Applied
Mathematics
Letters

PERGAMON Applied Mathematics Letters 12 (1999) 43-46

Nonlocal Generalized Models
for a Confined Plasma in a Tokamak

A. FERONE
Dipartimento di Matematica
Seconda Universita di Napoli, Piazza Duomo
Caserta, Italy

M. A. JALAL

Université De Poitiers Mathématiques
40, Avenue du Recteur Pineau
86022 Poitiers, France

J. M. RAKOTOSON
Université De Poitiers Mathématiques
40, Avenue du Recteur Pineau
86022 Poitiers, France

R. VOLPICELLI
Dipartimento di Matematica ed Applicazioni “R. Caccioppoli”
Universita di Napoli “Federico II”, Complesso Monte S. Angelo
Via Cintia, 80126 Napoli, Italy
rako@matpts.univ-poitiers.fr

(Received December 1997; revised and accepted January 1998)

Communicated by R. Temam

Abstract—The following model appears in plasma physics for a Tokamak configuration: —Au +
glu) =0, u € V= H}{(D) OR, Joa gﬁ = I > 0, where I is a given positive constant, which is
equivalent to find a fixed point u = F(u — g(u)) + wo where F is a compact operator on L3(Q).
According to Grad and Shafranov the nonlinearity g can depend on u. which is the generalized
inverse of the distribution function m(t) = meas{z : u(z) > t} = |[{u > t}} (see {1]). But in these
cases the map u© — g(u) cannot be continuous on all the space V but only on a nonlinear nonclosed
set Vp. This implies that the standard direct method for fixed point cannot be applied to solve the
preceding problem. Nevertheless, using the Galerkin method and a topological argument, we prove
that there exists a solution u fixed point of ©u = F(u — g(u)) + o under suitable assumptions on g.

The model we treat covers a large new class of nonlinearities including relative rearrangment and
monotone rearrangment. The resolution of the concrete model needs an extension of the strong
continuity result of the relative rearrangement map made in [2] (see Theorem 1.1 below for the
definition and result).© 1998 Elsevier Science Ltd. All rights reserved.

Keywords—Plasma physics, Topological degree, Weighted relative rearrangement, Weighted
monotone rearrangement.

1. THE GRAD-MERCIER-SHAFRANOV MODELING

We recall (see [3,4]) that a Tokamak is an axisymmetric torus in which a plasma is confined by
a magnetic field due to currents in external coils. The magnetic induction B and the current
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density 7 follow the Maxwell laws, which read

divB =0, (1.1)
rot B = j. (1.2)

If (r,8,¢) denote the cylindrical coordinates, taking into account the axisymmetric configuration,

relation (1.1) becomes

190, 9B _
3y (TBr) + —{f—O, (1.3)

where B = (B, Bg, B¢). This imphes the existence of a function u, called the flux function,
depending only on (r,() such that:

From (1.2), one can derive the equation

0 (18u 1 @ L
Or \r Or r 8¢? = e
where j¢ is the toroidal component of the current density (i.e., the (-component of j).
If p denotes the plasma kinetic pressure, then

gradp = j A B. (1.4)
Thus, the toroidal current j; satisfies the Grad-Mercier-Shafranov relation

0 =r 2+ L2 gy

p and 7B, depend on the shape of flux lines. In Temam [4] or [5], the case where j; = —Au_ was
considered. Here we will consider j; = —g(u). The mathematical problem satisfied by u is then
given in the cross section of the torus denoted by §2 and the boundary conditions are the same
as in [5], that is

u=r7y

/ 1 du on 9N
-—=1,

an‘ran

where 7 is an unknown constant and [ is a given positive constant. The proof of the main example
needs an extension of the strong continuity result of the relative rearrangement map introduced
in [2], as in Theorem 1.1.

THEOREM 1.1. Let Q be a bounded, open, and connected set in RN with Lipschitz boundary.
Let ue WT(Q), 1 < r < +00 and let {u;j};>0 be a sequence of functions in W' () such that
H{z € Q: Duj(z) =0} = |{z € Q: Du(z) = 0}| = 0. Ifu; — u in Wb"(Q) and b € LP(Q),
1< p < +o00, then

buw; (|u; > u;(x)]) — beu(|u > u(z)|) strongly in LP(Q2)

and
buu; — buy strongly in LP(2.).

Here, b, is the weak derivative of the function w given by
w(o) = / b(z) dz, Vo € [0, meas(Q)]
u>u,{o)

and the measure of set E is denoted by |E|.
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2. EXISTENCE RESULTS IN A GENERAL FRAMEWORK

Let Q be a bounded, open, and connected set in R¥, N > 2, with a smooth boundary 8.
We denote by (u,v) the scalar product in L?(f2), and by ||u||, and ||u||g- the norms in L™ ()
and in H"(R2), respectively, and ((u,v)) the usual scalar product in H1(2). We will also consider
the space
V=Hj(Q) @R = {ve H(Q), v = constant on o0},

the subsets

Vo={veV:|{zeQ: Dv(z) =0} =0},
VoUR=WU{veV:v=cst}.

A is the Laplace operator, 3‘% the outward normal derivative on 9 and I is a given positive
constant. Let us consider the following problem:

—Au + g(u) =90, in Q,
u € Vo nW23(Q),
ou

—do = 1.
an Bn

(Ps)

The operator g is assumed to satisfy the following conditions.

(H1) g: ¥V — LY(Q) is such that its restriction to Vo UR is a continuous operator, in the sense
that, if v € VoUR and {vg}xen is a sequence in Vo UR such that v, — v in H!(Q)-strong,
then g(vk) — g(v) in L}(2)-strong.

(H2) There exist positive constants 8, up and &’ such that

I-6|Q] >0, (2.1)
g(v)(z) 2 & + pov-(x), a.e. in Q, -
g(v)(z) = 6, a.e. in {z € Q: v(z) > 0}, 22)
for all v € V.
(H3) For all 7 > 0, there exists a constant C,) > 0, such that
lg@)lz"” < nllv-llzp + Cn, (2:3)

for all v € Vg, where, here and in the following, p=N/N - 2if N>2,p>1if N =2.
The the following theorem holds.

THEOREM 2.1. Let Q@ be an open, bounded and connected set of RN, N > 2 with smooth
boundary 9§ (for example C2). Let us consider the problem (Ps) under the assumptions (H1)~
(H3). Then there exists at least one solution u € Vo N W%%(Q), of the problem (Ps).

3. NONSTANDARD GRAD-MERCIER-SHAFRANOV MODELS

In this section, we want to apply the previous results in order to give an existence result for a
nonstandard Grad-Mercier-Shafranov problem of the following type (see [6,7] for nonlocal models
and [5,8] for local models)

-Au+G(-,B(u))=0, inQ,
u€ VN Wz’z(ﬂ),
Ou

—do =1,
8n an

(95)
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where 8 : H(Q2) — R3 and G : 2 x R® — R is a Caratheodory function, that is, for all £ =

(&1,&2,&3) € R3, the map z — G(z,&) is measurable and, for almost every € (Q, the map £ —
G(z,€) is continuous.

Let 7 : L2(Q) — L%() be an operator vanishing on constant functions and such that there
exist oy, as > 0 satisfying
T(v)(z) =0, if v(z) > 0,

IT(@)ll2 < a1llv_|lz + aa.

For v € L%(Q), let ko(v)(z) = min(|v > v(z)|*~YN,(|Q] = |v > v(z)[)!"N) and b € L=(Q). We
consider the problem (GS) under the following assumptions.

(GS1) B(v) = (v-, 7(W)bav(lv > v()), ko(v-) F=(jv > v(-)]))-

(GS2) There exist positive constants 8, &, ug, 51, K2 such that

(3.1)

I-46|0] >0, (3.2)
& + polér| < G(z,€) S k1(l6a] + |&al) + k2, B T EQVE= (61,62,8) € R, (33)
G(z,0) =4, ae. z €. '
Let us define the following operator:
g:veV - G(,B)()) € LX(Q). (3.4)

LEMMA 3.1. Under the assumptions (GS ),(GS2), the operator g defined in (3.4) satisfies the
assumptions (H1)-(H3) given in Section 2.

THEOREM 3.1. Under the assumptions (GS) ),(GS2) and (3.2), there exists at least one solution
of the problem (GS).

This model in a Tokamak is different from the model appearing in a Stellerator (see [9,10]).
Nevertheless, many techniques used in these papers are useful in this case.
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