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ABSTRACT

In the existing evidential networks applicable to belief functions, the relations among
the variables are always represented by joint belief functions on the product space of the
variables involved. In this paper, we use conditional belief functions to represent such
relations in the network and show some relations between these two kinds of representa-
tions. We also present a propagation algorithm for such networks. By analyzing the
properties of some special networks with conditional belief functions, called networks
with partial dependency, we show that the computation for reasoning can be simplified.

1. INTRODUCTION

Network-based approaches have been widely used for knowledge repre-
sentation and reasoning with uncertainties. Bayesian networks [3] and
valuation-based systems [7] are two well-known frameworks. Bayesian
networks are implemented for probabilistic inference, while valuation-
based systems can represent several uncertainty formalisms in a unified
framework. Graphically, a Bayesian network is a directed acyclic graph,
and a valuation-based system is a hypergraph. Nodes in the networks
represent random variables; each variable is associated with a finite set of
all its possible values, called its frame. In a Bayesian network, arcs
represent conditional dependency relations among the variables; in a
valuation network, such relations are represented in the form of joint
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valuations on the product space of the variables involved. For the case of
belief functions, such valuations are the joint belief functions. Recently,
Cano et al. [1] have presented an axiomatic system for propagating
uncertainty (including belief functions) in Pearl’s Bayesian networks, based
on Shafer and Shenoy’s axiomatic framework [5, 6]. But the belief func-
tions for representing relations of the variables in their system are still
represented on the product space. Smets [16] has generalized Bayes’
theorem for the case of belief functions and presented the disjunctive rules
of combination for two distinct pieces of evidence,! which makes it
possible to represent knowledge in the form of conditional belief functions
and to use them for reasoning in evidential networks. In this paper, we
present a network called an evidential network with conditional belief
functions and propose a propagation scheme for it. Moreover, we analyze
some special properties of this kind of networks, and show that the
reasoning process can be simplified in such special cases.

The rest of the paper is organized as follows: In Section 2, we first
briefly review belief functions and their rules of combination, both con-
junctive and disjunctive. Next, in Section 3, we show some relations
between joint belief functions and conditional belief functions which
represent the same knowledge. In Section 4, we introduce evidential
networks with conditional belief functions and present a propagation
scheme for them. In Section 5, we propose some principles for simplifying
computation after analyzing the properties of the network with partial
dependency, and give an example to show its application. Finally in Section
6, we give some conclusions.

2. DISJUNCTIVE AND CONJUNCTIVE RULES OF COMBINATION

In this section, we introduce the basic concepts of belief functions [4, 11,
17] and summarize the conditioning rules and combination rules for the
belief functions. More details can be found in [12, 16].

DEFINITION 2.1 Let ) be a finite nonempty set called the frame of
discernment (the frame for short). The mapping bel:2% — [0,1] is an
{(unnormalized) belief function if and only if there exists a basic belief
assignment (bba) m :2% — [0, 1] such that:

G Y m(A) =1,
AcCQ
(i) bel(A4) = Y. m(B),
BcA,.B+J

(iii) bel(d) = 0.

" Smets [15] has given a definition for the concept of distinct evidence.
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Those subsets A such that m(A) > 0 are called the focal elements. A
vacuous belief function is a belief function such that m(Q) =1 and
m(A) = 0 for all 4 # Q, which represents total ignorance.

The value bel( 4) quantifies the strength of the belief that the event A
occurs. It measures the same concept as P(A4) does in classical probability
theory, but bel is not an additive measure. The value m( A4) represents the
part of belief that supports the fact that 4 occurs and cannot support any
more specific event (due to the lack of information). Note that m is not
the counterpart of a probability distribution function p [14]. Both bel and
P are defined on 2%, but m is defined on 2, whereas p is defined on €.

Given a belief function, we can define a plausibility function pl:2% —
[0,1] and a commonality function q : 2% — [0, 1] as follows: for 4 € Q,

pl(A) = bel(Q) — bel( A) and pl(D) = 0,
qg(4) =} m(B),

ACBcCQ

where A is the complement of A relative to Q.

Note that m (basic belief mass), bel (belief function), pl (plausibility
function), and ¢ (commonality function) are in one-to-one correspondence
with each other.

DEFINITION 2.2 Let bel be our belief on the frame ). Suppose we learn
that A < Q is false. The resulting conditional belief function® bel(-|| A)
(bel(BIl A) can be read as the belief of B given A) is obtained through the
unnormalized rule of conditioning. For B < (),

Yy m(BUX) if BCACQ,

otherwise.

m(Bl|A) =

If a second piece of information concerning the same issue is now
available from a different source, we need to integrate it with the first one
by the combination of two belief functions defined as follows:

DEFINITION 2.3  Consider two distinct pieces of evidence on () represented
by m, and m,. The belief function that quantifies the combined impact of
these two pieces of evidence is obtained through the conjunctive rule of

combination. We use (~) to represent the conjunctive combination operator.
Forall A C Q,

(m@my)(A) = L m(B)my(C).

A=BnC

2 . e . o ce .
~ We use “|I" in place of “” to emphasize the nonnormalization of our conditioning.
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This can also be written in terms of the commonality functions as follows:

(4, D, )(A4) = q,(ADg,(A).

DEerFINITION 2.4 Consider two distinct pieces of evidence on () represented
by m, and m,. The belief function induced by the disjunction of these two
pieces of etvidence is obtained through the disjunctive rule of combination
[2]. We use (V) to represent the disjunctive combination operator. For all
AcCQ,

(m,@Omy) (D = ¥ m(B)m,y(C).

A=BUC

Let a function b :2% — [0, 1] be defined as b( A) = bel( A) + m(D). Then
the disjunctive combination rule can be written as follows:

(b, (Db, )(A) = b,(Ab,y(A).

The meaning of these two rules is given in [16]. Suppose m, and m, are
the bba’s induced by two distinct pieces of evidence &, and &,, respec-
tively. Suppose an agent will hold belief m, (m,) if he knows that &, (&,)
prevails. If the agent knows that both &, and &, prevail, then his belief

will be represented by m,(»)m,. If the agent knows only that at least one
of &, and &, prevails without knowing which one, his belief will be

represented by m;(\)m,. The justification of these two rules, called
conjunctive and disjunctive rules of combination, can be found in [12] and
[16], respectively.

Since m (basic belief mass), bel (belief function), pl (plausibility func-
tion), and g (commonality function) are in one-to-one correspondence
with each other, the above rules can also be represented by using any of
these functions. Details can be found in [16].

Note that all the definitions above are for the nonnormalized case. For
the case of normalized belief functions, which means m(Z) = 0, the
normalized factor K = 1 — m() should be considered in those rules, and
the conditioning rule and the conjunctive combination rule turn out to be
Dempster’s rule of conditioning and of combination. The (unnormalized)
bel( Al B) turns out to be the (normalized) bel( A|B), and (») to be & [4,
16]. () doesn’t have a counterpart in Shafer’s presentation. To be consis-

tent with convention, we will use @ instead of (»), but the computation is
unnormalized.

Let’s consider two spaces ® and X. We use bel ,(|6) to represent the
belief function induced on the space X given 6 C ©. Suppose all we know
about X is initially represented by the set {bel(-l|8,): 6, € ®}. We only
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know the beliefs on X when we know which element of ® holds. We do
not have further specific knowledge about the belief on X when we only
know that the prevailing element of ® belongs to a given subset 6 of ©.
Under very general requirements, Smets [10, 16] has derived the disjunc-
tive rule of combination (DRC) to build bel(-/|#) on X for any 6 C O,
and the generalized Bayesian theorem (GBT) to build belg(+llx) on @ for
any x ¢ X.

THEOREM 2.1 (Disjunctive rule of combination [16]) For all 6 C ©,
xCX,

mX(x||0)= E 1_[ mx(x,'”ei),

UiineaXi=x i:6,<90

ply(xllo) =1 — 1101 - ply(xlie)].

6E0

THEOREM 2.2 (Generalized Bayesian theorem [16)) For all 6 € O,
xCX,

plo(Bllx) =1 — JT 1 - ply(xlle)].

6o

Note that ply(0llx) = ply(x]|#), and this represents the fact that in
general pl( A||B) = pl(Bl|| A), an equality unsatisfied once normalization is
introduced. This can be seen from the above two theorems. Now suppose
there exists some a priori belief bel, over . By using Theorems 2.1 and
2.2, we can compute bel on X given bel,, and {bel, (-]16,): 9, € O}:

THEOREM 2.3 [16] Suppose there exists some a priori belief bel, our @
distinct from the belief induced by the set of conditional belief functions
{bel ,(-[10,)}: 6, € O. Then YVx C X,

mX(X) = Z m()(ﬁ)mX(X”f)),

6c®

Y m(8)ply(xl16)

[y ¢]

It

ply (x)

It

5y mo(e)(l S II0 - plX(xIIO,-)]).

C O 0, €6

Note that the above three theorems can also be expressed by using
belief functions and commonality functions, which are detailed in Smets
[16].
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3. KNOWLEDGE REPRESENTATION USING BELIEF FUNCTIONS

Let U={X,,..., X,} be a finite set of variables representing the uni-
verse of discourse for a class of problems, where each X, represents a
relevant aspects of the problem. Associated with X, there is a frame O,
which is set of all its possible values. Let X and Y be two disjoint subsets
of U; their frames ®, and ®, are the product spaces of the frames of the
variables they include. For short, we write X,Y for ®,,®, whenever
confusion is absent. According to the notation of the previous section, a
conditional belief function for Y given X is represented by bel,{-[x)
where x C ®,, which means that we know the belicf about Y given that
we only know that the actual value of X is in x. Similarly, joint belief
functions on X and Y are defined on the space ®, x 0, (0, ,, or
X X Y for short). Look at the following example:

ExampPLE 3.1 Let A and B be two variables with frames 0, = {a, a}
and ©, = {b, b} respectively. To represent a relation between A4 and B
such that if 4 =a then B = b with m = 0.9, by a belief function in
joint form, the rule is represented by a belief function on the space
® = {(a, b), (a, b), (G, b), (@, b)), with masses 0.9 on the subset
{(a, b),(@, b),(a, b)), and 0.1 on O, while with belief functions in condi-
tional form, it is represented by the conditional bba, m({b}|la) = 0.9,
m(Ogla) = 0.1, m(B@gzla) = 1, m(Og®,) = 1. This is illustrated by
Table 1.

From the example, it can be seen that the latter representation is often
more natural and easy for the users to provide and to understand. The use
of conditional belief functions parallels the use of conditional probabilities
in Bayesian networks. Generally, given two disjoint subsets X,Y C U, to
represent conditional belief functions for Y given X by a joint form, one
needs 2/9x1%19v1 elements in the worst case, while to represent them by
conditional form one only needs 21+ 1%+ elements in the worst case. Of
course, not all belief functions on 0, ,, admit an equivalent representa-
tion by a set of conditional belief functions. But we think that the users’
knowledge is encoded in the conditional form and that the joint beliefs
they would provide are those based on the known conditional form.

Table 1. A Belief Function in a Conditional Form

a a 0,
b 0.9 0 0
O, 0.1 ! 1
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Furthermore, in many cases, the users’ belief can be represented by the
conditional belief functions for Y given x; € ®,. The conditional belief
for Y given x C ®, is then derived from the DRC. Example 1 is such a
case. In the worst case, it needs only @ X 2/®¥ elements.

Cano et al. [1] and Shenoy [8, 9] have both introduced the concept of a
noninformative belief function.® To understand such a concept, we first
introduce the concepts of projection, extension, and marginalization.

DEFINITION 3.1  Projection of configurations simply means dropping the
extra coordinates. If X and Y are sets of variables, Y C X, and x; is a
configuration of O, then let x}¥ denote the projection of x, on ©,.. Then
x+Y is a configuration of ©,. If x is a nonempty subset of Oy, then the
projection of x on' Y, denoted by x*Y, is obtained by x 'Y = {x}Ylx, € x}. If
y is a subset of Oy, then the extension of y to X, denoted by y'7%, is
y X Oy_y Ut is also called the cylindric extension of y into X.)

DEFINITION 3.2 Suppose m is a bba on Band A C B C U, A #= . The
marginal of m for A, denoted by m**, is the bba on A defined by

m*4(a) = Y m(b)  forall ac®,.

bc®y Bli=a

DEFINITION 3.3 Given two disjoint subsets X,Y C U, let bel be a belief
function defined on the space Oy . It is said that bel is a noninformative
belief function over X if and only if bel** is a vacuous belief function over
X (Cano et al. [1]).

Intuitively, the belief function in the above definition gives some infor-
mation about variables in Y and their relationship with variables in X, but
no information about X. This property is easy to verify when the belief is
represented in conditional form.

PROPOSITION 1 Let {bel, (:|[x): x € Oy} be a family of conditional belief
functions for Y given X. It is noninformative over Y iff bel, (-|®,) is a
vacuous belief function on Y.

Proof Let bel,,, be the belief function over X X Y whose condition-
ing given X is {bel,(|/ix): x € ©,}. It is easy to see that bel{), (y) =
bel, (yl®,). Therefore, the proposition is proved according to the defini-
tion of noninformative belief function. |

3 Note that Shenoy [8] and Cano et al. [1] called this belief function the “conditional belief
function.” We change the name to avoid confusion with the classical meaning of “conditional
belief function.”
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Moreover, suppose a belief function bel defined on the space @, ,,
gives information only on the relation between X and Y, but no informa-
tion about either X or Y. Then bel'* and bel!Y are both vacuous on X
and Y respectively. That is to say, bel is noninformative over both X and
Y. The following shows how to verify such properties when the belief
functions are in conditional form. It is based on normalized belief func-
tions, i.e., belief functions such that m(&) = 1.

ProposITION 2 {bel,(llx): x; € Oy} is noninformative over X if and
only if bely(Cllx,) is a normalized belief function for each x, € ©,, in
which case bel, (+|x) is also normalized for x C ©,.

Proof From Theorem 2.1, it is easy to prove that bel,(-/|x) for any
X C O, is normalized if bel, (-||x,) is a normalized belief function for each
x; € Oy. That is, pl,(0,]lx) = 1 for any x C @,. Thus, for any x C 0,
ply(xll®y) = pl, (O, ]lx) = 1, i.c., bel . ([|®,) is a vacuous belief function
over X. From the previous proposition, we have that {bel, (:|x,): x, € 0}
is noninformative over X.

Suppose there exists x; € Oy such that bel,(lx;) is unnormalized.
Then ply({x}[10y) = pl, (O, [{x}) < 1. Thus {bel,(-|x): x, € O} is not
noninformative over X. n

PROPOSITION 3 [f we only know a family of (normalized) conditional
belief functions such as {bel,(:|x;): x; € ©,} (see footnote 2), then it is
noninformative over Y iff for each y < O, there exists x, € O, such that
bel, (ylx;) = 0.

Proof For each y c ©®,, suppose there exists x; € O, such that
bel, (ylx;) = 0; then pl,(¥lx,) = 1. That is, for each y C ©,, there exists
x; € Oy such that pl,(ylx;) = 1. From Theorem 2.1, it is easy to see that
ply(¥1®,) =1 for all y € ®,. According to Proposition 1, {bel,(:|x,): x,
€ 0, is noninformative over Y.

Suppose {bel,(-lx;): x; € ©,} is noninformative over Y. Then we have
ply(yl®y) =1 for all y € ©,. From Theorem 2.1, we have that for each
y € Oy, there exists x; € O, such that pl,(y|x;) = 1; thus bel, (¥|x,) = 0.
That is, for each y C ©,, there exists x; € ©, such that bel, (y|x,) = 0. ®

In the following, we will show some relations between the belief func-
tions represented in conditional form and in joint form. By using the rules
of conditioning, every joint belief function can induce a family of condi-
tional belief functions, but not every family of conditional belief functions
is compatible with a joint one. Incompatibility occurs when the set of
conditional belief functions cannot be obtained by conditioning some
underlying joint belief function. We say that those sets of conditional
belief functions that are not compatible with a joint belief function are
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invalid. The joint belief functions that could underlie a family of condi-
tional beliefs are not always unique. Smets [16] has shown that when the
conditional belief functions are represented by {bel,(-|lx;): x; € X}, we
can always construct a joint belief function from it, and the joint belief is
unique if the principle of minimal commitment is applied.

LEMMA 3.1 Let X and Y be two disjoint subsets of U, and bel . , be a
belief function on the product space X X Y. Then its conditional form
{bel, (llx): x € ©,} is obtained by

my(yllix) = > My y(S).
5CO y (SNxTEVTN Yoy
Proof This is directly obtained from the conditioning process. [ |

LEMMA 3.2 Suppose a family of normalized conditional belief functions
{bel, (llx): x € O} is compatible with a joint belief. Then it satisfies
ply(yllx)) < ply(yllxy) if x; Cx; € O

Proof
ply (Yllx)) = ply,y (yT¥ VY[ XVY)
= plyy y (yTXVY A XUY)
< plxxy(yr)(uy mxz'rXuY)
= Ploxy O TF V] F2T) = ply (yllxy).
This concludes the proof. |

ExaMPLE 3.2 Let A4 and B be two variables with ®, = {a,a} and
@, = {b,b}). Let © = {ab, ab, ab, ab} be briefly denoted by {1,2,3,4};
then, for example, the subset {ab,ab} is denoted by 12 for short.
Consider bel; on 0: m(14) = m(23) = 0.1, m(123) = m(124) = m(134)
= m(234) = 0.1, and m(1234) = 0.4. By applying Lemma 3.1, its corre-
sponding conditional belief function for B given A is shown in Table 2.
Consider bel, on O: m(23) = 0.2, m(134) = m(124) = 0.2, and m(1234)
= 0.4. Its corresponding conditional form obtained by applying Lemma
3.1 is shown in Table 3. Comparing the two tables, we find that two
different joint belief functions lead to the same conditional form.
Therefore, a conditional belief is compatible with more than one joint
beliefs.

The ballooning extension of a conditional belief function over X given
y CY in the belief function over X X Y means that the bba m(x|y)
(x € X) is allocated to the set x"**Y U 5T ¥*Y e, the largest subset of

X X Y whose intersection with x>V i x TX*7,
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Table 3. Belief Function in Conditional Form for bel,

a a 0,
b m(134) = 0.2 m(23) = 0.2 0
b m(23) = 0.2 m(124) = 0.2 0
0,  m(124) + m(1234) m(134) + m(1234) m(23) + m(124)
=02+04=06 =02+ 04=06 +m(134) + m(1234)
=1

The belief function so built is the least committed belief function on
X X Y among all belief functions on X X Y whose conditioning on y T **"
is equal to bel(:|y). Formally, we have the following definition:

DEFINITION 3.4 [16] Ler Y and X be two finite spaces, and bel y(x|ly) be
a conditional belief function on X given some y C Y. The ballooning
extension of bel y(xlly) on X X Y is a belief function bel ., computed as
follows:

bel yo y ((xTXXY Ny TXYY 5T XYY = bel  (xlly) + m,(Qlly).

LEmMA 3.3 [10, 16] Suppose X and Y are two disjoint subsets of U. If all
we know about the relation between X and Y is given by the set of
conditional belief functions {bel,(|\[x;): x; € O}, we can construct the
belief function on X X Y by first computing the ballooning extension of each
bel, (‘llx;), then combining the results using Dempster’s rule of combina-
tion. The computation can be written as follows: Let a C O, ,, and
yi =(an{x}" YY) Then

mXUY(a) = n my(y,»Hx,-)-

X, €0,

The joint belief function on X X Y is the one whose conditionings over
x C X and y C Y result in the DRC and the GBT, respectively.

4. REASONING WITH CONDITIONAL BELIEFS

4.1. Evidential Networks with Conditional Belief Functions

In this section, we use the network proposed by Smets [16] for the
propagation of beliefs. Graphically, the network is a directed graph
(acyclicity is not required), as shown in Figure 1. The conditional beliefs
are defined in a different way from conditional probabilities in the Bayesian
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Figure 1. An example of an evidential network with conditional belicf functions.

networks (BNs) [3]. In our network, each edge represents a conditional
relation between the two nodes it connects. For example, the edges (A, C)
and (D, C) mean that we have {bel.(:la;): a, € ©,} and {bel(:|d,): d, €
Op}, but not {bel-(lla,d;):a, € O,,d, € B} as is the case in Bayesian
networks. In order to distinguish these two kinds of networks, we call ours
ENC, which means an evidential network with conditional belief functions.
However, if we have a conditional belief such as {bel.(lla;,d)):a; € 0, d,
€ 0,}, we can build an ENC in which nodes 4 and D are merged as one
node. In this section, we also assume that, for each conditional belief
function for Y given X, all we know about Y given X is initially
represented by the set {bel, (.x,): x;, € O,].

Note that in a BN, there is a joint probability distribution for the
network, and the local conditional probabilities can be computed by
projecting the global probability on the subset of the variables involved.
And for each node in BN, there is only one conditional probability for it,
given its parents. In an ENC, we can have knowledge about the relations
between two nodes from different sources (we call them local conditional
beliefs). Then the global belief for an ENC can be computed from all
those local conditional beliefs. However, from the global belief, we can no
longer reconstruct each local conditional belief. This distinction results
from the different natures of the two models [13]. Also, once an ENC has
been constructed, we can add new knowledge, by the conjunctive rule of
combination for some variables, at any time, supposing the new knowledge
is from an independent source. A BN, in contrast, is always constructed
from some underlying joint probability distribution.

4.2. Propagating Beliefs in an ENC

Given any ENC, one can transform each conditional belief function
bel, (:|x), x € X, into a joint belief on X X Y by building its ballooning
extension on X X Y. Then the ENC becomes a classical network, to which
the VBS algorithm [6, 7] could be directly applied. Such a strategy would
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be inefficient, and we present hereafter more efficient algorithms that
profit from the particular nature of the belief function encountered in the
ENC.

It has been shown that one main objective of reasoning processes in an
evidential network is to compute the marginals of the global belief func-
tions for some variables. For two disjoint subsets X and Y of U, knowing*
bel .y or ply,y(x,¥), x C B,, v € 0,, is equivalent for what concerns
propagation to computing the marginal beliefs for the variables. We use
BEL, and bel,, to denote the marginal and a priori beliefs for the
variable X. Due to Theorem 2.1 and 2.2, given two variables X and Y and
the conditional belief {bel, (-[|x;): x; € @y}, we could compute and store
bel,(-|x): x € ©, and bel,(|y):y € O, in the preprocess, or simply
store pl(x, y):x € Oy, y C 0,, to save space. Storing pl’s takes only half
of the space of storing bel’s, since pl(x, y) = pl,(yllx) = pl ,(x||y). Now,
we are ready to give the inference algorithm:

Given an ENC represented by G = (M, E).

Case I1: Suppose G is a polytree, i.e., there is only one (undirected) path
between any of two nodes in the network.

The propagation algorithm can be regarded as a message-passing scheme:
for each node X in the network, its marginal BEL, is computed by
combining all the messages from its neighbors ne( X) and its own a priori
bel,y, i.e.,

BEL , = bel,y ® (&{M, _ 4|V € ne( X)}),

where the message M, _,, is a belief function on X, so it can be
represented by bel, | , (or my , ), and is computed as follows: Vx C O,

bely . x(x) = )} mX(xHy)belnc(y)/X,aY(y),

yc © y
where

bel vy x -y = belyy & (&{bel, ,|Z € ne(Y), Z + X}).

Case 2: If there exist any undirected loops in the network, then some
nodes needed to be merged to make the network acyclic, resulting in a new
polytree G’ = (M', E'), where some nodes in G’ might be subsets of the
nodes in G; we call them merged nodes. For any merged node v in G,
there might be a belief function &, obtained by combining the ballooning
extension of each conditional belief. Figure 2 illustrates two examples for
this process.

* We use plyyy(x, v) to denote ply, , (xT¥YY T ¥ YY) for the sake of simplicity. It has
been shown that pl,, ,(x, y) = ply(xlly) = ply(ylly) for x C X, y C Y [16].
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(a) (b) ;
Figure 2. Examples of absorbing loops in the ENCs.

In Figure 2(a), the loop is absorbed by merging nodes B and C; the
resulting graph is shown in Figure 2(b), where D = {B,(}, and the new
conditional belief function bel ,(-|la;) is obtained by combining bel z(-|l2;,)
and bel-(-]la;) on the space ®, = O : forall g, € O,, d C O,

mpy(dlla;) = Y mg(bllaymq(clla,). (4.1)

pTB.Com e HB.C gy

Obviously, bel,(dlla;) is normalized iff belg(-la;) and bel(-lia,) are
normalized, since the subset b ™15 <} N ¢ T8:C} can never be an empty set.
Moreover, the conditional belief function between B and C becomes %,
in Figure 2(b), obtained by applying Lemma 3.3. Thus <&, is a belief
function on ®,.

Figure 2(c) is another example of an ENC with a loop. In this case, we
merge B and D, resulting in the graph shown in Figure 2(d), where
E = {B, D}. Here bel.(-la;) is obtained by combining bely(-lla,) and
bel ,(+|la;) on the space O, = O, ,, using Equation (4.1). As for bel.(-|le),
e C 0., we compute it for three cases:

1. Ve, = (b;,d,) € O,

7

m(;(CHe,) = Z mc(Slnb,’)mC(Sng}')-

SINss=¢

2. For e c O, if e can be represented by b X d, where b C O,
d € 0,, then

melelle) = Y. mq(s Ib)m(s,lld),

S Ns,=¢

where m (-lb) and m(-||d) are obtained from m(-|b;) and m(:|d;)
respectively by applying the DRC (Theorem 2.1).
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3. For any other e € O, we first construct a conditional belief function
bel. , ,ClIb,) from m(:l|b;) such that

me pslb) = m(cllb),

where s = ¢ M€ P) (e N b EYLIPHTED) et bel?. |, be the belief
function resulting from combining ballooning extension of m(-|ld,);
then

me(clle) = (beleU,, ® (Dlbele, pClIb)Ib, € @B}))ua‘

Alternatively, bel -(:/le), e € ®; can be computed by first combining the
ballooning extensions of the two conditional beliefs bel(-|b,) and
bel.([ld;) on the space @y and O, then applying Lemma 3.1 to
transform the resulting belief to a conditional form bel-(-|le), ¢ < O, and
bel(“llc), ¢ € ®.. However, this takes more space for the computation.
Since there is no direct relation between B and D, %, is a vacuous belief
function.

After rearranging the network to an acyclic one, we then use a similar
algorithm in case 1 for the propagation: Suppose each node X in G’ is a
subset and has a &,. Thus, for any nonmerged node, it is a singleton, and
B, 1s a vacuous belief function. Then the computation is as follows: for any
node 4 = {X,,..., X} in G,

Bel, =32, ® (&{M,_ 4IY € ne(A)})
L X,
BEL, = bel,y @ (BelA o (®fbely X, €4, X, # X})) .

The message M, _, , from Y to A is computed as follows: for Y =
{v,,....Y,},

bel, . (a) = } mA(aHy)belne(Y)/AaYv
y<Oy

where
belnc(Y)/AHY
=By @ (@(belyy |, € Y}) ® (8{M,_,I1Z & ne(Y), Z + A)).

From the above propagation scheme, it can be found that, in an ENC,
any computations involving two connected variables (or merged nodes), say
X and Y, are proposed on the space &, or ®,, while in the network with
joint beliefs, such computations are always on the product space O, ,.
Thus the computation in the former needs fewer set comparisons and
multiplications than that in the latter. Although the above representation
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and propagation algorithm are for networks which only have binary rela-
tions between the nodes, it could be generalized to the case where
relations are for any number of nodes by using a graphical representation
such as directed valuation networks [8].

S. EFFICIENT COMPUTATION FOR THE ENC WITH
PARTIAL DEPENDENCY

In the previous section, we have proposed some ideas to solve the
problem where there are loops in the network. For the case where there
are very complicated loops, the computation is not quite obvious. In this
section, we show that for some ENCs with complicated structure but with
some special properties called partial dependency, we can reduce the
computation by simplifying the structure.

5.1. ENC with Partial Dependency

In this subsection, we give the definition of an ENC with partial
dependency and show some properties of such networks.

DEFINITION 5.1 Given two variables A, X in an ENC, an edge (A, X)
represents {bel ,(:la;):a; € ©,}. The set {a; \ my(Oyla,) =1, a, € O}
is called an irvelevant set to X, and denoted by .7}, If X is a set of variables,
then the irrelevant set to X is defined as .7 = {a, N my(@y]a) =1,
X, e X).

From the definition, it’s easy to see that Va, e 7y, my(Oyla;) <1,
where .7} is the complement of 7" relative to ©,. Thus we say that %
is relevant to X. Such relations occur commonly in diagnosis problems and
rule-based systems. In Example 1, we say that « is relevant to B, but a
irrelevant to B. Intuitively, it means that given some knowledge about a4,
we can induce knowledge about B, but no matter what we know about 4,
we can’t induce any new knowledge about B. Thus we say a is irrelevant

to B.

DEFINITION 5.2 An ENC is called an ENC with partial dependency if
there exists a variable A such that for any X € U and (A, X) € E,
¥+ Dand 5 + 0O,

The following two lemmas state the properties of the simplest ENC with
partial dependency, where there are only two variables in the networks.
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LEMMA 5.1 Given two variables X,Y and {bel,(|x,): x; € Oy}, let .7
be as defined above. Then forany S C O, my(0y]S) = 1if S N7 + .

Proof The result can be directly derived by using the GBT. ]

LEMMA 5.2 Given two variables X,Y and {bel,(|x,): x; € Oy}, let 7%
be as defined above. Suppose that we have some belief bely, on Y. By
Theorems 2.1-2.3, we can compute the belief of X. If m(S) # 0, then
S 2.7

Proof From Lemma 5.1 we have that, Vx € O, if x N7 + &, then
my(@,]x) = 1, i.e, ply(ylx) = 1 for all y € ©,. Then, by Theorems 2.2
and 2.3, pl,{xly) = pl(y|x) = 1 for such x. Thus by Lemma 3.1,

ply(x) = ¥ my(yply(xly) = X my(y) =1

y<Oy ycoy

Therefore, for all § C O,,, if m,(S) # 0, § must contain all the elements
of #, 1le, S 2.7 [

5.2. Computation in ENC with Partial Dependency

From the properties of an ENC with partial dependency (Lemmas 5.1
and 5.2) described above, we can simplify the computation for some cases
of such ENCs. Consider the network shown in Figure 3, where in (a), G, is
a set of variables, and suppose %' is irrelevant to G,. Figure 3(b) shows
the details in each G,. To describe the computation, let’s begin by recalling
the concept of partition.

DEFINITION 5.3 Let ©® ={6,,...,0,} be a frame of discernment. A set
Py of subsets of O is a partition of O if the elements in P, are all
nonemply and disjoint, and their union is ®. We also call 2| a coarsening
of ©, and O a refinement of Py,.

From the definition, we have that for all 6, € O, there exists X; € Pg

(@) (b)
Figure 3. An ENC with partial dependency, where (b) illustrates the details of G,
of (a).
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such that 6; € x;. We denote such a relation by A(6,) = x;. Then, V6 C O,
A(8) = {A(6,) \ 6, € B}. Let bel, be a belief function on ©; then the
belief bel, on £, induced by bel,, say, by coarsening, is obtained as
follows: Vx € .#,,

my(x) = Y m(0).

AlB)=x

Let bel, be a belief function on #,; then the belief bel;, on @ induced by
bel,, say, by refinement, is obtained as follows: 8 € 0, x €%,

m(6) = m,(x),

where 6 = U{6' \ A(8") = x}.

Given a network as shown in Figure 3, we can represent it as shown in
Figure 4. Each A, has a frame ©,, which is a partition of ®, such that
Va, € O, Ala,) =77 it a, €77 otherwise Alay) = {a,} = 4,. Each
A; = G; part can be regarded as a subnetwork, and the belief functions
passed between A4 and A; are performed by refinement and coarsening
between the two frames. Let’s look at the following example:

ExAMPLE 5.1 Suppose we have four variables in the network shown in
Figure 5(a): A, X, Y, and Z. Their frames are 0, = {a,, a,, a5, a,, a5},
0, =0, =0, ={+, —}. The relations among them are represented
by conditional belief functions in Table 4.

Now suppose we have some prior beliefs on X and Z: m, (+) = 0.8,
My x(Oy) =02, m,,(—) = 1. To compute the marginal for A4, if we use
the joint belief for the relation between A and X, then the combination is
performed on the product space ®, ,, and O,  ,; if we use the condi-

Figure 4. Altcrnative structurc of the network in Figure 3 for simplified compu-
tation.
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Table 4. Conditional Belief Functions for Example 1

my(xla),i=1,...,5 my(ylg),i=1,...,5
a, a, as a, as a, as a; ay ds
+ 9 i 0 0 0 0 7 2 4 0
— 0 3 0 0 0 0 3 .6 1 0
Q] 1 .0 1 1 1 1 0 2 5 1
my(zla), i=1,...,5
a a, as a, as
+ 0 0 0 6 9
— 0 0 0 3 0
(] 1 1 1 1 1

tional beliefs represented in Table 4 and the propagation scheme de-
scribed above, the computation is performed on the frame ©,, which is
more efficient. Moreover, if we use the result of Lemma 5.2, the computa-
tion can be simplified further. The following steps illustrate such a compu-
tation:
1. Transform the network in Figure 5(a) to the network shown in Figure
5(b), where each O, is a partition of ®,: 0, = {d,,d,,.#}, where
S =5 ={ay,a4,aly 0, ={dy, 45, 4,,.5), where 5 =) =
{a,, as}; and 0, = {a,, ds,.7}, where .7, = 7% ={a,,a,, ay}. Then
bel,(ld,), d; é®A.’ is obtained from bely(-la)), a; € 0,, and
bel y(:|.7), #, € O, , is obtained by applying the DRC. Symmetri-
cally, we can get the other two conditional beliefs. The resulting
conditional beliefs are shown in Table 5 (in the table, we use A, for
0, , for short).
2. Use the DRC to compute belAl(~|x) and bel , (|2).

() (8 D
®» ©® @ ) ) )

Figure 5. A simple example of an ENC (a) and its structure for computation (b).
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Table 5. Conditional Beliefs Induced from Table 4 for the Partition

of O,
my(xla), a; € A, my(yla;), a, € A, my(zla,), a, € A,
a, a A i, 4y a4, S dy 45 A
+ 9 7 0 7 2 4 0 6 9 0
- 0 3 0 3 6 1 0 3 .0 0
® 1 0 1 .0 2 5 1 1 1 1

3. Use Theorems 2.2 and 2.3 to compute belA’, i = 1,2,3. In particular,
bel,, is vacuous by Proposition 3; m,({d,,./}}) = 0.24, m,(0, ) =
0.76; and

m, ({73}) = 0.54, m, ({a,,.7}) = 0.36,
m, ({ds, 7} = 0.06,  m,(0©,)=0.04.

4. Compute the above two beliefs on the frame ®, by refinement, and
combine them to get our desired result.

Obviously, this computation is more efficient, since in steps 2 and 3, the
computation is on the frame ®,, which is smaller than ©,.

Moreover, if the network has the properties defined below, we can also
simplify the computation for each subnetwork shown in Figure 3(b) if the
network has some unrelated variables defined as follows.

DEFINITION 5.4 Let X, Y, and A be three variables in an ENC with partial
dependency. Suppose we have bel ,(-la;) and bel,(‘la,) for a;, € ®,. Let
K, 7Y be defined as in Definition 5.1. We say that X and Y are unrelated
through A, denoted by (X,Y, A), if one of the following conditions is
satisfied:

L. 75N + O, or

2. 7 n.sl =@, sXus) =0, and bel (1.7} or bel, (7))

obtained from bel y(‘la;) or bel,(:la;) by the DRC is vacuous.

This relation can also be extended to two disjoint subsets, where
B = Ny, 7 The following theorems and their corollaries give solu-
tions for simplifying the computation.

THEOREM 5.1 Let X, Y, and A be defined as in Definition 5.4, and
{bel, (lx,): x; € O} be a family of conditional belief functions for Y given
X. Suppose u(X,Y, A) and that we have no a priori information on A or
Y, but on X we have bel,,. Then BEL, is only dependent on bel, (:|x,)
and bel .
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THEOREM 5.2  Let X, Y, and A be three variables in an ENC with partial
dependency as shown in Figure 6(a). Let 7,7 be defined as in
Definition 5.1 and 7} N7} = &. Suppose we have the conditional belief
function {bel, (:|x,): x, € O,} for Y given X, and that we have no a priori
information on A or Y, but on X we have bel, . Then if there is only one
focal element in bel,, i.e., my(x,) = 1 where x, € O, then BEL ; can
be computed by Figure 6(b).

CoroOLLARY 1 Let X, Y, and A be as in Definition 5.4, and
{bel, (:|x;): x; € O, be a family of conditional belief functions for Y given
X as shown in Figure 6(a). Suppose uw(X,Y, A) and that we have no
a priori beliefon A, X, and Y. If bel, (|x,) is noninformative over both X
and Y, then the marginals for all variables are vacuous.

Proof This result can be directly obtained from Theorems 5.1 and 5.2
by considering that there is a prior belief on X such that m(0,) =1. =

CorOLLARY 2 Let X, Y, and A be as in Definition 5.4, and
{bel, (|x,): x; € Oy} be a family of conditional belief functions for Y given
X such that it is noninformative over both X and Y (Figure 6(a)). Suppose
w(X,Y, A) and that we have no prior beliefs on A or Y. Let bel,, be
a priori on X. Then BEL, is computed from bel,, and bel,(|x,), and
BEL, is computed as follows: Let m,  (x C ©y) denote the resulting
belief for A when m y(x) = 1; then Ya C 0,

m(a) = 3 m()X(x)mAu(a),
XSO,
Proof This can be obtained by applying Theorems 2.3 and 5.2. [ ]
COROLLARY 3 Let X, Y, and A be defined as in Definition 5.4 Suppose

we have no prior beliefs on A or Y. Now suppose we have observations
about X. Then BEL, is vacuous if u(X,Y, A).

Proof This can be obtained directly from Theorem 5.1 by considering
that there is no relation between X and Y. m

(A)
@‘6 ° ®

L m(xp=1 m(xg=1 /:\belY(.lxo)

(a) (b)
Figure 6. A simple casc of ENC where the computation can be simplified.
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m(x;j)=1 belj-1(Ix)  m(x)=1 belj+(.Ix})
(a) (b)
Figure 7. A general case of an ENC whose computation can be simplified.

The above theorems and the corollaries are only for a network with
three variables. However, the resuits can be extended to more general
cases.

THEOREM 5.3 Consider an ENC as shown in Figure T(a). Suppose we
have a priori belief bel,; for X, such that m,(x;) = 1 where x, € Oy .
Then the network in Figure 7(a) is equivalent to the one in Figure 7(b).

THEOREM 5.4  Let G, and G, be two sets of variables as shown in Figure
8(a). Suppose some elements .7} (i = 1,2) of A are irrelevant to G;, and
) N.5} = &. Suppose there are some prior beliefs for the variables in G|,
say on X\, and from the chain X, ... X,, we get that the belief on X, | is
vacuous. Then BEL , can be computed by the network shown in Figure
8(b).

It’s easy to see that Figures 7(b) and 8(b) have similar structure to Figure
3(a). Thus they can be simplified further.

@ﬁ;}@

)
: beloxl ! be]OX[

(a) (b)
Figure 8. Anothcer case of an ENC whose computation can be simplified.
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5.3.

An Example of Efficient Computation in ENC

The following example shows how to use the theorems in the previous
subsection to reduce the computation for a complicated ENC with partial
dependency.

ExamPLE 5.2 Figure 9 shows an ENC representation for an example of
nuclear waste disposal in [18]. In the network, we have 43 variables: 1
diagnosis, 21 tests, and 11 symptoms, where 0y;,..i = {@,b.¢,d, e, f,
g, w}, 0, = {yes,no}:i=1,...,11, Ot = {(+,—-}:j=1,...,2L

The conditional belief functions among the variables are as follows:

Table 6 shows the conditional belief for s; (i = 1,...,11) given the
diagnosis. The belief function for s; given x; (€ Oy;,400) is @ simple
support function. For example, the relation of diagnosis and s, is
represented as m ({yes}|f) = 0.4, m (O, [f) = 0.6.

The conditional beliefs for ¢, (i = 15,...,21) given the diagnosis are
m,(+ld,) = 099, m (0, 1d;) = 0.01, m (O, |w) = 1, where d|,...,d,
reﬁresent a,...,g, r'esp'ectively. The relation between diagnosis and
t, is m, (+lw) = 1.

The condition beliefs for ¢, given s, (i = 1,...,11) are m (+lyes) =
0.99, m,(©, lyes) = 0.01, m(®, lno) = 1. '

The conditional beliefs for ¢; given ¢; if there is an arrow connecting
them (i,j =1,...,10,12,13,14) are m (+] + ) = 0.9, m,’(('),‘l + )=
0.1, m, (0,1 =) = 1. '

In order to solve the problem, we need the following computations:

1.

The belief on diagnosis, given that we know the resuit of each test.

2. Suppose we have the result of some test. We need to compute the

belief on diagnosis given that we also know the result of another test.

iagnosis )_>{19)
@ ®@
(1) & @)
ONORCORTID
(h9)

WD<(D=(<(9 (J D=0 @)

Figure 9. An ENC for an example nuclear waste disposal problem.
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Table 6. Conditional Belief Functions between Diagnoses and s;’s

a b ¢ d e f g )

S((+) 4

$5(+) 95

s5(+) 5

S4(+) .6

s5(+) 9

sel+) 5
s.(+) .6
sg(+)

so(+) .8
s10(+) .6

s+ ) 3

to

3. We may also compute the belief on diagnosis given that we know the
results of several tests.

Here we only show how to simplify the network for the computation

according to the above theorems.

1. Suppose we have that the result of 7, is “—". According to Theorem
5.3, we remove the edges (75, £,) and (15, t,), by assigning belief on
as m(—) = 0.9, m(0,) = 0.1. According to Theorem 5.4, we remove
the edge (15, 1). The network is thus separated into 11 subnetworks
as shown in Figure 10, where the frame of diagnosis can be reduced
in each subnetwork shown in the variable D,. From Corollary 1, it is
not difficult to see that the subnetworks with D,(i = 1,4,...,11) will
have vacuous beliefs on D, after the propagation. Thus the computa-

Figure 10. Simplified graph for Figurc 9.
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diagnosis

Figure 11. Simplified graph for case 1.

tions are only needed in the network with D, and D,. Furthermore,
again by Theorem 5.4, the variables ¢,,, ¢;, and s, can be removed.
Therefore, the biggest subnetwork has only seven variables, and the
size of the biggest frame is 4 (shown in Figure 11).

2. Suppose we have that the results for test,, are — and for test, are
+. Using the same strategy, the network will be simplified to Figure
12.

3. Similarly, we can reduce the computation in case 3.

From Example 2, we find that, for the ENC with partial dependency, the
network can be simplified by cutting some loops and separating the
network into smaller subnetworks. Obviously, this makes the computation
more efficient in the simplified structure than in the original one.

- ~
- 1 ~
~
]

22
(s ONN®
() (2)

Figure 12. Simplified graph for case 2.

-
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6. CONCLUSIONS

We have presented an evidential network (ENC) which uses conditional
belief functions for the knowledge representation and reasoning. By com-
paring some relations between the representations by joint belief and by
conditional belief, it is found that the conditional form is more natural and
it takes less space. We also provided an algorithm for reasoning in ENCs.
The presented algorithm of reasoning is only for a network where all the
relations are binary; the cxtension of the algorithm to a general case will
be studied in future work. We have shown that the computation of an
ENC can be simplified due to the property of partial dependency. Further
studies are still needed to systematize this simplification process, and it
may be conjectured that one possible solution is to represent the knowl-
edge in several networks instead of in one global network.

APPENDIX: PROOFS OF THE THEOREMS

Proof of Theorem 5.1

Before proving the theorem, we first state the following lemma which
will be needed in the proof.

LEMMA 6.1 Let X, Y, and A be three variables in an ENC with partial
dependency. Let .7}, 7] be defined as in Definition 5.1. Suppose .7 N
I = . If we merge X and Y as one node, say S, then Yo C Oy,
ac®,,

ply,y(wla) =1 — [l —ply(w'¥la QKZX)][l — ply(0*¥a nsH)].
(6.1)

Proof Let A, =5, A, =7}, A, =" N7 It is casy to see that
A,, A,, and A, constitute a partition of @, and that A4, contains the
elements relevant to X, but irrelevant to Y; A4, those relevant to Y, but
irrelevant to X; and A5 those irrelevant to either of X and Y.

From the inference algorithm described in the above section, we merge
X and Y as one node, by applying Equation (4.1), for all & € @, ,,:

my, y(wla) = ¥ my(xla,ymy(yla,).

AR AT Yo,

Since A, is irrelevant to Y, we have that Va, € A, m,,,(wla,) =
my(w*¥la,); thus ply, y(wla;)) = ply(w'*|a,). Symmetrically, Ya; € A,,
ply.y(wlay) = ply(w”\a‘,). Since A, is irrelevant to either of X or Y,
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Ya, € A, ply,y(wlay) = ply(ow' *la) = ply(w'¥|a,) = 1. By applying
the DRC, we have the Va € ©,
Plycy(wla) =1 - [T - ply,y(wla)]

II,'E(I

1— JT [0 = plyy(wla)]

a,SanA,

X 11 [1 —plXXY(wlaj)]

a;ean(A,ud;)

1— T1 [1-pleCeot*la)]

a;,canA,

x TT  [t=ply(e! )]

a;€an(A,UA3)
=1- [1 —ply(w'¥la ﬂj_gx)][l — ply(w'a N,

which concludes the proof. [ ]

If

Il

Now let’s look at the proof of Theorem 5.1:

Proof Let 7}, 7 C ©, be the sets of irrelevant elements to X and Y,
respectively. By merging X and Y as one node, say S, and by applying
Lemma 6.1, we have that, Vo C 0, ,

Plyy(0©,) =1 = [1 = ply(w* *1L7)][1 = ply (@ V5], (6.2)

Since u(X,Y, A), suppose .#;* N.7) + &; then for all a € O, such that
ans¥ Nl #+ &, we have ply(yla Nn.%¥) = 1 for all y € ©,. Thus,

Plyy(@l®) =1 - [1 - ply(«* ¥IZ)]0 -D=1. (63

If 7¥nsy =0, £ us =0, then Equation (6.2) can be written as

Plycy(@l®) =1 = [1 = ply(0' ¥I7)]|[1 ~ ply (0! 7157))]. 6.4

Suppose bely(~lj—gi) obtained from bel, (-|a,;) by the DRC is vacuous; then
Yy C ©,, pl,(yl.7)) = 1; thus

Plycy(@l®) =1 -1 - ply(0¥IZ)]a - D =1. (65

Suppose belX(-lfA)_() obtained from bel y(-|a;) by the DRC is vacuous; then
Vx € 0,, ply(x|l.%Y) = 1; thus

Plycy(@l®) =1-0-D[1 -ply(e"17)] =1. (6.6

From Equations (6.3), (6.5), and (6.6), we have that bel,,(®,) is
vacuous. As there is no a priori belief on A4, bel , _, ¢ is vacuous during the
propagation. Therefore BEL, is dependent only the bel, (:|x;) and bel,,, .

|
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Proof of Theorem 5.2

Proof Since .7}, 7] are irrelevant to X and Y, respectively, by merg-
ing X and Y as one node, say S, and by applying Lemma 6.1, we have
Vo C O, y,aCcO,

plA(a|a)) = plXX y(w'a)
=1- [1 - plx(wixla ﬂjf)“l —ply(w'¥la OJQX)].
Let bel,, be the joint belief over X X Y of {bel,(|lx):x, € @}, by
applying Lemma 3.3. Then each focal element s of bel,, must satisfy
st¥ = 0,. Since m,,(x) =1, let bel,,, be the resulting belief function
on combining bel,, and bel . It’s easy to see that each focal element w

of bel,,, must satisfy w-* =x and bel{), = bel,(:|x). To compute
BEL ,, we use Theorem 2.3:

plia)= Y myyy(w)pllaw)

WSO,y
= Z Moyxy (@)

wCOx vy

X{l - [1 - plX(leIa (\?AX)][I —ply(w*’a ﬂJj,X)]}
= Z My (@)

®wCOx ,y

X{l - [1 — ply(xla ﬁj/,"')][l —ply(w-¥la QQYA’Y)]}
= Z mdxyy(w)

wlVco,
><<1 - [1 ~ ply(xla m(;/'x)][l —ply(w'"la m‘yf*x)]}

= 2 [m(,XEBmY(wiylx)]

wi'CHy,
{1 = [1 = ply(xla nF)|[1 = ply (@' la N7} (6.7

Equation (6.7) implies that BEL , can be computed from the network in
Figure 6(b).

Proof of Theorem 5.3

Proof Let BEL be the joint belief function of the network, and BEL
the belief function obtained by combining all the beliefs except bel; ;_,
bel, ;. , and bel,;, where bel, ; |,bel, ; | are the joint beliefs of the
corresponding conditional bellefs obtained by applying Lemma 3.3. Then,
in Figure 7(a) we have

BEL = BEL @ (bel,; , @ bel, ;| ® bel,)). (6.8)

-J JoJt
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Since bely; is such that m(x;) = 1, it’s easy to see that

bel; ;_, @ bely; = bely, ® (bel, ;| & bely)* ™.

Jjoi=1 )
and

bel, .., ® bel,, = bel,, ® (bel, ;,, & bel,)* ¥

From Theorem 2.3, we can find that

(bel;

e @ beloj)lxj./tl — beljil(.lx)'

Then Equation (6.8) can be rewritten as
BEL = BEL & [belj+1(-|x) ® bel, |(‘[x) & bel(,]-].

Thus, BEL is also the joint belief function of the network in Figure 7(b).
As the variables in the two networks are in one-to-one correspondence,
the marginal distributions of the two networks will be the same. Therefore,
they are equivalent. ]

Proof of Theorem 5.4

The following lemma is needed for the proof of Theorem 5.4:

LEMMA 6.2 Let bel, bel |, bel,, and bel; be four belief functions on 0 ,.
Suppose bel; is such that ¥Ya < 0,, my(a) = x,m,(a) + x,m,(a), where
Xy, X 2 0, x; +x, = 1. Let bel,; denote the belief function resulted from
the combination of bel; and bel,. Then Ya C 0,

myz(a) = xymy(a) + x;mpp(a).

Proof

mp(@) = Y, my(bymy(c) = Y. my(b)lxm(c) + x,m,(c)]

bNc=a bNc=a

= Z [le()(b)ml(C) +x2m()(b)m2(c)]
bNc=a

=x, Y myBymy(c) +x, Y, my(bym,(c)
bNc=a bNec=a

=x,mga) + x,my(a).

This concludes the proof. ]
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Proof of Theorem 5.4 Let Y and Z be the merged nodes of variables
in G, and G, respectively. From Theorem 5.2, we have that, for any a
priori belief such that m,(y) = 1, the BEL , can be computed as follows:

my(a) = my(y)m(aly),

myla) = ) m,(zly)m,(alz),

zC®,

BEL,,, = BEL, @ (BEL, & bel,,). (6.9)

Suppose there are prior beliefs on some variables in G, and we get that,
from the chain X, ... X,, the belief on X, is vacuous. Let bel,, be the
joint belief for Y got from the a priori beliefs through the chain. It’s easy
to see that, for each focal element y of bel,, bel ,(|y) is always the same.
Thus BEL ; is always the same. Then, from Lemma 6.2 and Equation

(6.9), we have

my(a) =} mm,(y)mf”y(a)

yc Oy

= Z myy(y)m (aly) & (BEL, o bel,,) Z My (y)
ycoy : Yoo,

= (BEL, @ bel,,) & ) m,,(yIm(aly).

ycoy

The above equation is the solution for computing BEL , in Figure 8(b). =
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