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Abstract

Following recent work of R. Cluckers and F. Loeser [Fonctions constructible et intégration motivic I, C. R. Math. Acad. Sci.
Paris 339 (2004) 411–416] on motivic integration, we develop a direct image formalism for positive constructible functions in
the globally subanalytic context. This formalism is generalized to arbitrary first-order logic models and is illustrated by several
examples on the p-adics, on the Presburger structure and on o-minimal expansions of groups. Furthermore, within this formalism,
we define the Radon transform and prove the corresponding inversion formula.
c© 2006 Elsevier B.V. All rights reserved.

MSC: 03C64; 19A99

1. Introduction

1.1

By a subanalytic set we will always mean a globally subanalytic subset X ⊂ Rn , meaning that X is subanalytic in
the classical sense inside Pn(R) under the embedding Rn

= An(R) ⊆ Pn(R). By a subanalytic function we mean a
function whose graph is a (globally) subanalytic set.

By Sub we denote the category of subanalytic subsets X ⊂ Rn for all n > 0, with subanalytic maps as morphisms.
We work with the Euler characteristic χ : Sub → Z and the dimension dim : Sub → N of subanalytic sets as defined
for o-minimal structures in [8].

Note that if X ∈ Sub, then, by the o-minimal triangulation theorem in [8], the o-minimal Euler characteristic χ(X)

coincides with the Euler characteristic χBM(X) of X with respect to the Borel–Moore homology. If X ∈ Sub is locally
compact, the o-minimal Euler characteristic χ(X) coincides with the Euler characteristic χc(X) of X with respect to
sheaf cohomology of X with compact supports and constant coefficient sheaf.
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1.2

By [8], the Euler characteristic χ : Sub → Z satisfies the following:

χ(∅) = 0,

χ(X) = χ(Y ) if X and Y are isomorphic in Sub

and

χ(X ∪ Y ) = χ(X) + χ(Y )

whenever X, Y ∈ Sub are disjoint. The last equality for χBM and χc follows from the long exact (co)homology
sequence. If we take X to be the unit circle in the plane R2 and Y a point in X , we see that this equality does not hold
for the Euler characteristic associated with the topological singular (co)homology.

Thus we can think of χ : Sub → Z as a measure with values in the Grothendieck ring K0(Sub) of the category
Sub and, for any X ∈ Sub and any function f : X → Z with finite range and the property that f −1(a) ∈ Sub for all
a ∈ Z (constructible functions), one has an obvious definition for∫

X
f χ

such that χ(X) =
∫

X 1X χ (cf. [17]).
This measure and integration against Euler characteristic is what is considered by Viro [17], Shapira [15,16] and

Brocker [1]. However, for the measure χ : Sub → Z it is not true that χ(X) = χ(Y ) if and only if X and Y are
isomorphic in Sub. Following the recent work of the first author and François Loeser [5–7] on motivic integration,
we construct the universal measure µ for the category Sub with values in the Grothendieck semi-ring SK0(Sub)

of Sub such that µ(X) = µ(Y ) if and only if X and Y are isomorphic in Sub. Furthemore, we develop a direct
image formalism for positive constructible functions, i.e., functions f : X → SK0(Sub) with finite range and
the property that f −1(a) ∈ Sub for all a ∈ SK0(Sub). This formalism is generalized to arbitrary first-order logic
models and is illustrated by several examples on the p-adics, on the Presburger structure and on o-minimal expansions
of groups. Moreover, within this formalism, we define the Radon transform and prove the corresponding inversion
formula.

2. Positive constructible functions

We start by pointing out that, instead of Sub, we can work in this section with any o-minimal expansion of a field
R using the category Def whose objects are definable sets and whose morphisms are definable maps.

2.1

By a semi-group we mean a commutative monoid with a unit element. Likewise, a semi-ring is a set equipped
with two semi-group structures: addition and multiplication such that 0 is a unit element for the addition, 1 is the unit
element for multiplication, and the two operations are connected by x(y + z) = xy + xz and 0x = 0. A morphism of
semi-rings is a mapping compatible with the unit elements and the operations.

2.2

Let A := Z × N be the semi-ring where addition is given by (a, b) + (a′, b′) = (a + a′, max(b, b′)), the additive
unit element is (0, 0), multiplication is given by (a, b)(a′, b′) = (aa′, b + b′), and the multiplicative unit is (1, 0).
Note that the ring generated by A by inverting additively any element of A is Z with the usual ring structure.

For Z ∈ Sub, we define C+(Z) as the semi-ring of functions Z → A with finite image and whose fibers are
subanalytic sets. We call C+(Z) the semi-ring of positive constructible functions on Z . In particular, C+({0}) = A.



R. Cluckers, M. Edmundo / Journal of Pure and Applied Algebra 208 (2007) 691–698 693

2.3

If Z ∈ Sub, then we denote by SubZ the category of subanalytic maps X → Z for X ∈ Sub with morphisms
subanalytic maps that make the obvious diagrams commute. We define the Grothendieck semi-group SK0(SubZ ) as
the quotient of the free abelian semi-group over symbols [Y → Z ] with Y → Z in SubZ by relations

[∅ → Z ] = 0, (2.3.1)

[Y → Z ] = [Y ′
→ Z ] (2.3.2)

if Y → Z is isomorphic to Y ′
→ Z in SubZ and

[(Y ∪ Y ′) → Z ] + [(Y ∩ Y ′) → Z ] = [Y → Z ] + [Y ′
→ Z ] (2.3.3)

for Y and Y ′ subsets of some X → Z . There is a natural semi-ring structure on SK0(SubZ ) where the multiplication
is induced by taking fiber products over Z .

We write SK0(Sub) for SK0(Sub{0}) and [X ] for [X → {0}]. Note that any element of SK0(SubZ ) can be written as
[X → Z ] for some X ∈ SubZ , because we can take disjoint unions in Sub corresponding to finite sums in SK0(SubZ ).

Proposition 2.3.1. For Z ∈ Sub, there is a natural isomorphism of semi-rings

T : SK0(SubZ ) → C+(Z)

induced by sending [X → Z ] in SubZ to Z → A : z 7→ (χ(Xz), dim(Xz)), where Xz is the fiber above z. By
consequence, SK0(Sub) = A.

Proof. This follows immediately from the trivialisation property for definable maps in any o-minimal expansion of a
field. See [8]. �

By means of this result, we may identify SK0(SubZ ) and C+(Z).

2.4. Positive measures

A general notion of positive measures on a Boolean algebra S of sets is a map µ : S → G with G a semi-group
satisfying

µ(X ∪ Y ) = µ(X) + µ(Y )

and

µ(∅) = 0

whenever X, Y ∈ S are disjoint. Often, one has a notion of isomorphisms between sets in S under which the measure
should be invariant and which allows one to take disjoint unions of given sets in S (by taking disjoint isomorphic
copies of the sets).

We let µ : Sub → A be the positive measure which sends X to (χ(X), dim(X)). This measure is a universal
measure on Sub with the property that µ(X) = µ(Y ) whenever there exists a subanalytic bijection between X and Y
and where universal means that any other positive measure with this property factorises through µ.

Note that µ measures, in some sense, the topological size since, by the cell decomposition theorem from [8],
µ(A) = µ(B) will hold for two subanalytic sets A, B if and only if, for any fixed n ≥ 0, there exists a finite
partition of A, resp. B, into subanalytic Cn-manifolds {Ai }

m
i=1, resp. {Bi }

m
i=1, and subanalytic maps Ai → Bi which

are isomorphisms of Cn-manifolds.
Now we can define the integral of any positive function f ∈ C+(Z) as∫

Z
f µ :=

∑
i

fiµ(Zi )

where {Zi } is any finite partition of Z into subanalytic sets such that f is constant on each part Zi with value fi .
To show that this is independent of the partition {Zi }, we just note that there is a unique [X → Z ] in SK0(Z)

which corresponds to f under T and that
∑

i fiµ(Zi ) corresponds to [X ] = (χ(X), dim(X)) in A = SK0(Sub). This
independence follows also from the cell decomposition theorem ([8]).
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2.5. Pushforward

For f : X → Y , there is an immediate notion of pushforward f! : C+(X) → C+(Y ), resp. f! : SK0(SubX ) →

SK0(SubY ), which is given by

f!(g)(y) =

∫
f −1(y)

g| f −1(y)µ

for g ∈ C+(X), resp. by

f!([Z → X ]) = [Z → Y ],

for Z → X in SubX and where Z → Y is given by composition with X → Y . Note that these pushforwards are
compatible with T .

If Y = {0}, then SK0(SubY ) = A and we write µ([Z → X ]) for f!([Z → X ]) which is the integral of [Z → X ].
Thus the functoriality condition (h ◦ f )! = h! ◦ f! can be interpreted as Fubini’s Theorem, since∫

X
gµ =

∫
Y

(∫
f −1(y)

g| f −1(y)µ

)
µ

for g ∈ C+(X) and h : Y → {0}.

2.6. Pullback

For f : X → Y a morphism in Sub, there is an immediate notion of pullback f ∗
: C+(Y ) → C+(X),

resp. f ∗
: SK0(SubY ) → SK0(SubX ), which is given by

f ∗(g) = g ◦ f

for g ∈ C+(Y ), resp. by

f ∗([Z → Y ]) = [Z ⊗Y X → X ],

for Z → Y in SubY and where Z ⊗Y X → X is the projection and Z ⊗Y X is the set-theoretical fiber product. Note
that these pullbacks are also compatible with T and satisfy the functoriality property ( f ◦ h)∗ = h∗

◦ f ∗.

Proposition 2.6.1 (Projection Formula). Let f : X → Y be a morphism in Sub and let g be in C+(X) and h in
C+(Y ). Then

f!(g f ∗(h)) = f!(g)h.

Proof. This is immediate at the level of SK0, since both the multiplication in SK0 and the pullback are defined by the
fiber product. �

2.7. Radon transform

Let S ⊂ X × Y , X , Y be subanalytic sets and write πX : X × Y → X and πY : X × Y → Y for the projections
and qX = πX |S and qY = πY |S . For g ∈ C+(X), we define the Radon transformRS(g) ∈ C+(Y ) by

RS(g) = qY ! ◦ q∗

X (g) = πY ! ◦ (π∗

X (g)1S)

where 1S is the characteristic function on S.

2.8. Example

Consider the case X = Rn , Y = Gr(n) with S = {(p,Π ) : p ∈ Π }. Let Z ⊆ Rn be a subanalytic subset and
σZ : Gr(n) → A : Π 7→ (χ(Π ∩ Z), dim(Π ∩ Z)). Then σZ = RS(1Z ).

Let S′
⊂ Y × X be another subanalytic set and put q ′

X = πX |S′ and q ′

Y = πY |S′ . The following proposition is
proved just as in [16].
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Proposition 2.8.1 (Inversion Formula). Let r : S ⊗Y S′
→ X × X be the projection and suppose that the following

hypotheses hold:

(*) there exists λ ∈ A such that [r−1(x, x ′)] = λ for all x 6= x ′, x, x ′
∈ X;

(**) there exists 0 6= θ ∈ A such that [r−1(x, x)] = θ + λ for all x ∈ X.

If g is in C+(X), then

RS′ ◦RS(g) = θg + λ

∫
X

gµ (2.8.1)

and this is independent of the choice of θ .

Proof. Let h and h′ be the projections from S ⊗Y S′ to S and S′, respectively. Then, by definition of fiber product,
qY ◦ h = q ′

Y ◦ h′, and so, by functoriality of pullback and pushforward, we have h′

!
◦ h∗

= q ′
∗

Y ◦ qY !. Thus
RS′ ◦RS(g) = q ′

X !
◦ (q ′

Y )∗ ◦ qY ! ◦ q∗

X (g) = q ′

X !
◦ h′

!
◦ h∗

◦ q∗

X (g).
The last formula is also equal to p2! ◦ r! ◦ r∗

◦ p∗

1(g), where p1, p2 : X × X → X are the projections onto
the first and second coordinates respectively, since qX ◦ h = p1 ◦ r and q ′

X ◦ h′
= p2 ◦ r . The hypothesis shows

that r!(1S ⊗Y S′) = θ1∆X + λ1X×X , moreover this expression is independent of the choice of θ . By the projection
formula, r!(r∗(p∗

1(g))) = r!(1S ⊗Y S′r∗(p∗

1(g))) = r!(1S ⊗Y S′)p∗

1(g) = (θ1∆X + λ1X×X )p∗

1(g) holds, hence we
obtain p2!((θ1∆X + λ1X×X )p∗

1(g)) = θp2!(1∆X p∗

1(g)) + λp2!(p∗

1(g)) = θg + λ
∫

X g µ, as required.
We now show that the inversion formula is independent of the choice of θ . If θ + λ = θ ′

+ λ and θ 6= θ ′,
then necessarily λ2 > θ2, λ2 > θ ′

2 and θ1 = θ ′

1 with λ = (λ1, λ2), θ = (θ1, θ2) and θ ′
= (θ ′

1, θ
′

2). Hence,
θg + λ

∫
X g µ = θ ′g + λ

∫
X g µ for all x ∈ X . �

2.9. Example

Consider the case X = Rn , Y = Gr(n) with S = {(p,Π ) : p ∈ Π } and S′
= {(Π , p) : p ∈ Π }. Then

[r−1(x, x)] = [Pn−1
] and [r−1(x, x ′)] = [Pn−2

] for all x, x ′
∈ Rn with x 6= x ′. Since [Pn

] = (
1+(−1)n

2 , n), we have

RS′ ◦RS(g) = ((−1)n+1, n − 1)g +

(
1 + (−1)n

2
, n − 2

) ∫
X

g µ.

In particular, we have

RS′ ◦RS(1Z ) = ((−1)n+1, n − 1)1Z +

(
1 + (−1)n

2
, n − 2

)
[Z ]

for every subanalytic subset Z of Rn .

3. Direct image formalism in model theory

Let M be a model of a theory in a language L with at least two constant symbols c1, c2 satisfying c1 6= c2. For
Z a definable set, we define the category DefZ (M), also written DefZ for short, whose objects are definable sets X
with a definable map X → Z and whose morphisms are definable maps that make the obvious diagram commute.
We write Def(M) or Def for Def{c1}(M). In M, one can pursue the usual operations of set theory like finite unions,
intersections, Cartesian products, disjoint unions and fiber products.

We define the Grothendieck semi-group SK0(DefZ ) as the quotient of the free abelian semi-group over symbols
[Y → Z ] with Y → Z in DefZ by relations

[∅ → Z ] = 0, (3.0.1)

[Y → Z ] = [Y ′
→ Z ] (3.0.2)

if Y → Z is isomorphic to Y ′
→ Z in DefZ and

[(Y ∪ Y ′) → Z ] + [(Y ∩ Y ′) → Z ] = [Y → Z ] + [Y ′
→ Z ] (3.0.3)



696 R. Cluckers, M. Edmundo / Journal of Pure and Applied Algebra 208 (2007) 691–698

for Y and Y ′ subsets of some X → Z . There is a natural semi-ring structure on SK0(DefZ ) where the multiplication
is induced by taking fiber products over Z . Note that any element of SK0(DefZ ) can be written as [X → Z ] for some
X → Z ∈ DefZ , because we can take disjoint unions inM corresponding to finite sums in SK0(DefZ ).

The map Def → SK0(Def) sending X to its class [X ] is a universal positive measure with the property that two
sets have the same measure if there exists a definable bijection between them. For f : X → Y , there is an immediate
notion of pushforward f! : SK0(DefX ) → SK0(DefY ) given by

f!([Z → X ]) = [Z → Y ],

for Z → X in DefX and where Z → Y is given by composition with X → Y .
If Y = {c1}, then we write µ([Z → X ]) for f!([Z → X ]), which we call the integral of [Z → X ]; note that

µ([Z → X ]) is just [Z ] in SK0(Def). Thus the functoriality condition ( f ◦h)! = f! ◦h! can be interpreted as Fubini’s
Theorem.

There is also an immediate notion of pullback f ∗
: SK0(DefY ) → SK0(DefX ) given by

f ∗([Z → Y ]) = [Z ⊗Y X → X ],

for Z → Y in DefY and where Z ⊗Y X → X is the projection and Z ⊗Y X the set-theoretical fiber product. The
pullback is functorial, i.e., ( f ◦ h)∗ = h∗

◦ f ∗.

Proposition 3.0.1 (Projection Formula). Let f : X → Y be a morphism in Def and let g be in SK0(DefX ) and h in
SK0(DefY ). Then

f!(g f ∗(h)) = f!(g)h.

Proof. Exactly the same proof as for the subanalytic sets above works. �

3.1. Radon transform and inversion formula

One can also define the Radon transform in this context in exactly the same way as in the subanalytic case.
Furthermore, the same argument as in the subanalytic case gives the corresponding inversion formula. However, since,
in general, there is no trivialisation theorem, the conditions (*) and (**) in Proposition 2.8.1 have to be replaced by
global conditions. Using the embedding SK0(Def) → SK0(DefU ) sending [W ] to [W ×U → U ] where W ×U → U
is the projection, the statement becomes:

Let r : S ⊗Y S′
→ X × X be the projection and suppose that the following hypotheses hold:

(*) there exists Z1 in Def such that in SK0(DefX1) we have

[B1 → X1] = [Z1],

(**) there exists Z2 in Def such that in SK0(Def∆X ) we have

[B2 → ∆X ] = [Z1] + [Z2]

where X1 = X × X \ ∆X , B1 = S ⊗Y S′
\ r−1(∆X ), B2 = S ⊗Y S′

∩ r−1(∆X ) and B1 → X1 and B2 → ∆X are the
restrictions of the projection r : S ⊗Y S′

→ X × X ′. If Z → X is in DefX , then

RS′ ◦RS([Z → X ]) = [Z2][Z → X ] + [Z1][Z ] (3.1.1)

and this is independent of the choice of Z2.

4. Examples

4.1. Semialgebraic and subanalytic sets in Qp

For K any finite field extension of the field Qp of p-adic numbers, one can calculate explicitly the semi-ring of
semialgebraic sets SK0(K , Sem), resp. of globally subanalytic sets SK0(K , Sub), using work of [2] for semialgebraic
sets, resp. using work of [4] for the subanalytic sets. In both cases it is a subset of N × N, and the class of a
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semialgebraic set X , resp. a subanalytic set X , is (]X, 0) if X is finite and (0, dim X) if X is infinite. This is
because there exists a semialgebraic bijection between two infinite semialgebraic sets if and only if they have the
same dimension, and similarly for subanalytic sets. However, no trivialisation theorem is known, hence the relative
semi-Grothendieck rings SK0(K , SemZ ), resp. SK0(K , SubZ ), for Z semialgebraic, resp. subanalytic, are expected
to be much more complicated than maps Z → N × N with finite image.

4.2. Presburger sets

Consider the Presburger structure on Z by using the Presburger language

LPR = {+, −, 0, 1, ≤} ∪ {≡n | n ∈ N, n > 1},

with ≡n the equivalence relation modulo n. Again, one can can calculate explicitly the semi-ring SK0(Z,LPR), using
work of [3]. It is a subset of N × N, and the class of a Presburger set X is (]X, 0) if X is finite and (0, dim X) if X
is infinite, where the dimension of [3] is used. Again, this is because there exists a Presburger bijection between two
infinite Presburger sets if and only if they have the same dimension. Again, no trivialisation theorem is known, hence
the relative semi-Grothendieck rings are expected to be more complicated.

4.3. Semilinear sets

Let K = (K , 0, 1, +, ·, <) be an ordered field and consider the structure M = (K , 0, 1, +, (λc)c∈K , <), where
λc is the scalar multiplication by c ∈ K . The category Def in this case is the category of K -semilinear sets with
K -semilinear maps.

By [12], the Grothendieck ring K0(Def) is isomorphic to E = Z[x]/(x(x + 1)) and there is a universal Euler
characteristic ε : Def → E (see also [10]).

Let D be the set whose elements are of the form
∑n

i=1 yki zli ∈ N[y, z] with ki ≤ li and, for i 6= j ,
¬(yki zli = yk j zl j ) ∧ ¬(yki zli ≺ yk j zl j ) ∧ ¬(yk j zl j ≺ yki zli ). Here, yki zli ≺ yk j zl j if and only if ki < k j and
li < l j .

The set D can be equipped with a semi-ring structure in the following way: the zero element 0D is
∑0

i=1 yki zli , the
identity element 1D is y0z0, the addition is given by

n∑
i=1

yki zli +D

m∑
i=1

yk′
i zl ′i =

∑
max≺

{
yk zl

: yk zl a monomial in
n∑

i=1

yki zli +

m∑
i=1

yk′
i zl ′i

}
and multiplication is given by

n∑
i=1

yki zli ·D

m∑
i=1

yk′
i zl ′i =

∑
max≺

{
yk zl

: yk zl a monomial in
n∑

i=1

yki zli ·

m∑
i=1

yk′
i zl ′i

}
where the symbol

∑
max≺ S mean that we sum up the ≺-maximal elements of the finite set S.

By [12], there is a universal abstract dimension δ : Def → D and two sets in Def are isomorphic in Def if and
only if they have the same universal Euler characteristic and the same universal abstract dimension. Thus, if A is the
semi-ring E × D, then the Grothendieck semi-ring SK0(Def) is isomorphic to A and the map µ : Def → A given by
µ(X) = (ε(X), δ(X)) is the positive universal measure on Def.

Note that the results that we used above from [12] were proved in the field of real numbers, but the same arguments
hold in any arbitrary ordered field K .

4.4. Semibounded sets

Let K = (K , 0, 1, +, ·, <) be a real closed field and consider the structure M = (K , 0, 1, +, (λc)c∈K , B, <),
where λc is the scalar multiplication by c ∈ K and B is the graph of multiplication on a bounded interval. The
category Def in this case is the category of K -semibounded sets with K -semibounded maps.

By [11], all bounded semialgebraic subsets are in Def and, by [14], M is, up to definability, the only o-minimal
structure properly between (K , 0, 1, +, (λc)c∈K , <) and (K , 0, 1, +, ·, <).
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By [12], the Grothendieck ring K0(Def) is isomorphic to E = Z[x]/(x(x + 1)) and there is a universal Euler
characteristic ε : Def → E (see also [10]). Furthermore, if D is the semi-ring of Example 4.3, then there is a universal
abstract dimension δ : Def → D and two sets in Def are isomorphic in Def if and only if they have the same
universal Euler characteristic and the same universal abstract dimension. Thus, if A is the semi-ring E × D, then the
Grothendieck semi-ring SK0(Def) is isomorphic to A and the map µ : Def → A given by µ(X) = (ε(X), δ(X)) is
the positive universal measure on Def.

The results that we used above from [12] were proved in the field of real numbers and are based on Peterzil’s [13]
structure theorem for semibounded sets in the real numbers. However, the same arguments hold in any arbitrary real
closed field K using the structure theorem from [9].
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