On Weak r-Monotonicity*

Hans Joachim Werner Institute for Econometrics and Operations Research Econometrics Unit University of Bonn Adenauerallee 24-42 D-5300 Bonn 1, FRG

Submitted by Richard A. Brualdi

ABSTRACT

In this paper the relationship between weak r-monotonicity and $\{1\}$ -monotonicity is discussed. In particular, an affirmative answer to a question raised by Werner in 1977 is given.

1. INTRODUCTION AND PRELIMINARIES

From L. Collatz we have the following definition. A square real matrix A is said to be *monotone* if $Ax \ge 0 \Rightarrow x \ge 0$; this implication is equivalent to A being invertible with $A^{-1} \ge 0$ (see [4]). Several generalizations of this concept exist where A is singular and in general rectangular (see, e.g., [1-3, 6-12]).

The purpose of this paper is to study the relationship between the following two generalizations of matrix monotonicity.

DEFINITION 1.1 (Berman and Plemmons [3]). A real $m \times n$ matrix A is $\{1\}$ -monotone if it has a nonnegative $\{1\}$ -inverse X, i.e. the equation AXA = A is solvable for some $X \ge 0$.

0024-3795/87/\$3.50

^{*}Research supported by the Deutsche Forschungsgemeinschaft at the University of Bonn (SFB 303, SFB 72).

LINEAR ALGEBRA AND ITS APPLICATIONS 86:199-209 (1987)

[©] Elsevier Science Publishing Co., Inc., 1987 52 Vanderbilt Ave., New York, NY 10017

DEFINITION 1.2 (Werner [9]). A real $m \times n$ matrix A of rank r is weak-r-monotone if A has a monotone submatrix of order r.

In Section 2 we shall be concerned with the following question: Suppose that A has rank r; is A $\{1\}$ -monotone if and only if A is weak-r-monotone? This question has already been considered in [9]. It will be shown that the "if" part of this question is true, whereas the "only if" part is (in general) false. In Section 3 we shall look for an additional assumption under which the equivalence under study becomes true. Our main result in this respect will give an affirmative answer to a conjecture raised in [9] (see also [10]). Some further known results then follow as special cases.

Suppose that the matrix A is in the space $\mathbb{R}^{m,n}$ of all real $m \times n$ matrices and has rank r, and let B be an $r \times r$ nonsingular submatrix of A. Then there exist matrices $U \in \mathbb{R}^{m-r,r}$, $V \in \mathbb{R}^{r,n-r}$ and permutation matrices P and Q of orders m and n, respectively, such that

$$A = P \begin{pmatrix} I \\ U \end{pmatrix} B (I \quad V) Q, \qquad (1.1)$$

where I denotes the identity matrix of order r. In what follows we shall use the following known results.

LEMMA 1.3 (see Werner [11, Satz 5.3 and Satz 5.4]). Suppose $A \in \mathbb{R}^{m,n}$ is of rank r. Let B be a nonsingular submatrix of A of order r, and consider the representation (1.1) of A determined by B. Denote by $A\{1\}$ the set of all $\{1\}$ -inverses of A. Then

(i)
$$A\{1\} = \left\{ Q' \left(\frac{B^{-1} - YU - VX - VZU \mid Y}{X \mid Z} \right) P' \right|$$
$$X \in \mathbb{R}^{n-r, r}, Y \in \mathbb{R}^{r, m-r}, Z \in \mathbb{R}^{n-r, m-r} \right\},$$

and consequently,

(ii)
$$\{A\}A\{1\} = \left\{P\left(\begin{array}{cc}I\\U\end{array}\right)(I-LU \quad L)P' \middle| L \in \mathbb{R}^{r,m-r}\right\},$$

(iii)
$$A\{1\}\{A\} = \left\langle Q'\binom{I-VK}{K}(I-V)Q \middle| K \in \mathbb{R}^{n-r,r} \right\rangle,$$

where $\{A\}$ stands for the singleton set consisting of A.

As a direct consequence of Lemma 1.3 we mention

LEMMA 1.4 (see Werner [11, Satz 6.1]). Let A and B be as in Lemma 1.3, and consider the representation (1.1) of A determined by B. Then A is $\{1\}$ -monotone if and only if we can find nonnegative matrices X, Y, and Z such that

$$B^{-1} \ge YU + VX + VZU. \tag{1.2}$$

NOTE 1.5. In (1.1), Lemma 1.3 and Lemma 1.4, we interpret U, Y, Z, L as absent and YU, VZU, LU as zero if rank(A) = m, and similarly for V, X, Z, K, VX, VZU, and VK if rank(A) = n. Hence in particular $\{A\}A\{1\} = \{I\}$ if rank(A) = m. Likewise $A\{1\}\{A\} = \{I\}$ if rank(A) = n.

{1}-MONOTONICITY IS NOT EQUIVALENT TO WEAK r-MONOTONICITY

We begin with

THEOREM 2.1. Suppose that $A \in \mathbb{R}^{m,n}$ has rank r. If A is weak-r-monotone, then A is $\{1\}$ -monotone.

Proof. Let A be weak-r-monotone. Then, by Definition 1.2, there exists a nonsingular $r \times r$ submatrix B of A which is monotone, i.e. $B^{-1} \ge 0$. Consider the representation (1.1) of A determined by this matrix B. Set

$$G:=Q'\left(\begin{array}{c|c} B^{-1} & 0\\ \hline 0 & 0 \end{array}\right)P'.$$

Then $G \ge 0$ and AGA = A [see also Lemma 1.3(i)], showing that A is $\{1\}$ -monotone.

That the converse of Theorem 2.1 is not true is illustrated by

EXAMPLE 2.2. Consider the matrix

$$A = 4^{-1/2} \begin{pmatrix} 1 & 3 & -1 & 1 \\ 2 & -2 & 2 & -2 \\ -1 & 1 & 1 & 3 \end{pmatrix}$$

of rank 3, and set

$$G := 4^{-1/2} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Since AGA = A and $G \ge 0$, A is $\{1\}$ -monotone. However, A is not weak-r-monotone, because all nonsingular 3×3 submatrices of A fail to be monotone.

3. A CONDITION ON A UNDER WHICH A IS WEAK-*r*-MONOTONE IF IT IS {1}-MONOTONE

In this section the following concepts will play a key role.

DEFINITION 3.1. A matrix $A \in \mathbb{R}^{m,n}$ is a P_+ -matrix if there exist {1}-inverses G and H of A such that

$$GA \ge 0, \qquad AH \ge 0.$$
 (3.1a-b)

DEFINITION 3.2. A matrix $E \in \mathbb{R}^{r, t}$ of rank r is a W-matrix if E has a nonsingular submatrix F of order r such that

$$F^{-1}E \ge 0. \tag{3.2}$$

For P_+ -matrices the author conjectured [10] (see also [9]) the following

THEOREM 3.3. Let $A \in \mathbb{R}^{m,n}$ of rank r be a P_+ -matrix. Then A is $\{1\}$ -monotone if and only if A is weak-r-monotone.

To establish this result we require several lemmas.

LEMMA 3.4. Let $A \in \mathbb{R}^{m,n}$ be of rank r, let B be a nonsingular submatrix of A of order r, and consider the representation (1.1) of A determined by B. Then A is a P_+ -matrix if and only if (I V) and (I U')' are both P_+ -matrices.

Proof. Observe first that by a theorem due to R. C. Bose (cf. Lemma 5.1 in [11]), G is a $\{1\}$ -inverse of A if and only if QGP is a $\{1\}$ -inverse of $\tilde{A} := P'AQ'$. Since P and Q are permutation matrices, it follows that A is a P_+ -matrix if and only if

$$\tilde{A} = \begin{pmatrix} I \\ U \end{pmatrix} B(I \quad V) \tag{3.3}$$

is a P_+ -matrix. By applying Lemma 1.3 to the representation (3.3) of A determined by B as well as to $D := (I \ U')'$ and $E := (I \ V)$, we further obtain

$$\{\tilde{A}\}\tilde{A}\{1\} = \{D\}D\{1\}, \qquad \tilde{A}\{1\}\{\tilde{A}\} = E\{1\}\{E\}.$$
 (3.4a-b)

Since $D\{1\}\{D\} = \{I\}$ and $\{E\}E\{1\} = \{I\}$ [see Note 1.5], our claim then follows by virtue of (3.4a-b).

LEMMA 3.5. A matrix A is a P_+ -matrix if and only if A' is a P_+ -matrix.

Proof. Observe that $G \in A\{1\}$ if and only if $G' \in A'\{1\}$.

LEMMA 3.6. For $T_0 \in \mathbb{R}^{r,u}$, let $A_0 := (I \ T_0)$. Then A_0 is a P_+ -matrix if and only if A_0 is a W-matrix.

Proof of the "only if" part. Applying Lemma 1.3 to the representation $A_0 = (I \ T_0)$ results in $\{A_0\}A_0\{1\} = \{I\}$ [observe Note 1.5] and

$$A_0\{1\}\{A_0\} = \left\langle \binom{I-T_0K}{K} (I - T_0) \middle| K \in \mathbb{R}^{u,r} \right\rangle,$$

so that A_0 is a P_+ -matrix if and only if the following system of inequalities is consistent:

$$I \ge T_0 K$$
, $T_0 \ge T_0 K T_0$, $K \ge 0$, $K T_0 \ge 0$. (3.5a-d)

Assume that A_0 is a P_+ -matrix, and let K_0 be a particular solution to (3.5a-d). For $Z := K_0 T_0 K_0$ we have $Z \leq K_0$ by virture of (3.5 a, c). Inspection shows that Z solves (3.5a-d) if K_0 does. Define a sequence $\{K_n\}$ for $n \ge 1$ by setting $K_n := K_{n-1} T_0 K_{n-1}$. This sequence is decreasing and bounded below. Hence it converges, and by construction it follows that $Y := \lim K_n$

solves not only (3.5a-d) but also

$$K = KT_0 K. \tag{3.5e}$$

This matrix Y enables us to construct a proper submatrix D_0 of A_0 such that $G_0A_0 \ge 0$ for some {1}-inverse G_0 of D_0 . We need to consider two exhaustive cases.

Case I: Assume that Y = 0. Then, by (3.5b), $T_0 \ge 0$. Hence $A_0 \ge 0$, and $D_0 := I$ can serve as a proper nonsingular $r \times r$ submatrix of A_0 for which $D_0^{-1}A_0 \ge 0$; thus showing that A_0 is a W-matrix.

Case II: Assume that $Y \neq 0$. In this case set $D_0 := (J_0 \ T_0)$, where J_0 is defined as a submatrix of I and contains its *i*th column e_i if and only if the *i*th column of Y is equal to the zero column. In D_0 as well as in what follows we interpret each block and each summand depending on J_0 as absent and zero, respectively, when Y contains no zero column. By definition of J_0 , we have

$$YJ_0 = 0.$$
 (3.6)

From $I - T_0 Y \ge 0$, $Y \ge 0$, and $Y(I - T_0 Y) = 0$ [observe (3.5a, c, e)] we conclude that

$$Ye_i \neq 0 \quad \Rightarrow \quad e'_i(I - T_0Y) = 0. \tag{3.7}$$

Hence

$$(I - J_0 J_0')(I - T_0 Y) = 0. (3.8)$$

The equation $Y = YT_0Y$ [note (3.5e)] also yields

$$(T_0Y)^2 = T_0Y, \qquad (YT_0)^2 = YT_0.$$
 (3.9a-b)

By means of (3.8), (3.9a), and (3.6) it may now be checked that

$$(J_0J_0' + T_0Y)(2I - J_0J_0' - T_0Y) = I,$$

thus showing that

$$(J_0 J_0' + T_0 Y)^{-1} = 2I - J_0 J_0' - T_0 Y.$$
(3.10)

The nonsingularity of $J_0J'_0 + T_0Y = (J_0 \ T_0)(J_0 \ Y')'$ forces the matrix $D_0 = (J_0 \ T_0)$ to have full row rank, i.e. rank $(D_0) = r$. For the matrix

$$G_0 := \binom{J_0'}{Y} (J_0 J_0' + T_0 Y)^{-1}$$
(3.11)

we have $D_0G_0 = I$ and therefore $D_0G_0D_0 = D_0$, i.e., G_0 is a {1}-inverse of D_0 . That

$$G_0 = \begin{pmatrix} J'_0(I - T_0Y) \\ Y \end{pmatrix} \ge 0$$
(3.12a)

and

$$G_0 D_0 = \left(\frac{J_0' J_0}{0} \mid \frac{J_0' (I - T_0 Y) T_0}{Y T_0} \right) \ge 0$$
 (3.12b)

hold true can be seen by using the definition of J_0 , Equations (3.6), (3.9b), (3.10), and the fact that Y is a solution to (3.5a-e). From (3.12a-b) and the definition of D_0 it is clear that

$$G_0 A_0 \ge 0. \tag{3.13}$$

Now we proceed as follows. If D_0 is square and consequently nonsingular, then $G_0 = D_0^{-1}$, and it follows from (3.13) that A_0 is a W-matrix. It only remains to consider the case where D_0 is not square. By construction [observe (3.11) and (3.12a-b)] we have

$$G_0 D_0 \ge 0$$
, $D_0 G_0 = I$, and $G_0 \ge 0$,

showing that the proper submatrix D_0 of A_0 is a {1}-monotone P_+ -matrix. Since rank $(D_0) = r$, there is a nonsingular $r \times r$ submatrix B_1 of D_0 . So we can consider the representation

$$D_0 = B_1 (I - T_1) R_1$$

of D_0 determined by B_1 , where R_1 is a suitable permutation matrix. From Lemma 3.4 it follows that

$$A_1 \coloneqq \begin{pmatrix} I & T_1 \end{pmatrix}$$

is a P_+ -matrix because D_0 is a P_+ -matrix. If we apply the above steps not to A_0 but to A_1 , we obtain a proper submatrix D_1 of A_1 such that rank $(D_1) = r$ and

$$G_1 A_1 \ge 0 \tag{3.14}$$

for some $\{1\}$ -inverse G_1 of D_1 . Moreover

$$G_1 D_1 \ge 0$$
, $D_1 G_1 = I$, and $G_1 \ge 0$,

so that D_1 is a $\{1\}$ -monotone P_+ -matrix. If D_1 is square, $G_1 = D_1^{-1}$, so that A_1 is a W-matrix by virture of (3.14). Otherwise, we proceed with D_1 as above with D_0 . Doing this repeatedly results in a sequence of P_+ -matrices A_0, A_1, A_2, \ldots Observe, however, that after a finite number of iterations we must arrive at a W-matrix, say A_k . This happens because by construction each matrix D_{i+1} of full row rank r is a proper $\{1\}$ -monotone submatrix of

$$A_{i+1} \coloneqq \begin{pmatrix} I & T_{i+1} \end{pmatrix}$$

in the representation

$$D_i = B_{i+1}A_{i+1}R_{i+1} = (J_i - T_i)$$
(3.15)

of the {1}-monotone P_{+} -matrix D_{i} determined by the nonsingular $r \times r$ matrix B_{i+1} . Since A_{k} is a W-matrix, the proof of the "only if" part is completed by showing that A_{i} is a W-matrix if A_{i+1} is such a matrix. For this purpose, assume that A_{i+1} is a W-matrix, i.e. $F_{i+1}^{-1}A_{i+1} \ge 0$ for some nonsingular $r \times r$ submatrix F_{i+1} of $A_{i+1} = (I \ T_{i+1})$. Then $0 \le F_{i+1}^{-1}A_{i+1} = (I \ \tilde{T}_{i+1})P_{i+1}$ for some permutation matrix P_{i+1} . Evidently

$$\tilde{T}_{i+1} \ge 0, \qquad D_i = B_{i+1}F_{i+1}(I - \tilde{T}_{i+1})P_{i+1}R_{i+1} \qquad (3.16a-b)$$

[note (3.15)], showing in particular that $B_{i+1}F_{i+1}$ is a nonsingular submatrix of D_i . Next consider the representation (3.16b) of D_i determined by $B_{i+1}F_{i+1}$. Since D_i is {1}-monotone, it follows from Lemma 1.4 that we can find a nonnegative matrix X such that $(B_{i+1}F_{i+1})^{-1} \ge \tilde{T}_{i+1}X$. Thus

$$(B_{i+1}F_{i+1})^{-1} \ge 0 \tag{3.17}$$

because $\tilde{T}_{i+1} \ge 0$ [see (3.16a)]. From (3.16a–b) we further obtain

$$(B_{i+1}F_{i+1})^{-1}D_i \ge 0. (3.18)$$

Consequently [observe (3.17)–(3.18)],

$$(B_{i+1}F_{i+1})^{-1}A_i \ge 0, (3.19)$$

because $D_i = (J_i \ T_i)$ is a submatrix of $A_i = (I \ T_i)$. Since $B_{i+1}F_{i+1}$ is a nonsingular submatrix of A_i , it follows from (3.19) that A_i is a W-matrix.

Proof of the "if" part. Let A_0 be a W-matrix, i.e., assume that there is a nonsingular $r \times r$ submatrix F_0 of A_0 such that $F_0^{-1}A_0 \ge 0$. Then $0 \le F_0^{-1}A_0 = (I \ \tilde{T}_0)P_0$ for some permutation matrix P_0 . Hence $A_0 = F_0(I \ \tilde{T}_0)P_0$ where $\tilde{T}_0 \ge 0$. Since $G = (I \ 0)'$ is a nonnegative $\{1\}$ -inverse of the nonnegative matrix $(I \ \tilde{T}_0)$, it is clear that $(I \ \tilde{T}_0)$ is a P_+ -matrix. Our claim now follows by virture of Lemma 3.4.

We are now in a position to prove our main result.

Proof of Theorem 3.3. Sufficiency is clear by Lemma 2.1. To prove necessity, let $A \in \mathbb{R}^{m,n}$ of rank r be a $\{1\}$ -monotone P_+ -matrix. Since A has rank r, there is a nonsingular $r \times r$ submatrix B of A. Consider the representation

$$A = P \begin{pmatrix} I \\ U \end{pmatrix} B (I \quad V) Q \tag{1.1}$$

of A determined by B. From Lemma 3.4 in conjunction with Lemma 3.5 it follows that

$$D := (I \quad V) \quad \text{and} \quad E' := (I \quad U')$$

are P_+ -matrices. By Lemma 3.6 we know that D and E' are W-matrices. Consequently, we can find nonsingular $r \times r$ submatrices M and N' of D and E', respectively, such that $M^{-1}D \ge 0$ and $N'^{-1}E' \ge 0$. Then

$$M^{-1}D = (I \quad \tilde{V})\tilde{Q} \text{ and } N'^{-1}E' = (I \quad \tilde{U}')\tilde{P}'$$

for some nonnegative matrices \tilde{U} and \tilde{V} as well as for some permutation matrices \tilde{P} and \tilde{Q} . Hence

$$D = M(I \quad \tilde{V})\tilde{Q}, \qquad E' = N'(I \quad \tilde{U'})\tilde{P'}, \qquad (3.20a-b)$$

where

$$\tilde{V} \ge 0, \qquad \tilde{U} \ge 0.$$
 (3.20c-d)

Inserting (3.20a-b) in (1.1) results in

$$A = \vec{P} \begin{pmatrix} I \\ \tilde{U} \end{pmatrix} NBM(I \quad \tilde{V}) \overline{Q}, \qquad (3.21)$$

where $\overline{P} := P\tilde{P}$ and $\overline{Q} := \tilde{Q}Q$. We now apply Lemma 1.4 to the representation (3.21) of A determined by NBM. Since A is $\{1\}$ -monotone, there exist nonnegative matrices X, Y, and Z such that

$$(NBM)^{-1} \ge Y\tilde{U} + \tilde{V}X + \tilde{V}Z\tilde{U}.$$

Consequently,

$$(NBM)^{-1} \ge 0,$$

by virture of (3.20c-d). Hence A is weak-r-monotone.

We remark that Theorem 3.3 was used in [12] to prove several interesting results concerning the Drazin monotonicity of property-n matrices.

Theorem 3.3 admits a corollary for nonnegative matrices.

COROLLARY 3.7. Let $A \in \mathbb{R}^{m,n}$ of rank r be nonnegative. Then A is $\{1\}$ -monotone if and only if A is weak-r-monotone.

Proof. Sufficiency is clear by Lemma 2.1. To establish necessity, let A be a nonnegative $\{1\}$ -monotone matrix of rank r. Then there is a nonnegative $\{1\}$ -inverse G of A. Consequently, $AG \ge 0$ and $GA \ge 0$, showing that A is a P_+ -matrix. The corollary now follows from Theorem 3.3.

A different proof of this, using a result by Flor [5], may be found in [9, p. 81]. We conclude this paper with a further known corollary to Theorem 3.3.

COROLLARY 3.8 (cf. [10, Satz 3.5.8]). For $A \in \mathbb{R}^{m,n}$ of rank r, let AA^+ and A^+A be both nonnegative matrices. Then A is $\{1\}$ -monotone if and only if A is weak-r-monotone.

Proof. Observe that the Moore-Penrose inverse A^+ of A (see, e.g., [3]) is a particular $\{1\}$ -inverse of A.

REFERENCES

- 1 A. Berman and R. J. Plemmons, Matrix group monotonicity, Proc. Amer. Math. Soc. 46:355-359 (1974).
- 2 A. Berman and R. J. Plemmons, Eight types of matrix monotonicity, *Linear Algebra Appl.* 13:115-123 (1976).
- 3 A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic, New York, 1979.
- 4 L. Collatz, Aufgaben monotoner Art, Arch. Math. 3:366-376 (1952).
- 5 P. Flor, On groups of non-negative matrices, *Compositio Math.* 21:376–382 (1969).
- 6 M. Neumann, G. D. Poole, and H. J. Werner, More on generalizations of matrix monotonicity, *Linear Algebra Appl.* 48:413-435 (1982).
- 7 G. D. Poole and G. P. Barker, MP matrices, Linear Algebra Appl. 26:165-174 (1979).
- 8 W. C. Pye, Nonnegative Drazin inverses, *Linear Algebra Appl.* 30:149–153 (1980).
- 9 H. J. Werner, g-Inverse und monotone Matrizen, Dissertation, Bonn, 1977.
- H. J. Werner, Schwache and und strenge r-Monotonie—Mögliche Erweiterungen des Begriffs von monotoner Art von L. Collatz, Methods Oper. Res. 31:705-717 (1979).
- 11 H. J. Werner, Charakterisierungen von monotonen Matrizen, Linear Algebra Appl. 60:79-90 (1984).
- H. J. Werner, Drazin-monotonicity characterizations for property-n matrices, Linear Algebra Appl. 71:327-337 (1985).

Received August 1983; revised 4 February 1986