
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 47, 549-595 (1993)

Self-Testing/Correcting
with Applications to Numerical Problems

MANUEL BLUM*

Computer Science Division, V.C. Berkeley, Berkeley, California 94720

MICHAEL LUBY +

International Computer Science Institute, Berkeley, California 94704;
and Computer Science Division, U.C. Berkeley, Berkeley, California 94720

RONITT RURINFELD T

Department of Computer Science, Cornell University, Ithaca, New York 14853

Received August 14, 1990; revised November 19, 1991

Suppose someone gives us an extremely fast program P that we can call as a black box to
compute a functionfi Should we trust that P works correctly? A self-testing/correcting pair for
fallows us to: (1) estimate the probability that P(X) # f(x) when x is randomly chosen; (2)
on any input x, compute f(x) correctly as long as P is not too faulty on average. Furthermore,
both (1) and (2) take time only slightly more than the original running time of P. We present
general techniques for constructing simple to program self-testing/correcting pairs for a variety
of numerical functions, including integer multiplication, modular multiplication, matrix
multiplication, inverting matrices, computing the determinant of a matrix, computing the
rank of a matrix, integer division, modular exponentiation, and polynomial multiplication.
0 1993 Academic Press, Inc.

1. INTRODUCTION

Consider the task of writing a program P to evaluate a function $ One of the
main difficulties is that when P is implemented it is difficult to verify that
P(x) =f(x) for all inputs x. There are two traditional approaches to this problem,
program verification and program testing. Program verification has had fairly
limited success because even relatively simple programs are hard to prove correct.

* Research partially supported by NSF Grant No. CCR 8813632 and CCR 92-01092.
+ Research partially supported by NSF Operating Grant CCR-9016468 and by Grant No. 89-00312

from the United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel.
* Research done while at U.C. Berkeley and partially supported by an IBM Graduate Fellowship and

NSF Grant No. CCR 88-13632.

549
OO22OOOO/93 $5.00

Copyright 0 1993 by Academic Press, Inc.
All rights of reproduction in any form reserved.

550 BLUM, LUBY, AND RUBINFELD

Furthermore, even if the proof is correct it only makes a statement about the
program as it is written on paper, not about the compiled code nor about the
hardware on which it runs. Traditional testing has two drawbacks. First, the test
inputs typically do not cover all inputs encountered when the program is actually
used, and thus on a particular input the user has no guarantee that the program
output is correct. Second, often during testing another program P’ is used to com-
pute f to compare against the answer of P, and thus there is a reliance on the
correctness of another program P’ that is in no quantifiable way different than the
program P it is being used to test [lo, 11, 241. Informally, the idea is to write a
very simple program C, called the result checker, which is to be run in conjunction
with P to verify that P(x) =f(x) in the following sense. If P is correct for all inputs
(and thus also P(x):=f(x)) then the result checker outputs “PASS,” but if
P(x) #f(x) then the result checker outputs “FAIL.“’ The result checker C may call
P on inputs other than x, but it may only access P as a black box and does not
have access to the program code of P. The result checker C is written for a specific
function f, but C must work for all programs P that purport to compute J:

1.1. Self-Testing/Correcting

Although a result checker can be used to verify whether P(x) =f(x), it does not
give a method for computing the correct answer in the case that P is found to be
faulty. In this paper,’ we introduce the theory of self-testing/correcting, which is an
extension of the theory of result checkers that is meant to address this issue.
Intuitively, a probabilistic program Tf is a self-tester for fif, for any program P that
supposedly computes f, T, can make calls to P to estimate the probability that
P(x) #f(x) for a random input x. We call this probability the error probability
of P. A probabilistic program C, is a self-corrector for f if, for any program P such
that the error probability of P is sufficiently low, for any input x, C’ can make calls
to P to compute f(x) correctly. Thus, the advantage of self-testing/correcting over
result checkers is that on a given input x a result checker only verifies that
P(x) =f(x), whereas a self-corrector can be used to computef(x) correctly making
calls to P, even in the case when P(x) #f(x), as long as P is verified to be correct
for most inputs using the self-tester.

The question remains, how to verify that the self-testing/correcting pair meets
its specifications. Although there is no final answer to this question, there are
some partial answers. First, it has been our experience that the code for the self-
testing/correcting pairs we have designed is often much simpler than reasonably
fast programs for computing f directly and is therefore more likely to be correct
on these grounds alone. Moreover, a lot of time can be spent in the design of a

r Note that there is no specification of the behavior of C when P(x) =f(x) but P incorrectly computes
f on some inputs other than x. The “natural” requirement would be that in this case the output of C
is “PASS.” However, this can be easily shown to imply that C has to correctly compute f(x) on its own
without any calls to P, which is clearly not in the spirit of allowing C to be a much simpler program
than any correct program for J

2 A preliminary version of this paper appeared in [14].

APPLICATIONS TO NUMERICAL PROBLEMS 551

self-testing/correcting pair to try and ensure that it is correct, because a self-testing/
correcting pair can be used on all revisions in the future to the currently used
program P for computing f: In the case of result checkers [lo] suggests that the
result checker should be in some quantifiable way “different” than any program P
that correctly computesf directly, because then it is unlikely that the result checker
makes mistakes of the same type as those made by P. We adopt this same
philosophy and require that our self-testing/correcting pair be “different” in the
following sense: We call the running time of Tf, not counting the time for calls to
the program P, the incremental time of T,. We say that T, is different if the
incremental time of T, is faster than the running time for any correct program for
computing f directly. Analogous definitions apply to Cr We insist that both Tf and
C, be different, which ensures that the self-testing/correct pair is doing something
quantifiably different than computing f directly, because there is not enough time
for this.

We call the running time of T,, counting the time for calls to the program P, the
total time of Ty We say that Tf is efficient if the total time is linear in the running
time of P. We insist that both T, and C, be efficient, which ensures that the
advantages we gain by using the self-testing/correcting pair are not overwhelmed by
an inordinate running time slowdown.

A self-testing/correcting pair (T,, Cf) for a function f is a powerful tool. A user
can take any program P that supposedly computes f and self-test it with T,. If P
passes the self-test then, on any input x, the user can call C,, which in turn makes
calls to P, to correctly compute f (x). Even a program P that computes f incorrectly
for a small but significant fraction of the inputs can be used with confidence to
correctly compute f(x) for any input x. In addition, if in the future somebody
designs a faster program P’ for computing f, then the same pair (T,, Cf) can be
used to self-test/correct P’ without any further modifications. Thus, it makes sense
to spend a reasonable amount of time designing self-testing/correcting pairs for
functions commonly used in practice and for which a lot of effort is spent writing
super-fast programs. For example, integer multiplication and matrix multiplication
are commonly used functions for which fast but complicated programs have been
written and implemented [17, 38, 35, 361. Thus, the self-testing/correcting pairs we
develop may be useful in practice.

We develop general techniques for constructing simple to program self-testing/
correcting pairs for a variety of numerical functions. Roughly speaking, we develop
techniques to correct random self-reducible functions, to test linear functions and to
test by bootstrapping functions that are both random self-reducible and downward
self-reducible. Our techniques apply to integer multiplication, the mod function,
modular multiplication, integer division, polynomial multiplication, modular
exponentiation, matrix multiplication, determinant, matrix inversion, and matrix
rank. For all of these functions, except for modular exponentiation in the case when
the factorization of the modulus is not known, the incremental time is linear in the
input size and the total time is linear in the running time of P. Thus, for these
functions, the self-testing/correcting pair is both different and efficient. For modular

552 BLUM, LUBY, AND RUBINFELD

exponentiation in the case when the factorization of the modulus is not known, the
self-testing/correcting pair is different and close to efficient.

The theory of self-testing leads to interesting mathematical questions about
properties that characterize a function. We show that certain properties that
characterize a function which hold on every input can be replaced by the same
property which only holds for a large fraction of inputs. For example, suppose f is
a function that maps a group G to a group H. We say that f is linear if, for all x
and y in G, f(x +G. y) = f (x) +* f (y) (where + c and + H are the group operations
over G and H, respectively). The results in Section 4 relax the condition required
for linearity in the following sense: they show that if, for a large fraction of
x, y, f(x +c y) = f(x) +H f(y), then there is a linear function g such that f(x) is
equal to g(x) for most x. Thus f is still essentially a linear function. [21] shows that
a similar property and relaxation holds for polynomials. Since it is computationally
much easier to determine whether a property is satisfied most of the time than
it is to determine whether it is always satisfied, this relaxation is important for
self-testing.

1.2. Libraries

Often programs for related functions are grouped in packages; common examples
include packages that solve statistics problems or packages that do matrix
manipulations. We extend the theory proposed in [lo] to allow the use of several
programs, or a library, to aid in self-testing and self-correcting. We show that the
library approach allows one to construct self-testing/correcting pairs for functions
which did not previously have efficient self-testing or self-correcting programs, or
even result checkers. Working with a library of programs rather than with just a
single program is a key idea: enormous difficulties arise in attempts to design a
self-testing/correcting pair for the determinant or for computing the rank in the
absence of programs for matrix multiplication and inverse.

The typical situation where the library approach is useful is for a function f,
where the natural way to compute f is by making a small number of calls to
another functionf’, where the running time to computef’ is of the same order of
magnitude as the running time to compute J: The running time to compute f’
makes it hard to design a self-testing/correcting pair for f based on making calls to
f’ that is different. However, if it is possible to design a self-testing/correcting pair
for f’ that is different, then we can use the approach described in the next
paragraph to design a self-testing/correcting pair for f:

The idea of the library approach is to first design a self-testing/correcting pair
(T’, C’) for f’, and then to design a self-testing/correcting pair (T, C) for f that
makes calls to C’ to compute f’ instead of computing f’ directly. Let Y be the
program that supposedly computes f and let P’ be the program that supposedly
computes f ‘. The incremental time of T is the running time of T, not counting calls
to either C’ or P, plus the incremental time for C’ multiplied by the number of
times C’ is called. The total time of T counts the time for all calls to P and C’, and
within C’ counts the time for calls to P’. The incremental and total times of C are

APPLICATIONS TO NUMERICAL PROBLEMS 553

defined analogously. The way the library of self-testing/correcting pairs is used in
this example is as follows: First, T’ tests that P’ is not too faulty. Then, T tests that
P is not too faulty. T makes calls to C’, which in turn makes calls to P’. Finally,
C computes f by making calls to both P and C’, which in turn makes calls to P’.
The properties are that if either P or P’ is too faulty, then one of T’ or T will
output “FAIL,” whereas if both P and P’ are not too faulty, then C correctly
computes f on all inputs with high probability.

1.3. Related Work and Extensions

Blum and Micali [lS] construct a pseudo-random generator, where a crucial
ingredient of the construction can be thought of as a self-correcting program for the
discrete log function. Rubinfeld [311 introduces result checking for parallel
programs and uses self-testing to design a constant depth circuit to check the
majority function. A self-testing/correcting pair for a function f implies a result
checker for $ A result checker for f implies a self-tester for f, but it is not known
whether a result checker also implies a self-corrector. Previous to our work, [23]
gives result checkers for integer and polynomial multiplication. Independently of
our work, [1] gives result checkers for integer multiplication and modular
exponentiation. Both of these papers use very different techniques than ours. Pre-
vious to our work, [20] introduces a result checker for matrix multiplication over
a finite field. We make use of this result checker when designing the self-testing/
correcting pair for matrix multiplication over a finite field.

Lipton [26], independently of our work, discusses the concept of self-correcting
programs and for several functions uses it to construct a testing program with
respect to any distribution assuming that the programs are not too faulty with respect
to a particular distribution. To highlight the importance of being able to self-test,
consider the mod function. To self-correct on input x and modulus R, the assump-
tion in [26] and here is that the program is correct for most inputs x with respect
to the particular modulus R. This requires a different assumption for each distinct
modulus R. Our self-testing algorithm for the mod function on input R can be used
to efficiently either validate or refute tis assumption.

Previously, [24] provides an elegant result checker for computing the
determinant of a matrix, but it is not efficient. Our self-correcting/testing pair for
determinant is efficient, but it relies heavily on allowing the pair to call a library
of linear algebra programs instead of restricting calls to a single program that
supposedly computes determinant.

In this paper, we assume that the program’s answer on a particular input does
not depend on previous inputs. Reference [13] considers the case when the
program adaptively decides its answer based on previous inputs.

Recently, [16] has shown how to use these techniques to design a self-tecting/
correcting pair for the trigonometric functions sine and cosine. Reference [21]
extends these results to design a self-testing/correcting pair for any polynomial func-
tion over finite fields and [34] extends this to polynomial functions over rational
domain. Rubinfeld [33] introduces an extension of this theory to the case when the

554 BLUM, LURY, AND RUBINFELD

program’s answer is considered correct when it is a good approximation to the
actual value of the function and designs a self-testing/correcting pair for the
quotient function.

The techniques in this paper have been applied to the theory of interactive proofs
(see [22, 3, 93 for the discussion of interactive proofs); [27] uses the self-testing/
correcting technique based on bootstrapping developed in Section 7 and the
observation about the permanent problem in [26] (which is based on [6]) to
construct a two-prover interactive proof system for the permanent problem, which
led to the eventual discovery that IP = PSPACE [19, 37, 41.

The results in this paper are related to those in [S]. In order to show that the
multi-prover version of IP is equal to NEXPTIME, [S] gives a test for verifying
that a given program P, which depends on n input variables, computes a function
which is usually equal to some multi-linear function f of the n variables. Their
results can be viewed as providing a self-tester for multi-linear multi-variate func-
tions, assuming the ability to correctly compute linear functions of one variable.
Combining their results with the self-testers for linear functions of one variable
given in this paper yields a much simpler self-tester for multi-linear multi-variate
functions, which uses only additions, comparisons, and calls to P, and which is
“different” in the sense used in this paper.

2. THE BASICS

DEFINITION 2.1 (Distribution on inputs). For expository purposes, we restrict
ourselves to the case whenf is a function of one input from some universe 9. Let
4, 4, *.- be a sequence of subsets of 9 such that Y = u,, M Yn. The subscript y1
indicates the “size” of the input to the function. Let 9 = (ga 1 n E JV} be an
ensemble of probability distributions such that JB,, is a distribution on &.

DEFINITION 2.2 (Error). Let P be a program that supposedly computes f: Let
error(f, P, Qn) be the probability that P(x) #f(x) when x is randomly chosen in $n
according to g,,.

DEFINITION 2.3 (Probabilistic oracle program). A probabilistic program M is an
oracle program if it makes calls to another program that is specified at run time.
We let MA denote M making calls to program A.

DEFINITION 2.4 (Self-testing program). Let 0 < ai < sZ < 1. An (si, &,)-self-test-
ing program for f with respect to z% is a probabilistic oracle program Tf that has
the following properties for any program P on input n and confidence parameter
p>o:

1. If error(f, P, g,J de1 then TT outputs “PASS” with probability at least
1 -B.

APPLICATIONS TO NUMERICAL PROBLEMS 555

2. If error(f, P, &) > c2 then T/’ outputs “FAIL” with probability at least
1 -p.

To simplify the code somewhat, we make the convention that the self-tester
immediately halts once it outputs an answer, either “PASS” or “FAIL.” The value
of &i should be as close as possible to sZ to allow as faulty as possible programs P
to pass test Tf’ and still have self-corrector CT work correctly.

DEFINITION 2.5 (Self-correcting program). Let 0 d E < 1. An s-self-correcting
program for f with respect to 9 is a probabilistic oracle program Cf that has the
following property on input n, x~3~ and /I> 0. If error(f, P, gn,) GE then
C,‘(x) =f(x) with probability at least 1 - /3.

DEFINITION 2.6 (Self-testing/correcting pair). A self-testing/correcting pair for f
is a pair of probabilistic programs (Tf, Cf) such that there are constants
O< el < c2 GE < 1 and an ensemble of distributions ~3 such that Tf is an (si, s2)-
self-testing program for f with respect to 9 and C, is an &-self-correcting program
for f with respect to $3.

DEFINITION 2.7 (Running time). Let MP be a probabilistic oracle machine M
making oracle calls to P. The incremental time of MP is the maximum over all
inputs x of length n of the running time of MP(x), not counting the time for calls
to P. The total time of MP is the maximum over all inputs x of length n of the
running time of MP(x), counting the time for calls to P.

DEFINITION 2.8 (Different). We say that self-testing/correcting pair (Tf, Cr) is
different if, for all programs P, the incremental time of both TT and CT is smaller
than the running time of the fastest known program for computing f directly.

DEFINITION 2.9 (Efficient). We say that self-testing/correcting pair (Tf, Cf) is
efficient if, for all programs P, the total time of both T/’ and CT is linear in the
running time of P and the input size.

We insist that a self-testing/correcting pair be both different and efficient,
although for modular exponentiation when the factorization of the modulus is
unknown we are forced to relax the efficiency requirement somewhat. In the
definitions of different and efficient, we ignore the running time dependence on the
confidence parameter /I, which is typically a multiplicative factor of O(ln(l//3)).3

Because self-testers must be different, the strategy used by T; cannot be the naive
technique of choosing x E 3n according to g,, and seeing if P(x) = f (x), because this
requires computation off(x). Similarly, CT cannot call P on input x and hope that
P(x) =f(x), because P is allowed to be faulty on a fraction of the inputs, and in

3 In this paper, In a denote the natural log of a. In some cases, In a is to be thought of as an integer,
in which case it is the least integer greater than or equal to In a.

556 BLUM, LUBY, AND RUBINFELD

particular it might be faulty on input x. In many of the self-testers and self-correc-
tors we design, we exploit the ability to computef(x) indirectly by computing f on
random inputs. This property is explained in the following definition.

DEFINITION 2.10 (Random self-reducibility property). Let x E &. Let c > 1 be an
integer. We say that f is c-random self-reducible if f (x) can be expressed as an easily
computable function F of x, a,, a, and f (a,), f (a,), where a,, a, are easily
computable given x and each ai is randomly distributed in -0, according to 9n.4 By
easily, we mean that the total computation time of the random self-reduction is
smaller than that of computing f(x).

One of the strengths of this property is that it can be used to transform a
program that is correct on a large enough fraction of the inputs into a program that
computes f(x) correctly with high probability for any input x. Many of the
functions we consider are on the integers or on initial segments of the integers. We
often use the following notation.

DEFINITION 2.11 (Arithmetic notation). For any positive integer R, let SYR denote
the set of integers (0, R - 1 }, let + R denote integer addition mod R and let .R
denote integer multiplication mod R. Let a,* = {x E JY~: gcd(x, R) = 1 }.

For simplicity, in the description of all of our self-correcting/testing programs we
omit the following simple but crucial piece of the code.

DEFINITION 2.12 (Range-check code). Whenever the self-corrector or self-tester
makes a call to P, it verifies that the answer returned by P is in the proper range,
e.g., for f (x, R) = x mod R the proper range is TR. If the answer is not in the proper
range, then the program resets the answer to a default value in the range, e.g., for
f(x, R) =x mod R, the default value could be zero.

The range-check code in effect modifies the original P into a modified P.
However, the modified P is at least as correct for computing f as the original P. For
correctness, it is crucial that the self-tester and the self-corrector both use the same
default value in the range-check code. This is because we want the self-corrector
and self-tester to be calling as an oracle the same P. In most cases, the range-check
code is straightforward, and we discuss it in those cases where it is not.

We often consider uniform probability distributions on sets. Thus, we introduce
the following notation.

DEFINITION 2.13 (Uniform probability distribution). For any set X, let 9Xx
denote the uniform probability distribution on X For example, %+ is the uniform

4 However, no independence between these random variables in needed; e.g., given the value of a, it
is not necessary that a2 be randomly distributed in XV according to ~2~.

APPLICATIONS TO NUMERICAL PROBLEMS 557

distribution on ?&“, whereas %{,), where R is a positive integer, is the probability
distribution such that R has probability one. We let x E% X denote that x is
randomly and uniformly distributed in X.

3. SELF-CORRECTING

In this section, we describe self-correctors for a variety of numerical functions.
We start with self-correcting because the self-correctors for our applications are
much more intuitive than the corresponding self-testers, and in addition the
self-correctors are substantially easier to prove correct.

In the following subsections, we show the specific details of the self-correcting
programs for the mod function, integer multiplication, modular multiplication,
modular exponentiation, integer division, matrix multiplication, and polynomial
multiplication. All of these self-correcting programs follow the same outline and rely
on the random self-reducibility property (defined in the preceding subsection) of the
given function. In Subsection 3.8 we give a self-correcting program that works for
any random self-reducible function. Lipton [26] uses the same basic outline to
develop a self-correcting program for any polynomial over a finite field.

3.1. Mod Function

We consider computing an integer mod R for a positive number R. In this
case, f(x, R) = x mod R. Assume that we have a program P such that
error(f, p, qTrnn x 9?(R)) < $. The following program is a $self-correcting program
for f making oracle calls to P with respect to O#?JZRZn x efRJ. The input to the
program is n, R, x E 9 RZn and the confidence parameter j?.

PROGRAM MOD FUNCTION SELF-CORRECT(n, R,x,/?),

N t 12 ln(l/B)
Do form = 1, N

Call Random-Split(R2”, x, x1, x2, c)
answer, +- P(x,, R) +R P(x,, R)

Output the most common answer among (answer,: m = 1, N)

FUNCTION RANDOM-SPLIT(M, z, z1,z2,e).

Choose zi E, TM
Ifz,<ztheneeOelseeel
z,+eM+z-z,

We need the following proposition in the proof of correctness of this and many
subsequent programs.

571/47/3-13

558 BLUM, LUBY, AND RUBINFELD

PR~WSITON 1. Let x1,..., x, be independent Ojl-valued random variables such
that for each i= 1, m, Pr[xi = l] > $. Then,

Pr[~~x,>m/2].1--e-“‘.

Proox Use standard Chernoff bounds. 1

LEMMA 2. The above program is a $-self-correcting program for the mod function.

ProoJ: For i E { 1,2}, xi Ed ZZ&. Thus, by the properties of P, P(x,, R) #
xi mod R with probability at most $, and consequently both calls to P in a single
loop return the correct answer with probability at least :. Because x=x1 +x2 -
cR2”, x mod R = x1 mod R +R x2 mod R. Thus, if both calls to P are correct,
answer,,, =x mod R. The lemma follows from Proposition 1. 1

The mod function self-correcting program is very simple to code, the only opera-
tions used are integer additions, comparisons, and calls to the program P. This is
true because in the computation of answer, because of the implicit range-check
code (see Definition 2.12), both P(x,, R) and P(x,, R) are in 3E. Thus, to compute
P(x,, R) +R P(x,, R) consists of one integer addition, one comparison, and
possibly one subtraction, Note that the self-correcting program is different because
the incremental time is linear in n, and it is also efficient, because the total time is
linear in the running time of P.

3.2. Integer Multiplication

For integer multiplication, f(x, y) =x. y. Suppose that both x and y are in the
range Z& for some positive integer n. Assume that we have a program P such that
error(f, P, !?J~+ x 9!!rJ < &. The following program is a &-self-correcting program
for f making oracle calls to P with respect to 9Yzz” x %zzn. The input to the program
is n (the length of the inputs), x, y E ZZz” (the numbers to be multiplied together),
and the confidence parameter a.

PROGRAM INTEGER MULTIPLICATION SELF-CoruwcT(n,x, y,/l).

N+ 12 In(l/&
Do for m = 1, N

Call Random-Split(2”, x, x1, x2, c)
Call RandomSplit(2”, y, y,, y,, d)

answer + P(x,, y,) + P(x,, y2) + P(x,, y,) + P(x,, yz) - cy2” - dx2”- cd2*”

Output. the most common answer among {answer, : m = 1, N)

LEMMA 3. The above program is a &selJlcorrecting program for integer multi-
plication.

APPLICATIONS TO NUMERICAL PROBLEMS 559

Proof. For i, Jo (1, 2}, the pair (xi, yj) E% 3$ x .!&. Thus, by the properties of
P, P(xi, yj) # xi. yj with probability at most &, and consequently all four calls to
P in a single loop return the correct answer with probability at least i. Because
x=x1+x2--~2” and y=y,+y,-d2”,x.y=x,.y,+xl~yz+xz.y,+xz~y,-
cy2” - dx2” - &12”. Thus, if all four calls to P are correct, answer,,, = x . y. The
lemma follows from Proposition 1. 1

The integer multiplication self-correcting program is very simple to code, the only
operations used are integer additions, shifts, comparisons, and calls to the program P.

3.3. Modular Multiplication

We now consider multiplication of integers mod R for a positive number R. In
this case, f(x, y, R) =x .R y. Suppose that both x and y are in the range ZR2” for
some positive integer n. Assume that we have a program P such that
error(f, py %& xesR2nx @{R}) d &. The following program is a &-self-correcting
program for f making oracle calls to P with respect to asm” x %zRzn x Q{,). The
input to the program is R, x, y E LYR2” and the confidence parmeter /I.

PROGRAM MODULAR MULTIPLICATION SELF-C• RRECT(R,x, y,p),

N t 12 ln(l/j?)
Do for m = 1, N

Call Random-Split(R2”, x, xi, x2, c)
Call Random-Split(R2”, y, y,, y2, d)

anSwer,cP(x,,~l,R)+~P(x~,y~,R)+~P(x,,y~,R)+RP(x~,~~,R)

Output the most common answer among {answer,,, : m = 1, N}

LEMMA 4. The above program is a &-self-correcting program for modular
multiplication.

Proof. For i, jE { 1,2}, the pair (xi, yj) E& LYR2” x ZYR2”. Thus, by the properties
of P, P(xi, yj) # xi. yj with probability at most &, and consequently all four calls
to P in a single loop return the correct answer with probability at least i. Because
x=x1+x2-cR2” and y= y,+ y,-dR2”, x~Ry=(X1~RyI)+R(X1-Ry2)+R
(x2 .R yi) + R (x2 ‘R ~2). Thus, if all fOUr CdlS to P are Correct, answer, = x ‘R y. The
lemma follows from Proposition 1. 1

3.4. Modular Exponentiation

We now consider exponentiation of integers mod R for a positive number R.
In this case, f(a, x, R) = ax mod R. We restrict attention to the case when
gcd(a, R) = 1 and when we know the factorization of R, and thus we can easily
compute d(R), where 4 is Euler’s function. Suppose that x is in the range .zZ++(~)~=.
Assume that we have a program P such that error(J; P, Q,,, x 49z+tR,r x 9IRI < $.
The following program is a Q-self-correcting program for f making oracle calls to

560 BLUM, LUBY, AND RUBINFELD

P with respect to @fa) x %34(R,2m x a{(R).
and the confidence parameter /?.

The input to the program is R, a, x E Z4CRj2n

PROGRAM MODULAR EXPONENTIATION SELF-C• RRECT(R,u,x, /I).

IV+- 12 In(l//?)
Do for m = 1, N

Call Random-Split(#(R) 2”, x, xi, x2, c)
answer,,, t P(a, x,, R) .R P(a, x2, R)

Output the most common answer among {answer, : m = 1, N}

LEMMA 5. The above program is a {-self-correcting program for modular
exponentiation.

Proof. For i E (1,2}, xi 6, Z4(R,2,z. Thus, by the properties of P, P(a, xi, R) #
ux’ mod R with probability at most $, and consequently both calls to P in a single
loop return the correct answer with probability at least 3. Because x=x, +x2 -
c&R) 7’2 and because gcd(a, R) = 1 implies that adcR) = 1 mod R, ax mod R =
ax’ mod R + R ax2mod R. Thus, if both calls to P are correct, answer,,, = ax mod R.
The lemma follows from Proposition 1. 1

The modular exponentiation self-correcting program is very simple to code.
The hardest operation to perform is the modular multiplication P(a, x1, R) .R
P(a, x2, R). The self-correcting program can compute this multiplication directly,
but another alternative is to use the library approach described informally here and
in more detail in a subsequent section.

Let f be the modular exponentiation function and let f’ be the modular multi-
plication function. Let P be a program that supposedly computes f and let P’ be
a program that supposedly computes f’. Let C’ be the modular multiplication
self-correcting program described in a previous subsection and let C be the
modular exponentiation self-correcting program described. If error(J P, %!!rOj x
4!! fi--+(R)2flx q{R))’ 8 < L and if error(f’, P’, q3, x as, x %!1R1) 6 & then we can use C,
making calls to P and making calls to C’, which in turn makes to P’, to
self-correct J: Using this approach, the only operations computed by either C or
C’ are integer additions, comparisons, and calls to the programs P and P’. The
self-correcting program is different because the incremental time (which excludes
the time for calls to both P and P’) is linear in n, and it is also efficient, because
the total time (which counts the time for calls to both P and P’) is within a
constant multiplicative factor of the running time of P assuming that P’ runs at
least quickly as P.

3.5. Integer Division

We now consider division of integers by R for a positive number R. In this case7
f(x, R) = (X div R, x mod R). Suppose that x is in the range %oRzti. Assume that we

APPLICATIONS TO NUMERICAL PROBLEMS 561

have a program P such that error(f, P, @sR2n x @tR)) < $. The following program
is a $-self-correcting program for f making oracle calls to P with respect to
%3,n x %tRJ. The input to the program is R, x E 2ZR2 ,, and the confidence parameter
fl. We refer to the output of P as P(x, R) = (Pdiv(x, R), Pmod(x, R)).

PROGRAM INTEGER DIVISION SELF-C• RRECT(R,x,p).

N+ 12 ln(l/fl)
Do for m = 1, N

Call Random Split(R2”, x, x1, x1, c)
Divans, + (Pdiv(X1, R)+ Pdiv(XZ, R))+ (Pmod(xl, R)+ Pmod(xZ, R)) div R-C .2”

Moda% + pmod(xl~ R) +R f’modbZ, RI
Output the most common answer among {(Divans,, Modans,): m = l,...,N}

LEMMA 6. The above program is a $-self-correcting program for integer division.

Proof: Follows the outline of the proof of Lemma 2. 1

As in the self-corrector for the mod function, both the mod and div computed by
the self-corrector are easy to code. This is true because in the computation of
Modans,, the range-check code (see Definition 2.12) ensures that both Pmod(xl, R)
and pmod(x2~ R) are in ZYR. Thus, to compute Pmod(xl, R)+R Pmod(xl, R) consists
of one integer addition, one comparison, and possibly one subtraction. In the
computation of Divans,,, , computing (Pmod(x, , R) + Pmod(xZ, R)) div R consists of
one integer addition and one comparison.

3.6. Matrix Multiplication

We consider multiplication of matrices over a finite field. Let M, x .[F] be the set
of n x n matrices over the finite field F. Then, for all A, BE M, x .[F], f (A, B) =
A . B. Assume that we have a program P such that error(f, P, 42MnXnCF,) < &, The
following program is a $-self-correcting program for f making calls to oracle P
with respect to QMnx,rF,. The input to the program is A, BE M, x n[F] and the
confidence parameter j.

PROGRAM MATRIX MULTIPLICATION SELF-C• RRECT(A, B,@.

Nt 12 ln(l/b)
Do for m = 1, N

Choose A,, I?, E* M,,.[F]
A2tA-AI
B2+B-B1

answer,tP(A,,B,)+P(A,,B,)+P(A,,B,)fP(A,,B,)
Output the most common answer among {answer, : m = 1, N}

562 BLUM, LUBY, AND RUBINFELD

LEMMA 7. The above program is a &-self-correcting program for matrix
multiplication.

ProoJ: Follows the outline of the proof of Lemma 2. m

3.7. Polynomial Multiplication

We consider multiplication of polynomials over a ring. Let Rd[x] denote the set
of polynomials of degree d with coefficients from some ring R, and let %Rd[x] x RdCx]

be the uniform distribution on R”[x] x R”[x]. In this case, f(p(x), q(x)) =
p(x). q(x), where p, q E R”[x]. Assume that we have a program P such that
error(f; p9 sRdLxl x Rd[x]) < &. The following program is a $-self-correcting program
for f making oracle calls to P with respect to eRdIx] x RdCx]. The input to the
program is p, q E R”[x] and the confidence parameter fl.

PROGRAM POLYNOMIAL MULTIPLICATION SELF-C• RRECT(P, q,B).

Nt 12 ln(l//I)

Do for m = 1, N

Choose p1 E% Rd[x]

Choose q1 E& Rd[x]

PzCP-Pl

q2+q-q1

answer,+- ph 41)+Wh~ ql)+fYpl~ q2)+P(p2, q2)

Output the most common answer among {answer, : m = 1, N}

LEMMA 8. The above program is a &self-correcting program for polynomial
multiplication.

ProoJ: Follows the outline of the proof of Lemma 2. 1

3.8. Generic Self-Correcting Program

Let c be a positive integer and let f be any c-random-self-reducible function (see
Definition 2.10). Assume that we have a program P such that error(f; P, 62J < 1/4c.
The following program is a (1/4c)-self-correcting program for f making oracle calls
to P with respect to gn. The input to the program is n, x E 4r, and a confidence
parameter /I.

APPLICATIONS TO NUMERICAL PROBLEMS 563

F%~GRAM GENERIC SELF-CORRECT(~,X,~~).

N t 12 ln(l/j?)
Do for m = 1, N

Randomly generate a,, a, based on x
For i = 1, c, ai + P(a,)
answer, c F(x, a,, a,, q, a,)

Output the most common answer among (answer, : m = 1, N}

THEOREM 1. If f is a function that is c-random self-reducible then there is a
(1/4c)-self-correcting program for f:

Proof. We show that the above program is such a self-correcting program for
fi Suppose that error(f, P, 9J < 1/4c. Because, for each k = 1, c, ak is randomly
distributed in & according to Qn,, all c outputs of P are correct with probability at
least 3 each time through the loop. If all c outputs of P are correct, then by the
random self-reducibility property, answer, = f (x). The theorem follows from
Proposition 1. 1

4. LINEARITY AND SELF-TESTING

Although the most interesting of our self-testing methods leads to self-testers that
are almost as simple to code as the self-correctors described above, the proofs
that they meet their specifications are more difficult, interesting, and involve some
probability theory on groups that may have other applications. This method
applies to integer multiplication, the mod function, modular multiplication, modular
exponentiation when the 4 function of the modulus is known and integer division.
The resulting self-testers are simple to code and are both different and efficient.

To give some idea of how the method works, we concentrate on the mod func-
tion. We then define the linearity property and give a generic tester that works for
any function with this property. We then show the specific testers that result from
applying this generic tester to integer multiplication, modular multiplication,
modular exponentiation, and integer division.

4.1. Mod Function

For positive integers x and R, let f (x, R) = x mod R. Because the self-correcting
program for the mod function relies on a program that is correct for most inputs
with respect to a particular modulos R, the self-testing program for the mod func-
tion is designed to self-test with respect to a fixed modulus R. This is an important
motivation for constructing efficient self-testing programs, because the self-testing
program is executed each time a new modulus is used. Similar remarks hold for
modular multiplication and modular exponentiation.

564 BLUM, LUBY, AND RUBINFELD

For fixed R, we view f as a function of one input x. There are two critical tests
performed by the self-tester. Let x, E* ZR2,, and X~E~ ZR2” be independently
chosen, and set x t x1 +R2” x2. Note thatf(x, R)=f(x,, R)+.f(x,, R), i.e.,fis a
(modular) linear function of its first input. The linear consistency test is

Does P(x, R) = P(x,, R) + R P(x,, R)?

and the linear consistency error is the probability that the answer to the linear
consistency test is “no.” Let ZE@ 3YR2”, and set z’c z +R2” 1. Note that
f(z’, R) =f(z, R) +R 1; i.e., in addition to being linear in its first input, f also has
(modular) slope one as a function of its first input. The neighbor consistency test is

Does P(z’, R) = P(z, R) +R l?

and the neighbor consistency error is the probability that the answer to the neighbor
consistency test is “no.”

Our main theorem with respect to the self-tester for f is that there are constants
0 < $ < 1 and @’ > 1 such that error(S, P, esRz” x a(,)) is at least II/ times the mini-
mum of the linear consistency error and the neighbor consistency error, and that
error(f, P, asRzn x @fR1 1 is at most t,V times the maximum of the linear consistency
error and the neighbor consistency error. Thus, we can indirectly approximate
error(f, P, asR, x qfR)) by instead estimating the linear and neighbor consistency
errors.

The proof of the theorem shows that any function which usually satisfies the
linearity property is essentially a linear function, in the sense that there is some
linear function which is almost always equal to the original function.

PROGRAM MOD FUNCTION SELF-TEST(n, R,p).

N = 864 ln(4//?)
tco
Do form = 1, N

Call Mod-Linear-Test(n, R, answer)
t c t + answer

If t/N > l/72 then output “FAIL”
N’ = 32 ln(4/j?)
t’ t 0
Do form = 1, N’

Call Mod-Neighbor-Test(n, R, answer)
t’ e t’ + answer

If f/N’ > i then output “FAIL” else output “PASS”

APPLICATIONS TO NUMERICAL PROBLEMS 565

MOD-LINEAR-TEST(~, R, answer)

Choose x1 E, ZYR2”

Choose x2 E% ~2~~~

x + Xl +R*” x2

If P(x,, R) + R P(x,, R) = P(x, R) then answer t 0 else answer t 1

MOD-NEIGHBOR-TEST(IZ, R, answer).

Choose z E* ZR2”

2’ + z +R2” 1

If P(z, R) +R 1 = P(z’, R) then answer c 0 else answer c 1

THEOREM 2. The above program is an (A, i)-self-testing program for the mod
function with any modulus R.

Proof: This is a corollary of Theorem 6 from the next subsection. 1

The only non-trivial lines of code in the self-testing program are generation
of random numbers, calls to the program P, integer additions, and integer
comparisons.

4.2. Generic Linear Self-Testing

In this section, we describe a generalization of the mod function self-tester to
functionsf mapping a group G into another group G’. In addition to the mod func-
tion, we will show how to apply this generic self-tester to integer multiplication,
modular multiplication, and modular exponentiation. In all cases, the resulting
self-testing program is extremely simple to code, different, and effkient.

The function f is specified in the following way. Let (G, 0) be a finite group
with group elements G and group operation 0 generated by the set {g, g,}
and with identity element 0. For y E G, let y-i denote the inverse of y. Let G’ be
a group with group operation 0’ and identity element 0’. For a E G’, let a- ’ denote
the inverse of cr. Let f: G + G’. Intuitively, f is hard to compute compared to either
the 0 or 0’ operations. For simplicity, we assume that both groups are abelian; our
results can be generalized to non-abelian groups as well, but our applications are
to abelian groups.

If there are no finite subgroups of G’ other than (0’} then the rest of the charac-
terization off is solely in terms of a function F,,,, as described below. If there are
finite subgroups of G’ other than (0’ > (including possibly G’ itself) then, in addition

566 BLUM, LUBY, AND RUBINFELD

to Flinear 3 the rest of the characterization is in terms of a function Pheighbor for each
i= 1 3 c. The fact that f is completely characterized by this information follows as
a corollary from the theorems proved in the remainder of this subsection.

DEFINITION 4.1 (Flinear and linear consistency). For any pair x1, x2 E G,
F,inear(X,) x2) E G’ and, furthermore, f (x1 0 x2) =f(x,) 0’ f(x2) 0’ Flinear(xl, x2). We
call this property linear consistency.

In all of our applications, except for integer multiplication, FLinear(Xl, x2) = 0’ for
all inputs x1, x2, in which case f is a group homomorphism.

DEFINITION 4.2 (Fhcighbor and neighbor consistency). For each generator giE G,
for any z E G, FLeighbor(z) E G’ and, furthermore, f (z 0 gi) = f (z) 0’ Fheighbor(z). We
call this property neighbor consistency.

The functions Fheighbor are not needed to characterize integer multiplication
(because the group corresponding to G’ is infinite with no finite subgroups other
than (0’) in that application). For all of the other applications, both G and G’ are
generated by a single element denoted 1 and l’, respectively (i.e., they are both
cyclic groups), and FAeigbbor is a constant function.

The assumptions we are making are that the self-tester can easily compute the 0
and 0’ operations and the function F*inear. Furthermore, we assume that the self-
tester can easily determine membership in G and G’ and can easily choose a
random element from G uniformly. In the case when G’ has finite subgroups other
than {0’}, for each i= 1, c we assume that gi is easy to compute and that
Fbeighbor is easy to compute. The implicit assumption is that it is much harder to
compute f directly then any one of these computations. In all of our applications,
this is the case. We say a function f that is characterized as above has the linearity
property.

The linearity property is a special case of two-random self-reducibility.
This can be seen as follows: Given x, choose x1 E* G and let x2 t xox;l.
Then,f(x) =F(x, x1, x,,f(x,),f(xd), where F(x, x1, x2,f(x1),f(x2)) is defined to
be f (xl) 0’ f (x2) 0’ 4;inear(x1 y xz)-

Let P be a program that supposedly computes f such that, for all y E G, P(y) E G’.
Generic Self-Test 1 is an (c/54, &)-self-tester for f with respect to %G when G’ has no
finite subgroups other than (0’1. The self-tester for integer multiplication is based
on Generic Sell-Test 1, where G = Z$” with + 1 as the group operation, and G’ = %”
with + as the group operation. The integer division self-tester is also based on
Generic Self-Test 1. Generic Self-Test 2 is an (c/54, &)-self-testing program for f with
respect to %& for all other G’. The self-tester for the mod function described in
Subsection 4.1, for modular multiplication and for modular exponentiation
are all based on Generic Self-Test 2. To avoid unnecessary complications in the
description, as before (see Definition 2.12) we assume that whenever the program
P is called that the self-tester checks to see if the answer returned is in G’, and if
it is not then the returned value is set to 0’.

APPLICATIONS TO NUMERICAL PROBLEMS

PROGRAM GENERIC SELF-TEST 1(&,/I).

567

(When G’ has no finite subgroups other than {0’},
in which case there are no Fbeighbor functions specified.)

N + (72/d WW)
tto

Do for m = 1, N
Call Generic-Linear-Test(answer)

t t t + answer

If t/N > s/9 then output “FAIL” else output “PASS”

PROGRAM GENERIC SELF-TEST 2(~,j).

(When G’ has finite subgroups (possibly G’ itself) other than {0’},

in which case the Fheighbor functions are specified.)

N+ (72/d W/B)
tco

Do for m = 1, N

Call Generic-Linear-Test(answer)

t 4- t + answer

If t/N > s/9 then output “FAIL”

N’ t 32 ln(4c/j3)

t’t0

Do for m = 1, N’

answer c 0
For i = 1, c, call Generic-Neighbor-Test(i, answer)

t’ t t’ + answer

If f/N > l/4 then output “FAIL” else output “PASS”

GENERIC-LINEAR-TEsT(answer).

Choose x1 E% G.

Choose x2 E, G.
If P(xl o x2) = P(xl) 0’ P(x2) 0’ Iilinear(xl, x2) then answer t 0 else answer t 1

568 BLUM, LUBY, AND RUBINFELD

GENERIC-NEIGHBOR-TEST(&answer).

Choose z E% G.
If P(z 0 gi) = P(z) 0 ’ F&hbor (z) then answer c 0 else answer c 1

Before giving proofs, we first introduce some notation and provide intuition for
why the self-testers work. For each y E G, define the discrepancy of y to be

disc(y)=f(y)o’P(y)-‘.

Note that P computes S correctly for all inputs if and only if the discrepancy
function defines a homomorphism from G into (0’ >.

Because of linear consistency and because the self-testing program computes
F,inear(X1, x2) correctly on its own, P(x, 0 x2) = P(x,) 0’ P(x2) 0’ lilinear(xI, x2) if and
only if

disc(x, 0 x2) = disc(x,) 0’ disc(x,).

If this equality holds for all xi, x2 E G then the discrepancy function defines a
homomorphism h from G into G’. Intuitively, the Generic-Linear-Test verifies that
the discrepancy function is “close” to some homomorphism h.

Suppose that G’ has no finite subgroup other than {O’}. Then, because G is finite,
h is the trivial mapping from G to {O’}. Now suppose G’ has a finite subgroup
other than {O’}. Because of neighbor consistency and because the self-testing
program computes FLeighbor (2) correctly on its own, P(z 0 gi) = P(z) 0’ Fheighbor(z) if
and only if

disc(z 0 gi) = disc(z).

If, for all z E G and for all i = 1, c, disc(z0 gi) = disc(z) then h is the trivial
mapping from G to {0’}, and the Generic-Neighbor-Test is used to verify this.

The following notation is used throughout the rest of this section.

Notation.

l 6 z Pr[disc(x, o x2) # disc(x,) 0’ disc(x,)] when x1 E% G and xz E% G are
independently chosen.

l For all i= 1, c, di = Pr[disc(z) # disc(z0 gi)] when z E% G.
l $ = Pr[disc(y) # 0’1 when y E* G.

Theorems 3 and 4 are the heart of the proof that programs Generic Self-Test 1 and
Generic Self-Test 2 meet their specifications, respectively.

THEOREM 3. Let G’ be a group with no finite subgroups except for {O’}. Then,
6 2 2*/9.

APPLICATIONS TO NUMERICAL PROBLEMS 569

THEOREM 4. Let G’ be any group. If, for all i = 1, c, ai < 5, then 6 3 2$/9.

The specific proofs we give of Theorems 3 and 4, due largely to Don
Coppersmith, are simpler than our original proofs. A full exposition of some
related general probability results will appear in [S]. We now introduce some
more notation and prove some intermediate lemmas that are used in the proofs of
Theorems 3 and 4.

Uncapitalized letters from the end of the alphabet denote elements chosen
randomly from G according to f?&, e.g., x, y, and z, whereas uncapitalized letters
from the beginning of the alphabet denote fixed elements of G, e.g., a, b, c. For
lemmas 9, 10, 11, and 12, we assume that 6 < $. Let 6’ be defined as the solution
to the equality S’(1 - 6’) = 6; because 6 < f, 6’ < f.

LEMMA 9. Vu E G, 3a’ E G’ such that Pr[disc(x 0 a) = disc(x) 0’ a’] > 1 - 6’.

Prooj By the definition of 6 and because x 0 a is distributed in G according to
%G and a 0 y is distributed in G according to 4&,

Pr[disc(x 0 a) 0’ disc(y) = disc(x 0 a 0 y) = disc(x) 0’ disc(a o y)] > 1 - 26.

SO

Pr[disc(x 0 a) 0’ disc(x)-’ = disc(y 0 a) 0’ disc(y)-‘1 > 1 - 26.

This is the sum, over all a’ E G’, of the square of the probability

Pr[disc(xoa) 0’ disc(x)-’ = a’].

Since 6 < f, this sum exceeds 2 and thus there must be one value a’ with

Pr[disc(x 0 a) 0’ disc(x)-’ = a’] > 1 - 6’,

where (1 - 8’)* + 15’~ = 1 - 26 and S’ < 4. This leads to 6’(1 - 6’) = 6. 1

DEFINITION 4.3 (The function h). Lemma 9 leads to the definition of the
function h from G to G’ defined as follows: For all a E G, let h(a) = a’, where a’ is
the element of G’ described in Lemma 9.

LEMMA 10. The function h is a group homomorphism from G to G’; i.e., for all
a, b E G, h(a 0 b) = h(a) 0’ h(b).

Proof: Using Lemma 9 three times, for all a, b E G,

Pr[disc(x) 0’ h(a) 0’ h(b) = disc(x 0 a) 0’ h(b) = disc(x 0 a 0 b)

= disc(x) 0’ h(a 0 b)] > 1 - 36’.

570 BLUM, LUBY, AND RUBINFFiLD

This probability is strictly greater than zero because 6’ < 4, and thus h(aob) =
h(u) 0’ h(b). 1

LEMMA 11. (1) Zf G’ is a group with no finite subgroups except for (0’) then for
all a E G, h(a) = 0’.

(2) If G’ is any group and, for all i = 1, c, di < $, then for all a E G, h(a) = 0’.

Proof: By Lemma 10, h is a group homomorphism and thus the image of h is
a finite subgroup of G’. In case (l), the only finite subgroup of G’ is (0’). In
case (2), consider a fixed in { 1, c}. Because 1 - 6,> 1 and using Lemma 9 and
the fact that 1 - 6’ > f,

Pr[disc(x) = d&(x0 gi) = disc(x) 0’ h(g,)] > 3,

and thus there is some x E G such that disc(x) = disc(x) 0’ h(gi) which implies that
h(gi) = 0’. Thus, for all i = 1, c, h(gi) = 0’. Because g, , g, are generators for G
it follows that for all a E G, h(a) = 0’. 1

LEMMA 12. Under the same conditions as (1) and (2) in Lemma 11, Pr[disc(x) =
disc(x o y)] > 1 - 6’.

Proof By Lemma 11, h(u) = 0’ for all a E G. On the other hand, Lemma 9 says
that

Pr[disc(x 0 a) = disc(x) 0’ h(a)] > 1 - 8’

for every a E G, and thus certainly this is true when a is replaced with a random y.
Thus, Pr[disc(x 0 y) = disc(x)] > 1 - 6’. 1

Proof of Theorem 3. Assume first that 6 < 3. By definition of 6 and using
Lemma 12, Pr[disc(x) = disc(xo y) = disc(x) 0’ disc(y)] > 1 - 6’ - 6, and thus
Pr[disc(y) = 0’12 1 - 6’ - 6 which implies that II/ 6 6 + 6’. Because 6’ < $, 1 - 6’ > f
which implies that 6’ < 36/2. This implies that 6 > 2$/5. On the other hand, if 6 > $,
then because $ < 1 it follows that 6 > 2$/9. 1

Proof of Theorem 4. Analogous to the proof of Theorem 3. [

Theorems 3 and 4 provide the upper bounds on + in terms of 6 and 6r, 6,.
We now develop the easier to prove lower bounds on $.

LEMMA 13. Let G’ be any group. Then, 3$2 6.

Proo$ Because 1 -II/ =Pr[disc(y) =O’], Pr[disc(x, 0 x2) =disc(x,) =disc(x,) =0’]
3 1 - 3$, and consequently 6 = Pr[disc(x, ox,) # disc(x,) 0’ disc(x,)] < 3$. m

LEMMA 14. Let G’ be any group. Then, for all i = 1, c, $ > 6,/2.

Prooj For all i= 1, c, if disc(zo gi) #disc(z) then either disc(z0 gi) # 0’ or
disc(z) # 0’. Thus, II/ B 6,/2. 1

APPLICATIONS TO NUMERICAL PROBLEMS 571

The following proposition is used to quantify the number of random samples
needed to guarantee good estimates of 6 and 6i, 6, with high probability. This
proposition can be proved using standard techniques from an inequality due to
Bernstein cited in [29]. For a proof of this proposition, see, for example, [25].

PROPOSITION 15. Let Y1, Y2, . . . be independent identically distributed O/l-valued
random variables with mean p. Let 8 < 2. Iflv > (l/p) . (4 ln(2/P)/e2) then Pr[(1 - 0)
~<~<(1+8)~]31-/I, where t=cf”=, YJN.

COROLLARY 16. Let Y,, Yz, . . . be independently distributed Ojl-valued random
variables with means pL1, pL2, ..,, respectively.

(1) If, for all i, piap and N=(l/,u).161n(2//?) then Pr[8<pL/2]<& where
a=~;=“=, YJN. (Use $=$)

(2) If, for all i, pi<p and N=(l/p).41n(2/fi) then Pr[P>2p]<flp, where
P=~~=“=, YJN. (Use 8= 1.)

THEOREM 5. Let f be a function as specified above in the case when G’ has no
finite subgroups other than (O’}. Then, for any input parameter 0 <E < 1, Generic
Self-Test 1 is an (c/54, &)-self-tester for f

Proof. (Ic/ > E) By Theorem 3, this implies that 6 2 2~19. Letting p = 2~19 and,
letting N = (l/p) .16 ln(2/b) = (72/s) .ln(2//?) and using the Corollary 16, Part (1)
yields Pr[t/N < s/9] < b. On the other hand, if t/N > s/9 then the output of the
program is “FAIL.” Thus, if $ > E, the program outputs “FAIL” with probability
at least 1 - 8.

($ <s/54) Lemma 13 implies that 6 <s/18. Letting p =&/18 and letting
N=(1/~).41n(2/fl)=(72/s).ln(2/P) d an using the Corollary 16, Part (2), yields
Pr[t/Na s/9] < /?. On the other hand, if t/N < c/9 then the output of the program
is “PASS.” Thus, if $ <s/54, the program outputs “PASS” with probability at
least 1 - j?, 1

THEOREM 6. Let f be a function as specified above in the case when G’ has
finite subgroups other than (0’). Then, for any input parameter 0 GE< 1, Generic
Self-Test 2 is an (E/%, E)-self-tester for f

Proof ($ > E) We partition the possibilities into two subcases: (1) For all
i = 1, c, ai < 4; (2) There is an i = 1, c such that ai 2 4. Case (1) is similar to
the $2 E case of Theorem 5, using Theorem 4 in place of Theorem 3, which yields
that the program outputs “FAIL” with probability at least 1 -/I/2. In case (2),
because of the Corollary 16, Part (l), letting p= f and letting N = 32 ln(4c/p) yields
Pr[t’/N’ < $1~ fi/2c. On the other hand, if t’/N’ > $ then the output of the program
is “FAIL,” and thus the program outputs “FAIL” with probability at least 1 - p/2c.
Thus, in either case, the program outputs “FAIL” with probability at least l-j?.

572 BLUM, LUBY, AND RUBINFELD

($ < &/54) We partition the possibilities into two subcases: (1) For all
i = 1, c, di < i; (2) There is an i = 1, +.., c such that 6, > $. A portion of case (1) is
similar to the $ <c/54 case of Theorem 5, which yields Pr[total/N> ~/9] <p/2.
Also in case (l), using the Corollary 16, Part (2), letting ,u = $ and letting
N = 32 In(4c/fi) and, using the fact that the union of c probabilities is upper
bounded by their sum, yields Pr[t’/N’> a] <b/2. Thus, in case (1) the program
outputs “PASS” with probability at least 1 -B. In case (2), because of Lemma 14,
there is some i such that di > $ implies that Ic/ > h > &/54 since E ,< 1. Thus case (2)
is impossible. 1

4.3. Integer Multiplication

For positive integers x and y, let f(x, y) =x . y. We now describe in what sense
integer multiplication has the linearity property. For any triple of integers x1, x2
and y, x1 . y +x2. y = (x, +x2). y. Thus, for a fixed value of y, integer multiplica-
tion is a linear function. For the following discussion, fix y to an arbitrary value.
In this case, f can be viewed of as a function of one input with domain G = .2&,
where 0 is + 2”, and range G’ = 9, where 0’ is +. For x1, x2 E ZZ$, let c = 1 if
x1 + x2 > 2” and let c = 0 otherwise, and let x=x1 +x2 - ~2” =x1 +2n x2. At the
heart of the integer multiplication self-testing program is the fact that f(xl, y) +
f(xz, y)=f(~, Y)+ ~2". Note that Flitxzxr (x,, x2) = yc2” is easily computable.

Based on Generic Self-Test 1 with E = &, the following program is an (&, k)-
self-testing program for f making oracle calls to P with respect to %zza x O?J~~“. The
input to the program is n and the confidence parameter j?.

PROGRAM INTEGER MULTIPLICATION SELF-TEST(~, fi).

N = 1152 ln(2//3)
total t 0
Do for m = 1, N

Call Int-Mult-Linear-Consistency(n, answer)
total +- total + answer

If total/N > & then output “FAIL” else output “PASS”

INT-MULT-LINEAR-CONSISTENCY(~, answer).

Choose y E, sz”
Choose x1 E* 9’&
Choose x2 E* Z&
x+x,+,.x,
c e (x1 +x2) div 2”
If P(x,, y) + P(x,, y) = P(x, y) + cy2” then answer 6 0 else answer + 1

APPLICATIONS TO NIJMFXICAL PROBLEMS 573

THEOREM 7. The above program is a (&, &)-self-testing program for integer
multiplication.

Proof. Similar to the proof of Theorem 5, except that for each y there is a
different value for $(y) and II/ is the average of e(y) over all y. For the first part
of the proof, note that 6(y) B 2$(y)/9 for each value of y. Thus, if $ = EC+(y)] B E
then 6 = E[G(y)] > 2&/9. The rest of the proof is the same for case 1. Similar
comments hold for the second case of the proof. 1

The integer multiplication self-testing program is both different and efficient. The
only non-trivial lines of code in the self-testing program are generation of random
numbers, calls to the program P, integer additions, shifts, and integer comparisons.

4.4. Modular Multiplication

For positive integers x, y, and R, let f (x, y, R) = x .R y. For fixed value for R
and y, f can be thought of as a function of x. In this case, the domain off can
be thought of as G = ZZR2,,, where 0 is + R2,, and the range off is G’ = ZZR, where 0’
is +R. The heart of the modular multiplication self-testing program is the fact
that, for any pair x1, x~E~~~~,~(X~, y, R)+.f(x,, Y, R)=f((~,+.,~x,), Y, R).
Thus, Flinear(XlT X2) = 0’. The generator for G is 1. It is easy to see that

f((Z +R2” I), Y, RI =f (Z, Y, R) +R Y, and thus ‘aeighbor(Z) = Y.

Based on Generic Self-Test 2 with E = $, the following program is an (&, &)-
self-testing program for f with respect to %z8,m x aiRj. The input to the program is
n, R and the confidence parameter /3.

PROGRAM MODULAR MULTIPLICATION SELF-TEST@, R, p).

N= 1152 ln(4/P)

total c 0

Do for m = 1, N

Call Mult-Mod-Linear-Consistency(n, R, answer)

total c total + answer

If total/N > l/144 then output “FAIL”

N’ = 32 ln(4/fl)

total’ c 0

Do for m = 1, N’

Call Mult-Mod-Neighbor-Consistency(n, R, answer)

total’ t total’ + answer

If total’/N’ > l/4 then output “FAIL” else output “PASS”

571/47/3-I4

574 BLUM, LUBY, AND RUBINFJ3LD

MULT-MOD-LINEAR-CONS~STENCY(~~, R, answer).

Choose y E, 9@R2”

Choose x1 Ed 3YR2”
Choose x2 E% ZYR2”
x 4- Xl +Rpl x2

If P(x,, y, R) +R P(x,, y, R) = P(x, y, R) then answer c 0 else answer t 1

MULT-MOD-NEIGHBOR-CONSISTENCY(~, R, answer).

Choose y E, LYR2”
Choose z E% !Z&
zf t z+.,, 1
If P(z, y, R) +R y = P(z’, y, R) then answer t 0 else answer +- 1

THEOREM 8. The above program is a (&, &)-serf-testing program for modular
multiplication.

Proof: See the proof of Theorem 6, and combine this with some of the aspects
of the proof of Theorem 7. 1

The only non-trivial lines of code in the self-testing program are the generation
of random numbers, calls to the program P, integer additions, and integer
comparisons, except for the line “If P(z, y, R) +R y = P’(z’, y, R) then...” in the
M&-Mod-Neighbor-Consistency program. The problem is that, although
P(z, y, R) and P(z’, y, R) are both in ZR, y is in the much larger range LZR2” and
thus y mod R cannot be calculated easily using just additions and comparisons.

This suggests using the library approach to get around this problem, i.e., use a
library of functions including modular multiplication and the mod function. We
have already presented a self-testing/correcting pair (T’, C’) for the mod R function.
The modular multiplication self-testing program can then call c’ to compute
y mod R. c’ computes this correctly with high confidence using any program P’ for
the mod R function that passes the test T’. Note that any modular multiplication
program has the mod R function embedded in it, when restricting the inputs to
multiplication by one. The resulting modular multiplication sell-testing program is
both different and efficient.

4.5. Modular Exponentiation

For positive integers x, a, and R, let f(a, x, R) = ax mod R. Fix a and R to be
positive integers, and as before we restrict attention to a and R such that
gcd(a, R) = 1 and we assume that we know the factorization of R and thus can
easily compute 4(R). In this case, the domain off is G = 24(R)Z”, where 0 is + ((R)2n

APPLICATIONS TO NUMERICAL PROBLEMS 575

and the range off is G’ = 3’2 and 0’ is .R. Because gcd(a, R) = 1, uocR) = 1 mod R.
The heart of the modular exponentiation self-testing program is the fact that, for
any pair x1, X2E~6(R)2”9.f(a? x1, R).,fta, x2, Rl=fta, x1 +$(R)Z” ~2, JO. Thus,

Flinear(X1 5 x2) = O’. The generator for G is 1. It is easy to see that
f(a, (z+)(R)2” 1)~ R) =f(a, z, R) .R a, and thus FAeighbor(z) = a.

Based on Generic Self-Test 2 with E = &, the following program is a (&, &)-self-
testing program for-f making oracle calls to P with respect to %!,,, x @z+(R)z” x %{R).
The input to the program is n, a, R and the confidence parameter fl.

PROGRAM MODULAR EXPONENTIATION SELF-TEST(~, a, R, fl).

N= 1152 In(4/P)
total t 0
Do for m = 1, N

Call Mod-Exp-Linear-Consistency(n, a, R, answer)
total c total + answer

If total/N > & then output “FAIL”

N’ = 32 ln(4//3)
total’ 4- 0
Do for m = 1, N’

Call Mod-Exp-Neighbor-Consistency(n, a, R, answer)
total’ t total’ + answer

If total//N’ > l/4 then output “FAIL” else output “PASS”

MOD-EXP-LINEAR-CONSISTENCY(FZ, a,R, answer).

Choose x1 E, 36(Rj2”
Choose x2 E, %6(Rj2fi

x + x1 +$(R)Z” x2

If P(u, x1, R) ‘R p(a, x1, R) = P(a, x, R) then answer c 0 else answer c 1

MOD-EXP-NEIGHBOR-CONSISTENCY(~, a, R, answer).

Choose Z E, %#(R)z”
if + z ++(R)z” 1

If P(a, z, R) .R a = P(a, z’, R) then answer c 0 else answer t 1

THEOREM 9. The above program is an (F&J, &)-self-testing program for modular
exponentiation.

576 BLUM, LUBY, AND RUBINFELD

ProoJ: Analogous to the proof of Theorem 8. 1

The modular exponentiation self-testing program consists solely of integer
additions, integer comparisons, and calls to P except in two lines of code: (1) The
line “If P(a, xi, R) .R P(a, xi, R) = P(a, x, R). . .” in the program Mod-Exp-Linear-
Consistency; (2) The line “If P(a, z, R) .R a = P(a, z’, R)...” in the program Mod-
Exp-Neighbor-Consistency. We propose computing these two lines using the library
approach. We can use the modular multiplication self-correcting program presented
above to compute (1) and (2) which uses a program P’ for computing multiplica-
tion mod R, where we first use the multiplication self-testing program to verify that
P’ is not too faulty. In addition to these two lines of code, in the implicit range-
check code (see Definition 2.12) we need to verify that the answer a to a call to P
is in range, i.e., in 3’2. This can be done by verifying that a E .9YR (this is easy) and
that gcd(a, R) = 1. If R is a prime, the gcd computation is trivial (just verify that
CI # 0). If the prime factorization of R is nr= 1 ~7, where y is a small positive
integer, then to verify that gcd(a, R) = 1, we can use the mod function self-
correcting program to compute a mod pi for all i= 1, y and verify that none of
the answers are zero. This requires that the mod function is not too faulty for
mod pi computations for all i= 1, y. In Subsection 7.4 we show how to reduce
this requirement to the case where the mod function is not too faulty for mod R
computations. In this same subsection we present a self-testing/correcting pair
for modular exponentiation when the prime factorization of R and #(R) are not
known, at the expense of some loss in efficiency.

4.6. Integer Division

We now consider division of integers by R for a positive number R. In this case,
f(x, R) = (x div R, x mod R). We write f&(x, R) =x div R and fmod(x, R) =
x mod R. We have already seen that the mod function has the linearity property.
We now describe in what sense integer division has the linearity property. For any
triple of integers x1, x2, and R, x1 div R + x2 div R + (x1 mod R + x2 mod R)
div R = (x1 + x2) div R and x1 mod R +R x2 mod R = x1 +R x2. For the following
discussion, fix R to an arbitrary positive integer. In this case, f can be viewed
of as a function of one input with domain G= ZZR2”, where 0 is + R2”. The range
G’ off is isomorphic to 3, where 0’ corresponds to +. An element of G’ is
a pair of integers (a, b), where a E B and b E TR. For any pair of elements (a, b),
(c,d)~G’,(a,b)~‘(c,d)=(a+c+(b+d)divR,b+.d). For x1,x2.~ZZK2”, let
c=(x,+x,)divR2” and let x=x,+x,-~R2”=x,+~~~x~. At the heart of the
integer division self-testing program is the fact that fdiv(X, R) + ~2” = fdiv(X1, R) +
fdiv(Xz 9 RI + (fmod(x1 > R) + fmod(x2 3 R)) div R and that fmod(x, R) = fmod(xl, R) +R
fmodx2, RI.

Based on Generic Self-Test 1 with E = &, the following program is an (A, $)-
self-testing program for f with respect to es, x atRl. The input to the program is
n, R, and the confidence parameter p. We refer to the output of P as P(x, R) =
(Pdiv(X, RI, Prnod(x, RI).

APPLICATIONS TO NUMERICAL PROBLEMS 577

PROGRAM INTEGER DIVISION SELF-TEST(~, R,J>.

N = 1152 ln(2//3)
total t 0
Do for m = 1, N

Call Int-Div-Linear-Consistency(n, R, answer)
total c total + answer

If total/N > l/144 then output “FAIL” else “PASS”

INT-DIV-LINEAR-CONSISTENCY(~, R, answer).

Choose x1 E% ZR2”
Choose x2 E, ZR2”
x+-xl+RyX*
c t (x1 +x2) div R2”

answer 4- 0

IfPdiv(Xl) RI + Pdiv(X2, R) + (Pmod(x~ 7 R) + Prnod(x2, R)) div R # f’div(Xp R) + ~2”
then answer c 1

If Pmod(xl, R) +R Pmod(x2, R) # Pmod(x, R) then answer c 1

THEOREM 10. The above program is a (A, &)-self-testing program for integer
division.

Proof. Similar to the proof of Theorem 5. 1

5. LIBRARIES

Often programs for related functions are grouped in packages; common examples
include packages that solve statistics problems or packages that do matrix
manipulations. It is reasonable therefore to use programs in these packages to help
test and correct each other. We extend the theory proposed in [lo] to allow the
use of several programs, or a library, to aid in testing and correcting. We show that
this allows one to construct self-testing/correcting pairs for functions which did not
previously have efficient self-testing or self-correcting programs, or even result
checkers. Thus, the self-testing/correcting pair is given a collection of programs, all
of which are possibly faulty, and may call any one of them in order to test or
correct a particular program. Working with a library of programs rather than with
just a single program is a key idea: enormous difficulties arise in attempts to result
check a determinant or rank program in the absence of programs for matrix
multiplication and inverse.

578 BLUM, LUBY, AND RUBINFELD

The notion of libraries is useful for another reason as well: Consider again the
problem of designing a self-testing/correcting pair for the determinant. Many of the
proposed solutions require matrix multiplication. However, matrix multiplication
and determinant are equivalent problems with respect to asymptotic running times
[2]. Therefore, a determinant self-testing/correcting pair using matrix multiplica-
tion will not be quantiliably different from a program for the determinant. On the
other hand, since matrix multiplication can be self-tested/corrected, one should not
consider the complexity of the matrix multiplication routine towards the complexity
of the self-testing/correcting pair for the determinant. In other words, the com-
plexity of the self-testing/correcting pair should be evaluated as the complexity of
the unchecked parts of the self-testing/correcting pair. The notion of libraries gives
us a clean way of evaluating the complexity of the unchecked parts of the
self-testing/correcting pair.

As an example of self-testing/correcting pairs written for a library of programs,
we show how to self-test/correct a library of possibly fallible programs for matrix
multiplication, matrix inverse, determinant, and rank. As we informally discussed
before, a library of self-testing/correcting pairs based on similar principles can be
constructed for the following functions: integer mod, modular multiplication,
modular exponentiation, and multiplicative inverse mod R. With such a library, the
self-testing/correcting for all functions can be done with only a small number of
additions, subtractions, comparisons, and generation of random numbers.

5.1. Definitions

We give the following definitions, which generalize the previously given self-
testing/correcting definitions.

DEFINITION 5.1 (Library). A library is a family of functions f’, f” for some
positive constant c. An input set for a library is a family (Y’, 9i), (SC, 9’),
where 9: is a distribution on inputs 4: tof’. An error set for a library is a family
of constants si, E’, where 0 <E’< 1.

DEFINITION 5.2 (Library self-testing). A self-testing program for a library
f’, f’ with input set (Y’, 9’), (Y, 9”), error set E:, EE and error set
E;, . ..) Ef, where, for each i= 1, c, of <E:, is a probabilistic program T that has
input n and /I and makes calls to P’, PC, where Pi supposedly computes fi. T has
the following properties:

1. If, for all i= 1, c, error(f, Pi, 9;) GE; then T outputs “PASS” with
probability at least 1 -/I.

2. If, for some i = 1, c, error(f, Pi, 9:) 2 E: then T outputs “FAIL” with
probability at least 1 -/I.

DEFINITION 5.3 (Library self-correcting). A self-correcting program for f’ with
respect to a library f’, f” with input set (Xl, 9’), (SC, 9’) and error set

APPLICATIONS TO NUMERICAL PROBLEMS 579

2, . ..) .sC is a probabilistic program C that on input n, x E 9: and p makes calls to
P’, . ..) P’ to compute C(x). C has the property that if, for all i= 1, c,
error(f, Pi, 0:) <cE’ then, for all XEY~, C(x) =f’(x) with probability at least
1 -B.

DEFINITION 5.4 (Library self-testing/correcting pair). A self-testing/correcting
pair for f’ with respect to a library f ‘, f” is a pair of probabilistic programs
(T, C) with the following properties. T is a self-testing program for the library with
some input set (X1, 9’) (P, 9’) and pair of error sets ai, a; and ai, ai.
C is a self-correcting program forf’ with respect to the library with the same input
set (X1, @), (SC, 3’) and with an error set .zl, aC, where for all i= 1, c,
06&f <&i<&‘< 1.

As before, we require that both T and C be different than any correct program
forf’. To enforce this condition, we say that T and C are different than any correct
program for f1 if the incremental times of T and C, not including the time for calls
to the programs P’, PC, are smaller than the fastest known running time of any
correct program for computing f ‘. We say that T and C are efficient if the total
time of T and C, including the time for the calls to the program P’, PC, are
within a constant multiplicative factor of the running time of P’, assuming that the
running times of P*, PC are reasonable with respect to the running time of P’.

A typical way to build a self-testing/correcting pair (T, C) forf’ with respect to
a library f ‘, f* is as follows. First, build a self-testing/correcting pair (T’, C’) forf*.
Now consider building the self-testing program T for f’, where program P’
supposedly computes f’ and P2 supposedly computes f’. The typical situation is
that T, in order to self-test P’, needs to compute f2 on various inputs. Instead of
computing f” directly, T first uses T’ to test how well P2 computesf*. If P2 passes
the test then T uses the self-corrector C’ for f *, which makes calls to P*, to correctly
compute f* whenever needed. Similarly, the self-corrector C may need to compute
f’ on various inputs, in which case it uses C’ which in turn makes calls to P*.

6. THE LINEAR ALGEBRA LIBRARY

We now show how to self-test/correct a library of possibly fallible programs for
matrix multiplication, matrix inverse, determinant, and rank. We use the following
notation throughout this subsection.

DEFINITION 6.1 (Matrix notation). Let M,,,[F] be the set of n x n matrices
with entries from a field F, and let %Mm,,rF7 be the uniform distribution on
M,,,[F]. For all A E M,,,[F], let det(A) be the determinant of A and let rank(d)
be the rank of A. For all r E (0, n}, let Z; xn be the n x n matrix, where all entries
are zero except that the first r entries along the main diagonal are one, and thus
cx?l is the identity matrix. For all r E (0, n}, M;,,[t;l be the set of matrices in

580 BLUM, LUBY, AND RUBINFELD

M,,,[F] of rank r, and let @,,,,L~~~~, be the uniform distribution on M;.,[F].
Thus, MzXfi[F] is the set of invertible matrices in M,,,[F].

6.1. Matrix Multiplication
The input to matrix multiplication is A, BE M,..[F], and the output is A . B.

The input to matrix inverse is A E M, x n [F], and the output is A -I if it exists, and
“NO” otherwise. The input to determinant is A E M,,.[F], and the output is
det(A). The input to rank is A EM,,JF], and the output is rank(A).

For the analysis of the running time, we assume that field operations can be
performed in constant time and that an element from F can be randomly chosen
uniformly in constant time. The self-testing/correcting pairs that we present are
all different and efficient. Program Freivalds-Checker described below is due to
WI.

SPECIFICATIONSOFMATRIX-MULTSELF-CORRECT@, A, B, j3) Iferror(J; P,42Mn,,CFI x
92 M,,,CF,) < { then the probability that the output is equal to A. B is at least 1 -B.

PROGRAM MATRIX-MULT SELF-C• RRECT(II, A, B, p).

Do for i= 1, co
Choose A, E, M,..[F]
Choose B1 E* M, x JF]
A*tA-Al
B2+B-B,

CtP(A,,B1)+P(A,,B*)+P(A2,B1)+P(Az,Bz)
If Freivalds-Checker(n, A, C, /?) = “PASS” then output Cand HALT

SPECIFICATIONS OF FREIVALD&HECKER(~, A, B, C, B). If C#A. B then output
“FAIL” with probability at least 1 - fi. If C= A . B then output “PASS.” The
running time is O(n* ln(l/p)).

PROGRAM FREIVALDS-CHECKER(II,A, B,C,j3).

Do for j = 1, In(l/p)
Choose n-vector R = (R,, R,), where independently for each i, R, E% F
If C . R # A . (B . R) then output “FAIL” and RETURN

Output “PASS”

LEMMA 17. Matrix-M& Self-Correct meets the specifications. Furthermore, the
expected total time is O(T(n) + n* ln(l//?)), w h ere T(n) is the running time of P on
inputs from M,,.[F] x M,,.[F].

Prod Al eq M,,.CFl, 4% M,,, CFI, 4 E, Mnx.CF19 4% M,,,CFl an4
although A, may depend on A2 and B, may depend on B,, A, and A2 are

APPLICATIONS TO NUMERICAL PROBLEMS 581

independent of B, and B,. Hence P(A,, Bi) #A,. Bj with probability at most i, and
thus C = A . B with probability at least $ at each iteration. Let p be the probability
that the final output of Matrix-Mult Self-Correct is equal to A . B. With probability
at least 4 in the first iteration C = A . B, in which case Freivalds-Checker returns
“PASS.” With probability at most 4 in the first iteration, C # A . B, in which case
Freivalds-Checker returns “FAIL” with probability at least 1 - fi, and the second
iteration starts. Thus p 3 $+ i(1 - /?) p. From this, it can be verified that 1 - p is at
most fl.

The expected total time of Matrix-Mult Self-Correct is at most
0(T(n) + n* ln(l//3)) times the expected number of iterations until C = A s B, which
is at most two. 1

The self-testing program for matrix multiplication program is simple. The
following step is executed o(ln(l/fl)) t. imes to obtain a good estimate
of error(f, P, aMn,,tF, x %Mn,.cFJ). Independently choose A E% n/r,,,,[fl and
BE, M,..[F] and set Cc P(A, B). If the output of Freivalds-Checker
(n, A, B, C, a) is “PASS,” then the answer is zero from the step, and if the output
is “FAIL” then the answer is one. It is easy to verify that if error(f, P, %Mn,,cF3 x
42 M,,,cF,) B 6 then the fraction of one answers is at least $ with probability at least
1 -A and if error(f, P, aMn,,~F~ x @Mn,.~FI) A 32 < J- then the fraction of 1 answers is at
most & with probability at least 1 - /3. This yields a (A, $)-self-tester for matrix
multiplication.

6.2. Matrix Inversion

We next design a self-correcting program for matrix inversion. Hereafter, we call
Matrix-Mult Self-Correct (abbreviated MMSC) whenever we want to multiply
matrices together. The assumption is that MMSC uses a program P, has already
been self-tested and “PASSED” to compute matrix multiplications. To avoid
cluttering the explanation with messy details, we assume that P, “PASSED”
for good reason; i.e., it has error probability at most f, and thus MMSC does
self-correct.

We use program Gen-Inv-Matrix(n) as a subroutine in our code to choose
A E, M”,.,JF]. Gen-Inv-Matrix(n) is due to [28], and a description of it can be
found there. The incremental time of Gen-Inv-Matrix(n) is 0(n2), excluding the
time for computing the one required matrix multiplication. We assume that
Gen-Inv-Matrix(n) calls MMSC in order to compute the matrix multiplication.
Thus, Gen-Inv-Matrix(n) has a small probability of error, which we ignore for
purposes of clarity. Gen-Inv-Matrix/Det(n), also due to [28], in addition to
outputting A + Mz,.[F], also outputs det(A).

SPECIFICATIONS OF MATRIX-INV SELF-CORRECT(n, A, fi). Iferror(f, P,%M;X,cF,)G $
and A is invertible then the output is A -’ with probability at least 1 - /3. If A is not
invertible then the output is “NO” with probability at least 1 - fi.

582 BLUM, LUBY, AND RUBINFELD

PROGRAM MATRIX-INV SELF-C• RRECT(~, A,P).

Nt 12 In(l/p)
Do for i = 1, N

R c Gen-Inv-Matrix(n)
R’ +- MMSC(n, A, R, l/32)
R” +- P(R’)
If R” = “NO” then answer, c “NO”
Else

A’+ MMSC(n, R, R”, l/32)

1fC.n # MMSC(n, A, A’, l/32) then answer, t “NO” else answer, t A’
Output the most common answer among {answer,: i= 1, N)

LEMMA 18. Matrix-Inv Self-Correct meets the specifications.

ProojY Suppose that A is invertible. Then, because R E %!M:,,CF,,
A . R G %J;,,cF,- If the first call to MMSC is correct then R’ = A . R. Because the
first call is correct with probability at least $, the distance between the distribution
on R’ and 4!M;,,CFI is at most A. Consequently R” = P(R’) = R’-’ = R-’ . A-’ with
probability at least $- A. If R” = R-l. A-’ and the second call to MMSC is
correct then A’ = A-‘. If the third call to MMSC is correct then answer, = A-‘.
Since these last two calls to MMSC are both correct with probability at least g,
answer,= A-’ with probability at least g - A-- & > 3. Now suppose that A is not
invertible. Then, for every A’, Z;,, #A’. A. Since the last call to MMSC is wrong
with probability at most A, it follows that answer, = “NO” with probability at least
$. Proposition 15 shows that 12 In l/p trials are sufficient to guarantee the
result. 1

As was the case for the self-testing program for matrix multiplication, the
self-tester for matrix inversion is simple. Note that inputs need only be self-tested
with respect to %M;x.CF,. The following step is executed O(ln(l/p)) times to obtain
a good estimate of error(f, P, %M;,,cF,). Set R t Gen-Inv-Matrix(n), and set
R’+ P(R). If I;,, = MMSC(R, R’, 6) then the answer is zero from the step, and
otherwise the answer is one. It is easy to verify that if error(f, P, @M:,,CFI) 2 $ then
the fraction of one answers is at least & with probability at least 1 -/I, and
if error(f, P, @M:x,cF1) l 32 <r then the fraction of one answers is at most $ with
probability at least 1 - /I. This yields a (9, i)-self-tester for matrix inversion.

6.3. Determinant
We next design a self-correcting program for determinant. Hereafter, we call

Matrix-Inv Self-Correct (abbreviated MISC) whenever we want to find the inverse
of a matrix. The assumption is that MISC uses a program P, has already been
self-tested and “PASSED” to compute matrix inversions. To avoid cluttering the

APPLICATIONS TO NUMERICAL PROBLEMS 583

explanation with messy details, we assume that P2 “PASSED” for good reason; i.e.,
it has error probability at most $, and thus MISC does self-correct.

SPECIFICATTONSOFDE TERMINANTSELF-CORRECT(II,&~~). Iferror(f, P,%M;,,rfl)< &
then the output is det(A) with probability at least 1 - j.

PROGRAM DETERMINANT SELF-C• RRECT(IZ,A,B).

N+ WWW
Do for i = 1, N

If MISC(n, A, 3/4) = “NO” then answer, t 0
Else

R t Gen-Inv-Matrix(n)
R’ +- MMSC(n, A, R, l/16)

dR + P(R)
d,. +- P(R’)

If d, = 0 then answer, c 0 else answer, c d,/d,,

Output the most common answer among { answeri: i = 1, NJ

One can easily prove the following lemma:

LEMMA 19. Determinant Self-Correct meets the specifications.

As was the case for the self-testing program for matrix inversion, the self-tester
for determinant is simple and the inputs need only be self-tested with respect to
42 M:,"CFI. The following step is executed O(ln(l//I)) times to obtain a good estimate
of error(f, P, eMfl ,,,rF1). Set (R, d) + Gen-Inv-Matrix/Det(n), and set d’ c P(R). If
d = d’ then the answer is zero from the step, and otherwise the answer is one. It is
easy to verify that if error(f, P, %M:,,cF,), 8 > 1 then the fraction of one answers is at
least J$ with probability at least 1 - jI, and if error(f, P, %M;,,rF,) < $ then the
fraction of one answers is at most & with probability at least 1 - j?. This yields a
(-ji, $)-self-tester for matrix determinant.

6.4. Matrix Rank

We finally design a self-testing/correcting pair for matrix rank. One interesting
aspect of the matrix rank self-corrector is that to self-correct an n x n matrix we call
the program on 2n x 2n matrices.

DEFINITION 6.2 (Distribution for matrix rank). Let 9” be the distribution
defined by B randomly chosen as follows. Choose Y E* (0, n} and then choose
B+ Wz,,CFl.

Let A E M,,.[F].

584 BLUM, LUBY, AND RUBINFELD

SPECIFICATIONS OF MATRIX-RANK SELF-C• RRECT(~, A,@. Iferror(f; P,9$,J< &
then the output is rank(A) with probability at least 1-p.

PROGRAM MATRIX-RANK SELF-CORRECT(IZ,A,/~).

Do for i= 1, N
Choose r E, (0, rr }

/I+ [I;. :;::l
R t Gen-Inv-Matrix(2n)
R’ - MISC(2n, R, l/16)
St MMSC(2n, A’, R, l/16)
T+ MMSC(2n, R’, S, l/16)
answer, +- P(T) - r

Output the most common answer among {answer,: i = 1, N}

LEMMA 20. Matrix-Rank Self-Correct meets the specifications.

ProoJ If the call to MISC and the two calls to MMSC are correct then
R’=R-I, S=A’.R and T=R-‘.A’.R in which case rank(T)=rank(A’)=
rank(A) + r. Let &z;n be the distribution defined by B where B is randomly chosen as
follows: Choose r E, (0, n} and BE* M;,+,‘zk’A)[F]. Because RE* LV~~~~,[F],
we claim that the distribution B;, on T can be expressed in the form

where 4, is some distribution on M,, X 2n [F]. The case when T is chosen according
to 8& with probability g corresponds to the case when each call to MISC and
MMSC is correct, which happens with probability at least g independent of R, and
thus in addition rank(T) = rank(A) + Y. It is not hard to verify that for all
BE M2nx2n CJ%%tCCBII G292)2n[:VW F rom this and the assumption that
error(f, P, gz2,) < & it follows that

Pr[P(B) #rank(B)] Q $

when B is randomly chosen according to &Z2,,. From this and the fact that
S;, = eg2,, + &9& it follows that

Pr[P(T)#rank(A)+r]<s.i+&<&.

Thus, for each i, Pr[answeri = rank(A)] $2 > i. The lemma follows from a slight
modification of Proposition 1. 1

APPLICATIONS TO NUMERICAL PROBLEMS 585

As was the case for the self-testing program for matrix inversion, the self-tester
for matrix rank is simple.

SPECIFICATIONS OF MATRIX-RANK SELF-TEST(~, fl).
(1) If error(f, P, gE) < & then the output is “PASS” with probability at

least 1 - j.
(2) If error(f, P, sn,) 3 & then the output is “FAIL” with probability at

least 1 - j.

PROGRAM MATRIX-RANK SELF-TEST(~, p).

answer c 0
N+ Wln(l/P))
Do for i= 1, N

Choose r E% (0, n}
R t Gen-Inv-Matrix(n)
R’ + MISC(R, l/256)
SC MMSC(Z’,,., R, l/256)
Tt MMSC(R’, S, l/256)
r’ t P(T)
If r # r’ then answer + answer + 1

If answer B N/32 then output “FAIL” else output “PASS”

LEMMA 21. Matrix-Rank SeEf-Test meets the specifications.

ProoJ It is easy to verify that if error(f, P, gn,) > & then the fraction of one
answers is at least $ with probability at least 1 - fl and if error(f, P, &) < $ then
the fraction of one answers is at most $ with probability at least 1 -jL 1

7. BOOTSTRAP SELF-TESTING

In this section we introduce another method of designing self-testers. It is easier
to prove that this method of self-testing meets its specifications than it is for self-
testing based on linearity. This method works for all the applications that the linear
self-testing works for, as well as for polynomial multiplication, matrix multiplica-
tion, modular exponentiation when the 4 function of the modulus is not known,
and integer division. The drawback is that this method is often less efficient and
that the code is slightly more complicated. The two requirements for this method
to work are random self-reducibility and:

DEFINITION 7.1 (Smaller self-reducibility). We say that f is c-self-reducible to
smaller inputs if for all x E 9n, f(x) can be expressed as an easily computable function
F sma,,er of x, aI, a, andf(a,), f(a,), where a,, a, are each in 9jjw1 and easily
computable from x. Furthermore, for all x E Yr, f(x) is easy to compute directly.

586 BLUM, LUBY, AND RUBINFELD

For example, for integer multiplication, wheref(x,, x2) = x1 . x2, this condition is
fulfilled as follows: Let x = (xi, x1), where xi, x2 E 9”” and where n is a power
of two. Let xf be the most significant half of the bits of x1 and let xf be the
least significant half of the bits of xi. Define X$ and x2” analogously with respect
to x1. Let a, =(xf, x;“), a,=(~;, xf), as= (xp, xi) and a,=(~:, xk). Then,
f(x) = ~smaller(x, al, -., a4, f(al), f(a4)) =.f(aJ + (f(a2) +f(ad) P2 +f(a4) 2”.

The overall idea behind this method is that once smaller size inputs have
been self-tested, larger inputs can be self-tested by choosing a random input x,
decomposing x into smaller inputs, self-correcting the smaller inputs using random
self-reducibility (which works because smaller inputs have been self-tested), and
then comparing the answer against the answer the program gives on input x. This
method of bootstrapping can be continued until the desired input size is reached.
We now give more specific details.

We say that x E $n is bad if P(x) #f(x), and otherwise x is good. Generic Self-
Correct is the program described in Section 3.8. Program Ret-Self-Test, described
below, verifies that most of the inputs in Y” are good given that, recursively, most
of the inputs in & _ i are good.

SPECIFICATIONS OF REC-SELF-TEST(IZ,~).

(1) If at least a fraction of 1/4c of the inputs in & are bad and at most a frac-
tion of 1/4c of the inputs in YH _ i are bad then Ret-Self-Test outputs “FAIL” with
probability at least 1 - p.

(2) If at most a fraction of 1/16c of the inputs in 9n are bad and at most a
fraction of 1/4c of the inputs in Xm _ I are bad then Ret-Self-Test outputs “PASS”
with probability at least 1 - /?.

PROGRAM REC-SELF-TEST(I~, 8).

Do form = 1, N
answer, c 0
Choose x E% 9”

If n = 1 then:
Compute f(x) directly
If f(x) # P(X) then answer, +- 1

Else yt > 1 then:
Generate smaller inputs a,, a, based on x
For k = 1, c, y, c Generic Self-COrreCt(n- i,ak, 1/16c2)

If ~smallerk al, -., 4, yi, .-, y,) # P(x) then answer,,, + 1
If C,“= I answerkIN 2 3116~ then “FAIL” else “PASS”

APPLICATIONS TO NUMERICAL PROBLEMS 587

LEMMA 22. Ret-Self-Test meets the specification.

Proof: (1) Because of the specifications for Generic Self-Correct and because it
is called with confidence parameter l/16?, the probability that there is an incorrect
yk for k = 1, c is at most 1/16c. Therefore, in each iteration Pr[answer, = l] 3
1/4c(1 - 1/16c) > 15/64c > 3/16c.

(2) In each iteration Pr[answer, = l] < 1/16c + 1/16c = 2/16c < 3/16c.

Thus, the average of answer, over O(c ln(l/p)) iterations is at least 3/16c with
probability at least 1 - /I in case 1 and at most 3/16c with probability at least 1 - /I
in case 2. B

Finally, we describe the main program Generic Bootstrap Self-Test. We make the
convention that if any call to one of the subroutines returns “FAIL” then final
output is “FAIL” and otherwise the output is “PASS.”

SPECIFICATIONS OF GENERIC BOOTSTRAP SELF-TEST(~,X,/?).

(1) If there is an i, 1~ i < 1, such that the fraction of bad inputs in ,a; is at
least 1/4c, then output “FAIL” with probability at least 1 -/I.

(2) If for all i, 1 < id 1, the fraction of bad inputs in 4 is at most 1/16c then
output “PASS” with probability at least 1 -/I.

PROGRAM GENERIC BOOTSTRAP SELF-TEST(~, x, fl). For i = 1, Z, call Rec-Self-
Test(i, /l/Z).

THEOREM 11. Generic Bootstrap Self-Test meets the specifications.

Proof. (1) If there is an i, 1~ i < 1, such that for all 1 <j < i - 1, the fraction
of bad inputs in 4 is at most 1/4c and the fraction of bad inputs in 4 is at least
1/4c then Ret-Self-Test(i, b/1) outputs “FAIL” with probability at least 1 - b/l >/
1 -p.

(2) If, for i, 1~ i < I, the fraction of bad inputs in 4 is at most 1/16c then
Ret-Self-Test(i, /I/l) outputs “FAIL” with probability at most /I/l. Thus, over the 1
calls, the probability that all answers are “PASS” is at least 1 - j3. m

7.1. Matrix Multiplication

We showed in Subsection 6.1 how to get a self-tester for matrix multiplication
using Freivalds-Checker. To illustrate the method, we show in this subsection how
to get a self-tester based on bootstrapping. We retain the matrix notation
introduced in Section 6.1:

Random self-reducibility. Let A, B E M,.,,[F]. Independently choose
Al % M,..CEl, 4 + ~,,,CI;1 and let A z+-A-A,,B,+-B-B,.Then(A,,B,),

588 BLUM, LUBY, AND RUBINFELD

(A,, B,), (A,, B2), (AZ, BJ are each distributed according to 9PMnxnCFl x 4?!M”,,CF,
andf(A, B)=f(A,, Bl)+f(A2, Bl)+f(Al, B2)+f(A2, B2).

Smaller self-reducibility. Let A, B E M,,, x 2n [F], where

‘(A2 B)=
f(A,,, B,,)+f(Am &I) f(A,,, B,,)+.f(An, B,,)

G > (Ax, BII)+~(&> Bx) f(&, B,,)+f(A,,, 4,) ’

Since matrix multiplication is randomly self-reducible and self-reducible to
smaller inputs, the method of bootstrapping can be used to self-test the matrix
multiplication function. The self-tester makes O(log(rt)) calls to the program.
However, the self-tester makes only a constant number of the calls to the program
on IZ x n matrices, only a constant number of the calls to the program are on
n/2 x n/2 matrices, etc. Thus, the incremental time of the self-tester is linear in the
size of the input, and the total time is linear in the running time of the program.

7.2. Polynomial Multiplication

We consider multiplication of polynomials over finite fields: in this case
f(p, q) = p. q, where p, q are two degree-n polynomials with coefficients from finite
field F. Using Kaminski’s polynomial multiplication result checker, one can obtain
a self-tester for polynomial multiplication. We show how to obtain a self-tester
based on the method of bootstrapping.

Let Yf[F] be the set of degree n polynomials where each coefficient is an element
of the finite field F. Let U, be the distribution on pairs of degree-n polynomials
where each coefficient is chosen independently and uniformly from the finite field F:

Random self-reducibility. Let p, q E Pn [F]. Independently choose p1 Ed Yn [F],
ql+%[Flp and let ~~+~-~~~q~+q-q~. Then (pl,q,),(p2,ql),(pl,q2),
(p2, q2) are distributed according to U,, and f(p, q) =f(p,, ql) +f(p2, ql) +
f(Pl, q2)+f(P2> q2).

Smaller self-reducibility. Let p, q E 92)2n [F] , where p = p 1 x” + p2, q = q 1 X" + q2,
andp,,~~,q~,q~~~nC~l.Thenf(p,g)=f(~,,q,)x*”+(f(~,,q,)+f(p2,q,))x”+
"f(P2992).

Since polynomial multiplication is random self-reducible and self-reducible to
smaller inputs, the method of bootstrapping can be used to self-test the polynomial
multiplication function. The self-tester makes O(log n) calls to the program and has
incremental time linear in the size of the input, and the total time is linear in the
running time of the program.

APPLICATIONS TO NUMERICAL PROBLEMS 589

2.3. Modular Inverse

In this subsection, we develop some programs that are used in the modular
exponentiation self-tester developed in the next subsection. For simplicity, we
assume that we are using a correct program for modular multiplication in the code;
all of the code can be modified to use the library approach described earlier, where
all modular multiplications are computed by a self-correcting program that makes
calls to a program for modular multiplication that has been self-tested.

Let R be a positive integer of length n. For x E all;, let f(x, R) be the mod R
inverse of x, i.e., f(x, R) .R x = 1. Let P be a program that supposedly computes J
We assume that P satisfies the following condition: When x E% ZZR, P(x, R) .R x = 1
with probability at least l/c In(n) for some constant c > 0. We can easily estimate
this probability by randomly choosing several independent x E, ZR and computing
the fraction of these x that satisfy P(x, R) .R x = 1. For all R > 3, 4(R) = I%$(B
R/6 In(n) [30], and thus if P is correct for a constant fraction 6 of the x E 2; then
the above condition is true with c = 616.

We now describe a random generator Gen-Inv-Mod(R) which makes calls to P
to generate XE~ 32.

FUNCTION GEN-INV-MOD(R).

Repeat forever

Choose x E* 5YR

Choose y E& ZZR

ZGX’R y

z’ + P(z, R)

If z’ ‘R z = 1 then return x and EXIT

LEMMA 23. If Gen-Inv-Mod(R) returns x, then XE, 9:. Furthermore, lj-
P(w, R) aR w = 1 with probability at least l/c In(n) when w E% TR, then the expected
number of executions of the repeat loop before Gen-Inv-Mod(R) halts is
O(c2 in*(n)).

ProoJ P(z, R) -R z = 1 can be true only if z E 9’2, which in turn can only be true
if both XE ZYz and ye 9“:. The conditional probability of choosing x such that
x E 9’2 is uniform. Furthermore, the conditional probability of choosing y such that
y E 9’; is uniform given x. Since the distribution defined by x .R w, where x is fixed
in a; and w E, .%“1);, is the uniform distribution $Y9., the conditional probability of
choosing z such that ZE 9’2 is uniform given XE&$ Thus, the probability that
P(z, R) eR z = 1 is independent of x as long as x E 9’:. This implies that each x E 9:
is equally likely to be the output of Gen-Inv-Mod(R).

57114713.I5

590 BLUM, LUBY, AND RUBINFELD

The running time analysis is straightforward, noting that x E 9’: with probability
at least l/c In(n), and independently y E 32 with probability at least l/c In(n). 1

The incremental time of Gen-Inv-Mod(R), not counting the time for calls
to the modular multiplication program, is 0(&r In*(n)). The total time is
O(c2 ln2(n) T(n)), where T(n) is the running time of the modular multiplication
program.

We next develop a function that on input XE 2’: and R outputs the mod R
inverse of x. This function makes calls to both P and Gen-Inv-Mod. As before, we
assume that P satisfies the condition described above.

FUNCTION MOD-INV SELF-C• RRECT(X, R).

Repeat O(c In(n)) times

w + Gen-Inv-Mod(R)

Y+-X.R w

Y’ + P(Y, W

If z = 1 then EXIT repeat loop

If z # 1 then return x’ = 1 else return x’ = w .R y’

Mod-Inv Self-Correct (hereafter abbreviated Mod-InvSC) has the property that
if XE 3: then with very high probability the output x’ satisfies x’ .R x = 1. For
simplicity, hereafter we assume that if x e %“g then the x’ .R x = 1 always.

The expected incremental time of Mod-InvSc(x, R) is O(c3n ln3(n)) and the total
time is O(c3 ln3(n) T(n)), where T(n) is the running time of the modular multiplica-
tion program plus the running time of the modular inverse program.

7.4. Modular Exponentiation

Let R be a positive integer of length m and let a E 32. Let II be a positive integer
that is a power of two and let XE 2&. Let f(a, x, R) = ax mod R. In previous
sections we developed a self-testing/correcting pair for f when the factorization of
R is known. In this subsection, we develop a self-testing/correcting pair for f
without this assumption. Let P be a program that supposedly computes j We make
the convention that if the second argument in a call to P is zero (i.e., the exponent
is zero) then the call to P is not actually made and the answer is automatically set
to one.

SPECIFICATIONSOF MOD-EXFQN SELF-C• RRECT(~, a, x, R, j?). Iferror(f, P,+Yz; x
4PT2. x +21Rf) d ft then the output is ax mod R with probability at least 1 - j?.

APPLICATIONS TO NUMERICAL PROBLEMS 591

PROGRAM MOD-EXPON SELF-C• RRECT(II,U,X, R,/?).

N t 12 ln(l//I)
For i = 1, N do

Choose x1 E, L&
Ifx,<xthen6tOelse6+-1
x2+x-x1+62”
Choose x3 E, L&
x4+2”-1-x3
b t Gen-Inv-Mod(R)

a1 +- P(a ‘R b, xl, R)

a2 +- P(a ‘R b, x2, RI

a3 + P(b, 6x3, R)

a4 + P(b, 6x4, R)
a5 t Mod-InvSC(P(b, x1, R), R)

a6 + Mod-InvSC(P(b, x2, R), R)

a, c Mod-InvSC(P(a .R b, 6x3, R), R)

a8 c Mod-InvSC(P(a .R b, 6x4, R), R)

a9 t Mod-InvSC(a, R)

answer, t a1 ‘R a2 ‘R a3 ‘R a4 ‘R a5 ‘R a6 ‘R a7 ‘R ag ‘R (6a9)
Output the most common answer among (answer,: m = 1,

LEMMA 24. Mod-Expon Self-Correct meets the speczjkations.

Proof. It can be verified that x1 E% Z&, x2+ Z2”, x3 E* %Y2”, and X~E% Z2”.
Furthermore, b E, 32, and from this and because a E 3’2, a .R b E% %g. Thus, in
all eight calls to P the input distribution is ezz x azln x qfR1 (except in the case
when 6 = 0, in which case four of the calls to P are not actually made and the
answer is automatically one). Thus, with probability at least 2, all eight calls to P
return the correct answer. It is not hard to verify that if all eight calls to P return
the correct answer, then by the properties of Mod-InvSC, answer, = ax mod R. The
lemma follows from Proposition 1. m

Hereafter, we refer to Mod-Expon Self-Correct as Mod-ExpSC. The incremental
time of Mod-ExpSC, not counting time for calls to the programs for modular
multiplication and modular inverse, is O(n+ c3m ln3(m)). The total time of
Mod-ExpSC is 0(c3 ln3(m) T(m)+ T’(n, m)), where T(m) is the running time of
the program for modular multiplication plus the running time of the program for
computing modular inverse and T’(rz, m) is the running time of the program for
computing modular exponentiation.

We now describe the recursive self-tester for modular exponentiation.

592 BLUM, LUBY, AND RUBINFELD

SPECIFICATIONS OF REC-MOD-EXPON SELF-TEST(H, R, 8).

(1) If eflor(A p, ezi x @s2s,2 x~~,,,)~Aanderror(f;P,~~~x~~*~x~~,))~~
then the output is “PASS” with probability at least 1 - p.

(2) If error(f, P, as8 x %szn,z x @{RI) < & and error(f, P, s3; x 4?3z. x %iRl)
> & then the output is “FAIL” with probability at least l-j?.

PROGRAM REC-MOD-EXPON SELF-TEST(~, R, 8).

answer c 0

N+ WWW
Do for i = 1, N

b .+ Gen-Inv-Mod(R)
Choose y E% Z&
Let y= y12”12+y2, where y,, Y~EZZ’~+
a, t Mod-ExpSC(n/2, b, yl, R, l/512)
a2 + Mod-ExpSC(n/2, tli, 2”‘2 - 1, R, l/512) sR c1i
a3 c Mod-ExpSC(n/2, b, y,, R, l/512)
If P(b, y, R) # cl2 .R CI~ then answer t answer + 1

If answer z N/64 then output “FAIL” else output “PASS”

LEMMA 25. Ret-Mod-Expon Self-Test meets the speclyications.

Proof: By design, b E* %‘l%; and y E% ezz,,. Because b E 32 and by the properties
of Mod-ExpSC, c~i # by1 mod R with probability at most $ independent of b and
y,. If a, = by1 mod R, then a, E 9’2. In this case, CI~ z I$“‘-’ .R a, = byL2”” mod R
with probability at most A. Similarly, a3 #by* mod R with probability at most &.
Thus, the probability that a2 .R cl3 # bY mod R is at most &. From this and
Proposition 1 it can be verified that the lemma follows. 1

The incremental and total time of Ret-Mod-Expon Self-Test are linear in the
incremental and total time of Mod-ExpSC(n, R, /I), respectively.

We finally describe the self-tester for modular exponentiation, which is based on
the Generic Bootstrap Self-Test. We make the convention that if any call to one of
the subroutines returns “FAIL” then final output is “FAIL” and otherwise the
output is “PASS.”

SPECIFICATIONS OF MOD-EXPON BOOTSTRAP SELF-TEST(~, R, j?).

(1) If, for all i= 1, log(n), error(f, P, qz; x @3z8 x 4!XtR)) d & then output
“PASS’ with probability at least 1 - p,

(2) If, for some i= 1, log(n), error(f, P, qz; x +Ysz, x a!(R)) > & then output
“FAIL” with probability at least 1 - fi.

APPLICATIONS TO NUMERICAL PROBLEMS 593

PROGRAM MOD-EXPON BOOTSTRAP SELF-TEST@, R, /?). For i= l,...,log(n), call
Ret-Mod-Expon Self-Test(2’, R, /J/log(n)).

LEMMA 26. Mod-Expon Bootstrap Self-Test meets the specifications.

ProoJ: Similar to the proof of Theorem 11. 1

The incremental and total time of Mod-Expon Bootstrap Self-Test are linear in
the incremental and total time of Mod-ExpSC(n, R, /?/log(n)), respectively.

Adleman, Huang, and Kompella [l] have independently discovered a method of
result checking the exponentiation function without the restriction that a and R be
relatively prime. Their method uses similar ideas of testing by bootstrapping. The
incremental time of their result checker is O((n + m) log(n)), not counting calls to
the modular multiplication program or the modular exponentiation program. The
total time of their result checker is 0((T(n, m) + T’(n, m)) log(n)), where T(n, m) is
the running time of the modular multiplication program for multiplying two n-bit
numbers mod a number of length m, and T’(n, m) is the running time of the
modular exponentiation program where both the base and modulus are of length
m and the exponent is of length n.

8. FUTURE WORK

l Are there self-testing/correcting pairs for other important functions? In this
paper, we have shown self-testing/correcting pairs for functions with the linearity
property. Work in [6, 26, 211 has extended this to functions which compute
polynomials over finite fields and this has been extended in [34] to work over
rational domains. A variety of other problems, have result checkers, and thus also
self-testers. It would be interesting to find self-correctors for such problems. An
example is sorting.

l Is it possible to show that some functions are not going to have a
self-testing/correcting pair? Some progress can be found in [18, 39, 71.

l Are there applications of the combinatorial theorems introduced in this
paper in other areas? We suggest the development of more probabilistic tools long
these lines. Significant progress in this direction has been made in [21].

. One area of practical concern for self-testing/correcting pairs is the
overhead incurred by running the self-tester and self-corrector. Recently a batch
self-corrector for any function with the linearity property has been designed
which reduces the overhead to a small additive factor if it is infrequent that P
answers incorrectly for some input in a batch [32]. We would like to design batch
self-correctors for other important functions.

594 BLUM, LUBY, AND RUBINFELD

ACKNOWLEDGMENTS

We thank Silvio Micah for pointing out the general applicability of our methods, for his enthusiastic
support, and for numerous illuminating technical discussions. We thank Don Coppersmith for allowing
us to use his elegant version of the proofs of Theorems 3 and 4. We thank Oded Goldreich, Shah
Goldwasser, Sampath Kannan, Richard Cleve, Don Coppersmith, Michael Ben-Or, Russell Impagliazzo,
and Steve Omohundro for very helpful discussions.

REFERENCES

1. L. ADLEMAN, M. HUANG, AND K. KOMPELLA, Efficient checkers for number-theoretic computations,
Inform. and Comput., submitted.

2. A. AHO, J. HOPCROFT, AND J. ULLMAN, “The Design and Analysis of Computer Algorithms,”
Addison-Wesley, Reading, MA, 1974.

3. L. BABAI, Trading group theory for randomness, in “Proceedings, 17th ACM Symposium on Theory
of Computing, 1985,” pp. 421429.

4. L. BABAI, E-mail and the power of interaction, in “Proceedings, 5th Structures in Complexity Theory
Conference, 1990.”

5. L. BABAI, L. FORTNOW, AND K. LUND, Non-deterministic exponential time has two-prover interac-
tive protocols, in “Proceedings, 31st IEEE Symposium on Foundations of Computer Science, 1990.”

6. D. BEAVER AND J. FEIGENBAUM, Hiding instance in multioracle queries, in “Proceedings, Symposium
of Theoretical Aspects of Computer Science, 1990.”

7. R. BEIGEL AND J. FEIGENBAUM, “On the Complexity of Coherent Sets,” AT&T Technical
Memorandum, February 19, 1990.

8. M. BEN-OR, D. COPPERSMITH, M. LUBY, AND R. RUBINFXLD, Convolutions on groups, in
preparation.

9. M. BEN-OR, S. GOLDWASSER, J. KILIAN, AND A. WIGDERSON, Multi-prover interactive proofs: How
to remove intractability, in “Proceedings, 20th ACM Symposium on Theory of Computing, 1988,”
pp. 113-131.

10. M. BLUM, “Designing Programs to Check Their Work,” ICSI Technical Report TR-88-009.
11. M. BLUM AND P. RAGHAVAN, Program correctness: Can one test for it?, “Information Processing 89”

(G. X. Ritter, Ed.), pp. 127-134, Elsevier Science, Amsterdam, 1989.
12. M. BLUM AND S. KANNAN, Designing programs that check their work, in “Proceedings, ACM

Symposium on Theory of Computing, 1989.”
13. M. BLUM, M. LUBY, AND R. RUBINFELD, Program result checking against adaptive programs and

in cryptographic settings, presented in “Distributed Computing and Cryptography Workshop,
1989,” DIMACS Series on Discrete Mathematics and Theoretical Computer Science, Vol. 2, 1991.

14. M. BLUM, M. LUBY, AND R. RUBINFELD, Self-testing/correcting with applications to numerical
problems, in “Proceedings, 22nd ACM Symposium on Theory of Computing, 1990.”

15. M. BLLJM AND S. MICALI, How to generate cryptographically strong sequences of pseudo-random
bits, in “Proceedings, of 23rd IEEE Symposium on Foundations of Computer Science, 1982”; SIAM
J. Comput. 13 (1984) 85&864.

16. R. CLEVE AND M. LUBY, “A Note on Self-Testing/Correcting Methods for Trigonometric
Functions,” ICSI Technical Report TR-90-032, 1990.

17. D. COPPERSMITH AND S. WINOGRAD, Matrix Multiplication via arithmetic progressions, in
“Proceedings, 19th ACM Symposium on Theory of Computing, 1987.”

18. J. FEIGENBAUM, S. KANNAN, AND N. NISAN, Lower bounds on random self-reducibility, in
“Proceedings, 5th Structures in Complexity Theory Conference, 1990.”

19. L. FORTNOW, H. KARLOFF, K. LUND, AND N. NISAN, The polynomial hierarchy has interactive
proofs, in “Proceedings of the 31st IEEE Symposium on Foundations of Computer Science, 1990.”

APPLICATIONS TO NUMERICAL PROBLEMS 595

20. R. FREIVALDS, Fast probabilistic algorithms, in “Mathematical Foundations of CS,” pp. 5769,
Lecture Notes in Comput. Sci., Vol74, Springer-Verlag, New York/Berlin, 1979.

21. P. GEMMELL, R. LIPTON, R. RUBINFELD, M. SUDAN, AND A. WIGDERSON, Self-testing/correcting for
polynomials and for approximate functions, in “Proceedings of the 23rd ACM Symposium on
Theory of Computing, 1991.”

22. S. G~LDWASSER, S. MICALI, AND C. RACKOFF, The knowledge complexity of interactive proof
systems, in “17th ACM Symposium on Theory of Computing, 1985”; SIAM J. Comput. 18, No. 1
(1989), 186208.

23. M. KAMINSKI, A note on probabilistically verifying integer and polynomial products, J. Assoc.
Comput. Much. 36, No. 1 (1989), 142-149.

24. S. KANNAN, “Program Result Checking with Applications,” Ph.D. thesis, University of California,
Berkeley, 1990.

25. R. -P, M. LUBY, AND N. MADRAS, Monte-Carlo approximation algorithms for enumeration
problems, J. Algorithms 10, No. 3 (1989), 4299448.

26. R. LIPTON, New directions in testing, in “Distributed Computing and Cryptography workshop,
1989,” and “DIMACS Series on Discrete Mathematics and Theoretical Computer Science,” Vol. 2,
pp. 191-202, 1991.

27. N. NISAN, “Co-SAT Has Multi-Prover Interactive Proofs,” e-mail announcement, November 1989.
28. D. RANDALL, “Efficient Random Generation of Nonsingular Matrices,” Random Structures and

Algorithms, Vol. 4, No. 1, Spring 1993, pp. 111-118.
29. A. R&XI, “Probability Theory,” North-Holland, Amsterdam, 1970.
30. J. B. ROSSER AND L. SCHOENFELD, Approximate formulas for some functions of prime numbers,

Illinois J. Math. 6 (1962), 6494.
31. R. RUBINFELD, “Designing Checkers for Programs that Run in Parallel,” ICSI Technical Report

TR-90-040.
32. R. RUBINF’ELD, Batch checking linear functions, manuscrip, 1990.
33. R. RUBINFELD, “A Mathematical Theory of Self-Checking, Self-Testing and Self-Correcting

Programs,” Ph.D. thesis, Computer Science Department, U.C. Berkely, 1990.
34. R. RUBINFELD AND M. SUDAN, Self-testing polynomial functions efficiently and over rational

domains, in “Proceedings, ACM SIAM Symposium on Discrete Algorithms, 1992.”
35. A. SCH~NHAGE, personal communication through Michael Fischer.
36. A. SCH~NHAGE AND V. STRASSEN, Schnelle Multiplikation grosser Zahlen, Computing 7, 281-292.
37. A. SHAMIR, IP=PSPACE, in “Proceedings, 31st IEEE Symposiym on Foundations of Computer

Science, 1990.”
38. V. STRASSEN, Gaussian elimination is not optimal, Namer. Math. 13 (1969), 354-356.
39. A. YAO, Coherent functions and program checking, “Proceedings, 22nd ACM Symposium on

Theory of Computing, 1990.”

