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Abstract 

Compared with the common electrical steel, the high silicon electrical steel (Fe-6.5 wt%Si alloy) exhibits excellent soft 
magnetic properties and a wide application prospect in high frequency electromagnetic fields. However, the inadequate ductility 
and limited formability are the two well-known bottlenecks that severely limit the widespread engineering application of Fe-6.5 
wt%Si alloy. In this study, composite slabs with columnar-grained Fe-6.5 wt%Si alloy at the inner part and pure iron at double 
sides were prepared by the Bridgman zone melting technology under the melting temperature of 1485±5 °C and withdrawing 
velocity of 1mm/min. The composite slab could be directly warm-cold rolled to prepare sheet with the thickness of 0.2 mm and 
slight edge cracks. A new technical prototype for producing Fe-6.5 wt%Si alloy sheets was proposed with high efficiency and 
compact process. 
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1. Introduction 

Compared with the common electrical steel, 6.5wt% high silicon electrical steel (Fe-6.5wt%Si alloy) exhibits 
excellent soft magnetic properties, which has a wide application prospect in high frequency fields (Tanaka et al., 
1990; Arai et al., 1994; Phway et al., 2008). However, the ductility of the Fe-6.5wt%Si alloy at room temperature 
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is nearly zero due to the high Si content, which makes it difficult to fabricate Fe-6.5wt%Si alloy sheets using 
conventional casting-rolling process (Bolfarini et al., 2008). 

For avoiding the intrinsic embrittlement of the alloy, several special methods, such as physical vapor deposition 
method (Tian et al., 2010), rapidly quenched method (Varga et al., 2001), direct powder rolling method (Yuan et 
al., 2008), spray forming (Okada et al., 1996), etc. have been developed to produce the Fe-6.5 wt%Si alloys sheets. 
However, these methods are still in the stage of laboratory research due to their high production cost. Chemical 
vapor deposition (CVD) method (Yamaji et al., 1994), the unique commercial method to produce Fe-6.5 wt%Si 
alloy sheets was invented by NKK Corporation (JFE Corporation now). However, the process of the CVD method 
is complicated, including preparing the common electrical steels, deposition and siliconization. 

Considering the simple process, low energy consumption and low cost, special rolling process has become one 
of the main development directions of manufacturing the Fe-6.5 wt%Si alloy. Liang et al. (2010, 2012) fabricated 
the Fe-6.5wt%Si alloy sheets with the thickness of 0.05-0.3 mm successfully through hot rolling combined with 
warm and cold rolling as well as multi-passes intermediate annealing. However, the serious edge cracks and very 
low rolling yield need to be further improved. Liu et al (2013, 2014) put forward a new idea of preparing Fe-6.5 
wt%Si alloy sheets by strip casting, hot rolling and warm rolling. However, the surface quality and the stamping 
performance of the alloy sheets need to be further enhanced. 

The authors’ previous studies (Xie et al., 2012; Fu et al., 2013) indicated that the plastic formability of the Fe-
6.5 wt%Si alloy can be improved by controlling the microstructure and grain orientation by directional 
solidification, precipitates and the order degree control by appropriate heat treatment. Based on the previous works 
mentioned above, a new technology for producing Fe-6.5 wt%Si alloy sheets was proposed for highly efficient and 
compact fabrication of the Fe-6.5 wt%Si alloy sheets. However, many edge cracks were observed frequently after 
severe rolling deformation by this method. 

Therefore, a new directional solidification technology of composite material was developed (Fu et al., 2013). 
The composite slab with intensive <100> orientation columnar-grained Fe-6.5 wt%Si alloy at the inner part and 
pure iron at double sides was prepared to improve the warm-cold rolling performance and control the edge cracks. 
After the warm-cold rolling of the composite slab, the Fe-6.5 wt%Si alloy sheets could be produced by scraping 
edge or homogenization heat treatment. The result of this study is expected to provide a new process for highly 
efficient and compact fabrication of the Fe-6.5 wt%Si alloy sheets. 

2. Materials and methods 

Taking pure iron (99.9 wt%), pure silicon (99.9 wt%) and Fe-B alloy (B: 17.5 wt%, Fe: 82.45wt%) as the raw 
materials, an Fe-6.5 wt%Si alloy with 0.02 wt%B was firstly melted in a vacuum induction furnace and then mold 
casted. The rods for directional solidification were cut from the as-cast ingot by electric discharge machining with 
the size of 48 mm×6 mm×100 mm. After being polished, cleaned and dried, the rods were used to directional 
solidification.  

The composite slab was fabricated by directional solidification through an improved Bridgman zone melting 
equipment. The casting mould was made up by two pieces of quartz plates (thickness: 1.5 mm, width: 56 mm, 
length: 120 mm), two pieces of pure iron (thickness: 2 mm, width: 6 mm, length: 120 mm) and some refractory. 
The size of the casting mould lumen was 50×6×120 mm. The size of the composite slab after directional 
solidification would be 6 mm in thickness, 54 mm in width and 120 mm in length. Argon was blown to the casting 
mould to reduce the oxidation during directional solidification. The schematic diagrams of casting mould and 
directional solidification are shown in Fig. 1. 

The specimens produced by directional solidification were polished and etched with a solution of 7% HNO3 and 
93% CH3COOH for 2 minutes at room temperature. The composition and Vickers hardness at the interface of the 
composite slab were detected by energy disperse spectroscopy of ZEISSEVO18 scanning electron microscope and 
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HXD-1000T microhardness tester, respectively. The micro-texture and the magnetic properties of the cold-rolled 
sheets after recrystallization annealing were measured by D5000 X-ray diffractometer and single sheet magnetic 
properties tester. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1  Schematic diagrams of directional solidification and casting mold (thickness of pure iron of 2 mm). 

3. Results and discussion 

3.1. Effect of solidification parameters on microstructure of the composite slab 

The effect of melt zone temperature and withdrawing velocity on microstructure of the pure-iron-cladded 
columnar-grained Fe-6.5wt%Si alloy composite slab was mainly investigated. According to previous studies, the 
melting zone temperatures and withdrawing velocities of the experiment were 1455±5, 1485±5 and 1515±5 °C and 
1, 2 and 3 mm/min, respectively. 

3.1.1. Effect of melting zone temperature on microstructure of the composite slab 

The effect of melting zone temperature on the interface between pure iron and Fe-6.5 wt%Si alloy was 
investigated at the withdrawing velocity of 1 mm/min. When the temperature is 1455±5 °C, an obvious gap is 
found between the pure iron at the side of the slab and Fe-6.5 wt%Si at the inner part. With the increasing of 
melting zone temperature to 1485±5 °C, the microstructure and composition distribution curve is shown in Fig. 2. 
No obvious gap is found between pure iron at the side and Fe-6.5 wt%Si alloy. Remarkable composition transition 
is found at the interface, which indicates a good metallurgical-bonded composite interface is formed. The 
distributions of Si and Fe element are shown as a gradient slope shape at the interface and the composition 
transition distance is 1.8  mm away from the edge with a width of 0. 3 mm. 

 
                                 
 

 
 
 
 
 
 
 
 

Fig. 2. (a) Microstructure and (b) composition distribution curve of interface between pure iron and Fe-6.5 wt%Si alloy with melting zone 
temperature of 1485±5 °C. 
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When the melting zone temperature reaches 1515±5 °C, the pure iron at the side is melted and the compositions 
of the edge and inner part are homogenous. Therefore, the slab fails to preventing and reducing edge cracks by the 
good ductility and workability of pure iron at the side. 

3.1.2. Effect of withdrawing velocity on microstructure of the composite slab 

Under the favorable interface bonding between pure iron and Fe-6.5 wt%Si alloy with the melting zone 
temperature of 1485±5 °C, the effect of withdrawing velocity (range of 1, 2 and 3 mm/min) on microstructure and 
grain orientation of the Fe-6.5wt%Si alloy at inner part were investigated in this study. 

Fig.3 shows the macrostructure of the composite slab at different withdrawing velocities. When the 
withdrawing velocity is 1 mm/min, the columnar grains in the slab grow along the withdrawing direction, the grain 
boundaries are parallel to each other and the grain size is uniform. With the withdrawing velocity of 2mm/min, the 
axial direction of columnar grains in the slab deviates from the withdraw direction, and the grains become thinner 
than the former ones. With increasing withdrawing velocity to 3 mm/min, the growing direction of columnar 
grains in the slab has 30° deviation from the withdrawing direction and the macrostructure of the grains shows a 
shape like “^”. 

 

 

Fig. 3. Macrostructure of Fe-6.5 wt%Si alloy at inner part of slab at different withdrawing velocities for (a) 1 mm/min, (b) 2 mm/min and (c) 3 
mm/min. 

Thus it can be seen that the withdrawing velocity has a significant impact on macrostructure of the Fe-6.5 
wt%Si alloy. With increasing withdrawing velocity, the deviation angle between the grain growing direction and 
withdrawing direction becomes larger because of the change of heat transfer condition during solidification. 
During the solidification of composite slab, the melting Fe-6.5 wt%Si alloy contacts with pure iron at two sides. 
Due to the high thermal conductivity of pure iron, the heat transfer increases remarkably at two sides with an 
increase in the withdrawing velocity. The solid-liquid interface of the composite slab curves from the shape of 
straight line to “U”, which leads to the increase of deviation angle between the grain growing direction and the 
withdrawing direction. 

To sum up, the appropriate process of the directional solidification is the melting temperature of 1485±5 °C and 
withdrawing velocity of 1 mm/min. 

3.2. Warm rolling and cold rolling of the composite slab 

In order to show the effect of cladded pure iron on the edge cracks of the composite slab during warm/cold 
rolling, the directional solidification slab with the size of 54×6×100 mm was cut into two parts with single side 
pure iron cladded composite slab, and rolled at intermediate temperature. The warm and cold rolling were 
performed on the four-high rolling mill with the speed of 5-10 m/min. The specific process of the rolling is shown 
in Table 1. 
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Table 1. Rolling process of the single side pure iron cladded Fe-6.5wt%Si alloy composite slab. 

Rolling temperature Variation of  
thickness (mm) 

Reduction of  
per pass (%) 

Total  
reduction (%) Situation of edge 

550 °C  11.4~23.6 92.2 Without edge crack 

Room temperature  14.9, 12.5 94.2 Without crack on  side of pure iron, side of 
Fe-6.5wt%Si alloy crack slightly 

Room temperature  14.3 95.0 Without crack on side of pure iron, the side of 
Fe-6.5wt%Si alloy crack seriously 

 
The macrostructure of the single side pure iron cladded composite slab after warm-cold rolling is shown in Fig. 

4. The edge cracks on the two sides of the slab are significant different. The side cladded by pure iron does not 
form edge cracks, while the naked side forms serious cracks with the depth of more than 1cm. This implies that the 
Fe-6.5 wt%Si alloy slab cladded by pure iron can effectively solve the edge crack problem of the Fe-6.5 wt%Si 
alloy during warm-cold rolling, which has a great significance in engineering. 

 

Fig. 4. Macrostructure of the single side pure iron cladded Fe-6.5wt%Si alloy composite slab after cold rolling (thickness: 0.3 mm). 

Referring to the results of the single side pure iron cladded specimen, the double sides pure iron cladded Fe-
6.5wt%Si alloy slab was still performed on the four-stand rolling mill with the rolling speed of 5~10m/min. 
Meanwhile, the reduction of per pass was controlled in the range of 10%~30%. The specific process of the warm-
cold rolling is shown in Table 2. 

After warm rolling to 0.5 mm by 12 passes and pickling the oxide skin, the slab was cold-rolled into the 
thickness of 0.2 mm with a total reduction of above 96%. As shown in Fig. 5, the cold-rolled sheet has a good 
shape with slight edge cracks, and can be curved. 

 
Table 2. The rolling process of the double sides pure Fe cladded Fe-6.5wt%Si alloy composite slab. 

Rolling temperature 
Variation of  
thickness (mm) 

Reduction of  
per pass  (%) 

Total reduction  
(%) 

Situation of edge 

550°C  12.0~28.4 92.0 Without edge crack 

Room temperature  13.0~20.8 96.7 Edge crack slightly 

 
 
 
 

 
 
 
 
 

Fig. 5. Cold-rolled sheet of the Fe-6.5 wt%Si alloy composite slab (thickness: 0.2 mm). 
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4 Conclusions 

(1) The columnar-grained Fe-6.5 wt%Si alloy composite slabs cladded by pure iron at double sides were 
prepared by the zone melting technology through controlling the melting zone temperature and the 
withdrawing velocity. In the study, the appropriate process of the directional solidification is the melting 
temperature of 1485±5 °C and withdrawing velocity of 1 mm/min. 

(2) The columnar-grained Fe-6.5 wt%Si alloy composite slab, cladded by pure iron with good plasticity on 
sides, can effectively solve the edge crack problem of the Fe-6.5wt%Si alloy during warm and cold rolling, 
which can improve the efficiency and rolling yield of the sheets significantly. 

(3) A new technical prototype for producing Fe-6.5 wt%Si alloy sheets was proposed with high efficiency and 
compact process. 
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