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ABSTRACT

In this paper the relationship between weak r-monotonicity and {1}-monotonicity
is discussed. In particular, an affirmative answer to a question raised by Werner in
1977 is given.

1. INTRODUCTION AND PRELIMINARIES

From L. Collatz we have the following definition. A square real matrix A
is said to be monotone if Ax > 0= x > 0; this implication is equivalent to A
being invertible with A~!>0 (see [4]). Several generalizations of this
concept exist where A is singular and in general rectangular (see, e.g., [1-3,
6-12)).

The purpose of this paper is to study the relationship between the
following two generalizations of matrix monotonicity.

DerFintTioN 1.1 (Berman and Plemmons [3]). A real m X n matrix A is
{1}-monotone if it has a nonnegative {1}-inverse X, i.e. the equation AXA = A
is solvable for some X > 0.
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DeriniTioN 1.2 (Werner [9]). A real m X n matrix A of rank 7 is
weak-r-monotone if A has a monotone submatrix of order r.

In Section 2 we shall be concerned with the following question: Suppose
that A has rank r; is A {1}-monotone if and only if A is weak-r-monotone?

This question has already been considered in [9]. It will be shown that the

“if” part of this question is true, whereas the only 1f part is (in general)
false. In Section 3 we shall look for an additional assumption under which the
equivalence under study becomes true. Our main result in this respect will
give an affirmative answer to a conjecture raised in [9] (see also [10]). Some
further known results then follow as special cases.

Suppose that the matrix A is in the space R™ " of all real m X n matrices
and has rank r, and let B be an r X r nonsingular submatrix of A. Then there
exist matrices U € R™™"", V€R"""" and permutation matrices P and Q of
orders m and n, respectively, such that

A=P( (I])B(I V)0, (1.1)

where I denotes the identity matrix of order r. In what follows we shall use
the following known results.

LemmMa 1.3 (see Werner [11, Satz 5.3 and Satz 5.4]). Suppose A€ R™"
is of rank r. Let B be a nonsingular submatrix of A of order r, and consider
the representation (1.1) of A determined by B. Denote by A{1} the set of all
{ 1}-inverses of A. Then

0 A{l}={Q,(B“—YU;VX—VZUI| ;)P

X eRn—f,T, Y E Rf,'"l—r’ Z eRn—f,ﬂIf}’

and consequently,

(i) (A}A{1) = {P({J)(I—LU L)P’

Le Rr,m—r}’

G) Ay ={o " )a vielker,

where { A} stands for the singleton set consisting of A.
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As a direct consequence of Lemma 1.3 we mention

LemMa 1.4 (see Werner [11, Satz 6.1]). Let A and B be as in Lemma
1.3, and consider the representation (1.1) of A determined by B. Then A is
{1}-monotone if and only if we can find nonnegative matrices X, Y, and Z
such that

B '>YU+VX+VZU. (1.2)

Notk 1.5. In (1.1), Lemma 1.3 and Lemma 1.4, we interpret U,Y, Z, L
as absent and YU, VZU, LU as zero if rank(A) = m, and similarly for V, X,
Z, K, VX, VZU, and VK if rank(A) = n. Hence in particular { A}A{1} = {I}
if rank(A) = m. Likewise A{1}{ A} = {1} if rank(A)=n.

2. {1}-MONOTONICITY IS NOT EQUIVALENT TO WEAK
r-MONOTONICITY

We begin with

TueoreMm 2.1.  Suppose that A€R™" has rank r. If A is weak-r-mono-
tone, then A is {1}-monotone.

Proof. Let A be weak-r-monotone. Then, by Definition 1.2, there exists
a nonsingular r X r submatrix B of A which is monotone, ie. B~1>0.
Consider the representation (1.1) of A determined by this matrix B. Set

-1
c==Q/(BO 8)1".

Then G >0 and AGA= A [see also Lemma 1.3(i)], showing that A is

{1}-monotone. ]
That the converse of Theorem 2.1 is not true is illustrated by

ExampLE 2.2. Consider the matrix

1 3 -1 1
A=4Y% 9o _2 2 -2
-1 1 1 3
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|

Since AGA= A and G >0, A is {1}-monotone. However, A is not weak-r-
monotone, because all nonsingular 3 X3 submatrices of A fail to be mono-
tone.

of rank 3, and set

O et O
—_— O

3. A CONDITION ON A UNDER WHICH A IS WEAK-r-MONOTONE
IF IT IS {1}-MONOTONE

In this section the following concepts will play a key role.

DerintTioN 3.1, A matrix A€R™" is a P -matrix if there exist {1}-
inverses G and H of A such that

GA>0, AH>0. (3.1a-b)

DEerFiNiTION 3.2. A matrix E €R"™! of rank r is a W-matrix if E has a
nonsingular submatrix F of order r such that

FE>0. (3.2)

For P ,-matrices the author conjectured [10] (see also [9]) the following

THEOREM 3.3. Let A€R™" of rank r be a P -matrix. Then A is
{1}-monotone if and only if A is weak-rmonotone.

To establish this result we require several lemmas.

LEmMA 34. Let A€R™" be of rank r, let B be a nonsingular subma-
trix of A of order r, and consider the representation (1.1) of A determined by
B. Then A is a P -matrix if and only if (I V) and (I U’) are both
P -matrices.



WEAK r-MONOTONICITY 203

Proof. Observe first that by a theorem due to R. C. Bose (cf. Lemma 5.1
in [11]), G is a {1}-inverse of A if and only if QGP is a {1}-inverse of
A= P’AQ’. Since P and Q are permutation matrices, it follows that A is a
P ,-matrix if and only if

A=((I])B(I V) (3.3)

is a P,-matrix. By applying Lemma 1.3 to the representation (3.3) of A
determined by B as well as to D:=(I U’y and E=(I V), we further
obtain

{A}YA{1})={D}D{1}, A{1Y{A) =E{1}{E}. (3.4a-b)

Since D{1}{D}={I} and {E}E{1} = {I} [see Note 1.5], our claim then
follows by virtue of (3.4a-b). [ ]

LemmMa 3.5. A matrix A is a P -matrix if and only if A’ is a P -matrix.
Proof. Observe that G € A{1} if and only if G’ € A’{1}. |

LemMa 3.6. For T,eR"", let Aj:=(I T,). Then A, is a P_ -matrix if
and only if A, is a W-matrix.

Proof of the “only if " part. Applying Lemma 1.3 to the representation
Ag=(I Tp) results in { A;}A,{1} = {I} [observe Note 1.5] and

Ao (a0} = {10 m)

K ER"'r},
K

so that A, is a P -matrix if and only if the following system of inequalities is
consistent:

I>T,K, T,>T,KT,, K>0, KI,>0. (3.5a-d)

Assume that A, is a P -matrix, and let K, be a particular solution to
(3.5a-d). For Z = K,T,K,, we have Z < K, by virture of (3.5 a,c). Inspect-
- ion shows that Z solves (3.5a—d) if K, does. Define a sequence {K,} for
n > 1 by setting K, := K, _,T,K,,_,. This sequence is decreasing and bounded
below. Hence it converges, and by construction it follows that Y:=1lim K,
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solves not only (3.5a—d) but also
K =KT,K. (3.5¢)

This matrix Y enables us to construct a proper submatrix D, of A, such that
GoA, = 0 for some {1}-inverse G, of D,. We need to consider two exhaus-
tive cases.

Case I: Assume that Y = 0. Then, by (3.5b), T, > 0. Hence A, > 0, and
D, :=1 can serve as a proper nonsingular r X r submatrix of A, for which
D; A, > 0; thus showing that A is a W-matrix.

Case II: Assume that Y #0. In this case set Dy:=(J, T;), where J, is
defined as a submatrix of I and contains its ith column e; if and only if the
ith column of Y is equal to the zero column. In D, as well as in what follows
we interpret each block and each summand depending on J, as absent and
zero, respectively, when Y contains no zero column. By definition of J,, we
have

YJ,=0. (3.6)

From I -T,Y>0, Y>0, and Y(I —T,Y) =0 [observe (3.5a,c,e)] we con-
clude that

Ye,#0 = ¢/(I—-1,Y)=0. (3.7)

Hence
(I-LIHYI-T,Y)=0. (3.8)

The equation Y = YT,)Y [note (3.5¢)] also yields

(LY’ =Ty, (YI,)*=YT,. (3.9a-b)
By means of (3.8), (3.9a), and (3.6) it may now be checked that

(I Jg+ T Y)2I - 1)y —T,Y) =1,

thus showing that

(IJg+TY) "' =21 - JJ§ - T,Y. (3.10)
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The nonsingularity of JyJj+ ToY = (J, Ty)XJ, Y'Y forces the matrix D, =
(Jo Ty) to have full row rank, i.e. rank(D,) = r. For the matrix

G, ==(f)<;')(1010'+r0y)“ (3.11)

we have DG, = I and therefore D,G,D,= D,, ie., G, is a {1}-inverse of
D,. That

B(I1-TY)

v ) >0 (3.12a)

o

and

Ik | Jo’(I—ToY)To) 50 (3.12b)

GOD":( o I,

hold true can be seen by using the definition of J,, Equations (3.6), (3.9b),
(3.10), and the fact that Y is a solution to (3.5a—€). From (3.12a—b) and the
definition of D, it is clear that

GyAy=0. (3.13)
Now we proceed as follows. If D, is square and consequently nonsingular,
then G, = Dy !, and it follows from (3.13) that A, is a W-matrix. It only
remains to consider the case where D, is not square. By construction
[observe (3.11) and (3.12a-b)] we have
GoDy >0, DGy=1, and G;>0,
showing that the proper submatrix D, of A, is a {1}-monotone P -matrix.

Since rank(D,) = r, there is a nonsingular r X r submatrix B, of D,. So we
can consider the representation

D, = BI(I TI)RI

of D, determined by B,, where R, is a suitable permutation matrix. From
Lemma 3.4 it follows that

Ap=(I T
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is a P -matrix because D, is a P -matrix. If we apply the above steps not to
A, but to A, we obtain a proper submatrix D, of A, such that rank(D,)=r
and

G,A; =20 (3.14)
for some {1}-inverse G, of D,. Moreover
G,D, >0, DG, =1, and G20

so that D, is a {1}-monotone P -matrix. If D, is square, G, = D[ !, so that
A, is a W-matrix by virture of (3.14). Otherwise, we proceed with D, as
above with D,. Doing this repeatedly results in a sequence of P _-matrices
Ay, A}, A,,.... Observe, however, that after a finite number of iterations we
must arrive at a W-matrix, say A,. This happens because by construction each
matrix D, of full row rank r is a proper {1}-monotone submatrix of

Ai+ 1= ( I Ti+ 1 )
in the representation
D,=B;,,A;,.\R,,,=(J; T) (3.15)

of the {1}-monotone P -matrix D, determined by the nonsingular r X r
matrix B, ,. Since A, is a W-matrix, the proof of the “only if” part is
completed by showing that A, is a W-matrix if A, , is such a matrix. For this
purpose, assume that A, is a W-matrix, i.e. F;llAl +1= 0 for some nonsin-
gular rXr submatrix F,,, of A,,;,=(I T, ,). Then O0<F 1A, =
(I T, )P, for some permutation matrix P, ;. Evidently

120, D,=B,,F, (I T )PRiy  (3.16a-b)
[note (3.15)], showing in particular that B, ,F,,, is a nonsingular submatrix
of D,. Next consider the representation (3.16b) of D, determined by B; | F; ;.

Smce D, is {1}-monotone, it follows from Lemma 1.4 that we can find a
nonnegative matrix X such that (B, ,F,,,) !> T,, ,X. Thus

(B Firy) 20 (3.17)

because T, 41> 0 [see (3.16a)]. From (3.16a-b) we further obtain

(Bi\Fiyy) D, (3.18)
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Consequently [observe (3.17)—(3.18)],
(Bi+lFi+1)*1Ai>0y (3.19)

because D,=(J; T;) is a submatrix of A,=(I T}). Since B, F, ., is a
nonsingular submatrix of A, it follows from (3.19) that A, is a W-matrix.

Proof of the “if " part. Let A, be a W-matrix, i.e., assume that there is a
nonsingular r X r submatrix F, of A, such that F; A, > 0. Then 0 < F; A,
=(I T,)P, for some permutation matrix P,. Hence A, = F(I T,)P, where
To > 0. Since G=(I 0) is a nonnegative {1}-inverse of the nonnegative
matrix (I To ), it is clear that (I To) is a P_-matrix. Our claim now follows by
virture of Lemma 3.4. ]

We are now in a position to prove our main result.

Proof of Theorem 3.3. Sufficiency is clear by Lemma 2.1. To prove
necessity, let A€R™ " of rank r be a {1}-monotone P -matrix. Since A has
rank r, there is a nonsingular 7 X r submatrix B of A. Consider the
representation

A=P([I])B(I V)Q (1.1)

of A determined by B. From Lemma 3.4 in conjunction with Lemma 3.5 it
follows that

D:==(I V) and E':==(I U’)

are P -matrices. By Lemma 3.6 we know that D and E’ are W-matrices.
Consequently, we can find nonsingular r X r submatrices M and N’ of D
and E’, respectively, such that M~'D >0 and N’ !'E’> 0. Then

M 'D=(1 V)Q and N'7'E'=([ ()P

for some nonnegative matrices U and V as well as for some permutation
matrices P and (). Hence

D=M(1 V)0, E'=N(1 U")P, (3.20a-b)
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where

V=0, U>o0. (3.20c-d)
Inserting (3.20a-b) in (1.1) results in

I

A=?(6)NBM(1 V)0, (3.21)

where P := PP and (j = Q~Q We now apply Lemma 1.4 to the representa-
tion (3.21) of A determined by NBM. Since A is {1}-monotone, there exist
nonnegative matrices X, Y, and Z such that

(NBM) ' > YU+ VX +VZU.
Consequently,
(NBM) !> 0,

by virture of (3.20c—d). Hence A is weak-r-monotone. n

We remark that Theorem 3.3 was used in [12] to prove several interesting
results concerning the Drazin monotonicity of property-n matrices.
Theorem 3.3 admits a corollary for nonnegative matrices.

CoroLLARY 3.7. Let A€ER™" of rank r be nonnegative. Then A is
{1}-monotone if and only if A is weak-r-monotone.

Proof. Sufficiency is clear by Lemma 2.1. To establish necessity, let A
be a nonnegative {1}-monotone matrix of rank r. Then there is a nonnegative
{1}-inverse G of A. Consequently, AG > 0 and GA > 0, showing that A isa
P_-matrix. The corollary now follows from Theorem 3.3. u

A different proof of this, using a result by Flor [5], may be found in [9, p.
81]. We conclude this paper with a further known corollary to Theorem 3.3.

CoroLLARY 3.8 (cf. [10, Satz 3.5.8]). For A€R™" of rank r, let AA™
and A* A be both nonnegative matrices. Then A is {1}-monotone if and only
if A is weak-r-monotone.



WEAK r-MONOTONICITY 209

Proof. Observe that the Moore-Penrose inverse A™ of A (see, e.g., [3]) is

a particular {1}-inverse of A, |
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