Horndeski domain lead to the mixing be-
tween cS and the matter sound speed cM [16,13]. In order to see 
such a mixing explicitly, it is convenient to employ the k-essence 
description (3.9) of the perfect fluid. On using the correspondence 
(3.10) and the field equation of motion (3.19), the second-order 
matter action (4.17) is equivalent to

(SM)
(2)
S =

∫
dtd3xa3

[
1

2
(P M,Z + σ̇ 2 P M,Z Z )( ˙δσ 2 − 2σ̇ α ˙δσ )

− 1

2a2
P M,Z

[
(∂δσ )2 + 2σ̇ ∂χ∂δσ

]
+ 1

2
σ̇ 2

(
P M,Z + σ̇ 2 P M,Z Z

)
α2

]
. (4.29)

The last term of Eq. (4.29) gives rise to the contribution to the 
term w4α

2 in Eq. (4.19). One can confirm that direct expansion of 
the k-essence action (3.9) leads to the second-order action same as 
Eq. (4.29).

On using Eq. (4.29) and varying the full action (4.19) with re-
spect to α, χ, δφ respectively, we obtain the perturbation equa-
tions of motion in Fourier space:(

P M,Z + σ̇ 2 P M,Z Z

)
(σ̇ ˙δσ − σ̇ 2α)

+ (3H w1 − 2w4)
δφ

φ
− 2w4α

+ k2

a2

[
w3

φ

(
ψ̇ + δφ + 2αφ

) + w1χ − w6ψ

]
= 0 , (4.30)

P M,Z σ̇ δσ + w1α + w2

φ
δφ = 0 , (4.31)

(3H w1 − 2w4)α − 2w5
δφ

φ

+ k2

a2

[
w3

2φ

(
ψ̇ + δφ + 2αφ

) + w2χ − w8

2φ
ψ

]
= 0 . (4.32)

From Eq. (3.10) the first contributions to Eqs. (4.30) and (4.31)
can be written as (P M,Z + σ̇ 2 P M,Z Z )(σ̇ ˙δσ − σ̇ 2α) = δρM and 
P M,Z σ̇ δσ = (ρM + P M)v , respectively. On using Eqs. (4.30)–(4.32), 
we can express the perturbations α, χ, δφ in terms of ψ, δσ and 
their derivatives. Substituting those relations into Eq. (4.19), the 
second-order scalar action reduces to the following form

S(2)
S =

∫
dtd3x a3

( 
̇X t K 
̇X + k2

a2

X t G 
X

− 
X t M 
X − 
X t B 
̇X
)

, (4.33)

where K , G , M , B are 2 × 2 matrices (M does not contain the k2

term), and the vector field 
X is defined by


X t = (ψ, δσ ) . (4.34)

The form of the action (4.33) explicitly shows that there are only 
two scalar DOF coming from the field ψ and the matter field δσ .

In the small-scale limit (k → ∞), the components of the matri-
ces K and G are given by1

1 If we use the Schutz–Sorkin action itself for the matter sector, the leading-
order contributions to K22 and G22 are proportional to 1/k2. After transforming 
the Schutz–Sorkin action to the k-essence action, both K22 and G22 do not have the 
k-dependence as the components K11 and G11.
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K11 = Q S + ξ2
1 K22,

K22 = 1

2

(
P M,Z + σ̇ 2 P M,Z Z

)
,

K12 = K21 = ξ1 K22 , (4.35)

and

G11 = G + μ̇ + Hμ,

G22 = 1

2
P M,Z ,

G12 = G21 = ξ2G22 , (4.36)

where we introduced the following quantities

Q S = H2qT (3w2
1 + 4qT w4)

(w1 − 2w2)2φ2
,

ξ1 = − w2σ̇

(w1 − 2w2)φ
,

ξ2 = − (w8 − w6φ)σ̇

(w1 − 2w2)φ
,

G = w1 w8(4w2 w6φ − w1 w8) − 4w2
2 w2

6φ
2

4w3(w1 − 2w2)2φ2
− w7

2
,

μ = 2w2 w6φ − w1 w8

4(w1 − 2w2)φ2
. (4.37)

Provided that the matrix K is positive definite, the scalar ghosts 
are absent. Under the no-ghost condition K22 > 0 of the fluid, the 
positivity of K is ensured for Q S > 0. Since the quantity Q S does 
not contain the term qV , the no-ghost condition is not affected 
by the intrinsic vector mode. We also note that Q S is solely ex-
pressed in terms of the functions A3,4,5 and their derivatives, so 
the no-ghost condition is similar to that in generalized Proca the-
ories.

In the large k limit, the dominant contributions to the second-
order action (4.33) are the first two terms, so the dispersion rela-
tion is given by

det
(

c2
S K − G

)
= 0 , (4.38)

where c2
S is the sound speed squared related with the frequency ω, 

as ω2 = c2
Sk2/a2. Then, c2

S is the solution to the equation(
c2

S K11 − G11

)(
c2

S K22 − G22

)
−

(
c2

S K12 − G12

)2 = 0 . (4.39)

In generalized Proca theories there is the relation w8 = w6φ + w2
and hence ξ1 = ξ2. Since in this case G12/K12 = G22/K22, we ob-
tain the two decoupled solutions to Eq. (4.39):

c2
M = G22

K22
= P M,Z

P M,Z + σ̇ 2 P M,Z Z
, (4.40)

c2
P = 1

Q S

[
G11 − (K11 − Q S)

G22

K22

]

= 1

Q S

[
G + μ̇ + Hμ − w2

2(ρM + P M)

2(w1 − 2w2)2φ2

]
, (4.41)

where c2
M is the matter propagation speed squared equivalent to 

Eq. (4.18). Another sound speed squared c2
P coincides with the one 

derived in Refs. [40,41].
In beyond-generalized Proca theories we have that ξ1 �= ξ2, in 

which case there is a mixing between the two scalar propagation 
speeds. To quantify the deviation from generalized Proca theories, 
we introduce the following dimensionless quantities
αP ≡ ξ2

ξ1
− 1 = w8 − (w6φ + w2)

w2
, (4.42)

and

βP ≡ 2c2
M

(
K11

Q S
− 1

)
αP

= w2(w8 − w6φ − w2)(ρM + P M)

(3w2
1 + 4qT w4)qT H2

. (4.43)

Expressing the terms G22, G11, K11, K22, G12 in terms of c2
M etc.

by using Eqs. (4.40), (4.41), (4.43) as well as the relations K22 =
K 2

12/(K11 − Q S) and G12/K12 = (1 +αP)G22/K22, the two solutions 
to Eq. (4.39) are given by

c2
S = 1

2

[
c2

M + c2
P − βP ±

√
(c2

M − c2
P + βP)2 + 2c2

MαPβP

]
. (4.44)

For non-relativistic matter (c2
M = 0), the two solutions (4.44) re-

duce to c2
S = 0 and c2

S = c2
P − βP. The latter corresponds to the 

scalar sound speed squared associated with the field ψ , whose 
value is different from c2

P by the factor βP. Thus, the sound speed 
squared is a key quantity to distinguish between generalized Proca 
theories and beyond-generalized Proca theories. This situation is 
analogous to the difference between Horndeski and GLPV theo-
ries. Since the contribution of the intrinsic vector mode affects 
c2

S through the term w3 in the quantity G , the sound speed in 
beyond-generalized Proca theories generally differs from that in 
GLPV theories.

5. Conclusions

We proposed the new derivative interactions (2.13)–(2.16) be-
yond the domain of second-order generalized Proca theories. These 
Lagrangian densities are constructed in terms of the products of 
the anti-symmetric Levi-Civita tensor as well as the vector field 
Aμ and its first derivatives. By taking the scalar limit Aμ → ∇μπ , 
the terms LN

4 and LN
5 recover derivative interactions of the scalar 

field π appearing in GLPV theories. Since it is known that GLPV 
theories do not increase the number of propagating DOF relative 
to that in Horndeski theories [15,20], our interest is to see what 
happens by extending generalized Proca theories to those contain-
ing the four new interactions (2.13)–(2.16).

We first derived the dynamical equations of motion on the flat 
FLRW background and the associated Hamiltonian of the system. 
Even in the presence of new interactions, there is no additional 
ghostly DOF to that appearing in second-order generalized Proca 
theories. In fact the existence of a constraint leads to a vanishing 
Hamiltonian, which explicitly shows the absence of the Ostrograd-
ski ghost.

As a second step, we considered linear cosmological perturba-
tions on top of the flat FLRW background by taking into account 
a perfect fluid and studied the propagating DOF by expanding the 
action (2.18) up to second order in perturbations. We showed that 
the number of DOF is the same as that in generalized Proca the-
ories: two tensor polarizations, two transverse vector modes, and 
two scalar modes (one longitudinal scalar and one matter fluid). 
Thus, beyond-generalized Proca theories are not prone to the ap-
pearance of additional DOF at the level of linear cosmological per-
turbations.

We also found that the four new interactions affect the vector 
propagation speed squared c2

V , while the vector no-ghost condi-
tion is only modified by the term LN

6 . By introducing the quantities 
given by Eq. (3.20), we obtained the two relations (3.25) analogous 
to those appearing in the GLPV extension of Horndeski theories. 
Since the functions f4 and f5 do not vanish in beyond-generalized 



L. Heisenberg et al. / Physics Letters B 760 (2016) 617–626 625
Proca theories, this leads to the scalar sound speed squared c2
S

away from the value c2
P of generalized Proca theories with the 

difference weighed by βP. Thus, the two theories can be distin-
guished from each other by the different evolution of scalar and 
vector sound speeds.

There are several issues we did not address in this Letter. While 
we showed that the number of DOF in beyond-generalized Proca 
theories is the same as that in generalized Proca theories on the 
FLRW background, it remains to see whether the same conclu-
sion also holds at the fully non-linear level on general curved 
backgrounds. In doing so, it will be convenient to express the 
action (2.18) in terms of quantities appearing in the 3 +1 ADM de-
composition of space–time (along the line of Ref. [14]). In fact, we 
showed that the quantities associated with the FLRW background 
and tensor perturbations in beyond-generalized Proca theories can 
be expressed in simple forms by using the variables (3.20) simi-
lar to those appearing in the ADM formulation of GLPV theories, 
but the situation is more involved for vector and scalar perturba-
tions. In our case, there should be new contributions to the ADM 
action of GLPV theories associated with the vector mode. More-
over, it will be of interest to study the cosmological viability of 
dark energy models in the framework of beyond-generalized Proca 
theories. These topics will be left for future works.
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