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The Poyakov–Nambu–Jona-Lasinio (PNJL) model was developed recently, which includes both the chiral 
dynamics and (de)confinement effect and gives a good description of lattice QCD data. In this study we 
use the PNJL model to describe the quark phase, and first use it to study the evolution of proto-neutron 
star (PNS) with a hadron–quark phase transition. Along the line of a PNS evolution, we take several 
snapshots of PNS profiles, presenting the fractions of different species, the equations of state (EOS), and 
the mass–radius relations at different stages. The calculation shows the mixed phase may exist during the 
whole evolving process, and the onset density of quark phase decreases with the radiation of neutrinos 
in the heating stage. In the cooling stage, the EOS of the mixed phase softens and the center density 
increases. In this process a part of nuclear matter transforms to quark matter, which may lead to a PNS 
collapsing into a black hole.

© 2011 Elsevier B.V. Open access under CC BY license.
Since the matter in the core of compact stars are compressed 
to densities of several times of saturated nuclear density, it is ex-
pected that new degrees of freedom will appear in the interior 
of these objects [1–13]. The hadron–quark phase transition is one 
of the most concerned topics in modern physics related to heavy-
ion collision experiment and compact star. Because of the com-
plication of full calculation of Quantum Chromodynamics (QCD) 
and the lack of sufficient knowledge about the nonpertubtive and 
(de)confinement effect, it is difficult to apply full QCD calcula-
tion to describe the phase transition in astrophysics. Therefore, in 
literatures the hadron–quark phase transition related to compact 
star are usually described with the simplified, phenomenological 
MIT bag model or the effective chiral Nambu–Jona-Lasinio (NJL) 
model (e.g., [7–9,11,14,16–19]).

The NJL model with chiral dynamics is a prominent one in the 
application of astrophysics, but it lacks the confinement mecha-
nism, one essential characteristic of QCD. Recently, an improved 
version of the NJL model coupled to Polyakov loop (PNJL) has been 
proposed [20]. The PNJL model includes both the chiral dynamic 
and (de)confinement effect, giving a good interpretation of lat-
tice QCD data [21–27]. We have recently studied the hadron–quark 
phase transition relevant to heavy-ion collision in the Hadron-PNJL 
model [28]. The calculation shows the color (de)confinement effect 
is very important for the hadron–quark phase transition at finite 
density and temperature, and improves greatly the results derived 
from the Hadron-NJL model [29]. The PNJL model with a chemical
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potential dependent Poyakov effective potential has also been used 
to describe cold neutron star without [30] and with a color su-
perconductivity structure [31]. In [32], Fischer et al. discussed the 
evolution of core collapse supernova with the PNJL model (with 
diquark interaction and isoscalar vector interaction) and the pos-
sibility of the onset of deconfinement in core collapse supernova 
simulation. In their study selected proton-to-baryon ratio Y p and 
the Maxwell construction are taken for the PNJL model, which 
gives a relatively narrow mixed phase than that with Gibbs con-
struction. In [33], the authors studied the possibility to probe the 
QCD critical endpoint during the dynamical black hole formation 
from a gravitational collapse. Several two-flavor quark models with 
different parameters are used in their study, and the calculation 
shows the Critical Point location of QCD has a strong dependence 
on quark models and parameters. A generalization with s quark is 
needed to get more reliable results for further investigation.

In this Letter we will firstly use the newly improved PNJL model 
to describe the evolution of proto-neutron star from its birth with 
trapped neutrinos to neutrino-free cold neutron star (NS). The 
Gibbs criteria will be used to determine the mixed phase un-
der the isotropic constraint with and without trapped neutrinos. 
The emphases are put on the evolution of proto-neutron star with 
a hadron–quark phase transition, the particle distributions along 
baryon density, the EOSs and mass–radius relations, as well as the 
star stability in different snapshots during the evolution.

A PNS forms after the gravitational collapse of the core of mas-
sive star with the explosion of a supernova. At the beginning of 
the birth of a PNS, the entropy per baryon is about one (S � 1)
and the number of leptons per baryon with trapped neutrino is

http://dx.doi.org/10.1016/j.physletb.2011.09.030
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
mailto:shaogy@pku.edu.cn
http://dx.doi.org/10.1016/j.physletb.2011.09.030
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


344 G.y. Shao / Physics Letters B 704 (2011) 343–346
approximate 0.4 (Y Le = Ye + Yνe � 0.4). In the following 10–20
seconds, neutrinos escape from the star. With the decrease of elec-
tron neutrino population, the star matter is heated by the diffusing
neutrinos, and the corresponding entropy density increases, reach-
ing to S � 2 when Y ν e � 0. Following the heating, the star begins
cooling by radiating neutrino pairs of all flavors, and finally a cold
neutrons forms [34,35].

Along the line of a PNS evolution to the formation of a cold
neutron star, we take several snapshots to study how the star
evolves, especially with the appearance of quark degrees of free-
dom. The snapshots are taken with the following conditions (S =
1, Y Le = Ye + Yνe = 0.4), (S = 1.5, Y Le = Ye + Yνe = 0.3), (S =
2, Yνe = 0) and (S = 0, Yνe = 0), similar with that used in [34,35].
At each snapshot of a PNS evolution, we take an isentropic approx-
imation with which the temperature has a radial gradient in the
star. There are also studies related to the properties of PNS based
on isothermal approximation (e.g., [15,17–19]).

For the star matter, the hadronic and quark phase are described
by the non-linear Walecka model and the PNJL model, respectively.
In the mixed phase between pure hadronic and quark matter, the
two phases are connected to each other by the Gibbs conditions
deduced from thermal, chemical and mechanical equilibriums. For
the hadron phase we use the Lagrangian given in [36] in which the
interactions between nucleons are mediated by σ , ω, ρ mesons,
and the parameter set GM1 is used in the calculation. The details
can be found in Refs. [36,5].

For the quark phase, we take recently developed three-flavor
PNJL model with the Lagrangian density

Lq = q̄
(
iγ μDμ − m̂0

)
q + G

8∑
k=0

[
(q̄λkq)2 + (q̄iγ5λkq)2]

− K
[
det f

(
q̄(1 + γ5)q

) + det f
(
q̄(1 − γ5)q

)]
− U

(
Φ[A], Φ̄[A], T

)
, (1)

where q denotes the quark fields with three flavors, u, d, and s,
and three colors; m̂0 = diag(mu,md,ms) in flavor space; G and K
are the four-point and six-point interacting constants, respec-
tively. The four-point interaction term in the Lagrangian keeps the
SUV (3) × SU A(3) × U V (1) × U A(1) symmetry, while the ’t Hooft
six-point interaction term breaks the U A(1) symmetry.

The covariant derivative in the Lagrangian is defined as Dμ =
∂μ − i Aμ . The gluon background field Aμ = δ0

μ A0 is supposed to

be homogeneous and static, with A0 = gAα
0

λα

2 , where λα

2 is SU(3)

color generators. The effective potential U (Φ[A], Φ̄[A], T ) is ex-
pressed in terms of the traced Polyakov loop Φ = (Trc L)/NC and
its conjugate Φ̄ = (Trc L†)/NC . The Polyakov loop L is a matrix in
color space

L(�x) = P exp

[
i

β∫
0

dτ A4(�x, τ )

]
, (2)

where β = 1/T is the inverse of temperature and A4 = i A0.
Different effective potentials were adopted in literatures [21,37,

38,30]. The modified chemical dependent one

U = (
a0T 4 + a1μ

4 + a2T 2μ2)Φ2

× a3T 4
0 ln

(
1 − 6Φ2 + 8Φ3 − 3Φ4) (3)

was used in [30,31] which is a simplification of

U = (
a0T 4 + a1μ

4 + a2T 2μ2)Φ̄Φ

× a3T 4
0 ln

[
1 − 6Φ̄Φ + 4

(
Φ̄3 + Φ3) − 3(Φ̄Φ)2] (4)
because the difference between Φ̄ and Φ is smaller at finite chem-
ical potential and Φ̄ = Φ at μ = 0. In the calculation we will use
the later one. The related parameters, a0 = −1.85, a1 = −1.44 ×
10−3, a2 = −0.08, a3 = −0.4, are still taken from [30], which can
reproduce well the data obtained in lattice QCD calculation.

In the mean field approximation, quarks can be taken as free
quasiparticles with constituent masses Mi , and the dynamical
quark masses (gap equations) are obtained as

Mi = mi − 4Gφi + 2Kφ jφk (i �= j �= k), (5)

where φi stands for quark condensate. The thermodynamic poten-
tial of the PNJL model in the mean field level can be derived as

Ω = U (Φ̄,Φ, T ) + 2G
(
φu

2 + φd
2 + φs

2)
− 4Kφu φd φs − 2

∫
Λ

d3 p

(2π)3
3(Eu + Ed + Es)

− 2T
∑
u,d,s

∫
d3 p

(2π)3
ln

[
A(Φ̄,Φ, Ei − μi, T )

]

− 2T
∑
u,d,s

∫
d3 p

(2π)3
ln

[
Ā(Φ̄,Φ, Ei + μi, T )

]
, (6)

where

A(Φ̄,Φ, Ei − μi, T ) = 1 + 3Φe−(Ei−μi)/T + 3Φ̄e−2(Ei−μi)/T

+ e−3(Ei−μi)/T

and

Ā(Φ̄,Φ, Ei + μi, T ) = 1 + 3Φ̄e−(Ei+μi)/T + 3Φe−2(Ei+μi)/T

+ e−3(Ei+μi)/T .

The values of φu , φd , φs , Φ and Φ̄ are determined by minimizing
the thermodynamical potential

∂Ω

∂φu
= ∂Ω

∂φd
= ∂Ω

∂φs
= ∂Ω

∂Φ
= ∂Ω

∂Φ̄
= 0. (7)

All the thermodynamic quantities relevant to the bulk properties
of quark matter can be obtained from Ω . Particularly, the pres-
sure and entropy density can be derived with P = −(Ω(T ,μ) −
Ω(0,0)) and S = −∂Ω/∂T , respectively.

As an effective model, the (P)NJL model is not renormalizable,
so a cut-off Λ is implemented in 3-momentum space for divergent
integrations. The model parameters: Λ = 603.2 MeV, GΛ2 = 1.835,
KΛ5 = 12.36, mu,d = 5.5 and ms = 140.7 MeV, determined by fit-
ting fπ , Mπ , mK and mη to their experimental values [39], are
used in the calculation.

The Gibbs criteria is usually implemented for a complicated sys-
tem with more than one conservation charge. The Gibbs conditions
for the mixed phase of hadron–quark phase transition in compact
star are

μH
α = μQ

α , T H = T Q , P H = P Q , (8)

where μα are usually chosen with μn and μe . Under the β equi-
librium with trapped neutrino, the chemical potential of other par-
ticles including all baryons, quarks, and leptons can be derived by

μi = biμn − qiμe + qiμνe , (9)

where bi and qi are the baryon number and electric charge num-
ber of particle species i, respectively. For the matter with trapped
electron neutrinos, Y Lμ = (Yμ + Yνμ) � 0, we do not need to con-
sider the contribution from muon and muon neutrino [34,35]. For
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Fig. 1. Relative fractions of different species as functions of baryon density at several
snapshots of a PNS evolution. The upper (lower) panels are the results with (with-
out) trapped neutrinos.

the neutrino-free matter (μνe = 0), both electrons and muons are
included in the calculation.

The baryon number density and energy density in the mixed
phase are composed of two parts with the following combinations

ρ = (1 − χ)ρH
B + χρQ

B , (10)

and

ε = (1 − χ)εH + χεQ , (11)

where χ is the volume fraction of quark matter. And the electric
neutrality is fulfilled globally with

qtotal = (1 − χ)
∑
i=B,l

qiρi + χ
∑
i=q,l

qiρi = 0. (12)

In Fig. 1, we display the relative fractions of different species as
functions of baryon density in several snapshots along the evolu-
tion of a proto-neutron star, from (S = 1, Y Le = Ye + Yνe = 0.4),
(S = 1.5, Y Le = Ye + Yνe = 0.3), (S = 2, Yνe = 0) to cold neu-
tron star with (S = 0, Yνe = 0). Comparing the upper panels with
trapped neutrino with the lower panels without trapped neutrino,
we find that the fraction of trapped neutrino affects the proton–
neutron ratio Y p/Yn at lower density before the appearance of
quarks. For the hot PNS matter, Y p/Yn with rich νe is larger than
that with poor νe . According to the Pauli principle, the smaller
Y p/Yn will excite more neutrons to occupy higher energy levels,
leading to a stiffer equation of state.

Another point we stress is that the onset density of quark phase
decreases with the escape of trapped neutrinos, i.e., trapped neu-
trinos delay the hadron–quark phase transition to a higher den-
sity. For the neutrino-trapped matter, the fraction of neutrino is
enhanced with the appearance of quarks, which also affects the
neutrino opacity. For neutrino-free cases, the lepton population in
cold neutron star matter (S = 0, Yνe = 0) is smaller than that of
PNS (S = 2, Yνe = 0), especially after the appearance of quarks at
high density.

The largest center densities of proto-neutron stars at the first
three snapshots taken above are ρc = 5.23,5.00, and 4.54ρ0, re-
spectively. The center density decreases with the radiation of neu-
trinos, because the star expands when the inner matter is heated
by the escaped neutrinos. When neutrinos are free, the PNS begins
cooling by radiating neutrino pairs of all flavor and the star shrinks
Fig. 2. EOSs of PNS and NS matter at several stages of the star evolution. The dots
mark the range of the mixed phase.

until the formation of cold neutron star. During the cooling stage,
the center density of the star increases. The center density of cold
neutron star is ρc = 4.88ρ0. The variation of the center densities
during a PNS evolution is easier to understand by combining the
mass–radius relations that will be given latterly.

We present the equations of state of the star matter at different
evolving stages in Fig. 2. The dots mark the ranges of the mixed
phases. For the PNS matter at low density before the onset of
quarks, the EOS becomes more and more stiffer with the decrease
of lepton fraction and the increase of entropy density. This mainly
attributes to the decreased Y p/Yn , as shown in Fig. 1, which ex-
cites more neutrons to higher energy states. In contrast, the EOS of
the mixed phase with a larger lepton fraction is much stiffer. This
is because the pure quark phase has a stiffer EOS, but the corre-
sponding hadron phase with the same lepton fraction and entropy
density has a softer one. To fulfill the Gibbs condition of the chem-
ical and mechanical equilibrium, the phase transition can only take
place at relatively larger energy density. For the case with a stiffer
hadronic EOS at lower density, the Gibbs condition can be realized
at lower energy density to drive the hadron–quark phase transi-
tion. The similar results have been obtained when the NJL model
is taken [34]. The cold neutron star matter at lower density has an
EOS between the initial conditions and the end of heating stage,
and a softest one for the mixed phase after quarks appearing.

Comparing the results obtained in the NJL model in [34], we
find the pressure of the mixed phase of a PNS given by the PNJL
model is larger than that of NJL model. This reflects that the con-
finement effect (gluon field) is important at finite temperature.
With the PNJL model, the pressure of quark matter at finite tem-
perature are much smaller than that of NJL model, therefore the
phase transition can only take place at relatively larger density
to assure the quark-phase pressure can match that of the hadron
phase. The details can be found in Refs. [28,29] where the hadron–
quark phase transition for symmetric and asymmetric matter re-
lated to heavy-ion collision experiment has been investigated in
the Hadron-(P)NJL model, and the same results were obtained.

The above illustration also explains the inverse of pressure of
the mixed phase in the cases of (S = 2, Yνe = 0) and (S = 0, Yνe =
0) as given by the NJL model in [34]. All the features of equations
of state will be reflected in the mass–radius relations.

Finally, in Fig. 3 we plot the mass–radius relations of sev-
eral snapshots taken above along the evolution a PNS. This figure
gives us a more intuitive picture about the PNS evolution with
a hadron–quark phase transition. Firstly, in the heating stage the
PNS expands with the decrease of lepton fraction (Y Le) and the in-
crease of entropy density (S). Simultaneously, the center density
decreases with the expansion of the star. When neutrinos are free,
the star begins cooling, and then the star shrinks, leading to the
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Fig. 3. Mass–radius relations of PNS and NS at several snapshots along a PNS evo-
lution. The solid curves are the results without quarks and the dash curves are the
results with hadron–quark phase transition.

center density increasing again. In this stage for a star with quarks,
a part of nuclear matter transforms to quark matter and the EOS
becomes softer in the mixed phase. The star may collapse into
a black hole in the cooling process if the EOS in the core cannot
resist the gravity. This point is different from the result derived in
the NJL model.

The radio timing observations of the binary millisecond pulsar
J1614-2230 with a strong general relativistic Shapiro delay sig-
nature, implies that the pulsar mass is 1.97 ± 0.04M� [40]. The
discovery of this massive pulsar rules out many soft equations of
state. With the improved quark model, our calculation shows the
maximum mass of cold neutron star with deconfined quarks is
slightly larger than 2M� . Because the quark model parameters are
determined by experiments and lattice QCD simulation, a stiffer
hadronic EOS is needed to fulfill this constraint. On the other hand,
If a vector interaction is included for quark matter, the EOS will be
stiffer and the maximum mass of hybrid star will be improved.

In summary, we have studied the evolution of PNS with
a hadron–quark phase transition with a more reliable quark model
including both chiral dynamics and (de)confinement effect. The
calculation shows the quark phase may exist in the whole pro-
cess of a PNS evolution. The trapped neutrinos affect greatly the
ration of Y p/Yn and the EOS at low density before quarks appear-
ing. In the heating stage, with the deleptonization and the increase
of entropy density, the PNS expands and the corresponding center
density decreases. In contrast, in the cooling stage, the PNS shrinks
and the center density increases. During this process a part of nu-
clear matter transforms to quark matter, and the PNS may collapse
into a black hole if the EOS in the core is not stiff enough.

In this study, only the q̄q interaction is considered for quark
phase because the relevant model parameters can be fixed with
experiments and lattice QCD simulation. In analogy to BCS the-
ory, color superconductivity in low-temperature and high-density
QCD matter may appear and there may exist rich phase diagram.
The coupling constant of this interaction channel affects the equa-
tion of state of quark matter and the onset density of quark phase
in compact star. One question is that the coupling parameter can-
not be fixed from heavy-ion experiment or lattice QCD simulation.
On the other hand, the (isoscalar) vector interaction channel has
been included in some studies. Such an interaction reduces the
effective quark chemical potential but contributes to the pressure
of quark matter. This interaction stiffens the EOS of quark mat-
ter and increases the maximum mass of a hybrid star. Compared
with the hadron Walecka model, the (isoscalar) vector interaction
in quark matter plays the role corresponding to the ω meson. One
drawback is that the coupling constant is usual taken as a free pa-
rameter and its strength affects greatly the Critical End Point of
chiral symmetry restoration relevant to heavy-ion collision exper-
iment. Besides, the isovector vector interaction (corresponding to
the role of ρ meson in hadron phase and influencing the symme-
try energy of quark matter) can be also introduced for asymmetric
quark matter. For these interaction channels as well as hyperon
degrees of freedom, the difficulty is the uncertainties of the rele-
vant coupling parameters with the lack of experiment data, so we
temporarily omit these interactions in this study. And a systematic
investigation on these problems is in progress as a further study.
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