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a b s t r a c t

Continuum hypothesis on nanoscales is invalid, and a differential–difference model is
considered as an alternative approach to describing discontinued problems. This paper
applies the homotopy perturbationmethod to a nonlinear differential–difference equation
arising in nanotechnology. Comparison of the approximate solution with the exact one
reveals that the method is very effective.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

According to E-infinity theory [1–3], space at the quantum scale is not a continuum, and it is clear that nanotechnology
possesses a considerable richness which bridges the gap between the discrete and the continuum [4–6]. On nanoscales,
He et al. [7] found experimentally an uncertainty phenomenon similar to Heisenberg’s uncertainty principle in quantum
mechanics. Continuum hypothesis on the nanoscales becomes, therefore, invalid. He and Zhu [8] suggested some
differential–difference models describing fascinating phenomena arising in heat/electron conduction and flow in carbon
nanotubes, among which we will study the following model:

dun
dt
= (un+1 − un−1)

m∑
k=1

(αk + βk(un)k) (1)

where αk and βk are constants. Physical interpretation is given in Ref. [8]. Eq. (1) includes the well-known discretizedmKdV
lattice equation [9]:

dun
dt
= (α − u2n)(un+1 − un−1) (2)

where the subscript n in Eq. (1) represents the nth lattice.
In this paper we will study analytically Eq. (2) using the homotopy perturbation method [10–14]. Previously such

equations were solved by the exp-function method [15–17] and the variational iteration method [18].

2. Homotopy perturbation method

Dr. Davood Domiri Ganji pointed out ‘‘Wherever a nonlinear equation is found, Dr. He’s Homotopy perturbation method will
be the primary tool of discovery’’ (see ScienceWatch.com website in February, 2008). Since the appearance of the homotopy
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Table 1
Table (when α = 1, d = 0.1, t = 1).

n Approximate solution Exact solution Absolute error Relative error

15 0.09315671550 0.09322206784 0.0006535234000 0.0007010393731
5 0.06024368408 0.06019410003 0.00004958405 0.0008237360468
4 0.05358059812 0.05347954390 0.0001010542200 0.001889586423
3 0.04616017532 0.04600622678 0.0001539485400 0.003346254425
−3 −0.009797356980 −0.009999228009 0.0002018710300 0.02018866155
−4 −0.01958193014 −0.01973559643 0.0001536662900 0.007786250114
−5 −0.02899431132 −0.02909509651 0.0001007851900 0.00346399229
−15 −0.08597636659 −0.08590324656 0.00007312004000 0.0008511906469

perturbation method in 1999 [10], it has become a universal mathematical tool for nonlinear equations [19–35]. Hereby we
will use the method to search for the traveling wave solution of Eq. (2), we first construct a homotopy as follows:

(1− p)
(
dun
dt
−
dun0
dt

)
+ p

[
dun
dt
− (α − u2n)(un+1 − un−1)

]
= 0, (3)

where un0 is the initial guess which includes some possible unknown parameters [11,12]. For simplicity, we begin with

un0(n, t) = un0(n, 0) (4)

un(n, t) = Un(n, t) = un0 + pun1 + p2un2 + p3un3 + · · · , (5)

where uni, (i = 1, 2, 3, . . .) are functions of (n, t) yet to be determined. Substituting Eq. (5) into Eq. (3), and equating the
coefficients of the terms with the identical powers of p, we have

−αu(n+1)0 +
dun0
dt
+
dun1
dt
− u2n0u(n−1)0 + αu(n−1)0 + u

2
n0u(n+1)0 = 0, (6)

2un0un1u(n+1)0 − u2n0u(n−1)1 + αu(n−1)1 − αu(n+1)1 +
dun2
dt
+ u2n0u(n+1)1 − 2un0un1u(n−1)0 = 0. (7)

If the 3-term approximation is sufficient, we will obtain:

un(n, t) = lim
p=1
Un(n, t) =

2∑
k=0

unk(n, t). (8)

In order to illustrate the effectiveness of the method, we consider the following initial condition:

un0(n, t) =
√
α tanh(d) tanh(nd), (9)

where d is an arbitrary constant.
Solving u1(n, t) and u2(n, t), from Eqs. (7) and (8), results in

un1(n, t) =
2α

3
2 (cosh(d)2 − 1)t

cosh(d)2 cosh(nd)2
, (10)

un2(n, t) =
4t2α

5
2 sinh(nd) sinh(d)(cosh(d)4 + cosh(d)2 cosh(nd)2 − 2 cosh(d)2 − cosh(nd)2 + 1)

cosh(d)3 cosh(nd)3(sinh(nd)2 sinh(d)2 − cosh(nd)2 cosh(d)2)
. (11)

The 3-term approximation reads

un(n, t) = un0(n, t)+ un1(n, t)+ un2(n, t) (12)

where u0(n, t), u1(n, t) and u2(n, t) are expressed, respectively, as Eqs. (9), (10), and (11).
Table 1 illustrates remarkable accuracy of the approximate solution. Fig. 1 reveals that the system tends to equilibrium

un(n, t)→ α1/2 tanh(d)when n > 20, and Fig. 2 shows the absolute error of the obtained solution.

3. Discussion and conclusion

The solution procedure is simple while the obtained result is of high accuracy, which can be further improved if the
solution procedure is continued to higher orders. From Fig. 2, we can see that, unlike other numerical methods where the
absolute error is usually noisy, the absolute error of our solution is almost not noisy. This is one of the unique characters of
the homotopy perturbation method.
If the studied equation describes the flow in a carbon nanotube, then the velocity of the flow tends to the maximum

when n ≈ 20, this can explain some fascinating phenomena of nanohydrodynamics.
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Fig. 1. Approximate solution (α = 1, d = 0.1, and t = 1).

Fig. 2. Absolute error (α = 1, d = 0.1, and t = 1).
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