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SUMMARY

Mushroom dendritic spine structures are essential
for memory storage, and the loss of mushroom
spines may explain memory defects in Alzheimer’s
disease (AD). Here we show a significant reduction
in the fraction of mushroom spines in hippocampal
neurons from the presenilin-1 M146V knockin (KI)
mouse model of familial AD (FAD). The stabilization
of mushroom spines depends on STIM2-mediated
neuronal store-operated calcium influx (nSOC) and
continuous activity of Ca2+/calmodulin-dependent
protein kinase II (CaMKII). We demonstrate that
STIM2-nSOC-CaMKII pathway is compromised in
KI neurons, in aging neurons, and in sporadic AD
brains due to downregulation of STIM2 protein. We
further establish that overexpression of STIM2 res-
cues synaptic nSOC, CaMKII activity, andmushroom
spine loss in KI neurons. Our results identify STIM2-
nSOC-CaMKII synaptic maintenance pathway as a
novel potential therapeutic target for treatment of
AD and age-related memory decline.

INTRODUCTION

The small structures of postsynaptic dendritic spines play an

important role in learning and memory (Bourne and Harris,

2008; Kasai et al., 2003). In experimental studies, postsynaptic

spines are usually classified into three groups according to their

morphological structure: mushroom spines, thin spines, and

stubby spines (Bourne and Harris, 2008; Kasai et al., 2003). It

has been proposed that the mushroom spines are stable ‘‘mem-

ory spines’’ that storememories and that thin spines are ‘‘learning

spines’’ that serve as physical substrates for the formation of new

memories (Bourne andHarris, 2007). Reflecting the critical role of

spines in the formation and storageofmemories, significant alter-
ations in spine number andmorphology have been observed in a

number of neurological and psychiatric disorders (Penzes et al.,

2011) and during normal aging (Dickstein et al., 2013).

Most cases of Alzheimer’s disease (AD), withmemory loss as a

cardinal feature, are sporadic and occur in the aging population

but in approximately 1%–2% of cases, early onset (<65 years

old) AD segregates as an autosomal dominant trait in families

(familial AD [FAD]). FAD results from mutations in genes encod-

ing presenilins (PS) or in the amyloid precursor protein (APP).

Synapses are lost during AD, correlating strongly with cognitive

decline (DeKosky and Scheff, 1990). These studies led to realiza-

tion that AD is primarily a disease of ‘‘synaptic failure’’ (Knobloch

and Mansuy, 2008; Koffie et al., 2011; Luebke et al., 2010;

Penzes et al., 2011; Selkoe, 2002; Tackenberg et al., 2009; Wil-

cox et al., 2011). However, the exact cause of ‘‘synaptic failure’’

in AD remains unknown. Most of the current research in the field

has been centered on the idea that elevated levels of amyloid

beta Ab42 peptide lead to elimination of synaptic spines by de-

stabilizing postsynaptic Ca2+ signaling or disrupting the network

of spine cytoskeleton (Knobloch and Mansuy, 2008; Koffie et al.,

2011; Luebke et al., 2010; Penzes et al., 2011; Tackenberg et al.,

2009;Wilcox et al., 2011). Since loss of memories is a hallmark of

AD, we and others previously proposed that mushroom spines

are more likely to be eliminated during AD progression (Bezproz-

vanny and Hiesinger, 2013; Luebke et al., 2010; Popugaeva and

Bezprozvanny, 2013; Popugaeva et al., 2012; Tackenberg et al.,

2009). Consistent with these predictions, it has been previously

demonstrated that Ab42 peptide can shift the balance from

mushroom to stubby spines in the organotypic hippocampal

slice culture preparation (Tackenberg and Brandt, 2009).

Recent amyloid imaging studies indicated that significant

fraction of patients display biomarkers of neurodegeneration in

the absence of amyloid accumulation in the brain (Jack et al.,

2013; Wirth et al., 2013b). In many amyloid-positive patients,

there was a poor correlation between local amyloid burden

and other neurodegenerativemarkers (Wirth et al., 2013a). These

studies suggested existence of both ‘‘amyloid-first’’ and ‘‘neuro-

degeneration-first’’ biomarker profile pathways to preclinical AD

(Jack et al., 2013;Wirth et al., 2013a, 2013b). If not amyloid, what
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can be a driver of pathology in these patients? Our main hypoth-

esis is that neuronal Ca2+ dysregulation may play a role of such

a driver (Bezprozvanny and Mattson, 2008). The linkage with

abnormal Ca2+ signaling is particularly strong with FAD muta-

tions in presenilins. Many of PS FAD mutations result in

enhanced Ca2+ release from endoplasmic reticulum (ER) via

inositol 1,4,5-trisphosphate receptors (InsP3R) and ryanodine re-

ceptors (RyanR) (Bezprozvanny and Mattson, 2008; Popugaeva

and Bezprozvanny, 2013). To explain these findings, we previ-

ously proposed that in addition to acting as the catalytic compo-

nent of the g-secretase complex, presenilins also function as

passive ERCa2+ leak channels, a function that appears to be dis-

rupted by many FAD mutations (Tu et al., 2006). This hypothesis

was supported by experimental results from our laboratory

(Nelson et al., 2007, 2010; Tu et al., 2006; Zhang et al., 2010),

by more recent independent experimental findings (Bandara

et al., 2013; Das et al., 2012), and by structural analysis of a bac-

terial presenilin homolog PSH1 (Li et al., 2013).

We previously predicted (Bezprozvanny and Hiesinger, 2013;

Popugaeva and Bezprozvanny, 2013; Popugaeva et al., 2012)

that abnormal neuronal Ca2+ signaling can cause destabilization

of mushroom spines independently form synaptotoxic effects of

Ab42. To test this hypothesis, we focused our studies on PS1-

M146V knockin (KI) mice (Guo et al., 1999). This mouse model

demonstrates defects in hippocampal memory tasks (Sun

et al., 2005; Wang et al., 2004), enhanced early long-term poten-

tiation (E-LTP), and impaired late long-term potentiation (L-LTP)

(Auffret et al., 2010). In several studies, abnormal neuronal Ca2+

signaling and synaptic transmission abnormalities have been re-

ported for this model (Chakroborty et al., 2009; Goussakov et al.,

2010; Stutzmann et al., 2004, 2007; Zhang et al., 2010). Impor-

tantly, neuronal Ca2+ signaling, synaptic plasticity, and memory

defects in thesemice occur in the absence of human Ab42 accu-

mulation, providing an opportunity to study Ca2+-dependent

synaptic changes in isolation from synaptotoxic effects of Ab42.

In the present study, we focused on the analysis of alterations

in the shape of synaptic spines in KI hippocampal neurons.

The results obtained in our experiments uncovered an essential

role of neuronal store-operated Ca2+ entry (nSOC) pathway

in maintenance of mushroom spines in hippocampal neurons.

Our results indicate that nSOC pathway in postsynaptic spines

is specifically gated by a stromal interaction molecule 2

(STIM2), an ER Ca2+-sensor protein. We found that nSOC

pathway causes persistent activation of Ca2+/calmodulin-

dependent protein kinase II (CaMKII) in the spines, and this is

needed for long-term stability of mushroom spines. We discov-

ered that this pathway is downregulated in hippocampal neurons

from KI mice, in aging mouse neurons, and in human sporadic

AD cortical samples. Our results point to STIM2-nSOC-CaMKII

synaptic maintenance pathway as a therapeutic target for pre-

vention of synaptic loss in aging brains and in AD.

RESULTS

Reduced Fraction ofMushroom Spines in PS1-M146V KI
Hippocampal Neurons
To search for possible structural correlates of memory defects in

KI mice, the wild-type (WT) and KI hippocampal cultures were
80 Neuron 82, 79–93, April 2, 2014 ª2014 Elsevier Inc.
transfected with TD-Tomato plasmid, fixed, and stained with

anti-PSD95 antibodies (Figure 1A). PSD95 was localized to the

heads of mushroom and stubby spines in both WT and KI neu-

rons, confirming shape-based spine identification (Figure 1A).

We observed significant reduction in the fraction of the mush-

room spines and proportional increase in the fraction of thin

spines in the KI cultures when compared to WT cultures

(Figure 1B).

To confirm these findings in vivo, we prepared thick brain sli-

ces from WT and KI mice at 3, 6, and 12 months of age and in-

jected lucifer yellow dye (Dumitriu et al., 2011) into hippocampal

CA1 neurons to visualize shape of the spines in the secondary

apical dendrites of injected cells (Figures S1A available online;

Figures 1C, 1E, and 1G). We discovered that the total spine den-

sity was significantly higher in 3-month- and 6-month-old KI neu-

rons than in age-matched WT neurons (Figures 1D and 1F). The

fraction ofmushroom spineswas in the range 25%–30% for both

WT and KI hippocampal slices at 3 months of age (Figure 1D). By

6 months of age, the fraction of mushroom spines in WT neurons

was increased to 40%, significantly higher than in KI neurons at

the same age (Figure 1F). The fraction of mushroom spines in 12-

month-old WT neurons was reduced to 30%, but was still signif-

icantly higher than in KI neurons at the same age (Figure 1H). We

did not observe any significant difference in the fraction of

stubby spines between WT and KI mice at any age (Figures

1D, 1F, and 1H). The fraction of thin spines was inversely corre-

lated with the fraction of mushroom spines. At 6 and 12 months

of age there was a significant increase in the fraction of thin

spines in KI neurons when compared to WT neurons (Figures

1F and 1H). Most likely, proliferation of thin spines is responsible

for increase in total spine density in KI neurons at this age (Fig-

ures 1F and 1H). From this analysis (Figure 1), we concluded

that in WT and KI neurons there is an age-dependent shift of a

balance away from mushroom spines and toward thin spines.

Postsynaptic nSOC Is Impaired in PS1-M146V KI
Hippocampal Neurons
The KI mice do not express human APP protein and do not make

human Ab42. Murine Ab does not exert synaptotoxic effects.

PS1-M146Vmutation has only subtle effect on Notch processing

(Sun et al., 2005), as has been confirmed in our control experi-

ments with KI hippocampal cultures (data not shown). Thus,

neither Ab42 toxicity nor dysfunction of Notch pathway are likely

to cause mushroom spine loss in KI neurons. Abnormal neuronal

Ca2+ signaling is well documented in KI mice (Chakroborty et al.,

2009; Goussakov et al., 2010; Stutzmann et al., 2004, 2007;

Zhang et al., 2010). Thus, we turned our attention to potential

connection between neuronal Ca2+ signaling and stability of

mushroom spines. Formation of excitatory spines was increased

in transgenic mice that overexpressed TRPC6 channel, a

potential component of nSOC entry pathway (Zhou et al.,

2008). Impaired function of SOC in presenilin mutant cells was

suggested by the previous studies (Akbari et al., 2004; Bojarski

et al., 2009; Herms et al., 2003; Leissring et al., 2000; Yoo

et al., 2000; Zhang et al., 2010). Thus, we decided to explore a

potential role of nSOC.

To quantify nSOC in hippocampal neurons, the amplitude

of nSOC-mediated Ca2+ influx in the soma was measured by



Figure 1. Loss of Mushroom Spines in PS1-

M146V KI Hippocampal Neurons

(A) The spine shape of primary hippocampal neu-

rons from WT or KI mice was visualized with

TD-Tomato. Subcellular localization of PSD95

was analyzed by immunostaining of hippocampal

cultures.

(B) Total spine density and percentage of various

spine types in hippocampal neuronal cultures from

WT and KI mice. For spine quantification, n = 21–23

neurons (from four batches of cultures) were

analyzed for each group.

(C, E, andG) Spinemorphology in CA1 hippocampal

neurons from 3-month-old (C), 6-month-old (E), and

12-month-old (G) WT and KI mice was visualized by

lucifer yellow injections and two-photon imaging.

(D, F, and H) Total spine density and percentage of

mushroom (M), stubby (S), and thin (T) spine types

in hippocampal neurons from 3-month-old (D), 6-

month-old (F), and 12-month-old (H) WT and KI

mice. On (A), (C), (E), and (G), mushroom spines are

marked by arrows; thin spines are marked by tri-

angles; stubby spines aremarked by chevron. Scale

bars represent 10 mm in (A) and 5 mm in (C), (E), and

(G). n = 3 mice for each group. Values are shown

as mean ±SEM. *p < 0.05; **p < 0.01; ****p < 0.0001

by t test.

Neuron

STIM2-nSOC-CaMKII Pathway and Synaptic Loss in AD
Fura-2 fluorescence (Figure 2A). Consistent with our previous re-

sults obtained with the 33Tg AD mouse model (PS1M146V KI,

Thy1-APPKM670/671NL, Thy1-tauP301L) (Zhang et al., 2010), we

found that amplitude of somatic nSOC after 2 min depletion pro-

tocol was significantly reduced in KI neurons when compared to

WT neurons (Figures 2B and 2F). As we discussed previously

(Zhang et al., 2010), this result can be explained by impaired

ER Ca2+ leak function in KI neurons, so that ER Ca2+ stores in

KI neurons cannot be fully depleted during 2 min incubation in

Ca2+-free media, resulting in incomplete activation of nSOC

pathway. Measurements of ionomycin-sensitive ER Ca2+ pool

in KI neurons following 2 min depletion protocol are consistent

with this explanation (Figure S2A). To evaluate the function of

nSOC pathway independently from the differences in the filling

state of the Ca2+ stores, we extended the length of incubation
Neuron 82,
in Ca2+-free media to 30 min to allow com-

plete ER Ca2+ store depletion in both

cultures. We discovered that following

30 min depletion protocol the amplitude

of somatic nSOC was similar in WT and

KI cultures (Figures 2C and 2F). Thus, we

concluded that the function of somatic

nSOC pathway is minimally affected in KI

neurons in conditions of complete ER

Ca2+ store depletion.

It is well established that Ca2+ signaling

in dendritic spines is compartmentalized

and relatively insulated from somatic

Ca2+ signaling (Higley and Sabatini, 2012;

Kasai et al., 2003; Yasuda et al., 2003).

Thus, we decided to study function of
nSOC pathway in the spines. To perform Ca2+ imaging in the

spines, we transfected hippocampal neurons with GCamp5.3

plasmid that encodes genetically encoded Ca2+ indicator (Tian

et al., 2009), which enabled us to simultaneously visualize the

dendritic spines and to measure local Ca2+ signals (Figure 2D;

Movie S1). Following 30 min incubation in Ca2+-free media, we

discovered that nSOC signals were greatly attenuated in the

spines from KI neurons when compared to WT spines (Figures

2E and 2F). These results suggested that some components of

nSOC pathway were significantly impaired in the spines, but

not in the soma, of KI hippocampal neurons. To further confirm

these findings, we compared amplitude of synaptic nSOC in

spines from 2-months-old WT and KI hippocampal slices. In

these experiments WT and KI mice were stereotaxically injected

with adeno-associated virus (AAV) encoding GCamp5.3, and the
79–93, April 2, 2014 ª2014 Elsevier Inc. 81



Figure 2. Reduced Synaptic Store-Operated Ca2+ Entry in PS1-M146V KI Hippocampal Neurons

(A) Fura-2 fluorescence in live hippocampal neurons. Somatic ROI is shown by a red circle.

(B and C) Time course of Fura-2 Ca2+ signals (F340/F380) is shown for WT and KI hippocampal neurons following 2min (B) or 30 min (C) store-depletion protocol.

(D) GCaMP5.3 fluorescence in live hippocampal neurons. The samples for synaptic ROI are shown by a red circle.

(E) Time course of synaptic GCaMP5.3 Ca2+ signals (DF/F0) is shown forWT and KI hippocampal neurons following 30min store-depletion protocol. In (B), (C), and

(E), individual cell traces (gray) and average traces (black) are shown for each experimental group.

(F) The average peak SOC responses in soma and spines of WT and KI hippocampal neurons (normalized to WT). Values are shown as mean ±SEM. (All the data

was collected from three to five batches of cultures.) **p < 0.01; ****p < 0.0001 by t test.
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spine nSOC amplitude was measured in live slices by two-

photon Ca2+ imaging. Obtained results confirmed that synaptic

SOC is impaired in spines of KI neurons when compared to

WT neurons (Figures S2C and S2D).

Spine shape analysis and Ca2+ imaging experiments sug-

gested that PS1-M146V KI mutation results in destabilization

of mushroom spines (Figure 1) and impaired synaptic nSOC (Fig-

ure 2). We further extended our analysis to four additional PS1-

FADmutants: L166P, A246E, E273A, and A426P. In the previous

studies we demonstrated that all of these four mutations disrupt

ER Ca2+ leak function of PS1 (Nelson et al., 2010). As KI mouse

models for these mutants are not available, we expressed these

mutants in WT hippocampal neuronal cultures and discovered

that the fraction of mushroom spines was significantly reduced,

and postsynaptic nSOC was suppressed in neurons expressing

any of these PS1-FAD mutants (Figures S1B, S1C, and S2B).
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From these results we concluded that impaired ER Ca2+ leak

function due to PS1-FAD mutations results in impaired synaptic

nSOC and destabilization of mushroom spines in PS1-FAD

hippocampal neurons.

STIM2 Protein Is Downregulated in PS1-M146V KI,
APPPS1, Aging, and AD Neurons
SOCpathway is activated in response to reduced levels ofCa2+ in

the ERdue to activation of stromal interactionmolecules (STIMs),

ER-resident Ca2+-sensor proteins. Two mammalian isoforms of

STIM proteins (STIM1 and STIM2) differ in their affinity for ER

Ca2+ and expression pattern (Collins and Meyer, 2011). In order

to identify the components of nSOC affected in KI neurons, we

performed western blotting analysis of STIMs and transient re-

ceptor potential channel 1 (TRPC1), a potential component of

nSOC pathway (Riccio et al., 2002; Wu et al., 2011), in lysates



Figure 3. Downregulation of STIM2 Protein in PS1-M146V KI Hippocampal Neurons
(A) The expression levels of STIM1, STIM2, and TRPC1 protein were analyzed by western blotting of lysates from WT and KI hippocampal cultures. Tubulin was

used as loading control. ns indicates nonspecific band.

(B) Quantification of STIM1, STIM2 and TRPC1 expression levels in WT and KI cultures (normalized to tubulin levels).

(C) Subcellular localization of STIM1 and STIM2 were analyzed by immunostaining of hippocampal cultures. MAP2 was used for neuronal labeling. Scale bar

indicates 10 mm.

(D and E) STIM2 localization in WT and KI neurons transfected with TD-Tomato. Mushroom spines are marked by arrows; thin spines are marked by triangles;

stubby spines are marked by chevron. The scale bars in (D) represent 20 mm in the left panels and 10mm in the right panel.

(F) The fraction of STIM2-positive spines is shown for mushroom (M), stubby (S), and thin (T) spines in WT and KI neurons. All the data was collected from three

batches of cultures. Values are shown as mean ±SEM. *p < 0.05; ****p < 0.0001 by t test.
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prepared from WT and KI hippocampal cultures. In these exper-

iments, we discovered that the expression levels of STIM2, but

not of STIM1, were dramatically reduced in KI hippocampal cul-

tures when compared to WT cultures (Figures 3A and 3B). The

levels of TRPC1 protein were similar in WT and KI cultures (Fig-

ures 3A and 3B). It has been reported that both STIM1 and

STIM2proteins are expressed in the nervous system (Gruszczyn-

ska-Biegala et al., 2011; Skibinska-Kijek et al., 2009), with STIM2

highly enriched in hippocampal neurons (Figure S3). To further

understand unique roles of STIM1 and STIM2 in hippocampal

neurons, we performed a series of immunostaining experiments

with primary hippocampal neuronal cultures. In these experi-

ments, we discovered that STIM1 protein is restricted to the

neuronal soma, whereas STIM2 is broadly expressed and pre-

sent in both somaanddendrites (Figure 3C). To evaluate localiza-

tion of STIM2 in the spines, we transfected WT and KI cultures

with TD-Tomato construct and stained the cultures with anti-

bodies against STIM2 protein (Figure 3D). We used confocal im-

ages of TD-Tomato to identify various types of spines (Figure 3E)

and scored every spine as ‘‘STIM2-positive’’ or ‘‘STIM2-nega-

tive.’’ From this analysis we established that STIM2 protein was
present in almost all mushroom and stubby spines, but not in

thin spines, in WT cultures (Figures 3E and 3F). In agreement

with the western blotting data (Figures 3A and 3B), we found

that the levels of STIM2 protein were significantly reduced in

spines of KI hippocampal neurons (Figures 3E and 3F).

To further test generality of these findings, we performed

western blotting analysis of hippocampal lysates from 3-, 6-,

and 12-month-old WT and KI mice (Figures 4A, 4B, S4A, and

S4B). Consistent with hippocampal culture data (Figures 3A

and 3B), we found that the levels of STIM1 and TRPC1 proteins

were similar in 3-, 6-, and 12-month-old WT and KI hippocampal

samples, but the levels of STIM2 protein were significantly

reduced in 6- and 12-month-old KI hippocampal samples (Fig-

ures 4A, 4B, and S4B). To further validate these findings, we

evaluated expression of STIM proteins in hippocampal lysates

from APPPS1 mice (APPKM670/671NL, PS1L166P) (Radde et al.,

2006), a different model of AD. Similar to results with KI mice,

we observed specific downregulation of STIM2 protein in hippo-

campal lysates from 9-month-old APPPS1 mice (Figures S4C

and S4D). While performing analysis with FAD mouse models,

we noticed that even for WT mice, levels of STIM2 protein
Neuron 82, 79–93, April 2, 2014 ª2014 Elsevier Inc. 83



Figure 4. Downregulation of STIM2 Protein in PS1-M146V KI and Aging Mice Hippocampus and in Cortex of Alzheimer’s Patients

(A) The expression levels of STIM1, STIM2 and TRPC1 proteins were analyzed by western blotting of hippocampal lysates from 6-month-old WT and KI mice.

(B) Quantification for western blotting data shown in (A) and Figures S4A and S4B.

(C) The expression levels of STIM1, STIM2, and TRPC1 proteins were analyzed by western blotting of hippocampal lysates from 6-, 9-, 12-, and 16-month-old

WT mice.

(D) Quantification of western blotting data shown in (C).

(E) The expression levels of STIM1, STIM2, and TRPC1 proteins were analyzed by western blotting of normal human (Con) and AD patient’s (AD) cortical

lysates.

(F) Quantification of western blotting data shown in (E) and Figure S4E.

(G) Correlation between STIM2 levels and MMSE scores. The STIM2 expression levels (normalized to tubulin) were plotted versus MMSE score for each AD

patient (filled circles) and four control subjects (open circles). Straight line is a linear fit to all 15 data points (r2 = 0.38). Tubulin was used as a loading control in all

western blots, and signal intensity of STIM1, STIM2, and TRPC1 bands was normalized to tubulin level in the same sample. Sample in each column was from

individual mouse or human tissue. Average values are shown as mean ±SEM (n = 3 mice and 11 human tissues for each group). *p < 0.05; **p < 0.01 by t test or

one-way ANOVA followed by Tukey’s test.
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were reduced in 12-month-old samples when compared to 3-

and 6-month-old samples. To confirm and extend these findings,

we performed systematic western blotting analysis of hippocam-

pal samples from another group of WT mice at 6, 9, 12, and

16 months of age. We found that the levels of STIM1 and

TRPC1 proteins remained unchanged as a function of age (Fig-

ures 4C and 4D). In contrast, levels of STIM2 protein were signif-

icantly reduced in 12- and 16-month-old hippocampal samples

(Figures 4C and 4D). These experiments lead us to conclude

that STIM2 levels are reduced in hippocampus of aging and

FAD mice.

To establish relevance of our findings for human disease, we

obtained human cortical samples from a group of 11 sporadic

AD patients and 11 age-matched controls (clinical and patholog-

ical information about these samples is summarized in Table S1).

We performed a series of western blotting experiments with the

human cortical lysates (Figures 4E and S4E). From analysis of

obtained results, we concluded that STIM2 expression levels

were significantly reduced in AD samples when compared to

age-matched controls (Figure 4F). In contrast, levels of TRPC1

and STIM1 proteins were not significantly affected in AD sam-

ples (Figure 4F). To establish a potential correlation between

STIM2 expression levels and disease progression, we plotted

STIM2 expression levels (normalized to tubulin) versus MMSE

score for each AD patient and four control subjects for which

MMSE scores were available (Table S1).We observed significant

correlation (r2 = 0.38) between STIM2 levels and MMSE scores

(Figure 4G), indicating that reduced STIM2 levels correlate with

severity of the disease. We also performed analysis of STIM2

expression levels in the cortical samples from six MCI patients,

but we did not observe significant reduction in STIM2 levels

(data not shown), most likely because these patients were at

the very early stages of the disease, as evidenced by their

MMSE scores (Table S1). From obtained results, we concluded

that STIM2 downregulation occurs in neurons from PS1-

M146V KI mice, in neurons from APPPS1mice, in aging neurons,

and in sporadic AD neurons.

STIM2-nSOCPathway Is Necessary forMushroomSpine
Stability
To directly evaluate the role of STIM2-nSOC pathway in stabili-

zation of mushroom spines, we took a genetic approach. For

these experiments we used conditional knockout (cKO) mice

of the Stim2 gene (Oh-Hora et al., 2008). Hippocampal neurons

from Stim2fl/fl mice were infected with lentiviruses encoding nu-

clear-targeted Cre (NLS-Cre) to generate Stim2 cKO neurons.

Western blotting of lysates obtained from the infected cultures

confirmed efficient and specific knockout of STIM2 protein in

NLS-Cre-infected Stim2fl/fl hippocampal neurons, with minimal

effect on STIM1 expression levels (Figure 5C). To determine

functional effects of STIM2 deletion, we evaluated nSOC activity

in soma and spines of Cre-transduced Stim2fl/fl neurons. We

found that deletion of STIM2 resulted in 35% reduction in the

average amplitude of somatic nSOC (Figures 5A and 5B). The

amplitude of synaptic nSOC was dramatically reduced in

the absence of STIM2 (Figures 5A and 5B), with the average

amplitude of synaptic nSOC reduced by 85% in Stim2 cKO neu-

rons (Figures 5A and 5B). These results indicated that STIM2 is
predominantly responsible for synaptic nSOC, in agreement

with subcellular localization analysis (Figure 3).

To study the effect of STIM2 deletion and synaptic nSOC

reduction on mushroom spine stability, GFP- or Cre-transduced

Stim2fl/fl neurons were transfected with TD-Tomato, and the

shape of spines was analyzed by confocal imaging (Figure 5D).

We found that the overall spine density was similar in GFP-

and Cre-transduced cultures (Figure 5E), just as we had

observed for WT and KI cultures (Figure 1B). Also similar to KI

cultures, the fraction of mushroom spines was significantly

reduced, and the fraction of thin spines was proportionally

increased in Stim2 cKO neurons (Figure 5E). These results are

consistent with our hypothesis that STIM2-mediated synaptic

nSOC pathway plays an important role in the stabilization of

mushroom spines.

To validate these findings in vivo, we performed stereotaxic in-

jections of AAV1-NLS-Cre viruses and control AAV1-NLS-GFP

viruses to the hippocampal region of 2-month-old Stim2fl/fl

mice. Efficient and specific knockout of STIM2 protein in these

experiments was confirmed by western blotting of hippocampal

lysates prepared 4 weeks after viral injections (Figure 5F). For

analysis of spine morphology GFP- and Cre-injected mice

were sacrificed at 4 months of age, and spine morphology was

evaluated by lucifer yellow injection procedure combined with

two-photon imaging (Figure 5G). Similar to 6-month-old KI

mice, we found that the fraction of mushroom spines in Stim2

cKO mice was significantly reduced, and the fraction of thin

spines was proportionally increased (Figure 5H). Thus, in agree-

ment with our hypothesis, knockout of STIM2 and reduction in

synaptic nSOC leads to reduction in the fraction of mushroom

spines in both culture and slice experiments. When analysis

was extended to 6-month-old mice, we observed massive

neuronal loss in Stim2 cKO mice hippocampus (Figure S5), sug-

gesting that STIM2-mediated nSOC pathway is necessary for

long-term neuronal survival.

STIM2 Overexpression Rescues Mushroom Spine
Deficiency in PS1-M146 KI Hippocampal Neurons
If downregulation of STIM2 is responsible for reduction in synap-

tic nSOC and loss of mushroom spines, then overexpression of

STIM2 should be able to rescue synaptic nSOC and increase

mushroom spines in KI neurons. To test these predictions, we

coexpressed mouse STIM1 (mSTIM1) and STIM2 (mSTIM2) pro-

teins and control NLS-GFP protein with GCamp5.3 plasmid

in hippocampal cultures from WT and KI mice. Consistent with

the previous results (Figures 2E and 2F), synaptic nSOC was

significantly smaller in GFP-transfected KI cultures than in

GFP-transfected WT cultures (Figures 6A and 6B). Expression

of mSTIM1 resulted in�50% increase in the amplitude of synap-

tic nSOC in both WT and KI cultures (Figures 6A and 6B). Trans-

fection with mSTIM2 resulted in 4- to 5-fold increase in the

amplitude of synaptic nSOC in WT and KI cultures (Figures 6A

and 6B). Thus, consistent with our hypothesis, overexpressed

STIM2 was much more effective in modulating synaptic nSOC

activity inWT and KI cultures than STIM1. To evaluate the effects

of STIMs on neuron morphology, we cotransfected WT and KI

hippocampal neurons with TD-Tomato plasmid and mSTIM1 or

mSTIM2 expression plasmids or control NLS-GFP plasmid
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Figure 5. Genetic Deletion of STIM2 Causes Impaired nSOC and Loss of Mushroom Spines in Hippocampal Neurons

(A) Time course of Fura-2 Ca2+ signal in the soma and GCamP5.3 Ca2+ signal in the spines are shown for Stim2fl/fl hippocampal neurons transduced with NLS-

GFP or NLS-Cre, as indicated. Individual cell traces (gray) and average trace (black) are shown for each group.

(B) The average peak SOC responses in soma and spines of Stim2fl/fl hippocampal neurons transduced with NLS-GFP or NLS-Cre (normalized to NLS-GFP).

(C) Expression levels of STIM1, STIM2, and TRPC1were analyzed bywestern blotting of lysates prepared fromStim2fl/fl hippocampal cultures infectedwith Lenti-

NLS-GFP or Lenti-NLS-Cre, as indicated. Tubulin was used as a loading control. ns is a nonspecific band.

(D) Spine morphology of the primary hippocampal neurons from Stim2fl/flmice transduced with NLS-GFP or NLS-Cre was visualized with TD-tomato. Mushroom

spines are marked by arrows. Scale bar indicates 10 mm.

(legend continued on next page)
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(Figure 6C). We discovered that expression of STIM1 had no

effect on spine density when compared to expression of GFP

(Figures 6C and 6D). Expression of STIM2 resulted in significant

decrease in total spine density in both WT and KI cultures (Fig-

ures 6C and 6D). When spine shapes were analyzed, we discov-

ered that mSTIM1 overexpression resulted in strong reduction of

mushroom spine fraction in WT cultures and in smaller reduction

of mushroom spine fraction in KI cultures (Figures 6C and 6D). In

contrast, expression of mSTIM2 resulted in small decrease of

mushroom spine fraction inWT cultures but an increase inmush-

room spine fraction in KI cultures (Figures 6C and 6D).

Synaptic protein PSD95 is enriched in mushroom spines (Fig-

ure 1A), and we reasoned that abundance of PSD95 can be

used as an alternative readout for mushroom spine density.

We found that infection with mSTIM1-encoding lentiviruses

had no effect on PSD95 levels in WT cultures and resulted in

some elevation of PSD95 levels in KI cultures (Figures 6E and

6F). In contrast, infection with mSTIM2-encoding lentiviruses re-

sulted in significant elevation of PSD95 levels in KI cultures (Fig-

ures 6E and 6F). Levels of TRPC1 protein remained unchanged

following overexpression of mSTIM1 or mSTIM2 (Figures 6E

and 6F). These results supported important and specific role

of STIM2 protein in control of postsynaptic spines, in agreement

with spine quantification data (Figures 6C and 6D). In parallel

control experiments we demonstrated that infection with

Lenti-STIM2 viruses had no significant effect on Notch process-

ing in WT and KI hippocampal cultures (data not shown), indi-

cating that the rescue of mushroom spines and PSD95 levels

in KI neurons was not due to effects of STIM2 on the g-secre-

tase activity.

To determine if STIM2 overexpression can rescue mushroom

spine deficit in vivo, we performed stereotaxic bilateral injec-

tions of AAV1-mSTIM2 viruses or control AAV1-NLS-GFP vi-

ruses to hippocampal region of 2-month-old WT or KI mice.

Expression of mSTIM2 protein was confirmed by western blot-

ting of hippocampal lysates (Figure 6I). We prepared hippocam-

pal slices from the injected mice at 6 months of age for the

analysis of the spine morphology by two-photon imaging (Fig-

ure 6G). From this analysis, we determined that mSTIM2 overex-

pression had no effect on the fraction of mushroom spines in WT

mice but rescued the fraction of mushroom spines in KI mice

to the WT levels (Figures 6G and 6H). To further validate these

findings, we performed a series of western blotting experiments

with hippocampal lysates from these mice. Consistent with

mushroom spine quantification data, we observed rescue of

PSD95 levels in KI mice injected with AAV1-mSTIM2 viruses

(Figures 6I and 6J).
(E) Total spine density and percentage of various spine types in hippocampal

M indicates mushroom, S indicates stubby, and T indicates thin. For spine quant

batches of cultures for each group.

(F) Expression levels of STIM1, STIM2, and TRPC1 were analyzed by western blo

NLS-GFP or AAV1-NLS-Cre, as indicated. Tubulin was used as a loading contro

(G) Spine morphology in hippocampal neurons from 4-month-old Stim2fl/fl mic

yellow injections and two-photon imaging. The infected neurons were identifie

indicates 5 mm.

(H) Total spine density and percentage of various spine types in hippocampal s

NLS-Cre (n = 4 mice for each group). M indicates mushroom, S indicates stubby

***p < 0.001; ****p < 0.0001 by t test.
CaMKII Acts Downstream of STIM2-nSOC Pathway in
the Mushroom Spines
CaMKII is highly concentrated in the postsynaptic density frac-

tion of the spines (Feng et al., 2011). Critical role of CaMKII in

LTP-induced formation of mushroom spines has been exten-

sively documented (Lisman et al., 2012; Murakoshi and Yasuda,

2012). In contrast, very limited information exists about potential

role of CaMKII in spine stabilization (Sanhueza et al., 2011).

Following Ca2+-dependent activation, CaMKII undergo trans-au-

tophosphorylation on Thr-286, which enables CaMKII to main-

tain activity for extended periods of time independently from

Ca2+ levels. Therefore, abundance of autophosphorylated form

can be used as a biochemical indicator of steady-state activity

levels of CaMKII. To compare functional state of CaMKII in WT

and KI hippocampal cultures, we performed western blotting ex-

periments with CaMKII antibodies and with antibodies specific

for phosphorylated form of CaMKII. Consistent with our predic-

tions, we found that the total levels of CaMKII were similar in

WT and KI cultures, but the levels of pCaMKII were significantly

reduced in KI cultures (Figure 7A). Importantly, the CaMKII auto-

phosphorylation in both WT and KI neurons was abolished by

short-term application of SOC inhibitors SKF96365 or 2APB (Fig-

ure 7A), suggesting that continuous nSOC activity is needed

to maintain CaMKII in the phosphorylated state. Immunostaining

results confirmed colocalization of pCaMKII and STIM2 in

mushroom spines of hippocampal neurons in culture (Fig-

ure S6A). Reduction in pCaMKII in our experiments was closely

matched by reduction in PSD95 levels (Figure 7A), suggesting

that blockage of nSOC causes loss of mature spines. To further

validate results obtainedwith pharmacological inhibitors of SOC,

we utilized a genetic strategy. We discovered that the levels of

pCaMKII and PSD95 were reduced in hippocampal cultures

from Stim2fl/fl mice infected with Lenti-Cre viruses (Figure 7A).

Similar results were obtained with hippocampal lysates from

Stim2fl/fl mice injected with AAV1-Cre viruses (Figure 7A). In

addition to the observation that STIM2 levels were reduced in ag-

ing hippocampus (Figure 4C), in western blotting experiments

with hippocampal lysates from the aging mice we observed sig-

nificant reduction in pCaMKII and PSD95 levels in 12-month-old

samples (Figures 7B and 7C), consistent with impaired nSOC

signaling in the spines. Reduced levels of synaptic pCaMKII

were reported for hippocampus of human MCI and AD patients

(Reese et al., 2011), consistent with our observations. Overex-

pression of STIM2 resulted in rescue of pCaMKII levels in hippo-

campal cultures from KI mice (Figures 7D and 7E). Consistent

with nSOC rescue experiments (Figures 6A and 6B), expression

of STIM2 hadmore potent effect on pCaMKII levels in KI neurons
neuronal cultures from Stim2fl/fl mice transduced with NLS-GFP or NLS-Cre.

ification, n = 18–20 neurons were analyzed. The data were collected from four

tting of hippocampal lysates prepared from Stim2fl/fl mice injected with AAV1-

l. Each sample was from individual mouse.

e injected with AAV1-NLS-GFP or AAV1-NLS-Cre was visualized by lucifer

d by GFP fluorescence. Mushroom spines are marked by arrows. Scale bar

lices from 4-month-old Stim2fl/fl mice injected with AAV1-NLS-GFP or AAV1-

, and T indicates thin. Values are shown as mean ±SEM. *p < 0.05; **p < 0.01;
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Figure 6. Overexpression of STIM2 Rescues

Synaptic nSOC and Mushroom Spine Deficit

in Hippocampal Neurons from PS1-M146V

KI Mice

(A) Time course of GCamP5.3 Ca2+ signal in the

spines of WT and KI hippocampal neurons trans-

fected with NLS-GFP, mSTIM1, and mSTIM2, as

indicated. Individual cell traces (gray) and average

trace (black) are shown for each group.

(B) The peak SOC responses in spines of WT and KI

hippocampal neurons transfected with NLS-GFP,

mSTIM1, and mSTIM2, as indicated. The values of

DF/F0 signals were averages for each group of cells.

(C) The spine morphology of WT and KI primary

hippocampal neurons transfected with NLS-GFP,

mSTIM1, ormSTIM2was visualizedwith TD-tomato.

Mushroom spines are marked by arrows. Scale bar

indicates 10 mm.

(D) Total spine density and percentage of mush-

room spines in WT and KI hippocampal neuronal

cultures transfected with NLS-GFP, mSTIM1, or

mSTIM2. For spine quantification, n = 15–24

neurons were analyzed. The data were collected

from four batches of cultures.

(E) The expression levels of STIM1, STIM2, TRPC1,

and PSD95 proteins were analyzed by western

blotting of cultured hippocampal neurons which

overexpress mSTIMs by lentivirus.

(F) Quantification of TRPC1 and PSD95 proteins for

western blotting data.

(G) Spine morphology in hippocampal neurons from

6-month-oldWT and KI mice that were injected with

AAV1-NLS-GFP or AAV1-mSTIM2 was visualized

by lucifer yellow injections and two-photon imaging.

Mushroom spines are marked by arrows. Scale bar

indicates 5 mm.

(H) Percentage of mushroom spines in hippocampal

slices from 6-month-old WT and KI mice injected

with AAV1-NLS-GFP or AAV1-mSTIM2 (n = 4 mice

for each group).

(I) The expression levels of STIM1, STIM2, TRPC1,

and PSD95 proteins were analyzed by western

blotting of hippocampal lysates from STIM2

rescued KI mice and control mice.

(J) Quantification of TRPC1 and PSD95 for western

blotting data shown in (I). Values are shown as

mean ±SEM. *p < 0.05; **p < 0.01; ***p < 0.001;

****p < 0.0001 by one-way ANOVA or two-way

ANOVA followed by Tukey’s test.
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than expression of STIM1 (Figures 7D and 7E). Furthermore,

we demonstrated that AAV1-mediated expression of STIM2

rescued pCaMKII levels in hippocampus of KI mice in vivo (Fig-

ures 7F and 7G). Expression of STIM2 in vivo had no effect on

total CaMKII levels in both groups or the levels of pCaMKII in

WT hippocampus (Figures 7F and 7G), validating specificity of

effects observed in KI brain.

Obtained results suggested that impairment of CaMKII activity

in KI neurons occurs downstream from impairment in STIM2-
88 Neuron 82, 79–93, April 2, 2014 ª2014 Elsevier Inc.
nSOC synaptic Ca2+ influx. There are

many downstream targets of CaMKII that

may play a role in stabilization of mush-
room spines (Lisman et al., 2012; Murakoshi and Yasuda,

2012). In our studies, we focused on small GTPase proteins

Cdc42 and Rac1, which play an important role in actin cytoskel-

eton reorganization in the spines. During LTP paradigm, Cdc42/

Rac1 are activated in spines downstream of CaMKII (Murakoshi

and Yasuda, 2012). To quantify Cdc42/Rac1 activity in KI spines,

we prepared lysates from WT and KI cultures and isolated GTP-

bound active formof Cdc42 andRac1 proteins by pull-downwith

GST-PAK1-PBD beads (Knaus et al., 2007). We found that the



Figure 7. Synaptic CaMKII as Downstream Target for STIM2-nSOC Pathway

(A) Analysis of PSD95, pCaMKII, and CaMKII levels in WT and KI hippocampal neurons treated with nSOC inhibitors (SKF96365, 30 mM and 2-APB, 30 mM) for

16 hr and in Stim2fl/fl neurons transduced with NLS-Cre and NLS-GFP in vitro and in vivo.

(B) The levels of PSD95, pCaMKII, and CaMKII were analyzed by western blotting of hippocampal lysates from 6-month-, 9-month-, and 12-month-old WTmice.

Sample in each lane was from individual mouse.

(C) Quantification of western blotting data shown in (B).

(D) The expression levels of pCaMKII and CaMKII levels proteins were analyzed by western blotting of cultured hippocampal neurons which overexpressmSTIMs

by lentivirus.

(E) Quantification of pCaMKII and CaMKII levels proteins for western blotting data in (D).

(F) The expression levels of pCaMKII and CaMKII proteins were analyzed by western blotting of hippocampal lysates from STIM2 rescued KI mice and

control mice.

(G) Quantification of pCaMKII and CaMKII for western blotting data shown in (F).

Tubulin was used as a loading control in all western blotting experiments. Average values are shown as mean ±SEM (n = 3 mice or batches for each group).

*p < 0.05; **p < 0.01, by one-way or two-way ANOVA followed by Tukey’s test.
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levels of activated Cdc42/Rac1 were indeed reduced in lysates

from KI neurons when compared to WT neurons (Figure S6B).

Importantly, levels of activated Cdc42/Rac1 in KI neurons were

rescued by infection of KI cultures with STIM2 lentiviruses but

not with STIM1 lentiviruses (Figure S6B). These results sup-

ported the hypothesis that impaired function of STIM2-nSOC-

CaMKII pathway resulted in reduced levels of active Cdc42/

Rac1 in KI hippocampal spines.

DISCUSSION

STIM2-nSOC-CaMKII Pathway and Stability of
Mushroom Postsynaptic Spines
It has been proposed that the mushroom spines play an impor-

tant role in storage of memories (Bourne and Harris, 2007; Kasai

et al., 2003). There is an extensive literature related to spine

growth and formation of mushroom spines following LTP-

inducing stimulation paradigms (Lisman et al., 2012; Murakoshi

and Yasuda, 2012). In contrast, relatively little is known about

signaling mechanisms involved in long-term maintenance of

mushroom spines (Bezprozvanny and Hiesinger, 2013; San-
hueza et al., 2011). Based on the results obtained in the current

study, we would like to propose an existence of a novel signaling

pathway involved in long-term stabilization of mushroom spines

in healthy neurons (Figure 8A). Our results indicate that themain-

tenance of individual mushroom spines depends on continuous

levels of CaMKII activity in these spines (Figure 8A). Although

postsynaptic spines contain multiple potential sources of Ca2+

influx, such as NMDAR, AMPAR, and VGCC (Murakoshi and Ya-

suda, 2012), these channels provide rapid and massive Ca2+

influx during stimulation and remain silent at rest. Thus, these

channels are poorly suited to support long-term maintenance

mechanism. Instead, our data indicate that steady-state CaMKII

activity in the spines depends on continuous Ca2+ influx via

STIM2-regulated nSOC pathway (Figure 8A). Indeed, pharmaco-

logical blockade of nSOCor genetic deletion of STIM2 resulted in

reduction of CaMKII activity in hippocampal neurons (Figure 7A).

STIM2 protein abundantly expressed in hippocampal neurons

(Figures 3 and S3), highly enriched in the mushroom spines

(Figures 3D, 3E, and 3F), where it colocalizes with pCaMKII

(Figure S6A). The role of STIM2 protein as mediator of nSOC

pathway has been studied in the previous reports (Berna-Erro
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Figure 8. Role of STIM2-nSOC-CaMKII Pathway in Maintenance of

Mushroom Postsynaptic Spines

(A) In healthy neurons, continuous Ca2+ influx via STIM2-nSOC pathway

supports constant levels of CaMKII activity in the spines, leading to activation

of Cdc42, stabilization of PSD95, and long-term stability of mushroom spines.

(B) In PS-FAD and aging neurons, an increase in ER Ca2+ levels causes

compensatory downregulation of STIM2 expression, impaired nSOC Ca2+

influx, reduced steady-state CaMKII activity in the spines, reduced Rac1/

Cdc42 activity, destabilization of PSD95, and eventual loss of mushroom

spines. Loss of mushroom spines results in memory impairment in aging and

AD neurons. The symbol * indicates activated Rac1/cdc42 kinase.
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et al., 2009; Gruszczynska-Biegala et al., 2011; Skibinska-Kijek

et al., 2009), but the biological importance of SOC pathway in

the nervous system has not been previously established. Our

study points to unique and specific function of STIM2 as a regu-

lator of synaptic nSOC pathway that is necessary for mushroom

spine maintenance. Consistent with our hypothesis, conditional

genetic deletion of Stim2 resulted in dramatic reduction in syn-

aptic nSOC and loss of mushroom spines in Stim2 cKO neurons

(Figure 5) and eventual death of hippocampal neurons (Fig-

ure S5). Interestingly, STIM1 could not compensate for loss of

STIM2 in these experiments, most likely because of differences

in Ca2+ sensitivity (Collins and Meyer, 2011) and subcellular

localization (Figure 3) between these two proteins. Based on

obtained results we concluded that STIM2-nSOC-CaMKII

pathway plays an essential role in maintenance of mushroom

spines in healthy neurons (Figure 8A).

STIM2-nSOC-CaMKII Pathway Is Compromised in Aging
and AD Neurons
Our results further suggest that STIM2-nSOC-CaMKII pathway

is compromised in aging and AD neurons, which leads to

destabilization and loss of mushroom spines (Figure 8B). In our

studies, we discovered that the levels of STIM2 protein, but

not of STIM1 protein, were reduced in neuronal cultures or in hip-

pocampus of PS1-M146V KI mice (Figures 3A, 3B, 4A, 4B, S4A,

and S4B), in hippocampus of APPPS1 mice (Figures S4C and

S4D), in hippocampus of aging mice (Figures 4C and 4D), and

in cortical samples from sporadic AD human patients (Figures

4E, 4F, and S4E). Specific downregulation of STIM2 was previ-

ously reported for PS1-FAD patient fibroblasts (Bojarski et al.,

2009), in agreement with our findings. Interestingly, we observed
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a quantitative correlation between cortical STIM2 expression

levels and MMSE scores in human AD patients (Figure 4G).

Consistent with reduced levels of STIM2 protein, we observed

impaired nSOC in spines of PS1-M146V KI neurons (Figures

2D, 2E, and 2F) and reduced levels of CaMKII activity in PS1-

M146V KI and aging neurons (Figures 7A, 7B, and 7C). Reduced

levels of synaptic CaMKII activity has been previously reported

for MCI and AD patients (Reese et al., 2011), in agreement with

our model (Figure 8B). Heterologous expression of STIM2 pro-

tein was able to rescue synaptic nSOC (Figures 6A and 6B),

CaMKII activity (Figures 7D, 7E, 7F, and 7G), and Rac1/Cdc42

activity (Figure S6B) in PS1-M146V KI neurons in culture and

in vivo. In agreement with specific role of STIM2 protein,

STIM1 was much less effective than STIM2 in ability to rescue

nSOC and CaMKII activity in KI neurons in these experiments

(Figures 6A, 6B, 7D, 7E, and S6). We propose that reduced frac-

tion of mushroom spines in PS1-M146V KI neurons (Figure 1) is

caused by reduced activity of STIM2-nSOC-CaMKII pathway

(Figure 8B). Indeed, expression of STIM2, but not expression

of STIM1, was able to rescue mushroom spine defects and

PSD95 levels in PS1-M146V KI hippocampal neurons in culture

and in vivo (Figures 6C, 6D, and 6F–6J). From these results

we concluded that pharmacological upregulation of STIM2-

nSOC-CaMKII pathway may provide a therapeutic benefit in

age-related memory decline and in AD.

We would like to propose that reduction in STIM2 expression

levels is a compensatory response to elevated ER Ca2+ levels

in the postsynaptic spines. ER Ca2+ levels are increased in ag-

ing neurons (Foster, 2007; Gant et al., 2006; Kumar et al., 2009;

Toescu and Verkhratsky, 2007). Many FAD mutations in prese-

nilins, including PS1-M146V mutation and four other PS1-FAD

mutations (L166P, A246E, E273A, and A426P) analyzed in our

study (Figures S1C and S2B), disrupt ER Ca2+ leak function

of presenilins and result in elevated ER Ca2+ levels (Leissring

et al., 2000; Nelson et al., 2010; Nelson et al., 2007; Tu

et al., 2006; Zhang et al., 2010). Thus, another potential thera-

peutic strategy is to develop a way to reduce synaptic ER

Ca2+ levels in aging and AD neurons, which should result in

upregulation of STIM2 expression and nSOC pathway. For

example, mild inhibitors of ER SERCA Ca2+ pump may have

a potential beneficial effect by reducing ER Ca2+ load in aging

and AD neurons.

In conclusion, we discovered an essential role for STIM2 pro-

tein and synaptic nSOC pathway in long-term maintenance of

mushroom spines (Figure 8A). We conclude that continuous

Ca2+ influx via nSOC pathway leads to persistent activation of

CaMKII at the spines and demonstrated that continuous activity

of CaMKII is necessary for stability of the mushroom spines.

We further demonstrated that STIM2-nSOC-CaMKII pathway

is compromised in hippocampal neurons from PS1-M146V KI

mice and from APPPS1 mice, in aging neurons, and in sporadic

AD cortical samples due to reduced levels of STIM2 expression.

We propose that disruption of STIM2-nSOC-CaMKII pathway

contributes to synaptic loss and cognitive decline in aging and

AD (Figure 8B). Our results suggest that upregulation of STIM2

expression levels or activity of synaptic nSOC pathwaymay yield

therapeutic benefits for treatment of AD and other age-related

memory disorders.
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EXPERIMENTAL PROCEDURES

Please see the Supplemental Experimental Procedures for detailed methods

on expression plasmids and viruses, Fura-2 Ca2+ imaging experiments,

GCamP5.3 Ca2+ imaging experiments in hippocampal slices, dendritic spine

analysis inmice hippocampus, immunohistochemistry, autopsy data, and clin-

ico-pathological background of human patients, GTPases pull-down assays,

and western blot analysis.

Animals

The PS1-M146V KI mice (Guo et al., 1999) were kindly provided by Hui Zheng

(Baylor University). APPPS1 mice (APPKM670/671NL, PS1L166P) (Radde et al.,

2006) were kindly provided by Mathias Jucker (Tubingen University). WT

mice of the same strain (C57BL/6) were used in control experiments. Stim2fl/fl

mice were generated as previously described (Oh-Hora et al., 2008). The

mouse colonies were established and housed in a vivarium (four per cage)

with 12 hr light/dark cycle at UT Southwestern Medical Center barrier facility.

All procedures involving mice were approved by the Institutional Animal Care

andUse Committee of the University of Texas SouthwesternMedical Center at

Dallas, in accord with the National Institutes of Health Guidelines for the Care

and Use of Experimental Animals.

Dendritic Spine Analysis in Primary Hippocampal Neural Cultures

The hippocampal cultures of PS1-M146V KI, Stim2fl/fl and WT mice were

established from postnatal day 0–1 pups and maintained in culture as we

described previously (Zhang et al., 2010). For assessment of synapse

morphology, hippocampal cultures were transfected with TD-Tomato plasmid

at DIV7 using the calcium phosphate method and fixed (4% formaldehyde and

4% sucrose in PBS [pH 7.4]) at DIV14. A z stack of optical section was

captured using 1003 objective with a confocal microscope (Carl Zeiss Axio-

vert 100M with LSM510). At least 15 cultured neurons from three batches of

cultures were used for quantitative analysis per genotype. Quantitative anal-

ysis for dendritic spines was performed by using NeuronStudio software pack-

age (Rodriguez et al., 2008). To classify the shape of neuronal spines in culture,

we adapted an algorithm from published method (Rodriguez et al., 2008). In

classification of spine shapes, we used the following cutoff values: aspect ratio

for thin spines (AR_thin(crit)) = 2.5, head to neck ratio (HNR(crit)) = 1.3, and head

diameter (HD(crit)) = 0.45 mm. These values were defined and calculated

exactly as described by Rodriguez et al. (2008).

GCamp5.3 Ca2+ Imaging Experiments

GCamp5.3 imaging experiments were performed as previously reported (Tian

et al., 2009). Briefly, cultured WT and KI hippocampal neurons were trans-

fected with GCamp5.3 expression plasmid using calcium phosphate transfec-

tion method at DIV7. The GCamp5.3 fluorescent images were collected using

Olympus IX70 inverted epifluorescencemicroscope equippedwith a 603 lens,

Cascade 650 digital camera (Roper Scientific), and Prior Lumen 200 illumi-

nator. The experiments were controlled by the MetaFluor image acquisition

software package (Universal Imaging). To measure synaptic nSOC, the neu-

rons were moved from artificial CSF (aCSF) to calcium-free media with

0.4 mM EGTA and 1 mM TG (thapsigargin) for 30 min and then returned to

aCSF with addition of Ca2+ channels inhibitor cocktail (1 mM TTX, 10 mM

AP5, 10 mM CNQX, and 50 mM nifedipine). The response to Ca2+ readdition

was acquired using 488 nM excitation (GFP). Analysis of the data was

performed using NIH Image J software. The region of interest (ROI) used in

the image analysis was chosen to correspond to spines. All Ca2+ imaging

experiments were done in room temperature.

Statistical Analyses

The results are presented as mean ±SEM. Statistical comparisons of results

obtained in experiments were performed by Student’s t test for two-group

comparisons and one-way or two-way ANOVA followed by Tukey’s test for

multiple comparisons among more than two groups. The p values are indi-

cated in the text and figure legends, as appropriate. The statistical analysis

was performed by using n equals the number of independent neurons or

spines analyzed or n equals the number of neuronal cultures and mice

analyzed. In the second version of analysis, the mean of at least five neurons
for each mouse or batch or culture was used as a single data point. Both

methods of analysis yielded mostly similar results, although levels of statistical

significance were lower when the second method was used. First method of

analysis was used to generate figures for the paper. The detailed comparison

of statistical results obtained by both methods is included to the paper

as Table S2.
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