On Weak r-Monotonicity*

Hans Joachim Werner
Institute for Econometrics and Operations Research
Econometrics Unit
University of Bonn
Adenauerallee 24-42
D-5300 Bonn 1, FRG

Submitted by Richard A. Brualdi

Abstract

In this paper the relationship between weak r-monotonicity and $\{1\}$-monotonicity is discussed. In particular, an affirmative answer to a question raised by Werner in 1977 is given.

1. INTRODUCTION AND PRELIMINARIES

From L. Collatz we have the following definition. A square real matrix A is said to be monotone if $A x \geqslant 0 \Rightarrow x \geqslant 0$; this implication is equivalent to A being invertible with $A^{-1} \geqslant 0$ (see [4]). Several generalizations of this concept exist where A is singular and in general rectangular (see, e.g., [1-3, 6-12]).

The purpose of this paper is to study the relationship between the following two generalizations of matrix monotonicity.

Definition 1.1 (Berman and Plemmons [3]). A real $m \times n$ matrix A is $\{1\}$-monotone if it has a nonnegative $\{1\}$-inverse X, i.e. the equation $A X A=A$ is solvable for some $X \geqslant 0$.

[^0]Definition 1.2 (Werner [9]). A real $m \times n$ matrix A of rank r is weak-r-monotone if A has a monotone submatrix of order r.

In Section 2 we shall be concerned with the following question: Suppose that A has rank r; is A \{1\}-monotone if and only if A is weak-r-monotone? This question has already been considered in [9]. It will be shown that the "if" part of this question is true, whereas the "only if" part is (in general) false. In Section 3 we shall look for an additional assumption under which the equivalence under study becomes true. Our main result in this respect will give an affirmative answer to a conjecture raised in [9] (see also [10]). Some further known results then follow as special cases.

Suppose that the matrix A is in the space $\mathbb{R}^{m, n}$ of all real $m \times n$ matrices and has rank r, and let B be an $r \times r$ nonsingular submatrix of A. Then there exist matrices $U \in \mathbb{R}^{m-r, r}, V \in \mathbb{R}^{r, n-r}$ and permutation matrices P and Q of orders m and n, respectively, such that

$$
A=P\binom{I}{U} B\left(\begin{array}{ll}
I & V \tag{1.1}
\end{array}\right) Q
$$

where I denotes the identity matrix of order r. In what follows we shall use the following known results.

Lemma 1.3 (see Werner [11, Satz 5.3 and Satz 5.4]). Suppose $A \in \mathbb{R}^{m, n}$ is of rank r. Let B be a nonsingular submatrix of A of order r, and consider the representation (1.1) of A determined by B. Denote by $A\{1\}$ the set of all $\{1\}$-inverses of A. Then

$$
\begin{align*}
& A\{1\}=\left\{Q ^ { \prime } \left(\left.\begin{array}{l|l}
B^{-1}-Y U-V X-V Z U & Y \\
X & Z
\end{array} P^{\prime} \right\rvert\,\right.\right. \tag{i}\\
&\left.X \in \mathbb{R}^{n-r, r}, Y \in \mathbb{R}^{r, m-r}, Z \in \mathbb{R}^{n-r, m-r}\right\}
\end{align*}
$$

and consequently,

$$
\{A\} A\{1\}=\left\{\left.P\binom{I}{U}\left(\begin{array}{ll}
I-L U & L \tag{ii}
\end{array}\right) P^{\prime} \right\rvert\, L \in \mathbb{R}^{r, m-r}\right\}
$$

$$
A\{1\}\{A\}=\left\{\left.Q^{\prime}\binom{I-V K}{K}\left(\begin{array}{ll}
I & V \tag{iii}
\end{array}\right) Q \right\rvert\, K \in \mathbb{R}^{n-r, r}\right\}
$$

where $\{A\}$ stands for the singleton set consisting of A.

As a direct consequence of Lemma 1.3 we mention

Lemma 1.4 (see Werner [11, Satz 6.1]). Let A and B be as in Lemma 1.3, and consider the representation (1.1) of A determined by B. Then A is $\{1\}$-monotone if and only if we can find nonnegative matrices X, Y, and Z such that

$$
\begin{equation*}
B^{-1} \geqslant Y U+V X+V Z U \tag{1.2}
\end{equation*}
$$

Note 1.5. In (1.1), Lemma 1.3 and Lemma 1.4, we interpret U, Y, Z, L as absent and $Y U, V Z U, L U$ as zero if $\operatorname{rank}(A)=m$, and similarly for V, X, $Z, K, V X, V Z U$, and $V K$ if $\operatorname{rank}(A)=n$. Hence in particular $\{A\} A\{1\}=\{I\}$ if $\operatorname{rank}(A)=m$. Likewise $A\{1\}\{A\}=\{I\}$ if $\operatorname{rank}(A)=n$.

2. \{1 $\}$-MONOTONICITY IS NOT EQUIVALENT TO WEAK r-MONOTONICITY

We begin with

Theorem 2.1. Suppose that $A \in \mathbb{R}^{m, n}$ has rank r. If A is weak-r-monotone, then A is $\{1\}$-monotone.

Proof. Let A be weak- r-monotone. Then, by Definition 1.2, there exists a nonsingular $r \times r$ submatrix B of A which is monotone, i.e. $B^{-1} \geqslant 0$. Consider the representation (1.1) of A determined by this matrix B. Set

$$
G:=Q^{\prime}\left(\begin{array}{c|c}
B^{-1} & 0 \\
\hline 0 & 0
\end{array}\right) P^{\prime}
$$

Then $G \geqslant 0$ and $A G A=A$ [see also Lemma $1.3(i)]$, showing that A is \{l\}-monotone.

That the converse of Theorem 2.1 is not true is illustrated by
Example 2.2. Consider the matrix

$$
A=4^{-1 / 2}\left(\begin{array}{rrrr}
1 & 3 & -1 & 1 \\
2 & -2 & 2 & -2 \\
-1 & 1 & 1 & 3
\end{array}\right)
$$

of rank 3 , and set

$$
G:=4^{-1 / 2}\left(\begin{array}{ccc}
1 & 1 & 0 \\
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) .
$$

Since $A G A=A$ and $G \geqslant 0, A$ is $\{1\}$-monotone. However, A is not weak- r monotone, because all nonsingular 3×3 submatrices of A fail to be monotone.

3. A CONDITION ON A UNDER WHICH A IS WEAK-r-MONOTONE IF IT IS \{I\}-MONOTONE

In this section the following concepts will play a key role.

Definition 3.1. A matrix $A \in \mathbb{R}^{m, n}$ is a P_{+}-matrix if there exist $\{1\}$ inverses G and H of A such that

$$
\begin{equation*}
G A \geqslant 0, \quad A H \geqslant 0 \tag{3.1a-b}
\end{equation*}
$$

Definition 3.2. A matrix $E \in \mathbb{R}^{r, t}$ of rank r is a W-matrix if E has a nonsingular submatrix F of order r such that

$$
\begin{equation*}
F^{-1} E \geqslant 0 . \tag{3.2}
\end{equation*}
$$

For P_{+}-matrices the author conjectured [10] (see also [9]) the following

Theorem 3.3. Let $A \in \mathbb{R}^{m, n}$ of rank r be a P_{+}-matrix. Then A is $\{1\}$-monotone if and only if A is weak-r-monotone.

To establish this result we require several lemmas.

Lemma 3.4. Let $A \in \mathbb{R}^{m, n}$ be of rank r, let B be a nonsingular submatrix of A of order r, and consider the representation (1.1) of A determined by B. Then A is a P_{+}-matrix if and only if ($I V$) and ($\left.I U^{\prime}\right)^{\prime}$ are both P_{+}-matrices.

Proof. Observe first that by a theorem due to R. C. Bose (cf. Lemma 5.1 in [11]), G is a $\{1\}$-inverse of A if and only if $Q G P$ is a $\{1\}$-inverse of $\tilde{A}:=P^{\prime} A Q^{\prime}$. Since P and Q are permutation matrices, it follows that A is a P_{+}-matrix if and only if

$$
\tilde{A}=\binom{I}{U} B\left(\begin{array}{ll}
I & V \tag{3.3}
\end{array}\right)
$$

is a P_{+}-matrix. By applying Lemma 1.3 to the representation (3.3) of \bar{A} determined by B as well as to $D:=\left(I U^{\prime}\right)^{\prime}$ and $E:=(I V)$, we further obtain

$$
\begin{equation*}
\{\tilde{A}\} \tilde{A}\{1\}=\{D\} D\{1\}, \quad \tilde{A}\{1\}\{\tilde{A}\}=E\{1\}\{E\} \tag{3.4a-b}
\end{equation*}
$$

Since $D\{1\}\{D\}=\{I\}$ and $\{E\} E\{1\}=\{I\}$ [see Note 1.5], our claim then follows by virtue of $(3.4 a-b)$.

Lemma 3.5. A matrix A is a P_{+}matrix if and only if A^{\prime} is a P_{+}-matrix.

Proof. Observe that $G \in A\{l\}$ if and only if $G^{\prime} \in A^{\prime}\{1\}$.
Lemma 3.6. For $T_{0} \in \mathbb{R}^{r, u}$, let $A_{0}:=\left(I T_{0}\right)$. Then A_{0} is a P_{+}-matrix if and only if A_{0} is a W-matrix.

Proof of the "only if" part. Applying Lemma 1.3 to the representation $A_{0}=\left(I T_{0}\right)$ results in $\left\{A_{0}\right\} A_{0}\{1\}=\{I\}$ [observe Note 1.5] and

$$
A_{0}\{1\}\left\{A_{0}\right\}=\left\{\left.\binom{I-T_{0} K}{K}\left(\begin{array}{ll}
I & T_{0}
\end{array}\right) \right\rvert\, K \in \mathbb{R}^{u, r}\right\}
$$

so that A_{0} is a P_{+}-matrix if and only if the following system of inequalities is consistent:

$$
\begin{equation*}
I \geqslant T_{0} K, \quad T_{0} \geqslant T_{0} K T_{0}, \quad K \geqslant 0, \quad K T_{0} \geqslant 0 \tag{3.5a-d}
\end{equation*}
$$

Assume that A_{0} is a P_{+}-matrix, and let K_{0} be a particular solution to ($3.5 \mathrm{a}-\mathrm{d}$). For $\mathrm{Z}:=K_{0} T_{0} K_{0}$ we have $\mathrm{Z} \leqslant K_{0}$ by virture of ($3.5 \mathrm{a}, \mathrm{c}$). Inspection shows that Z solves (3.5a-d) if K_{0} does. Define a sequence $\left\{K_{n}\right\}$ for $n \geqslant 1$ by setting $K_{n}:=K_{n-1} T_{0} K_{n-1}$. This sequence is decreasing and bounded below. Hence it converges, and by construction it follows that $Y:=\lim K_{n}$
solves not only (3.5a-d) but also

$$
\begin{equation*}
K=K T_{0} K \tag{3.5e}
\end{equation*}
$$

This matrix Y enables us to construct a proper submatrix D_{0} of A_{0} such that $G_{0} A_{0} \geqslant 0$ for some $\{1\}$-inverse G_{0} of D_{0}. We need to consider two exhaustive cases.

Case I: Assume that $Y=0$. Then, by (3.5b), $T_{0} \geqslant 0$. Hence $A_{0} \geqslant 0$, and $D_{0}:=I$ can serve as a proper nonsingular $r \times r$ submatrix of A_{0} for which $D_{0}^{-1} A_{0} \geqslant 0$; thus showing that A_{0} is a W-matrix.

Case II: Assume that $Y \not \equiv 0$. In this case set $D_{0}:=\left(J_{0} T_{0}\right)$, where J_{0} is defined as a submatrix of I and contains its i th column e_{i} if and only if the i th column of Y is equal to the zero column. In D_{0} as well as in what follows we interpret each block and each summand depending on J_{0} as absent and zero, respectively, when Y contains no zero column. By definition of J_{0}, we have

$$
\begin{equation*}
Y J_{0}=0 \tag{3.6}
\end{equation*}
$$

From $I-T_{0} Y \geqslant 0, Y \geqslant 0$, and $Y\left(I-T_{0} Y\right)=0$ [observe (3.5a, c, e)] we conclude that

$$
\begin{equation*}
Y e_{i} \neq 0 \quad \Rightarrow \quad e_{i}^{\prime}\left(I-T_{0} Y\right)=0 \tag{3.7}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left(I-J_{0} J_{0}^{\prime}\right)\left(I-T_{0} Y\right)=0 \tag{3.8}
\end{equation*}
$$

The equation $Y=Y T_{0} Y$ [note (3.5e)] also yields

$$
\begin{equation*}
\left(T_{0} Y\right)^{2}=T_{0} Y, \quad\left(Y T_{0}\right)^{2}=Y T_{0} \tag{3.9a-b}
\end{equation*}
$$

By means of (3.8), (3.9a), and (3.6) it may now be checked that

$$
\left(J_{0} J_{0}^{\prime}+T_{0} Y\right)\left(2 I-J_{0} J_{0}^{\prime}-T_{0} Y\right)=I
$$

thus showing that

$$
\begin{equation*}
\left(J_{0} J_{0}^{\prime}+T_{0} Y\right)^{-1}=2 I-J_{0} J_{0}^{\prime}-T_{0} Y \tag{3.10}
\end{equation*}
$$

The nonsingularity of $J_{0} J_{0}^{\prime}+T_{0} Y=\left(J_{0} T_{0}\right)\left(J_{0} Y^{\prime}\right)^{\prime}$ forces the matrix $D_{0}=$ ($J_{0} T_{0}$) to have full row rank, i.e. $\operatorname{rank}\left(D_{0}\right)=r$. For the matrix

$$
\begin{equation*}
G_{0}:=\binom{J_{0}^{\prime}}{Y}\left(J_{0} J_{0}^{\prime}+T_{0} Y\right)^{-1} \tag{3.11}
\end{equation*}
$$

we have $D_{0} G_{0}=I$ and therefore $D_{0} G_{0} D_{0}=D_{0}$, i.e., G_{0} is a $\{1\}$-inverse of D_{0}. That

$$
\begin{equation*}
G_{0}=\binom{J_{0}^{\prime}\left(I-T_{0} Y\right)}{Y} \geqslant 0 \tag{3.12a}
\end{equation*}
$$

and

$$
G_{0} D_{0}=\left(\begin{array}{c|c}
J_{0}^{\prime} J_{0} & J_{0}^{\prime}\left(I-T_{0} Y\right) T_{0} \tag{3.12b}\\
\hline 0 & Y T_{0}
\end{array}\right) \geqslant 0
$$

hold true can be seen by using the definition of J_{0}, Equations (3.6), (3.9b), (3.10), and the fact that Y is a solution to (3.5a-e). From (3.12a-b) and the definition of D_{0} it is clear that

$$
\begin{equation*}
\mathrm{G}_{0} A_{0} \geqslant 0 . \tag{3.13}
\end{equation*}
$$

Now we proceed as follows. If D_{0} is square and consequently nonsingular, then $G_{0}=D_{0}^{-1}$, and it follows from (3.13) that A_{0} is a W-matrix. It only remains to consider the case where D_{0} is not square. By construction [observe (3.11) and (3.12a-b)] we have

$$
G_{0} D_{0} \geqslant 0, \quad D_{0} G_{0}=I, \quad \text { and } \quad G_{0} \geqslant 0
$$

showing that the proper submatrix D_{0} of A_{0} is a $\{1\}$-monotone P_{+}-matrix. Since $\operatorname{rank}\left(D_{0}\right)=r$, there is a nonsingular $r \times r$ submatrix B_{1} of D_{0}. So we can consider the representation

$$
D_{0}=B_{1}\left(\begin{array}{ll}
I & T_{1}
\end{array}\right) R_{1}
$$

of D_{0} determined by B_{1}, where R_{1} is a suitable permutation matrix. From Lemma 3.4 it follows that

$$
A_{1}:=\left(\begin{array}{ll}
I & T_{1}
\end{array}\right)
$$

is a P_{+}-matrix because D_{0} is a P_{+}-matrix. If we apply the above steps not to A_{0} but to A_{1}, we obtain a proper submatrix D_{1} of A_{1} such that $\operatorname{rank}\left(D_{1}\right)=r$ and

$$
\begin{equation*}
G_{1} A_{1} \geqslant 0 \tag{3.14}
\end{equation*}
$$

for some $\{1\}$-inverse G_{1} of D_{1}. Moreover

$$
G_{1} D_{1} \geqslant 0, \quad D_{1} G_{1}=I, \quad \text { and } \quad G_{1} \geqslant 0,
$$

so that D_{1} is a $\{1\}$-monotone P_{+}-matrix. If D_{1} is square, $G_{1}=D_{1}^{-1}$, so that A_{1} is a W-matrix by virture of (3.14). Otherwise, we proceed with D_{1} as above with D_{0}. Doing this repeatedly results in a sequence of P_{+}-matrices $A_{0}, A_{1}, A_{2}, \ldots$ Observe, however, that after a finite number of iterations we must arrive at a W-matrix, say A_{k}. This happens because by construction each matrix D_{i+1} of full row rank r is a proper $\{1\}$-monotone submatrix of

$$
A_{i+1}:=\left(\begin{array}{ll}
I & T_{i+1}
\end{array}\right)
$$

in the representation

$$
D_{i}=B_{i+1} A_{i+1} R_{i+1}=\left(\begin{array}{ll}
J_{i} & T_{i} \tag{3.15}
\end{array}\right)
$$

of the $\{1\}$-monotone P_{+}-matrix D_{i} determined by the nonsingular $r \times r$ matrix B_{i+1}. Since A_{k} is a W-matrix, the proof of the "only if" part is completed by showing that A_{i} is a W-matrix if A_{i+1} is such a matrix. For this purpose, assume that A_{i+1} is a W-matrix, i.e. $F_{i+1}^{-1} A_{i+1} \geqslant 0$ for some nonsingular $r \times r$ submatrix F_{i+1} of $A_{i+1}=\left(I T_{i+1}\right)$. Then $0 \leqslant F_{i+1}^{-1} A_{i+1}=$ ($I \tilde{T}_{i+1}$) P_{i+1} for some permutation matrix P_{i+1}. Evidently

$$
\tilde{T}_{i+1} \geqslant 0, \quad D_{i}=B_{i+1} F_{i+1}\left(\begin{array}{ll}
I & \tilde{T}_{i+1} \tag{3.16a-b}
\end{array}\right) P_{i+1} R_{i+1}
$$

[note (3.15)], showing in particular that $B_{i+1} F_{i+1}$ is a nonsingular submatrix of D_{i}. Next consider the representation (3.16b) of D_{i} determined by $B_{i+1} F_{i+1}$. Since D_{i} is $\{1\}$-monotone, it follows from Lemma 1.4 that we can find a nonnegative matrix X such that $\left(B_{i+1} F_{i+1}\right)^{-1} \geqslant \tilde{T}_{i+1} X$. Thus

$$
\begin{equation*}
\left(B_{i+1} F_{i+1}\right)^{-1} \geqslant 0 \tag{3.17}
\end{equation*}
$$

because $\tilde{T}_{i+1} \geqslant 0[$ see (3.16a) $]$. From (3.16a-b) we further obtain

$$
\begin{equation*}
\left(B_{i+1} F_{i+1}\right)^{-1} D_{i} \geqslant 0 \tag{3.18}
\end{equation*}
$$

Consequently [observe (3.17)-(3.18)],

$$
\begin{equation*}
\left(B_{i+1} F_{i+1}\right)^{-1} A_{i} \geqslant 0 \tag{3.19}
\end{equation*}
$$

because $D_{i}=\left(J_{i} T_{i}\right)$ is a submatrix of $A_{i}=\left(I T_{i}\right)$. Since $B_{i+1} F_{i+1}$ is a nonsingular submatrix of A_{i}, it follows from (3.19) that A_{i} is a W-matrix.

Proof of the "if" part. Let A_{0} be a W-matrix, i.e., assume that there is a nonsingular $r \times r$ submatrix F_{0} of A_{0} such that $F_{0}^{-1} A_{0} \geqslant 0$. Then $0 \leqslant F_{0}^{-1} A_{0}$ $=\left(I \tilde{T}_{0}\right) P_{0}$ for some permutation matrix P_{0}. Hence $A_{0}=F_{0}\left(I \tilde{T}_{0}\right) P_{0}$ where $\tilde{T}_{0} \geqslant 0$. Since $G=(I 0)^{\prime}$ is a nonnegative $\{1\}$-inverse of the nonnegative matrix ($I \tilde{T}_{0}$), it is clear that ($I \tilde{T}_{0}$) is a P_{+}-matrix. Our claim now follows by virture of Lemma 3.4.

We are now in a position to prove our main result.

Proof of Theorem 3.3. Sufficiency is clear by Lemma 2.1. To prove necessity, let $A \in \mathbb{R}^{m, n}$ of rank r be a $\{1\}$-monotone P_{+}-matrix. Since A has rank r, there is a nonsingular $r \times r$ submatrix B of A. Consider the representation

$$
A=P\binom{I}{U} B\left(\begin{array}{ll}
I & V \tag{1.1}
\end{array}\right) Q
$$

of A determined by B. From Lemma 3.4 in conjunction with Lemma 3.5 it follows that

$$
D:=\left(\begin{array}{ll}
I & V
\end{array}\right) \quad \text { and } \quad E^{\prime}:=\left(\begin{array}{ll}
I & U^{\prime}
\end{array}\right)
$$

are P_{+}-matrices. By Lemma 3.6 we know that D and E^{\prime} are W-matrices. Consequently, we can find nonsingular $r \times r$ submatrices M and N^{\prime} of D and E^{\prime}, respectively, such that $M^{-1} D \geqslant 0$ and $N^{\prime}{ }^{1} E^{\prime} \geqslant 0$. Then

$$
M^{-1} D=\left(\begin{array}{ll}
I & \tilde{V}
\end{array}\right) \tilde{Q} \quad \text { and } \quad N^{\prime-1} E^{\prime}=\left(\begin{array}{ll}
I & \tilde{U}^{\prime}
\end{array}\right) \tilde{P}^{\prime}
$$

for some nonnegative matrices \tilde{U} and \tilde{V} as well as for some permutation matrices \tilde{P} and \tilde{Q}. Hence

$$
D=M\left(\begin{array}{ll}
I & \tilde{V} \tag{3.20a-b}
\end{array}\right) \tilde{Q}, \quad E^{\prime}=N^{\prime}\left(I \quad \tilde{U}^{\prime}\right) \tilde{P}^{\prime},
$$

where

$$
\begin{equation*}
\tilde{V} \geqslant 0, \quad \tilde{U} \geqslant 0 . \tag{3.20c-d}
\end{equation*}
$$

Inserting (3.20a-b) in (1.1) results in

$$
A=\bar{P}\binom{I}{\tilde{U}} N B M\left(\begin{array}{ll}
I & \tilde{V} \tag{3.21}
\end{array}\right) \bar{Q}
$$

where $\bar{P}:=P \tilde{P}$ and $\bar{Q}:=\tilde{Q} Q$. We now apply Lemma 1.4 to the representation (3.21) of A determined by $N B M$. Since A is $\{1\}$-monotone, there exist nonnegative matrices X, Y, and Z such that

$$
(N B M)^{-1} \geqslant Y \tilde{U}+\tilde{V} X+\tilde{V} Z \tilde{U}
$$

Consequently,

$$
(N B M)^{-1} \geqslant 0,
$$

by virture of $(3.20 \mathrm{c}-\mathrm{d})$. Hence A is weak- r-monotone.
We remark that Theorem 3.3 was used in [12] to prove several interesting results concerning the Drazin monotonicity of property- n matrices.

Theorem 3.3 admits a corollary for nonnegative matrices.

Corollary 3.7. Let $A \in \mathbb{R}^{m, n}$ of rank r be nonnegative. Then A is $\{1\}$-monotone if and only if A is weak-r-monotone.

Proof. Sufficiency is clear by Lemma 2.1. To establish necessity, let A be a nonnegative $\{1\}$-monotone matrix of rank r. Then there is a nonnegative $\{1\}$-inverse G of A. Consequently, $A G \geqslant 0$ and $G A \geqslant 0$, showing that A is a P_{+}-matrix. The corollary now follows from Theorem 3.3.

A different proof of this, using a result by Flor [5], may be found in [9, p. 81]. We conclude this paper with a further known corollary to Theorem 3.3.

Corollary 3.8 (cf. [10, Satz 3.5.8]). For $A \in \mathbb{R}^{m, n}$ of rank r, let $A A^{+}$ and $A^{+} A$ be both nonnegative matrices. Then A is $\{1\}$-monotone if and only if A is weak-r-monotone.

Proof. Observe that the Moore-Penrose inverse A^{+}of A (see, e.g., [3]) is a particular $\{1\}$-inverse of A.

REFERENCES

1 A. Berman and R. J. Plemmons, Matrix group monotonicity, Proc. Amer. Math. Soc. 46:355-359 (1974).
2 A. Berman and R. J. Plemmons, Eight types of matrix monotonicity, Linear Algebra Appl. 13:115-123 (1976).
3 A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic, New York, 1979.
4 L. Collatz, Aufgaben monotoner Art, Arch. Math. 3:366-376 (1952).
5 P. Flor, On groups of non-negative matrices, Compositio Math. 21:376-382 (1969).

6 M. Neumann, G. D. Poole, and H. J. Werner, More on generalizations of matrix monotonicity, Linear Algebra Appl. 48:413-435 (1982).
7 G. D. Poole and G. P. Barker, MP matrices, Linear Algebra Appl. 26:165-174 (1979).

8 W. C. Pye, Nonnegative Drazin inverses, Linear Algebra Appl. 30:149-153 (1980).

9 H. J. Werner, g-Inverse und monotone Matrizen, Dissertation, Bonn, 1977.
10 H. J. Werner, Schwache and und strenge r-Monotonie-Mögliche Erweiterungen des Begriffs von monotoner Art von L. Collatz, Methods Oper. Res. 31:705-717 (1979).

11 H. J. Werner, Charakterisierungen von monotonen Matrizen, Linear Algebra Appl. 60:79-90 (1984).
12 H. J. Werner, Drazin-monotonicity characterizations for property-n matrices, Linear Algebra Appl. 71:327-337 (1985).

Received August 1983; revised 4 February 1986

[^0]: *Research supported by the Deutsche Forschungsgemeinschaft at the University of Bonn (SFB 303, SFB 72).

