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ABSTRACT 

In this paper the relationship between weak r-monotonicity and { 1}-monotonicity 
is discussed. In particular, an affirmative answer to a question raised by Werner in 
1977 is given. 

1. INTRODUCTION AND PRELIMINARIES 

From L. Collatz we have the following definition. A square real matrix A 
is said to be monotone if Ax > 0 * x > 0; this implication is equivalent to A 
being invertible with A-’ > 0 (see [4]). Several generalizations of this 
concept exist where A is singular and in general rectangular (see, e.g., [I-3, 
S-121). 

The purpose of this paper is to study the relationship between the 
following two generalizations of matrix monotonicity. 

DEFINITION 1.1 (Berman and Plemmons [3]). A real m x n matrix A is 
{ l}-monotone if it has a nonnegative { l}-inverse X, i.e. the equation AXA = A 

is solvable for some X >, 0. 
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DEFINITION 1.2 (Werner [9]). A real m x n matrix A of rank r is 
weak-r-monotone if A has a monotone submatrix of order r. 

In Section 2 we shall be concerned with the following question: Suppose 
that A has rank r; is A { 1}-monotone if and only if A is weak-r-monotone? 
This question has already been considered in [9]. It will be shown that the 
“if” part of this question is true, whereas the “only if” part is (in general) 
false. In Section 3 we shall look for an additional assumption under which the 
equivalence under study becomes true. Our main result in this respect will 
give an affirmative answer to a conjecture raised in [9] (see also [lo]). Some 
further known results then follow as special cases. 

Suppose that the matrix A is in the space R m, ” of all real m x n matrices 
and has rank r, and let B be an T x r nonsingular submatrix of A. Then there 
exist matrices U E lR”-‘s’, V E lF-J’~“-’ and permutation matrices P and Q of 
orders m and n, respectively, such that 

A=P (14 

where I denotes the identity matrix of order r. In what follows we shall use 
the following known results. 

LEMMA 1.3 (see Werner [ll, Satz 5.3 and Satz 5.41). Suppose A E Iw”,” 
is of rank r. Let B be a nonsingular s&matrix of A of order r, and consider 
the representation (1.1) of A determined by B. Denote by A { l} the set of all 
{ I}-inverses of A. Then 

and consequently, 

(iii) A(l)(A) =(Q’(z-KvK)(Z V)QIKEW”-‘+, 

{A}A{~} = (,(L)(z-Lu L)P~LER’,-], 

where { A } stands for the singleton set consisting of A. 
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LEMMA 1.4 (see Werner [ll, Satz 6.11). Let A and B be us in Lemma 
1.3, and consider the representation (1.1) of A determined by B. Then A is 
{ l}-monotone if and only if we can find nonnegative matrices X, Y, and Z 
such that 

B-‘>,YU+VX+VZU. (1.2) 

NOTE 1.5. In (1.1) Lemma 1.3 and Lemma 1.4, we interpret U, Y, Z, L 
as absent and YU, VZV, LU as zero if rank(A) = m, and similarly for V, X, 
Z, K,VX,VZU,andVKifrank(A)=n.Henceinparticular {A}A{l} = {I} 
if rank(A)=m. Likewise A(l)(A) = {I} if rank(A)=n. 

2. { 1}-MONOTONICITY IS NOT EQUIVALENT TO WEAK 
r-MONOTONICITY 

We begin with 

THEOREM 2.1. Suppose that A E I%“~” has rank T. Zf A is weak-r-mono- 
tone, then A is { l}-monotone. 

Proof. Let A be weak-r-monotone. Then, by Definition 1.2, there exists 
a nonsingular r X r submatrix B of A which is monotone, i.e. B- ’ > 0. 
Consider the representation (1.1) of A determined by this matrix B. Set 

G:-Q, B-’ 0 p/s H--i 0 0 

Then G > 0 and AGA = A [see also Lemma 1.3(i)], showing that A is 
{ l}-monotone. 

That the converse of Theorem 2.1 is 

EXAMPLE 2.2. Consider the matrix 

1 
A=4-‘/2 2 - 

-1 

not true is illustrated by 
a 
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of rank 3, and set 

1 1 0 

G.=4-1/2 . i 1 
0 
0 0 9 1 11’ 

0 1 
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Since AGA = A and G > 0, A is {1}-monotone. However, A is not weak-r- 
monotone, because all nonsingular 3 ~3 submatrices of A fail to be mono- 
tone. 

3. A CONDITION ON A UNDER WHICH A IS WEAK-r-MONOTONE 
IF IT IS { l}-MONOTONE 

In this section the following concepts will play a key role. 

DEFINITION 3.1. A matrix A E Iw”‘,” is a I’+-matrix if there exist {l}- 
inverses G and H of A such that 

GA>O, AH>,O. (3.la-b) 

DEFINITION 3.2. A matrix E E R’,’ of rank r is a W-matrix if E has a 
nonsingular submatrix F of order r such that 

Fp’E>O. (3.2) 

For P+-matrices the author conjectured [lo] (see also [9]) the following 

THEOREM 3.3. Let A E Iw”,” of rank r be a P,-matrix. Then A is 
{ l}-monotone if and only if A is weak-r-monotone. 

To establish this result we require several lemmas. 

LEMMA 3.4. Let A E OX”‘*” be of rank r, let B be a nonsingular subma- 
trix of A of order r, and consider the representation (1.1) of A determined by 
B. 7’hen A is a P+-matrix if and only if (1 V) and (I U’)’ are both 
P+-matrices. 



WEAK r-MONOTONICITY 203 

Proof. Observe first that by a theorem due to R. C. Bose (cf. Lemma 5.1 
ic [ll]), G is a {l}- inverse of A if and only if QGP is a { 1}-inverse of 
A := P’AQ’. Since P and Q are permutation matrices, it follows that A is a 
P+-matrix if and only if 

A= ( 1 ; B(Z v> (3.3) 

is a P,matrix. By applying Lemma 1.3 to the representation (3.3) of A 
determined by B as well as to D := (I U’)’ and E := (I V), we further 
obtain 

{ a}a{l} = { D}D{l}, A”{l}{A} =E{l}{E}. (3.4a-b) 

Since D(l)(D) = {I} and {E}E{l} = {I} [see Note 1.51, our claim then 
follows by virtue of (3.4~ -b). n 

LEMMA 3.5. A matrix A is a P+-matrix if and only if A’ is a P+-matrix. 

Proof. Observe that G E A{ l} if and only if G’ E A’{ 1). n 

LEMMA 3.6. For T, E [w ‘pU, let A, :=(I To). Then A, is a P,-matrix if 

and only if A, is a W-matrix. 

Proof of the “only if” part. Applying Lemma 1.3 to the representation 
A, = (I T,) results in { A,}A,{l} = {Z} [observe Note 1.51 and 

A,(I)(A,) =((z-~Kj(l T+W+ 

so that A, is a P+-matrix if and only if the following system of inequalities is 
consistent: 

I >, T,K, T, >, ToKTo, K >, 0, KT, >, 0. (3.5a-d) 

Assume that A, is a P+-matrix, and let K, be a particular solution to 
(3.5a-d). For Z := K,T,,K, we have Z < K, by virture of (3.5 a,~). Inspect- 
ion shows that Z solves (3.5a-d) if K, does. Define a sequence {K,} for 
n >, 1 by setting K, := K,_ 1T0K,_ 1. This sequence is decreasing and bounded 
below. Hence it converges, and by construction it follows that Y := hm K, 
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solves not only (3.5a-d) but also 
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K= KT,K. (3.5e) 

This matrix Y enables us to construct a proper submatrix Da of A, such that 
G,A, > 0 for some {1}-inverse G, of Da. We need to consider two exhaus- 
tive cases. 

Case I: Assume that Y = 0. Then, by (3.5b), To > 0. Hence A, > 0, and 
Da := I can serve as a proper nonsingular T X r submatrix of A, for which 
D[ ‘A, > 0; thus showing that A, is a W-matrix. 

Case ZZ: Assume that Y f 0. In this case set D, := (Jo To), where Jo is 
defined as a submatrix of Z and contains its ith column ei if and only if the 
i th column of Y is equal to the zero column. In D, as well as in what follows 
we interpret each block and each summand depending on Jo as absent and 
zero, respectively, when Y contains no zero column. By definition of Jo, we 
have 

Yr, = 0. (3.6) 

From Z - T,Y >, 0, Y >, 0, and Y( Z - T,Y) = 0 [observe (3.5a,c,e)] we con- 
clude that 

Hence 

Ye, # 0 =j e((Z - T,Y)= 0. (3.7) 

(I-J&')(Z-ToY)=O. 

The equation Y = YT,Y [note (3.5e)] also yields 

(T,Y)2 = T,Y, (YTo)2 =YT,. 

By means of (34, (3.9a), and (3.6) it may now be checked that 

(.&Jo’+ T,Y)(ZZ - Jo.&- TOY) = Z, 

thus showing that 

(3.8) 

(3.9a-b) 

(3.10) 
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The nonsingularity of Jo& + T,Y = (Jo T,)(.ZO Y ‘)’ forces the matrix D, = 
(Jo T,) to have full row rank, i.e. rank(DO) = T. For the matrix 

(3.11) 

we have DoGo = Z and therefore DoGoD, = D,, i.e., G, is a { l}-inverse of 
D,. That 

and 

(3.12a) 

(3.12b) 

hold true can be seen by using the definition of Jo, Equations (3.6) (3.9b), 
(3.10), and the fact that Y is a solution to (3.5a-e). From (3.12a-b) and the 
definition of D, it is clear that 

G,A, >, 0. (3.13) 

Now we proceed as follows. If Do is square and consequently nonsingular, 
then G, = Dil, and it follows from (3.13) that A, is a W-matrix. It only 
remains to consider the case where D, is not square. By construction 
[observe (3.11) and (3.12a-b)] we have 

GoDo >, 0, DoGo = I, and G, > 0, 

showing that the proper submatrix Do of A, is a { 1}-monotone P+-matrix. 
Since rank(D,,) = r, there is a nonsingular T X r submatrix B, of Do. So we 

can consider the representation 

Q, = %(I TI)& 

of D, determined by B,, where R, is a suitable permutation matrix. From 
Lemma 3.4 it follows that 

A,:=(Z T,) 
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is a P+-matrix because Do is a P+-matrix. If we apply the above steps not to 
A, but to A,, we obtain a proper submatrix D, of A, such that rank( Dl) = r 
and 

G,A, >, 0 (3.14) 

for some { 1}-inverse G, of D,. Moreover 

G,D, >, 0, D,G,=Z, and G,>,O, 

so that D, is a { 1}-monotone P+-matrix. If D, is square, G, = D;‘, so that 
A, is a W-matrix by virture of (3.14). Otherwise, we proceed with D, as 
above with Do. Doing this repeatedly results in a sequence of P+-matrices 
A,, A,, A,, . . . . Observe, however, that after a finite number of iterations we 
must arrive at a W-matrix, say A,. This happens because by construction each 
matrix Di+l of full row rank T is a proper { l}-monotone submatrix of 

Ai+i:= (Z Ti+J 

in the representation 

Di=B,+iAi+iRi+i=(Ji Ti) (3.15) 

of the { 1}-monotone P+-matrix Di determined by the nonsingular r X T 
matrix Bi+ r. Since A, is a W-matrix, the proof of the “only if” part is 
completed by showing that Ai is a W-matrix if Ai+ 1 is such a matrix. For this 
purpose, assume that Ai+i is a W-matrix, i.e. Fi~‘rAi+ 1 >, 0 for some nonsin- 
g,ular r x r submatrix Fi+, of A,+i=(Z Ti+,). Then 0 < Fi;‘,Ai+,= 

(’ c+i>P,+i for some permutation matrix Pi + 1. Evidently 

q++0, Di=Bi+l$+l(z C+l)q+lRi+l (3.16a-b) 

[note (3.15)], showing in particular that Bi + IF, + 1 is a nonsingular submatrix 
of Di. Next consider the representation (3.16b) of 0, determined by Bi + iFi + i. 
Since Di is {I}-monotone, it follows from Lemma 1.4 that we can find a 
nonnegative matrix X such that ( Bi + 1Fi + 1) ~ 1 2 fi + ,X. Thus 

(‘i+lF,+l)-‘~O 
because ?. r+l > 0 [see (3.16a)]. From (3.16a-b) we further obtain 

(3.17) 

(Bi+lFi+l) -lq 2 0. (3.18) 
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Consequently [observe (3.17)-(3.18)], 

(‘i+l’i+l)-‘Ai 2 0, (3.19) 

because ZIi =(_Zi q) is a submatrix of Ai =(I Pi). Since B,+,F,+, is a 
nonsingular submatrix of Ai, it follows from (3.19) that A i is a W-matrix. 

Proof of the “ir’ part. Let A, be a W-matrix, i.e., assume that there is a 
nonsingular r X r submatrix F, of A, such that PC ‘Aa > 0. Then 0 < FL ‘A0 
5 (I fa)P, for some permutation matrix Pa. Hence A, = F,(Z Yf")P,, where 
T, > 0. Since G = (I 0)’ is a nonnegative { 1}-inverse of the nonnegative 
matrix (I f,), it is clear that (I fO) is a P+-matrix. Our claim now follows by 
virture of Lemma 3.4. a 

We are now in a position to prove our main result. 

Proof of Theorem 3.3. Sufficiency is clear by Lemma 2.1. To prove 
necessity, let A E R m, n of rank r be a { l}-monotone P+-matrix. Since A has 
rank r, there is a nonsingular r X r submatrix B of A. Consider the 
representation 

A=P 0.1) 

of A determined by B. From Lemma 3.4 in conjunction with Lemma 3.5 it 
follows that 

D:=(Z V) and E’:=(Z UT) 

are P+-matrices. By Lemma 3.6 we know that D and E’ are W-matrices. 
Consequently, we can find nonsingular r x T submatrices M and N’ of D 
and E', respectively, such that M-'D > 0 and N'-'E'> 0. Then 

M-‘D=(z v)o and IV’-‘,?‘= (1 of)pr 

for some nonnegative matrices Z? and q as well as for some permutation 
matrices P and 6. Hence 

D=M(z P:>Q, E'=N'(z @)p’, (3.20a-b) 
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ILO, B>O. (3.20c-d) 

Inserting (3.20a-b) in (1.1) results in 

A=P ; NBM(z v)p, 
i 1 

(3.21) 

where P := Pp and Q:= QQ. W e now apply Lemma 1.4 to the representa- 
tion (3.21) of A determined by NBM. Since A is {I)-monotone, there exist 
nonnegative matrices X, Y, and Z such that 

Consequently, 

(NBM)-‘HI, 

by virture of (3.20c-d). Hence A is weak-r-monotone. n 

We remark that Theorem 3.3 was used in [12] to prove several interesting 
results concerning the Drazin monotonicity of property-n matrices. 

Theorem 3.3 admits a corollary for nonnegative matrices. 

COROLLARY 3.7. Let A E II%“‘,” of rank r be nonnegative. Then A is 
{ l}-monotone if and only if A is weak-r-monotone. 

Proof. Sufficiency is clear by Lemma 2.1. To establish necessity, let A 
be a nonnegative { 1}-monotone matrix of rank r. Then there is a nonnegative 
{ 1}-inverse G of A. Consequently, AG 2 0 and GA > 0, showing that A is a 
P+-matrix. The corollary now follows from Theorem 3.3. n 

A different proof of this, using a result by Flor [S], may be found in [9, p. 
811. We conclude this paper with a further known corollary to Theorem 3.3. 

COROLLARY 3.8 (cf. [lo, Satz 3.5.81). For A E Iw”,” of rank r, let AA+ 
and A +A be both nonnegative matrices. Then A is { l}-monotone if and only 
if A is weak-r-monotone. 
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Proof. Observe that the Moure-Penrose inverse A+ of A (see, e.g., [3]) is 
a particular { 1}-inverse of A. n 
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