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ABSTRACT 

In the existing et~idential networks applicable to belief functions, the relations among 
the t~ariables are always represented by joint belief functions on the product space o f  the 
tJariables inuoh~ed. In this paper, we use conditional belief functions to represent such 
relations in the network and show some relations between these two kinds o f  representa- 
tions. We also present a propagation algorithm for such networks. By analyzing the 
properties o f  some special networks with conditional belief functions, called networks 
with partial dependency, we show that the computation for reasoning can be simplified. 

1. INTRODUCTION 

Network-based approaches have been widely used for knowledge repre- 
sentation and reasoning with uncertainties. Bayesian networks [3] and 
valuation-based systems [7] are two well-known frameworks. Bayesian 
networks are implemented for probabilistic inference, while valuation- 
based systems can represent several uncertainty formalisms in a unified 
framework. Graphically, a Bayesian network is a directed acyclic graph, 
and a valuation-based system is a hypergraph. Nodes in the networks 
represent random variables; each variable is associated with a finite set of 
all its possible values, called its frame. In a Bayesian network, arcs 
represent conditional dependency relations among the variables; in a 
valuation network, such relations are represented in the form of joint 
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valuations on the product space of the variables involved. For the case of 
belief functions, such valuations are the joint belief functions. Recently, 
Cano et al. [1] have presented an axiomatic system for propagating 
uncertainty (including belief functions) in Pearl 's Bayesian networks, based 
on Sharer and Shenoy's axiomatic f ramework [5, 6]. But the belief func- 
tions for representing relations of the variables in their system are still 
represented on the product space. Smets [16] has generalized Bayes' 
theorem for the case of belief functions and presented the disjunctive rules 
of combination for two distinct pieces of evidence, t which makes it 
possible to represent knowledge in the form of conditional belief functions 
and to use them for reasoning in evidential networks. In this paper, we 
present a network called an evidential network with conditional belief 
functions and propose a propagation scheme for it. Moreover,  we analyze 
some special properties of this kind of networks, and show that the 
reasoning process can be simplified in such special cases. 

The rest of the paper  is organized as follows: In Section 2, we first 
briefly review belief functions and their rules of combination, both con- 
junctive and disjunctive. Next, in Section 3, we show some relations 
between joint belief functions and conditional belief functions which 
represent the same knowledge. In Section 4, we introduce evidential 
networks with conditional belief functions and present a propagation 
scheme for them. In Section 5, we propose some principles for simplifying 
computation after analyzing the propert ies of the network with partial 
dependency, and give an example to show its application. Finally in Section 
6, we give some conclusions. 

2. DISJUNCTIVE AND CONJUNCTIVE RULES OF COMBINATION 

In this section, we introduce the basic concepts of belief functions [4, 11, 
17] and summarize the conditioning rules and combination rules for the 
belief functions. More details can be found in [12, 16]. 

DEFINITION 2.1 Let ~ be a finite nonempty set called the frame of  
discernment (the frame for short). The mapping b e l : 2  ~ --+ [0, 1] is an 
(unnorrnalized) belief function if and only if there exists a basic belief 
assignment (bba) m : 2 *~ --+ [0, 1] such that: 

(i) ~ m(A)= 1, 
A c~ 

(ii) b e l ( A ) =  ~ m(B), 
B c A ,  B~Q3 

(iii) be l (Q)  - O. 

i Smets [15] has given a definition for the concept of distinct evidence. 
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Those  subsets A such that  m ( A )  > 0 are called the focal elements. A 
vacuous belief function is a belief funct ion such that  m ( 1 1 ) =  1 and 
re(A)  = 0 for all A =/= 11, which represents  total ignorance.  

The  value be l (A)  quantifies the strength of  the belief that  the event A 
occurs. It measures  the same concept  as P ( A )  does in classical probabili ty 
theory, but  bel is not  an additive measure.  The  value m ( A )  represents  the 
part  of  belief that  supports  the fact that  A occurs and cannot  support  any 
more  specific event (due to the lack of  information).  Note  that  m is not  
the counterpar t  of  a probabili ty distribution function p [14]. Both  bel and 
P are defined on 2 xz, but  m is defined on 2 ~, whereas  p is defined on 11. 

Given a belief function, we can define a plausibility function p l : 2  ~2 
[0, 1] and a commonality function q : 2 ~ --+ [0, 1] as follows: for A c_ 11, 

p l ( A )  = bel(11) - bel(.,~) and pl(Q3) = 0, 

q ( A ) - -  ~ m ( B ) ,  
A c B c ~  

where A is the complemen t  of  A relative to 11. 
Note  that  m (basic belief mass), bel (belief function),  pl (plausibility 

function),  and q (commonal i ty  funct ion)  are in one- to -one  cor respondence  
with each other.  

DEFINITION 2.2 Let bel be our belief on the frame 11. Suppose we learn 
that ,4  c_ ~ is false. The resulting conditional belief function 2 bel(.llA) 
(bel(Bl lA) can be read as the belief o f  B given A)  is obtained through the 
unnormalized rule of  conditioning. For B c_ 11, 

m ( B H A ) =  { ~ o X C f m ( B U X )  otherwise, if B c _ A c 1 1 ,  

If a second piece of  informat ion concerning the same issue is now 
available f rom a different source, we need  to integrate it with the first one 
by the combina t ion  of  two belief functions defined as follows: 

DEFINITION 2.3 Consider two distinct pieces of  evidence on fl  represented 
by m I and m 2 . The belief function that quantifies the combined impact of  
these two pieces of  evidence is obtained through the conjunctive rule of  
combination. We use @ to represent the conjunctive combination operator. 
For all A c_ ~ ,  

(mlQ~)m2)(a) = £ m,(B)m2(C). 
A = B A C  

2 We use "[r" in place of "r '  to emphasizc the nonnormalization of our conditioning. 
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This can also be written in terms of  the commonali~ functions as follows: 

( q , @ q 2 ) ( A )  = q l ( A ) q 2 ( A ) .  

DEFINITION 2.4 Consider two distinct pieces of  evidence on ~ represented 
by ml and m2. The belief function induced by the disjunction of  these two 
pieces of  evidence is obtained through the disjunctive rule of  combination 

[2]. We use @ to represent the disjunctive combination operator. For all 
A c _ ~ ,  

(m,@m2)(A)= Y'~ m,(B)m2(C). 
A - B u C  

Let a function b : 2 ~ --* [0, 1] be defined as b (A )  = bel(A) + re(O). Then 
the disjunctiue combination rule can be written as follows: 

( b l @ b 2 ) ( A )  = b l ( A ) b 2 ( A  ). 

The meaning of these two rules is given in [16]. Suppose ml and m 2 are 
the bba's induced by two distinct pieces of evidence ~1 and ~2, respec- 
tively. Suppose an agent will hold belief m I (m 2) if he knows that g'l (~2) 
prevails. If  the agent knows that both ~j and ~2 prevail, then his belief 

will be represented by m 1 @ m  2. 
of ~1 and ~2 prevails without 

represented by m l @ m  2. The 
conjunctive and disjunctive rules 
[16], respectively. 

If the agent knows only that at least one 
knowing which one, his belief will be 

justification of these two rules, called 
of combination, can be found in [12] and 

Since m (basic belief mass), bel (belief function), pl (plausibility func- 
tion), and q (commonality function) are in one-to-one correspondence 
with each other, the above rules can also be represented by using any of 
these functions. Details can be found in [16]. 

Note that all the definitions above are for the nonnormalized case. For 
the case of normalized belief functions, which means m ( O ) =  0, the 
normalized factor K = 1 - re(O) should be considered in those rules, and 
the conditioning rule and the conjunctive combination rule turn out to be 
Dempster ' s  rule of conditioning and of combination. The (unnormalized) 

bel(AllB) turns out to be the (normalized) bel(AlB),  and @ to be ¢ [4, 

16]. @ doesn't  have a counterpart  in Shafer's presentation. To be consis- 

tent with convention, we will use ¢ instead of @ ,  but the computation is 
unnormalized. 

Let 's consider two spaces ® and X. We use belx(.[]0) to represent the 
belief function induced on the space X given 0 _c 0.  Suppose all we know 
about X is initially represented by the set {belx(.]10 i) : 0 i E 0}. We only 
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know the beliefs on X when we know which element of ® holds. We do 
not have further specific knowledge about the belief on X when we only 
know that the prevailing element of ® belongs to a given subset 0 of ®. 
Under  very general requirements, Smets [10, 16] has derived the disjunc- 
tive rule of combination (DRC) to build belx(.][0) on X for any 0 c_ 0 ,  
and the generalized Bayesian theorem (GBT) to build belo(.[[x) on ® for 
any x _ X. 

THEOREM 2.1 (Disjunctive rule of combination [16]) For all 0 G 0 ,  
x C X ,  

mx(xl lO) = ~ FI  mx(xillOi), 
U i: o,~ # x i = x  i : Oi~ 0 

plx(xllO) = 1 - 1 7  [1  - plx(xl[O~)]. 
Oi~ 0 

THEOREM 2.2 (Generalized Bayesian theorem [16]) For all 0 c_ ®, 
x c _ X ,  

p l ¢ . ~ ( O I I x )  = 1 - I ~  [1  - plx(xllO~)]. 
Oi~ 0 

Note that p lo (Ol lx )=  plx(xLlO), and this represents the fact that in 
general pl(AIIB) = pl(BIIA), an equality unsatisfied once normalization is 
introduced. This can be seen from the above two theorems. Now suppose 
there exists some a priori belief bel 0 over O. By using Theorems 2.1 and 
2.2, we can compute bel on X given bel 0 and {belx(-IlOi): 0 i ~ ®}: 

THEOREM 2.3 [16] Suppose there exists some a priori belief bel 0 our ® 
distinct from the belief induced by the set of conditional belief functions 
{belx(.llOi)}: 0 i ~ O. Then Vx c_X, 

m x ( X  ) = ~_~ mo(O)mx(xl lO),  
OG (') 

p l x ( x )  = ~ m,(O)plx(xl lO)  
0c(0  

OG ~ Oi~ 0 

Note that the above three theorems can also be expressed by using 
belief functions and commonali ty functions, which are detailed in Smets 
[16]. 
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3. K N O W L E D G E  R E P R E S E N T A T I O N  U S I N G  B E L I E F  F U N C T I O N S  

Let U = {X I . . . . .  X n} be a finite set of variables representing the uni- 
verse of discourse for a class of problems, where each X i represents a 
relevant aspects of the problem. Associated with Xi, there is a frame ®xi 
which is set of all its possible values. Let X and Y be two disjoint subsets 
of U; their frames ®x and ®y are the product spaces of the frames of the 
variables they include. For short, we write X,Y for ®x, ®Y whenever 
confusion is absent. According to the notation of the previous section, a 
conditional belief function for Y given X is represented by bely(.Hx) 
where x c ®x, which means that we know the belief about Y given that 
we only know that the actual value of X is in x. Similarly, joint belief 
functions on X and Y are defined on the space ®x × @r (6 )xu r  or 
X × Y for short). Look at the following example: 

EXAMPLE 3.1 Let A and B be two variables with frames @A = {a,~} 
and 0 8 = {b, b} respectively. To represent a relation between A and B 
such that if A = a  then B - b  with m -  0.9, by a belief function in 
joint form, the rule is represented by a belief function on the space 
@ = {(a, b), (a, 2), (~, b), (~, b)}, with masses 0.9 on the subset 
{(a, b), (~, b), (if, 2)}, and 0.1 on 0 ,  while with belief functions in condi- 
tional form, it is represented by the conditional bba, rn({b}ia)= 0.9, 
m(@sia) = 0.1, r n ( ® R i ~ ) -  1, rn(®n]® A) = 1. This is illustrated by 
Table 1. 

From the example, it can be seen that the latter representation is often 
more natural and easy for the users to provide and to understand. The use 
of conditional belief functions parallels the use of conditional probabilities 
in Bayesian networks. Generally, given two disjoint subsets X, Y c U, to 
represent conditional belief functions for F given X by a joint form, one 
needs 2 I%1×1~'~''i elements in the worst case, while to represent them by 
conditional form one only needs 2 i(')x *1~%'1 elements in the worst case. Of  
course, not all belief functions on ®x u r admit an equivalent representa- 
tion by a set of conditional belief functions. But we think that the users' 
knowledge is encoded in the conditional form and that the joint beliefs 
they would provide are those based on the known conditional form. 

Table 1. A Belief Function in a Conditional Form 

a a (~)A 

b 0.9 0 0 
(~)B 0.1 1 1 
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Fur thermore ,  in many cases, the users'  belief can be represented by the 
condit ional  belief functions for Y given x i ~ ®x. The  condit ional  belief 
for Y given x ___ O x is then derived f rom the D R C .  Example 1 is such a 
case. In the worst case, it needs only IOxI × 2 I~'~YI elements.  

Can® et al. [1] and Shenoy [8, 9] have both in t roduced the concept  of  a 
noninformat ive  belief function. 3 To  unders tand such a concept,  we first 
introduce the concepts  of  projection,  extension, and marginalization. 

DEFINITION 3.1 Projection o f  configurations simply means dropping the 
extra coordinates. I f  X and Y are sets o f  variables, Y c_ X ,  and xi is a 
configuration o f  ®x, then let xi ~ Y denote the projection o f  x i on Or .  Then 
x ~ Y is" a configuration o f  ® y. I f  x is a nonempty subset o f  ®x, then the 
projection o f  x on Y, denoted by x ~ Y, is obtained by x ~ Y = {xi + Y IX i ~ X}. I f  
y is a subset o f  ®y, then the extension o f  y to X ,  denoted by y ~ x, is 
Y × ® x - Y  (It  is also called the cylindric extension o f y  into X. )  

DEFINITION 3.2 Suppose m is a bba on B and A c_ B c U, A 4= ~ .  The 
marginal o f  m for  A ,  denoted by m + A, is the bba on A defined by 

m ~ A ( a )  = ~ r e (b )  fora l l  a C ®A. 
b~Ot~, B I ,4 =a 

DEFINITION 3.3 Git,en two disjoint subsets" X ,  Y c_ U, let bel be a belief 
function defined on the space 0 x u Y. It is said that bel is" a noninformative 
belief function over X if  and only i f  bel ~ x is a l,acuous belief function ol~er 
X (Can® et al. [1]). 

Intuitively, the belief funct ion in the above definition gives some infor- 
mat ion  about  variables in Y and their relationship with variables in X,  but 
no information about  X. This proper ty  is easy to verify when the belief is 
represented in condit ional  form. 

PROPOSITION 1 Let  {bely(.llx) : x _c ®x} be a family o f  conditional belief 
functions for  Y git,en X.  It is noninformath,e over Y iff bely( ' l l®x)  is a 
z~acuous belief function on Y. 

Proof  Let belx× y be the belief function over X X Y whose condit ion- 
ing given X is {belr(.Ibx): x c ®x}. It is easy to see that b e l } ~ y ( y ) =  
bely(ylle)x) .  Therefore ,  the proposi t ion is proved according to the defini- 
tion of  noninformat ive  belief function. • 

3 Note that Shenoy [8] and Can® et al. [1] called this belief function the "conditional belief 
function." We change the name to avoid confusion with the classical meaning of "conditional 
belief function." 
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Moreove r ,  suppose  a be l ie f  funct ion bel  def ined  on the space ®x u Y 
gives in fo rma t ion  only on the re la t ion  be tween  X and Y, but  no in forma-  
t ion abou t  e i the r  X or  Y. Then  bel  { x and bel  ~ v are  both  vacuous  on X 
and Y respect ively.  Tha t  is to say, bel  is non in fo rmat ive  over  both  X and 
Y. The  fol lowing shows how to verify such p rope r t i e s  when the be l ie f  
funct ions  are  in cond i t iona l  form. It is based  on no rma l i zed  be l ie f  func- 
tions, i.e., be l ie f  funct ions  such that  m ( Q )  = 1. 

PROPOSITION 2 {belv( ' l lxi)  : xi ~ ®x} is noninformative over X i f  and 
only i f  bely( .Ux i) is a normalized befief funct ion for  each x i E ®x, in 
which case be ly ( ' l l x )  is also normalized for  x c ®x.  

Proof  F r o m  T h e o r e m  2.1, it is easy to prove  that  be ly ( . l lx )  for any 
x c ®x is no rma l i zed  if bely( .Hx,)  is a no rma l i zed  be l ie f  funct ion for  each 
xi ~ ®x- Tha t  is, ply (®yUX)  = 1 for  any x c ®x- Thus,  for any x c ®x,  
p lx (x l l®  Y) = ply(Oy[[X)  = 1, i.e., be lx ( . [ ]Oy)  is a vacuous  be l ie f  funct ion 
over  X. F r o m  the prev ious  p ropos i t ion ,  we have that  {be]y(.[lx i) : x i ~ ®x} 
is non in fo rma t ive  over  X. 

Suppose  the re  exists x i ~ O x such that  bely( . l lx j )  is unnormal ized .  
Then  plx({Xj}[[® Y) = ply(®yH{Xj}) < 1. Thus  {bely(.l]xi): x i ~ ®x} is not  
non in fo rma t ive  over  X. • 

PROPOSITION 3 I f  we only know a family  o f  (normalized) conditional 
belief funct ions such as {bely( . lx i ) :  x i ~ ®x} (see footnote 2), then it is' 
noninformatit,e over Y i f f  for  each y c ®y,  there exists x i ~ ®x such that 
be lv (  y l x  i) = O. 

Proof  F o r  each y c @y, suppose  the re  exists x i ~ ®x such that  
b e l y ( y l x  i) = 0; then p l y ( ~ l x  i) = 1. Tha t  is, for  each y c ®y,  the re  exists 
x~ ~ ®x such that  p l v ( y l x  ~) = 1. F r o m  T h e o r e m  2.1, it is easy to see that  
ply (y[® x )  - 1 for  all y c Oy .  Acco rd ing  to Propos i t ion  1, {be ly( . lx i ) :  x i 

®x} is non in fo rma t ive  over  Y. 
Suppose  { b e l y ( . I x i ) : x  ~ ~ ®x} is non in fo rma t ive  over  Y. Then  we have 

ply (y[® x )  = 1 for  all y _c ® r -  F r o m  T h e o r e m  2.1, we have that  for  each 
y ~ ®y ,  the re  exists x i ~ ®x such that  p l y ( y l x  i) = 1; thus b e l y ( ~ l x  i) = O. 
That  is, for  each y c ®y,  the re  exists x i ~ ®x such that  bely(y lx~)  - O. • 

In the following,  we will show some re la t ions  be tween  the be l ie f  func- 
t ions r e p r e s e n t e d  in cond i t iona l  form and in jo in t  form. By using the rules 
of  condi t ioning ,  every jo in t  be l ie f  funct ion can induce a family of  condi-  
t ional  be l ie f  funct ions,  but  not  every family of  condi t iona l  be l ie f  funct ions 
is compa t i b l e  with a jo in t  one.  Incompat ib i l i ty  occurs  when the set of  
condi t iona l  be l ie f  funct ions  canno t  be ob t a ined  by cond i t ion ing  some 
under ly ing  jo in t  be l ie f  funct ion.  W e  say that  those  sets of  condi t iona l  
be l ie f  funct ions  that  a re  not  compa t ib l e  with a jo in t  be l ie f  funct ion are  
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invalid. T h e  joint  bel ief  funct ions that  could under l ie  a family of  condi- 
tional beliefs are not  always unique.  Smets  [16] has shown that  when the 
condit ional  bel ief  funct ions are r ep resen ted  by {belv(.[lxi):x i ~ X}, we 
can always construct  a joint  bel ief  funct ion f rom it, and the joint  bel ief  is 
unique if the principle of  minimal  c o m m i t m e n t  is applied.  

LEMMA 3.1 Let X and Y be two disjoint subsets of  U, and belx× y be a 
belief function on the product space X × Y. Then its conditional form 
{bely( 'Ux) : x ___ ®x} is obtained by 

my (y l l x )  = Y'~ m x x y ( S ) .  
SCOxuy, (SOx ~(XuY))*Y-y 

Proo f  This is directly ob ta ined  f rom the condit ioning process.  • 

LEMMA 3.2 Suppose a family of  normalized conditional belief functions 
{ b e l r ( ' l l x ) : x - - - ® x }  is compatible with a joint belief. Then it satisfies 
ply(yUxl)  N ply(yllx2) if x 1 C X 2 C ®X" 

Proof  

ply(y l lx l )  = p l x x y ( y  ~ XUYllx] xUY)  

= p l x x y ( y  TxuY  o x ~  x u Y )  

< p l x x y ( y  ~ x u Y f h x ~  x u Y )  

= p lxxy(yCXUYl lx~  x u Y )  = ply(yl lx2).  

This concludes the proof .  • 

EXAMPLE 3.2 Let  A and B be two var iables  with ®A = {a, a} and 
®B = {b, 2}. Let  O -- {ab, ab, ab,  ~ }  be briefly deno ted  by {1, 2, 3, 4}; 
then, for  example ,  the subset  {ab, J)} is deno ted  by 12 for  short.  
Cons ider  bel 1 on O: m(14) = m(23) = 0.1, m(123) = m(124) = m(134) 
= rn(234) = 0.1, and m(1234) = 0.4. By applying L e m m a  3.1, its corre-  
sponding condi t ional  bel ief  funct ion for  B given A is shown in Table  2. 
Consider  bel 2 on @: m(23) = 0.2, m(134) = m(124) = 0.2, and m(1234) 
= 0.4. Its cor responding  condi t ional  fo rm ob ta ined  by applying L e m m a  
3.1 is shown in Table  3. C o m p a r i n g  the two tables, we find that  two 
different  joint  bel ief  funct ions lead to the same  condit ional  form. 
There fo re ,  a condi t ional  bel ief  is compat ib le  with m o r e  than  one joint  
beliefs. 

T h e  bal looning extension of  a condit ional  bel ief  funct ion over  X given 
y c Y in the bel ief  funct ion over  X × Y means  that  the bba  m(x ly )  
(x _cX)  is a l located to the set x Tx×Y w ~  ix×Y, i.e., the largest  subset  of  
X × Y whose intersect ion with x TxxY is x ~xxY 
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Tab le  3. Bel ie f  Func t ion  in Cond i t i ona l  F o r m  for bel2 

165 

a a O~ 

b m(134) = 0.2 m(23) = 0.2 0 

l) m(23) = 0.2 m(124) = 0.2 0 

(~)t~ rn(124) + m(1234) m(134) + rn(1234) m(23) + m(124) 
= 0.2 + 0.4 = 0.6 = 0.2 + 0.4 = 0.6 +m(134) + m(1234) 

= 1  

The  be l ie f  funct ion  so bui l t  is the  least  c o m m i t t e d  be l i e f  funct ion  on 
X x Y a m o n g  all be l ie f  funct ions  on X x Y whose  cond i t ion ing  on  y * x x r  
is equal  to bel(- ly) .  Formal ly ,  we have the  fol lowing defini t ion:  

DEFINITION 3.4 [16] Let Y and X be two finite spaces, and bel x(  xll y ) be 
a conditional belief function on X gi~'en some y c Y. The ballooning 
extension of  bel  x (x]l y) on X × Y is a belief function bel  x x r computed as 
follows: 

b e l x x v ( ( X  t x x r  (by t x x r )  u y  $xxY)  = be lx (x l l y )  + mx(• l l y ) .  

LEMMA 3.3 [10, 16] Suppose X and Y are two disjoint subsets of  U. I f  all 
we know about the relation between X and Y is given by the set of  
conditional belief functions {bely(.llxi): x i ~ ®x}, we can construct the 
belief function on X x Y by first computing the ballooning extension of  each 
belv(.[Ixi) ,  then combining the results using Dempster's rule of  combina- 
tion. The computation can be written as follows: Let a c_ ®x u Y and 
Yi : (a • {xi}~ x u Y )  +Y. Then 

m x u y ( a )  = l - I  my(yil[xi).  
xi  ~ (")x 

The  jo in t  be l ie f  funct ion on X x Y is the  one  whose  condi t ion ings  over  
x _c X and  y c_ Y resul t  in the  D R C  and the GBT,  respect ively.  

4. REASONING WITH CONDITIONAL BELIEFS 

4.1. Evidential Networks with Conditional Belief Functions 

In this sect ion,  we use the ne twork  p r o p o s e d  by Smets  [16] for  the  
p r o p a g a t i o n  of  beliefs.  Graphica l ly ,  the  ne twork  is a d i r ec t ed  graph  
(acyclicity is not  requ i red) ,  as shown in F igure  1. The  cond i t iona l  bel iefs  
a re  def ined  in a d i f ferent  way f rom condi t iona l  p robab i l i t i e s  in the  Bayes ian  
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Figure 1. An example of an evidential network with conditional belief functions. 

networks (BNs) [3]. In our network, each edge represents a conditional 
relation between the two nodes it connects. For example, the edges (A, C) 
and (D, C) mean that we have { b e l c ( . H a i ) :  a i c ®A} and { b e l c ( . l l d i ) :  d i 

®D}, but n o t  {be lc . ( . l la  i, d i ) : a  i c OA,  d i ~ OD} as is the case in Bayesian 
networks. In order to distinguish these two kinds of networks, we call ours 
ENC, which means an evidential network with conditional belief functions. 
However, if we have a conditional belief such as {belc(.lla i, d i ) :  a i ~ O A, d i 

@D}, we can build an ENC in which nodes A and D are merged as one 
node. In this section, we also assume that, for each conditional belief 
function for Y given X, all we know about Y given X is initially 
represented by the set {belv(.x i) : x i ~ ® x } .  

Note that in a BN, there is a joint probability distribution for the 
network, and the local conditional probabilities can be computed by 
projecting the global probability on the subset of the variables involved. 
And for each node in BN, there is only one conditional probability for it, 
given its parents. In an ENC, we can have knowledge about the relations 
between two nodes from different sources (we call them local conditional 
beliefs). Then the global belief for an ENC can be computed from all 
those local conditional beliefs. However, from the global belief, we can no 
longer reconstruct each local conditional belief. This distinction results 
from the different natures of the two models [13]. Also, once an ENC has 
been constructed, we can add new knowledge, by the conjunctive rule of 
combination for some variables, at any time, supposing the new knowledge 
is from an independent source. A BN, in contrast, is always constructed 
from some underlying joint probability distribution. 

4.2. Propagat ing  Beliefs  in an ENC 

Given any ENC, one can transform each conditional belief function 
belv(.lx), x c X, into a joint belief on X × Y by building its ballooning 
extension on X X Y. Then the ENC becomes a classical network, to which 
the VBS algorithm [6, 7] could be directly applied. Such a strategy would 
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be inefficient, and we present hereafter more efficient algorithms that 
profit from the particular nature of the belief function encountered in the 
ENC. 

It has been shown that one main objective of reasoning processes in an 
evidential network is to compute the marginals of the global belief func- 
tions for some variables. For two disjoint subsets X and Y of U, knowing 4 
belxx r or p l x x y ( X , y ) ,  x c O x ,  y c_ @y,  is equivalent for what concerns 
propagation to computing the marginal beliefs for the variables. We use 
BEL x and bel0x to denote the marginal and a priori  beliefs for the 
variable X. Due to Theorem 2.1 and 2.2, given two variables X and Y and 
the conditional belief {be ly ( . l l x  i) : x i ~ ®x} ,  we could compute and store 
bely( ' l lx):  x c_ ®x and be lx( - I ly) :y  c_ ®y in the preprocess, or simply 
store pl(x, y) : x _c ®x, Y _c ®y, to save space. Storing pl's takes only half 
of the space of storing bel's, since pl(x, y) = p l v ( y l [ x )  = p l x ( x l l y ) .  Now, 
we are ready to give the inference algorithm: 

Given an ENC represented by G = (M, E). 
Case 1: Suppose G is a polytree, i.e., there is only one'(undirected) path 

between any of two nodes in the network. 
The propagation algorithm can be regarded as a message-passing scheme: 

for each node X in the network, its marginal BEL x is computed by 
combining all the messages from its neighbors ne(X)  and its own a priori  

bel0x, i.e., 

BEL x = bel0x • ( ~ { M y ~  x ] Y  ~ ne(X)}) ,  

where the message M z ~ r  is a belief function on X, so it can be 
represented by bely ~ x (or m v ~  x ) ,  and is computed as follows: Vx c_ ®x, 

b e l r ~ x ( X )  = ~ m x ( x l l y ) b e l . o ( v ) / x  ~y(Y), 
yC('Iy 

where 

be lnecY) /X~  Y = bel0y • ( @ { b e l z ~ y l Z  ~ ne(Y) ,  Z 4= X}). 

Case 2: If there exist any undirected loops in the network, then some 
nodes needed to be merged to make the network acyclic, resulting in a new 
polytree G' = (M', E'), where some nodes in G' might be subsets of the 
nodes in G; we call them merged  nodes.  For any merged node v in G', 
there might be a belief function ~,. obtained by combining the ballooning 
extension of each conditional belief. Figure 2 illustrates two examples for 
this process. 

We use plx× y(X,V) to denote plxxy(X ~ x u Y N y ~ x u r)  for the sake of simplicity. It has 
been shown that plx×y(x ,y)  = plx(xljy) = ply(ylly) for x cX, y c y [16]. 
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(a) (b) 
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(c) (d) 
Figure 2. Examples of absorbing loops in the ENCs. 

In Figure 2(a), the loop is absorbed by merging nodes B and C; the 
resulting graph is shown in Figure 2(b), where D = {B, C}, and the new 
conditional belief function belz)(.lla i) is obtained by combining belB(.lla i) 
and belc(.lla i) on the space OD = OBvc: for all a i ~ OA, d G OIl, 

mD(dlla i) = ~ m13(b]lai)mc(cl]ai). (4.1) 
b~(B.( )~c~{B,(}= d 

Obviously, belD(dlla i) is normalized iff bels(.lra i) and belc(.lla i) are 
normalized, since the subset b T{8.c} ¢~ c ~{u,c/ can never be an empty set. 
Moreover,  the conditional belief function between B and C becomes ~3~) 
in Figure 2(b), obtained by applying Lemma 3.3. Thus ~z) is a belief 
function on O D. 

Figure 2(c) is another  example of an ENC with a loop. In this case, we 
merge B and D, resulting in the graph shown in Figure 2(d), where 
E = {B,D}. Here bells(.tla i) is obtained by combining bel~('llai) and 
belD(.lla i) on the space Or. = O B u t) using Equation (4.1). As for belc(.lle), 
e _c OL. , we compute it for three cases: 

1. Ve, = (bi,  dj) ~ @c, 

mc(clle,) = E rnc(slHb,)mc(S21ldj). 
,S" I ( 3  S 2 = C 

2. For e GOF~, if e can be represented by b × d ,  where b G@B, 
d G (")l~, then 

mc(cHe)= ~, m C ( X l l l b ) m c ( S 2 t l d ) ,  
, ' ¢ 1 A  5 ' .  ~ C 

where mc(qlb) and mc(.lld) are obtained from mc(.lJb i) and mc(.lld j) 
respectively by applying the DRC (Theorem 2.1). 
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3. For any other e G ®E, we first construct a conditional belief function 
belc u D('llbi) from mc(.l lb i) such that 

mc v D( Sl[bi ) = m c (  cl[bi), 

where s = c ~ {c, D} n ((e ~ bJ E) + {[9~) ~ Ic, D}. Let bel b. u D be the belief 
function resulting from combining ballooning extension of mc(.l[d~); 
then 

mc(c[le ) = (bel~cuD @ ( (~{belcuD( '] lb i )[b  i ~ ®B})) ~'c} 

Alternatively, belc(.]le), e G ®E can be computed by first combining the 
ballooning extensions of the two conditional beliefs belc(.l[b i) and 
belc(.[ld j) on the space ®Buc and ®cu ~, then applying Lemma 3.1 to 
transform the resulting belief to a conditional form belc(.Iqe), e C ®E, and 
belE(.Hc), c G ®c. However, this takes more space for the computation. 
Since there is no direct relation between B and D, .~E is a vacuous belief 
function. 

After rearranging the network to an acyclic one, we then use a similar 
algorithm in case 1 for the propagation: Suppose each node X in G' is a 
subset and has a ~ , .  Thus, for any nonmerged node, it is a singleton, and 
5~x is a vacuous belief function. Then the computat ion is as follows: for any 
node A = {X 1 . . . . .  X t} in G',  

BelA =~'A @ ( @ { M y ~ A I Y  ~ ne(A)})  

= • • 

The message M y r a  from Y to A is computed as follows: for Y = 
{Y~ . . . . .  Y,,}, 

bely ~ A ( a )  = ~-~ rnA(a]ly)belne(r)/ A ~ r ,  
yc(- )  v 

where 

bel no~y)/.4 ~ y 

=&B'y @ (@ {beloy, JY j ~ Y}) @ ( @ { M z ~ y I Z  ~ ne(Y) ,  Z A}). 

From the above propagation scheme, it can be found that, in an ENC, 
any computat ions involving two connected variables (or merged nodes), say 
X and Y, are proposed on the space ®x or ®y,  while in the network with 
joint beliefs, such computat ions are always on the product space 6) x u Y. 
Thus the computat ion in the former  needs fewer set comparisons and 
multiplications than that in the latter. Although the above representation 
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and propagation algorithm are for networks which only have binary rela- 
tions between the nodes, it could be generalized to the case where 
relations are for any number  of nodes by using a graphical representation 
such as directed valuation networks [8]. 

5. EFFICIENT COMPUTATION FOR THE ENC WITH 
PARTIAL DEPENDENCY 

In the previous section, we have proposed some ideas to solve the 
problem where there are loops in the network. For the case where there 
are very complicated loops, the computat ion is not quite obvious. In this 
section, we show that for some ENCs with complicated structure but with 
some special properties called partial dependency, we can reduce the 
computation by simplifying the structure. 

5.1. ENC with Partial Dependency 

In this subsection, we give the definition of an ENC with partial 
dependency and show some properties of such networks. 

DEFINITION 5.1 Gicen two variables A ,  X in an E N C ,  an edge (A,  X )  
represents" {belx( . lai):  a i ~ OA}. The set {a i \ m x ( O x l a  i) = 1, a i E (;a)a} 
is called an irrelevant set to X ,  and denoted by S:A x. I f  X is a set o f  c, ariables, 
then the irrelet'ant set to X is defined as ~ x  = {aj \ rnx(Ox,  la :) - 1, 
x~ e x}. 

From the definition, it's easy to see that Vaj ¢,L x, m x ( O x l a : ) <  1, 
where ,~x  is the complement  of ~ x  relative to OA. Thus we say that ~ x  
is relecant to X .  Such relations occur commonly in diagnosis problems and 
rule-based systems. In Example 1, we say that a is relevant to B, but a 
irrelevant to B. Intuitively, it means that given some knowledge about a, 
we can induce knowledge about B, but no matter  what we know about a, 
we can't  induce any new knowledge about B. Thus we say ~ is irrelevant 
to B. 

DEFINITION 5.2 An  E N C  is called an E N C  with partial dependency if  
there exists a t:ariable A such that for  any X ~ U and ( A , X )  ~ E, 
j~x ~ ~ and ~ ~ OA. 

The following two lemmas state the properties of the simplest ENC with 
partial dependency, where there are only two variables in the networks. 
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LEMMA 5.1 Given two variables X ,  Y and {belv(.[x i) : x i ~ 6)x}, let J x  v 
be as defined aboL~e. Then for  any S c_ 6)x, m v ( 6 ) v l S )  = 1 i f  S n , J ~  va 0 .  

Proof  The result can be directly derived by using the GBT. • 

LEMMA 5.2 GiLbert two variables X ,  Y and {belv( . lx  i) : x i ~ 6)x}, let ~,¢~ 
be as defined above. Suppose that we have some belief bel0r on Y. By 
Theorems 2.1-2.3, we can compute the belief o f  X .  I f  m x ( S )  v~ O, then 
S ~J~v .  

Proof  From Lemma 5.1 we have that, Vx c 6)x, if x n J  Y v~ O, then 
m y ( 6 ) v l x )  = 1, i.e., p lv (y lx )  = 1 for all y c 6)y. Then, by Theorems 2.2 
and 2.3, p l x ( x l y )  = pl(ylx)  = 1 for such x. Thus by Lemma 3.1, 

P lx (x )  = ~ mo(y)plx(xly)= ~ too(y)= 1. 
yc_e) v yC_e) v 

Therefore,  for all S c_ 6)x, if m x ( S )  4= 0, S must contain all the elements 
of J x  Y, i.e., S D_J ft. • 

5.2. Computation in ENC with Partial Dependency 

From the properties of an ENC with partial dependency (Lemmas 5.1 
and 5.2) described above, we can simplify the computat ion for some cases 
of such ENCs. Consider the network shown in Figure 3, where in (a), G i is 
a set of variables, and suppose J f ~  is irrelevant to G i. Figure 3(b) shows 
the details in each G i. To describe the computation,  let's begin by recalling 
the concept of partition. 

DEFINITION 5.3 Let  ® = {01 . . . .  , Op} be a f rame o f  discernment. A set 
3 o o f  subsets o f  6) is a partition o f  6) if  the elements in 9 t .  ~ are all 
nonempty  and disjoint, and their union is 6). We also call 3'~11 a coarsening 
o f  6), and 6) a refinement o f  ~.~. 

From the definition, we have that for all Oi ~ 6), there exists x i ~ o  

(a) (b) 
Figure 3. An ENC with partial dependency, where (b) illustrates the details of G i 

of (a). 
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such that 0 i ~ xj .  We denote  such a relation by A(0i) = x i. Then,  V0 _c 6), 
A(0 )  = {A(0i) \ 0i ~ ®}. Let bel 1 be a belief function on ®; then the 
belief bel 2 on 9 o induced by bel~, say, by coarsening,  is obtained as 
follows: Vx _c3~.~, 

m 2 ( x )  = E rnl(O). 
A(0)=x 

Let bel 2 be a belief function on ~'(.~; then the belief bel 1 on 6) induced by 
bel 2, say, by refinement,  is obta ined as follows: 0 _c 6), x _<~.~.~, 

m l ( 0  ) = m 2 ( x ) ,  

where 0 = U{0 '  \ A ( 0 ' )  = x}. 
Given a network as shown in Figure 3, we can represent  it as shown in 

Figure 4. Each  A i has a f rame ®A, which is a part i t ion of  @A such that 
Yak ~ ®A, A(ak)  = ~ / f '  if a k ~ d c f  , otherwise A(a  k) = {ak} = ilk. Each 
Ai ---, G~ part  can be regarded as a subnetwork,  and the belief functions 
passed between A and Ai are pe r fo rmed  by ref inement  and coarsening 
between the two frames. Let 's  look at the following example: 

EXAMPLE 5.1 Suppose we have four  variables in the network shown in 
Figure 5(a): A, X, Y, and Z. Their  f rames are ®A = {al, a2, a3, a4, a5}, 
®x = ®v = ®z = { + , - } .  The  relations among  them are represented 
by condit ional  belief functions in Table 4. 

Now suppose we have some prior  beliefs on X and Z:  rn0x(+)  = 0.8, 
rnox(® x )  = 0.2, m 0 z ( - )  = 1. To compute  the marginal for A ,  if we use 
the joint belief for the relation between A and X, then the combinat ion is 
pe r fo rmed  on the product  space (~)A ,J x and ®A .J z;  if we use the condi- 

). 
. . . . .  : . 7 . - ,  

> 
Figure 4. Alternative structure of the network in Figure 3 for simplified compu- 
tation. 
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Table 4. Conditional Belief Functions for Example 1 
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m x ( x l a i ) ,  i = 1 . . . . .  5 r n v ( y l a i ) ,  i = 1 . . . . .  5 

a |  a 2 a 3 a 4 a 5 a 1 a 2 a 3 a 4 a 5 

+ .9 .7 0 0 0 0 .7 .2 .4 0 

- .0 .3 0 0 0 0 .3 .6 .1 0 

0 .1 .0 1 1 1 1 .0 .2 .5 1 

m z ( z l a i ) ,  i = 1 . . . . .  5 

a l  a2 a 3 a4 a5 

+ 0 0 0 .6 .9 
- 0 0 0 .3 .0 
@ 1 1 1 .1 .1 

tional beliefs represented in Table 4 and the propagation scheme de- 
scribed above, the computation is performed on the frame ®A, which is 
more efficient. Moreover, if we use the result of Lemma 5.2, the computa- 
tion can be simplified further. The following steps illustrate such a compu- 
tation: 

1. Transform the network in Figure 5(a) to the network shown in Figure 
5(b), where each @A, is a partition of ®A: ®A~ = {al ,  1~2,~1}, where 
J ]  = JA  x = {a3, a4, a4}; ®A, = {a2, fi3, a4,52}, where ~ = J ~ v =  
{a 1, as}; and ®A~ = {fi4, as,J3}, where oi~ =~A z = {al, a2, a3}. Then 
belx(-Ifi Q, fi; ~ OA,, is obtained from belx(.]a;), a; ~ ®A, and 
belx( ' ] J l ) ,  ~ ~ ®A,, is obtained by applying the DRC. Symmetri- 
cally, we can get the other two conditional beliefs. The resulting 
conditional beliefs are shown in Table 5 (in the table, we use A i for 
®A,, for short). 

2. Use the DRC to compute belA (-Ix) and belA3(-lz). 

(a) (b) 
F i g u r e  5. A simple example of an ENC (a) and its structure for computation (b). 
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Table  5. 
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Condi t ional  Beliefs Induced  f rom Table  4 for  the Parti t ion 
of  ®A 

mx(xlai), ai ~ AI mr(ylai), ai ~ A 2 mz(zlai), ai ~ A 3 

8~ 82 J1 82 a3 ~4 ~G G 8s J3 

+ .9 .7 {) .7 .2 .4 {} .6 .9 0 
- .0 .3 0 .3 .6 .1 0 .3 .0 {} 
® .1 .0 1 .0 .2 .5 1 .1 .1 1 

3. Use T h e o r e m s  2.2 and 2.3 to compu te  be lA,  i = 1, 2, 3. In part icular ,  
belA, is vacuous  by Proposi t ion 3; m A ( { a l , ~ 7 1 } )  = 0.24, mA,(®A,) = 
0.76, and 

m4 ({,f~}) = 0.54, m A ~ ( { a 4 , , / 3 } )  = 0.36, 

mA3({fis,J_~}) = 0.06, m A ( O A 3 )  = 0.04. 

4. C o m p u t e  the above two beliefs on the f rame  (")A by ref inement ,  and 
combine  them to get our  desired result. 

Obviously,  this computa t ion  is m o r e  efficient, since in steps 2 and 3, the 
computa t ion  is on the f rame  ®A~, which is smaller  than ®A- 

Moreover ,  if the ne twork  has the proper t ies  defined below, we can also 
simplify the compu ta t ion  for  each subnetwork  shown in Figure 3(b) if the 
ne twork  has some unre la ted  variables  defined as follows. 

DEFINITION 5.4 Let X ,  Y, and A be three variables in an ENC with partial 
dependency. Suppose we hace belx(-la i) and belv(- la i )  for a i ~ @A" Let 
.JAX, JA r be defined as in Definition 5.1. We say that X and Y are unrelated 
through A,  denoted by iz( X ,  Y, A), if one of  the following conditions is" 
satisfied: 

L 0 ,  or 
2. ~Gx n . ~ Y  = 0 ,  ,~x  u~GY = ®A, and b e l x ( . l ~  x)  or be ly( - I ,~  Y) 

obtained from belx(.la i) or belv(.la i) by the DRC is l~acuous. 

This relat ion can also be extended to two disjoint subsets, where  
J f  = I-I x ~ ~;JA x. The  following theo rems  and their  corollaries give solu- 
tions for  simplifying the computa t ion .  

THEOREM 5.1 Let X ,  Y, and A be defined as in Definition 5.4, and 
{bel r(- lxi)  : xi ~ ®x} be a family of  conditional belief functions for Y gicen 
X. Suppose tx(X, Y, A )  and that we hat,e no a priori  information on A or 
Y, but on X we haue bel0x.  Then B E L y  is" only dependent on belr(. lx i) 
and bel0x.  
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THEOREM 5.2 Let X ,  Y, and A be three variables in an E N C  with partial 
dependency as shown in Figure 6(a). Let ~x,°YAY be defined as in 
Definition 5.1 and JA x (~JA Y = 0 .  Suppose we hat,e the conditional belief 
function {bely(.lxi) : x i ~ ®x} for Y gA, en X ,  and that we have no a priori 
information on A or Y, but on X we hm, e bel0x. Then i f  there is only one 
focal element in bel0x, i.e., m x ( x  o) = 1 where x o c_ Ox,  then BEL A can 
be computed by Figure 6(b). 

COROLLARY 1 Let X ,  Y, and A be as in Definition 5.4, and 
{belv(.lx i) : x i ~ O x} be a family of  conditional belief functions for Y given 
X as shown in Figure 6(a). Suppose Ix(X, Y, A )  and that we have no 
a priori bel ie fonA,  X ,  and Y. I f  belv(. lx i) is noninformath'e over both X 
and Y, then the marginals for all variables are vacuous. 

Proof This result can be directly obtained from Theorems 5.1 and 5.2 
by considering that there is a prior belief on X such that m(O x )  = 1. • 

COROLLARY 2 Let X ,  Y, and A be as in Definition 5.4, and 
{belr (.Ix i) : x i C 0 X } be a family of  conditional belief functions for Y giuen 
X such that it is noninforrnative oL,er both X and Y (Figure 6(a)). Suppose 
Ix(X, Y, A )  and that we haL, e no prior beliefs on A or Y. Let bel0x be 
a priori on X.  Then BEL v is computed from belox and belv(.Ixi), and 
BEL A is computed as follows: Let mAi x (X C 0 X) denote the resulting 
belief for A when mox(X)  = 1; then Va G @A, 

m ( a )  = ~ mox (x )mAix (a ) ,  
xC(") x 

Proof This can be obtained by applying Theorems 2.3 and 5.2. • 

COROLLARY 3 Let X ,  Y, and A be defined as in Definition 5.4 Suppose 
we have no prior beliefs on A or Y. Now suppose we have observations 
about X.  Then BEL y is cacuous if  tz(X,  Y, A). 

Proof This can be obtained directly from Theorem 5.1 by considering 
that there is no relation between X and Y. • 

(a) 

! !bely ,x  
(b) 

Figure 6. A simple case of ENC where the computation can be simplified. 
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! I I 

m(xi)=l belj-l(.Ixi) m(x i)=l belj+l(.Ix i) 
(a) (b) 

Figure 7. A general case of an ENC whose computation can be simplified. 

The  above  t h e o r e m s  and the coro l la r ies  a re  only for  a ne twork  with 
th ree  variables .  However ,  the resul ts  can be ex tended  to more  genera l  
cases. 

THEOREM 5.3 Consider an E N C  as shown in Figure 7(a). Suppose we 
hal:e a pr ior i  belief beloj .for Xj such that mo j (x  i) = 1 where x i ~ 6)x.  
Then the network in Figure 7(a)  is equicalent to the one in Figure 7(b). 

THEOREM 5.4 Let  G l and G~ be two sets o f  cariables as shown in Figure 
8(a).  Suppose some elements ~ (i = 1, 2) o f  A are irrelet~ant to Gi, and 

~ N, ~ = 0 .  Suppose there are some prior beliefs for  the cariables in G i, 
say on X l, and f rom the chain X l . . .  X,,, we get that the belief on Xj+ 1 is" 
cacuous. Then B E L  A can be computed by the network shown in Figure 
8(b). 

I t 's  easy to see that  F igures  7(b) and 8(b) have s imilar  s t ruc ture  to F igure  
3(a). Thus  they can be s implif ied fur ther .  

(a) (b) 
Figure 8. Anothcr case of an ENC whosc computation can be simplified. 
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5.3. An Example of Efficient Computat ion in ENC 

The  fol lowing example  shows how to use the  t h e o r e m s  in the  previous  
subsec t ion  to reduce  the  c o m p u t a t i o n  for a c o m p l i c a t e d  E N C  with par t ia l  
dependency .  

EXAMPLE 5.2 F igure  9 shows an E N C  rep re sen t a t i on  for  an example  of  
nuc lea r  waste  d i sposa l  in [18]. In the  ne twork ,  we have 43 var iables:  1 
diagnosis ,  21 tests,  and  11 symptoms ,  w h e r e  (•)diagnosis = {a, b, c, d, e, f ,  
g , w } ,  ®,, = {yes, no} : i = 1 . . . . .  11, ®ts = { + ,  - } : j  = 1 . . . . .  21. 

The  cond i t iona l  be l ie f  funct ions  a m o n g  the var iab les  a re  as follows: 
• Tab le  6 shows the cond i t iona l  be l ie f  for  s s (i  = 1 . . . . .  11) given the 

diagnosis .  The  be l ie f  funct ion  for s i given x i ( •  Odiagnosi s) is a s imple  
suppor t  funct ion.  F o r  example ,  the  re la t ion  of  d iagnosis  and  s 1 is 
r e p r e s e n t e d  as m, ({yes} l f )  = 0.4, r n , ( O , , I f )  = 0.6. 

• The  cond i t iona l  bel iefs  for  t i (i  = 15 . . . . .  21) given the d iagnosis  are  
m , , ( + l d  i) = 0.99, m , ( O ,  Id i )  = 0.01, r n , ( O , J w )  = 1, where  d,5 . . . .  ,d21 
r ep re sen t  a . . . . .  g, respect ively.  T h e  re la t ion  be tween  diagnosis  and  
t12 is mt,_,(+lw) = 1. 

• The  condi t ion  bel iefs  for ti given s i (i  = 1 . . . . .  11) a re  m t ( + ] y e s )  = 
0.99, rn,(O,,{yes) = 0.01, m(®t [no) = 1. 

• The  cond i t iona l  bel iefs  for  t i given tj if t he re  is an ar row connec t ing  
them ( i , j  = 1 . . . . .  10 ,12 ,13 ,14)  a re  rn,,(+] + ) = 0.9, rn , (O , , }  + ) = 

0.1, m,,(O,,I ) = 1. 

In o r d e r  to solve the p rob l em,  we need  the fol lowing computa t ions :  
1. The  be l i e f  on diagnosis ,  given that  we know the resul t  of  each test. 
2. Suppose  we have the  resul t  of  some  test. W e  need  to c o m p u t e  the  

be l ie f  on d iagnos is  given that  we also know the resul t  of  a no the r  test.  

Figure 9. An ENC for an example nuclear waste disposal problem. 
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Table 6. Condit ional  Belief Funct ions between Diagnoses and s /s  

a b c d e f g ~o 

s~(+) 
s~(+) 
s3( + ) 
s4( + ) 
ss( + ) 
s~,( + ) 
sT( + ) 
s~( + ) 
s~,( + ) 
sl()(+) 
s l l (+)  

.95 

.9 

.6 

.8 
.6 
.7 .3 

.4 

.5 

.6 

.5 

3. We may also compute  the belief on diagnosis given that we know the 
results of  several tests. 

Here  we only show how to simplify the network for the computa t ion  
according to the above theorems.  

1. Suppose we have that the result of  14 is " - " .  According to Theo rem 
5.3, we remove the edges (t3, t 4) and (ts, t4), by assigning belief on t 5 
as m ( - )  = 0.9, rn(Ot ) = 0.1. According to Theorem 5.4, we remove 
the edge (t7, ts). The network is thus separated into 11 subnetworks 
as shown in Figure 10, where the f rame of  diagnosis can be reduced 
in each subnetwork shown in the variable D i. From Corollary 1, it is 
not  difficult to see that the subnetworks with D i ( i  = 1,4 . . . . .  11) will 
have vacuous beliefs on D i after the propagat ion.  Thus the computa-  

. . . . .  . - - . . - - 2 2 ~ 7 .~  

i, 
Figure 10. Simplified graph for Figure 9. 
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f 

( 

Figure 11. Simplified graph for case 1. 

s 

i 

tions are only needed in the network with D 2 and D 3. Furthermore,  
again by Theorem 5.4, the variables t14, t7, and s 7 can be removed. 
Therefore,  the biggest subnetwork has only seven variables, and the 
size of the biggest f rame is 4 (shown in Figure 11). 

2. Suppose we have that the results for test12 are - and for test 2 are 
+ .  Using the same strategy, the network will be simplified to Figure 
12. 

3. Similarly, we can reduce the computation in case 3. 

From Example 2, we find that, for the ENC with partial dependency, the 
network can be simplified by cutting some loops and separating the 
network into smaller subnetworks. Obviously, this makes the computation 
more efficient in the simplified structure than in the original one. 

( 

Figure 12. Simplified graph for case 2. 

1 

,) 

,) 



t80 Hong Xu and Philippe Smets 

6. CONCLUSIONS 

We have presented an evidential network (ENC) which uses conditional 
belief functions for the knowledge representation and reasoning. By com- 
paring some relations between the representations by joint belief and by 
conditional belief, it is found that the conditional form is more natural and 
it takes less space. We also provided an algorithm for reasoning in ENCs. 
The presented algorithm of reasoning is only for a network where all the 
relations are binary; the cxtension of the algorithm to a general case will 
be studied in future work. We have shown that the computation of an 
ENC can be simplified due to the property of partial dependency. Further 
studies are still needed to systematize this simplification process, and it 
may be conjectured that one possible solution is to represent the knowl- 
edge in several networks instead of in one global network. 

APPENDIX: PROOFS OF THE THEOREMS 

Proof of Theorem 5.1 

Before proving the theorem, we first state the following lemma which 
will be needed in the proof. 

LEMMA 6.1 Let X,  Y, and A be three variables in an ENC with partial 
dependency. Let . ~ x , . ~ r  be defined as in Definition 5.1. Suppose .~x  N 
.~1Y = 0 .  If we merge X and Y as one node, say S, then goJ c @x v Y, 

(.1 C ( H ) A  , 

p lx×y(w[a )  = 1 - [1 - plx(eo+Xra n ~ x ) ] [ 1  - p l r ( a ~ r l a  n.fAx)].  

(6.1) 

Proof Let A, =JA x, A 2 = ~ ( ,  A 3 = J f C ~  v. It is easy to see that 
AI, A 2, and A 3 constitute a partition of (+A, and that A t contains the 
elements relevant to X, but irrelevant to Y; A 2 those relevant to Y, but 
irrelevant to X; and A 3 those irrelevant to either of X and Y. 

From the inference algorithm described in the above section, we merge 
X and Y as one node, by applying Equation (4.1), for all eo _c (~)x u Y: 

mxxY(~o]ai) = ~ mx(x la i )mr(y]a i  ). 
A ~ A '0 YAy W ~ ' Y ~0 

Since AI is irrelevant to Y, we have that Va~ ~ A  1, mx×v(wba ~ ) -  
rex( co ~ x ]ai); thus plx× y( w]a i) = pl x (w ~ x ]a i). Symmetrically, Vaj ~ A2, 
plx×v(w] %) = plv(w+V]a~). Since A~ is irrelevant to either of X or Y, 
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Va k ~ A3, plxxy(O2lak) = p lx(o)  + xlak) = ply(o)  + Yla k) = 1. By applying 
the D R C ,  we have the Va c_ OA, 

plx×y(wla) = 1 - ~ I  [1 - plx×y(wJai)] 
a i ~ a  

= 1 - H [1 - plx×v(oJlai)] 
a i ~ a N A  I 

× nuA 
a j ~ a .  ( 2 3 

= H [ 1 -  
a i ~ a n A  I 

X ACI~A u A , ) [ 1 - p l y ( w * Y l a j )  ] 
a j ~ a  2 . 

= 1 - [1 - plx(w+Xla N~5~x)] [1 -- p l r (~o+Yla  A J A x ) ] ,  

which concludes the proof .  • 

Now let 's  look at the p roo f  of  T h e o r e m  5.1: 

P roo f  Let  JA x, JAY _C ®A be the sets of  i r relevant  e lements  to X and Y, 
respectively. By merging  X and Y as one  node,  say S, and by applying 
L e m m a  6.1, we have that, Voa c_ ®x ~ Y, 

plg×y(tO]® A) = 1 - [1 - p l x ( ~ o + X l ~ X ) ]  [1 - ply(~O+vlJ%x)] .  (6.2) 

Since Ix(X,Y, A), suppose  ~ x  N jAY 4: Q; then for  all a c_ ®A such that  
a n ~  x n J ~  v 4 Q, we have ply(yla n ~  x )  = 1 for  all y c ®y.  Thus,  

p lx×y(O)]® ~) = 1 - [1 - plx(~O*Xl~x)](1 - 1) = 1. (6.3) 

If  JA x n JA Y = Q, ~ X  U JA Y = ®A, then Equa t ion  (6.2) can be wri t ten as 

plx×r(O2]® A) = 1 -  [ 1 - p l x ( o ) + x l j A x ) ] [ 1  -p ly (o)  * v [ ~ v ) ] .  (6.4) 

Suppose  belv(-13A Y) obta ined  f rom bely( . la i )  by the D R C  is vacuous;  then 
Vy _c O r ,  ply(yl~57A Y) = 1; thus 

p lx×y(~ol® A) = 1 - [1 - plx(o);x]~x)](1 - l )  = 1. (6.5) 

Suppose  belx(- lJA x )  ob ta ined  f rom belx(.[a i) by the D R C  is vacuous;  then 
Vx c_ ®x, plx(x[~ x) = 1; thus 

plxxY(tO[®A) = 1 -- (1 -- 1)[1 -- ply(~o;Y]oYAY)] = 1. (6.6) 

F r o m  Equa t ions  (6.3), (6.5), and (6.6), we have that  belx×v(.]® A) is 
vacuous.  As there  is no a priori bel ief  on ,4, bel A , s is vacuous  during the 
propagat ion .  T h e r e f o r e  B E L y  is d e p e n d e n t  only the bely(.Ixg) and bel0v. 
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P roo f  of  T h e o r e m  5.2 

P roof  Since J x  x,~yA v are irrelevant to X and Y, respectively, by merg- 
ing X and Y as one node,  say S, and by applying L e m m a  6.1, we have 
Vw c Ox~y,  a c ®A, 

plA(a]o) ) = plxxY(Wla) 
= 1 - [1 - p l x ( w ; X l a  N ~ x ) ] [ 1  -- ply(o);Yla AJAx)] .  

Let  b e l x y  be the joint  belief  over X × Y of  {bely( ' lxi) :  x i ~ ®x}, by 
applying L e m m a  3.3. Then  each focal e lement  s of  b e l x y  must satisfy 
s i x = ®x. Since mox(X) = 1, let bel0x Y be the resulting belief  function 
on combining bel0x and be lxy .  It's easy to see that each focal e lement  o) 
of  bel0x v must satisfy ~o + x = x and bel0x v*v = bely( . lx) .  To  compute  
BEL  A, we use T h e o r e m  2.3: 

plA(a) = ~ moxy(Oo)plA(a]a)) 
~2 C (~'l ¥ o Y 

= y" moxy(W) 

× {1 - [1 - p lx (wiX la  AjAX) l [1  -- ply(o2iYla n¢yxX)l} 

= ~ moxg(W) 
¢'-J ~ ( ')  X J Y 

X {1 - [ 1  - plx(xia N,yxX)] [1 -- p ly (w*V]a  N,Txx)]} 

iv  = mllxy(~O) 

X {1 - [1 - plx(x]a N , ~ x ) l  [1 - p l v ( w i Y ] a  A<yAX)I) 

= y" [mox * my(tO + rix)] 
~o ~ ' r ' c  (.) y 

× { ,  - [1 - p .(.la - ( 6 . 7 )  

Equat ion  (6.7) implies that BEL  A can be computed  from the network in 
Figure 6(b). 

P roof  of  T h e o r e m  5.3 

Proof  Let  BEL  be the joint  belief  function of  the network,  and BEU 
the belief  funct ion obta ined by combining all the beliefs except belj, j l, 
bels. i+ l, and bel0j, where  belj, s l,belj, i+l are the joint beliefs of  the 
corresponding condit ional  beliefs obta ined by applying Lemma  3.3. Then,  
in Figure 7(a) we have 

BEE = BEU ~ (belj . j  1 (~3 belj.y, ~ • bel0j) .  (6.8) 
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Since bel0j is such that m(x~) = 1, it's easy to see that 

belj,j_ 1 @ bel0j = bel0j • (belj , j_ 1 @ bel0j) ~x' , 

and 

belj. j+ 1 @ beloj = bel0j @ (belj, j+~ @ bel0j) +xj+' 

F rom T h e o r e m  2.3, we can find that 

(belj, j_+ l @ bel0j)  ~ xj~+~ = belj+ 1('Ix). 

Then  Equat ion  (6.8) can be rewri t ten as 

B E L  = BEL' * [belj+~(.lx) ~9 belj  t( ' lx) * bel0j] .  

Thus, B E L  is also the joint  belief  function of the network in Figure 7(b). 
As the variables in the two networks are in one- to-one  correspondence ,  
the marginal  distributions of the two networks will be the same. There fore ,  
they are equivalent.  • 

P roo f  of T h e o r e m  5.4 

The  following lemma is needed  for the p roof  of  T h e o r e m  5.4: 

LEMMA 6.2 Let bel 0, bell ,  bel2, and bel~ be four belief functions on ®A" 
Suppose bel 3 is such that Va c_ ®A, m3(a) = x lml(a)  + x2m2(a), where 
xl, x 2 >_ O, x 1 + x 2 = 1. Let belij denote the belief function resulted from 
the combination of  beli and belj. Then Va c ®A, 

mo3(a) = xlmol(a ) + x2mo2(a). 

Proof  

m03(a) : ~ mo(b)m3(c )  = y" mo(b ) [x lm l ( c )  + Xzm2(c)] 
b f - ~ c -  a b O c - a  

= ~ [ x lmo(b )ml ( c )  + x2mo(b)m2(c)]  
b ~ c = a  

=x l  ~ mo(b)m3(c )  + x  2 ~ mo(b)m3(c)  
b Y ~ c - a  b c q c = a  

= xlmol(a ) + x2moz(a). 

This concludes the proof.  
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Proof of Theorem 5.4 Let Y and Z be the merged nodes of variables 
in G l and G 2 respectively. From Theorem 5.2, we have that, for any a 
priori belief such that m y ( y )  = 1, the BEL A can be computed as follows: 

m A ( a )  = m y ( y ) m A ( a j y )  , 

rnA2(a) = y '  m z ( z r y ) m A ( a l z )  , 
z c ( ~ )  z 

BELAly = BELA, @ (BELA2 @ belugA). (6.9) 

Suppose there are prior beliefs on some variables in G~, and we get that, 
from the chain Xj  . . .  X,,, the belief on X: + 1 is vacuous. Let bel0v be the 
joint belief for Y got from the a priori beliefs through the chain. It 's easy 
to see that, for each focal element y of bel0v, beiz( . ly)  is always the same. 
Thus BELA_ ~ is always the same. Then, from Lemma 6.2 and Equation 
(6.9), we have 

m A ( a  ) = ~ m o y ( y ) m x l y ( a )  
y c  (~) y 

= ~_, moy (y )mA(a l y )  @ (BELA~ @ beloA) ~ m l w ( y )  
y c  (~) y yC(~)y 

: (BELx~ @ bel0A) @ ~ m i i y ( y ) r n A ( a l y )  • 
yC_(.)y 

The above equation is the solution for computing BEL x in Figure 8(b). • 
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