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Abstract--The following model appears in plasma physics for a Tokamak configuration: --Au + 
g(u) = 0, u E W = Hoi(ft)(~R, foc~ au = I > 0, where I is agiven positive constant, which is 

equivalent to find a fixed point u = F(u - g(u)) + ~Po where F is a compact operator on L2(ft). 
According to Grad and Shafranov the nonlinearity g can depend on u, which is the generalized 
inverse of the distribution function re(t) = meas{x : u(x) > t} = I{u > t}[ (see [1]). But in these 
cases the map u ---* g(u) cannot be continuous on all the space W but only on a nonlinear nonclosed 
set ~)0. This implies that the standard direct method for fixed point cannot be applied to solve the 
preceding problem. Nevertheless, using the Galerkin method and a topological argument, we prove 
that there exists a solution u fixed point of u = F(u - g(u)) + ~oo under suitable assumptions on g. 

The model we treat covers a large new class of nonlinearities including relative rearrangment and 
monotone rearrangment. The resolution of the concrete model needs an extension of the strong 
continuity result of the relative rearrangement map made in [2] (see Theorem 1.1 below for the 
definition and result).(~) 1998 Elsevier Science Ltd. All rights reserved. 

K e y w o r d s - - P l a s m a  physics, Topological degree, Weighted relative rearrangement, Weighted 
monotone rearrangement. 

1. T H E  G R A D - M E R C I E R - S H A F R A N O V  M O D E L I N G  

We recall (see [3,4]) that a Tokamak is an axisymmetric torus in which a plasma is confined by 
a magnetic field due to currents in external coils. The magnetic induction B and the current 
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density j follow the Maxwell laws, which read 

d ivB = 0, (1.1) 

rot B = j.  (1.2) 

If (r, 8, ~) denote the cylindrical coordinates, taking into account the axisymmetric configuration, 
relation (1.1) becomes 

1 O (rBr) + aB(  
r or  - ~ -  = 0, (1.3) 

where B = (Br, B0, B(). This implies the existence of a function u, called the flux function, 
depending only on (r, ¢) such that: 

1 0 u  10u 
Be = -- Br .... 

r Or' r (9~" 

From (1.2), one can derive the equation 

° ( , 01  ,°2° 
Or ~r  r c9~ 2 = j¢' 

where j¢ is the toroidal component of the current density (i.e., the C-component of j) .  
If p denotes the plasma kinetic pressure, then 

gradp = j A S. (1.4) 

Thus, the toroidal current j¢ satisfies the Grad-Mercier-Shafranov relation 

Op 1 0 (rB¢)2 
j~(r, ¢) = r ~ + ~r  

p and rB¢ depend on the shape of flux lines. In Temam [4] or [5], the case where j¢ = -Au_  was 
considered. Here we will consider j (  = -g(u) .  The mathematical problem satisfied by u is then 
given in the cross section of the torus denoted by 12 and the boundary conditions are the same 
as in [5], tha t  is 

u = ' [  

o 1 cOu = I, o n 0 n ,  
n r O n  

where 7 is an unknown constant and I is a given positive constant. The proof of the main example 
needs an extension of the strong continuity result of the relative rearrangement map introduced 
in [2], as in Theorem 1.1. 

THEOREM 1.1. Let f~ be a bounded, open, and connected set in R N with Lipschitz boundary. 
Let  u 6 wl'r(~'~), 1 < r <_ +oo and let {uj}j>_o be a sequence of functions in w l ' r ( ~ )  such that  
I{z • n : V u j ( x )  = 0}1 = I{z • n : Du(x) = 0}1 = o .  I f u j  --* u in wl'r(~'~) a/2d b • LP(n), 
1 < p < +oo, then 

b.u~ ([uj > uj(x)[) --* b.u(lu > u(x)l) strongly in LP(~) 

and 
b,~, ~ b,~ strongly in LP(~,).  

Here, b,u is the weak deriwtive of the function w given by 

f 
w(a) = ] b(x) dx, 

Ju >u.(a) 
w- e [o, me~(n)] 

and the measure of set E is denoted by [E[. 
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2. E X I S T E N C E  RESULTS IN A GENERAL F R A M E W O R K  

Let f~ be a bounded, open, and connected set in R N, N _> 2, with a smooth boundary 0[2. 
We denote by (u, v) the scalar product in L2(f~), and by Iiulir and IluliHr the norms in Lr(f~) 

and in Hr(f /) ,  respectively, and ((u, v)) the usual scalar product in Hl(f~). We will also consider 
the space 

V = Hoi(f/) ~ R  = {v E g l ( ~ ) ,  v = constant on 0f~}, 

the subsets 

v0 = {v E v :  I{x E n :  Dv(x) = 0}1 = 0}, 

Yo UR = V0 U{v E Y :v = cst}. 

A is the Laplace operator, ~ the outward normal derivative on 0f~ and I is a given positive 
constant. Let us consider the following problem: 

(~) 

- A u  + 9(u) = 0, in f~, 

U E 'D0 n W2'2(~~), 

The operator g is assumed to satisfy the following conditions. 

(H1) g : ~ ~ LI(~/) is such that  its restriction to V0 U R is a continuous operator, in the sense 
that ,  if v E ])o UR and {Vk}kE N is a sequence in ~0 UR such that  vk --* v in Hl(f~)-strong, 
then g(vk) --* g(v) in Ll(f~)-strong. 

(H2) There exist positive constants 6, #o and 6' such that  

(H3) 

I -/~]gt I > 0, 

g(v)(x) > 6' + #ov-(x), a.e. in f~, 

g(v)(x) = 6, a.e. in {x E f / :  v(x) > 0}, 

for all v E V. 
For all rl > 0, there exists a constant C n > 0, such that  

IIg(,-')il~/p ~ ~11~-I1~,, + c,, 

(2.1) 

(2.2) 

(2.3) 

for all v E ~0, where, here and in the following, p = N / N  - 2 if N > 2, p _> 1 if N = 2. 

The the following theorem holds. 

THEOREM 2.1. Let fl be an open, bounded and connected set o£ R N, N >_ 2 with smooth 
boundary 0~2 (for example C2). Let us consider the problem (P6) under the assumptions (H1)- 
(H3). Then there exists at least one solution u E V0 N W2,2(ft), of the problem (7)6). 

3 .  N O N S T A N D A R D  G R A D - M E R C I E R - S H A F R A N O V  M O D E L S  

In this section, we want to apply the previous results in order to give an existence result for a 
nonstandard Grad-Mercier-Shafranov problem of the following type (see [6,7] for nonlocal models 
and [5,8] for local models) 

-Au + G(.,/~(u)) = 0, in f/, 

u e Vo n W2,2(N), z ( ~ s )  

a O'nnda=I' 
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where ~ : HI(~) --, R 3 and G : fl x R z --* R is a Caratheodory function, that is, for all ~ -- 

(~1,~2,~3) E R 3, t he  m a p  x --* G(x,~)  is measu rab l e  and,  for a lmos t  every  x E f~, t he  m a p  ~ --. 

G(x, ~) is cont inuous .  

Let  v : L 2 ( ~ )  ~ L2(f~) be an  o p e r a t o r  vanish ing  on cons t an t  funct ions  and  such t h a t  the re  

exis t  a l ,  a2  > 0 sa t i s fy ing  
~-(v)(x) = o, if v(x)  _> o, 

[[T(V)H2 <: alHV_H 2 + OL2" (3.I)  

For  v E L 2 ( ~ ) ,  le t  ko(v)(x) = min([v > v (x ) {  l - l / N ,  ([~'~{ - IV ~> U(X)[) l - l / N )  and  b e n°c(f~).  We 

cons ider  t h e  p r o b l e m  (GS) unde r  t he  following assumpt ions .  

(GS1) ~ (v )  = (v_,~'(v)b.v(iv ) v(.)[),ko(v_) ~ ( I  v ) v(.)[)) .  

(GS2) T h e r e  exis t  pos i t ive  cons tan t s  5, 5~, #o, a l ,  ~2 such t h a t  

I - ~{~{ > 0, (3.2) 

5' + #0[~1[ -< G(x,~)  < a l ( ]~ l I  + [~21) + a2, a.e. x E ~ , V ~  - (~1,~2,~3) E R 3, 

G(x, O) = ~, a.e. x E ~ .  (3.3) 

Let  us define t he  following ope ra to r :  

g :  v e ~) --* G(. ,  f~(v)(.)) e L1(~/). (3.4) 

LEMMA 3.1.  Under the assumptions (GS1),(GS2), the  operator g defined in (3.4) satisfies the 
assumptions ( t t l ) - (H3)  given in Section 2. 

THEOREM 3.1.  Under the assumptions (GS1),(GS2) and (3.2), the re  ex/s ts  a t / e a s t  one solution 
of  t he  problem (GS). 

This  m o d e l  in a T o k a m a k  is different  f rom t h e  mode l  appea r ing  in a S te l l e ra to r  (see [9,10]). 

Never theless ,  m a n y  techniques  used in these  pape r s  a re  useful  in th is  case. 
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