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Abstract. The aim of this paper is to compare the running behaviour of Petri nets, given by firing 
sequences and processes, with derivations and derivation processes in graph grammars. In a first 
step, Petri nets are simulated by graph grammars so that each firing in a net corresponds exactly 
to a direct derivation in the simulating graph grammar. In a second step the non-sequential 
behaviour of nets described by net processes is related to the non-sequential behaviour of graph 
grammars given by derivation processes. A one-to-one correspondence can be established between 
the processes on a Petri net and the complete conflict-free processes in the graph grammar 
simulating the net. This adds a new piece of evidence substantiating the close relationship between 
net and graph grammar theory. 

Introduction 

In computer science one deals with systems and their sequentialand non-sequen- 
tial behaviour, frequently described as processes. This requires to study various 
questions: Which manipulations can be performed in parallel! Which actions 
influence or exclude each other and must be synchronized? Which activities can be 
organized without deadlocks and inconsistencies? etc. 

Because such problems are important and occur in several different areas, there 
are many approaches claiming to describe and to solve some of these problems. 
Among them you can find Petri nets and graph grammars which both use graphical 
notations to investigate systems and their behaviour. 

Some work has already been done in comparing both theories (cf., e.g., [2, 4, 8, 
11, 12]). In particular, in [4] a graph grammar is constructed from a given 
place/transition net so that direct derivations in the graph grammar correspond to 
firings of transitions in the net. Generalizing this simulation to arc-weighted nets 
with capacity, the present paper establishes a one-to-one correspondence between 

* A short version of this paper was presented at the Workshop on Graph-theoretic Concepts in 
Computer Science, 1984 (see [6]). 
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processes on a Petri net and complete, conflict-free processes in the graph grammar 
simulating the net. Intuitively speaking, the notion of a process in both approaches 
relates actions in a concurrent or distributed system by a partial order in contrast 
to the assumption that changes happen one after the other as in a sequential system. 

This paper consists of two parts. The first part concerns the sequential behaviour 
of systems described by Petri nets and graph grammars. For this purpose we shall 

recall the basic notions of Petri nets (Section 1) and of graph grammars (Section 
2). Then a net will be simulated by a graph grammar (Section 3) in the way that 
graphs and a graph grammar rules are obtained from a given arc-weighted net with 
capacity. It will be shown that there is a one-to-one correspondence ,between the 
sequential behaviour of a Petri net and the sequential behaviour of the simulating 
graph grammar, i.e., between firing sequences and derivations. 

In the second part of this paper the non-sequential behaviour of systems described 
by nets and graph grammars is investigated. For that reason the concepts of net 
processes, specialized to condition/event systems (Section 4), and of derivation 
processes in graph grammars (Section 5) will be recalled. The main result (Section 
6) establishes a one-to-one correspondence between processes on a net and complete, 
conflict-free processes in the graph grammar simulating the net. Section 7 will present 
some concluding remarks. The concepts of graph theory used in this paper are piled 
up in Appendix A. 

1. Petri  nets  

In this section we recall some basic notions of net theory (cf., e.g., [9]). 
The underlying invariant structure is a net, which is a graph where the set of 

nodes is bi-partitioned into places and transitions. 
Each place of the net may store tokens, the number of which is unbounded or 

bounded by a given capacity. 
Transitions represent actions that can take place in the net. They are connected 

with places by the flow relation. For each edge of the net, i.e., an element of the 
flow relation, the width denotes the number of tokens flowing through this edge if 
its transition fires. 

Def in i t ion  1.1. A net N = ( S, T, F, w, k) consists of 

- a set S of p laces ,  

- a set T of t r a n s i t i o n s  with S c~ T = 0, 
- a f l o w  relation F ~ S x T u T x S, 
- a w i d t h  function w : F - >  N ,  and 
- a c a p a c i t y  function k: S -~ N u {co}. 

Remark .  (1) For technical reasons we extend w to the e x t e n d e d - w i d t h  function 
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: S x T u T x S-~ N in the following way: 

ff,(a, b) := {o(a, b ) forall (a, b)~ 

(2) The input places of a transition t e T are given by the set * t = {s e S I (s, t) ~ F}, 
and the output places of a transition t e T are given by the set t* = {s e S[ (t, s) ~ F}. 

(3) We say that s ~ S is a place with bounded capacity if  k(s) ~ oo. Otherwise, s 
is a place with unbounded capacity. 

All components  of a net are static, i.e., they cannot be changed. To obtain a 
dynamic  system a net is equipped with a marking assigning a number  of  tokens to 
each place of the net up to its capacity. 

The behaviour  of the system will be desribed by the transformation of  markings. 

Definit ion 1.2. Let N = (S, T, F, w, k) be a net. A funct ion  m : S-> N is called marking 
of N if  m(s) <~ k(s) for all s e S with k(s) # oo. 

Remark. Let N = (S, T, F, w, k) be a net m : S ~ N be a marking. A slot function 
sl: S ~ N, indicating the free capacity of a place with hounded capacity, is defined 

in the following way: 

sl(s):={~ ( s ) - m ( s )  otherwise.f°ralls~Swithk(s)~°°' 

Definit ion 1.3. Let N be a net, and let m be a marking of N. Then the pair  (N, m) 
is called a marked net. 

Example 1.4. Let example=  (S, T, F, w, k) be the net with S={1 ,  2, 3, 4, 5}, T =  
{a, b, c, d, e}, F = {(1, a), (a, 2), (4, b), (b, 5), (2, c), (c, 3), (3, d), (5, d), (d, 1), (d, 4), 
(1, e), (4, e), (e, 3), (e, 5)}, w ( e ) =  1 for all e e F  and k ( s ) =  1 for all s e $  and let 
init: S-~ N be a marking with in i t (1)= ini t (4)= 1 and ini t (2)= ini t (3)= ini t (5)= 0. 
Then EXAMPLE = (example, init) is a marked net and can be drawn as usual  in net 
theory (see Fig. 1) (confer, e.g., [9]). 

The marking of  a net can be transformed into a follower marking by firing enabled 
transitions. Transitions are enabled if  all their input places carry at least as many 
tokens as required by the width of the connecting edges and if  analogously, all their 
output places with bounded capacity have enough slots. Transitions transform a 
marking into a follower marking by decreasing the number  of tokens of  each input 
place and by increasing the number  of  tokens of each output place both according 
to the width. We do not only allow that different transitions are fired simultaneously, 
but also that each transition may be fired several times within one transformation. 
To make this precise, a frequency is assigned to each transition so that a bag of 
transitions rather than a set of  transitions is involved in a transformation. 
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d 

Fig. 1. EXAMPLE. 

Definition 1.5. Let N = (S, T, F, w, k) be a net and m be a marking of N. Let U" T- ,  

be a function. 

(1) U is enabled under m if  

m(s)>~ ~, U(t)x~,(s,t) 
t ~ T  

sl(s) = k(s) - m(s) >~ ~ U(t) x ~(t, s) 
t ~ T  

for all s ~ S, and 

for all s e S with k(s) ~ oo. 

(2) In this case U transforms m to m' defined by 

m'(s)=m(s)+ ~ U(t)x[~,( t , s ) -~(s , t )]  
t ~ T  

for all s ~ S. 

Remark. (1) This is called a step from marking m to m' by firing U and denoted 

by m[ U)m', and m' is called follower marking of m (under U). 
(2) A function U: t - ,  N is called a bag of transitions. It should be noted that some 

authors call such a function a multiset. For a transit ion t, U(t) is the frequency t 

is fired with in a step. 
(3) The case that a single transit ion to is fired is included in our notion by means 

of the following hag Uto defined by Uto(to)= 1 and  Uto(t) = 0 otherwise. In this case 

we write re[to)re' instead of m[UOm'. 
(4) The transitions involved in a step are said to be concurrent. 
(5) [*) denotes the reflexive, transitive closure of  [ ). Let m and m' be markings 

of a net N ;  m' is called reachable from m if m[*)m'. 

Example 1.6. Let EXAMPLE be the marked net from Example 1.4. Let U :  T--, N be 

the bag of transitions with U(a)= U(b)= 1 and U(c)= U(d)= U(e)-0 .  
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U is enabled under init and transforms init to the follower marking follow where 
follow is defined by fo l low(2)=fol low(5)=l  and follow(1)=foUow(3)= 
follow(4) = 0. The transitions a and b are concurrent in the step init[ U)follow. 

Figure 2 illustrates the effect of the step init[ U)follow. 

Later on we shall make use of the well-known fact that transitions which can be 
fired simultaneously can also be fired one after the other with the same resulting 
marking. 

[ ,>  

d d 

Fig. 2. init[u)follow. 

Theorem 1.7. Le t  N be a net. Let U, U1, and I-I2 be bags of transitions with U (  t) = 

Ul(t)+ U2(t) for all t~ T. Let m and m" be markings with m[U)m". Then there is a 
marking m' such that m[ Ul)m'[ U2)m". 

Remark. m[ Ui)m'[ U2)m" will be called a decomposition of m[ U)m". 

Example 1.8. For t he  step init[ U)follow in Example 1.6, there are two proper 
decompositions init[a)m'[b)follow as well as init[b)m"[a)follow, where m' is given 
by m'(2)= m ' ( 4 ) = l  and m'(1)= m'(3)=m'(5)=O, and m" is given by m"(1)= 
m"(5) = 1 and m"(2) = m"(3) = m"(4) = 0. 

2. Graph grammars 

In this section we specialize and adapt the basic notions of graph grammar rules 
and derivations (cf., e.g., [3, 1]) to our purposes. The procedure of deriving graphs 
from graphs is based on a specific kind of graph removing and gluing. Note that 
all notions, constructions, and notational conventions concerning graphs are sum- 
marized in the appendix. 

An alternative approach to graph rewriting can be found, e.g., in Nagl's book [7]. 
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Definition 2.1. A rule r = (L, R, K) consists of three graphs L, R, and K with K ~ L 
and K _~ R. 

Remark. (1) L is called the left-hand side of r, R the right-hand side of r, and K 
the gluing graph of r. 

(2) r -~ = (R, L, K)  is called the inverse rule of r. 

To apply a rule r = (L, R, K) to a graph M, four steps must be performed: 
(1) choose an occurrence of L in M, 
(2) check the gluing condition, 
(3) remove the non-gluing part of the occurrence, 
(4) add to the remainder the non-gluing part of R by gluing together correspond- 

ing gluing parts. 

Definition 2.2. Let r = (L, R, K) be a rule. Let M and N be graphs. Let g:L-> M 
and h : R --> N be graph morphisms. 

(1) The image g(L) is called a (left-)occurrence of r in M. The image h(R) is 
called a right-occurrence of r in N. 

(2) A graph morphism g is a valid occurrence map if the following conditions 
are satisfied: 

(a) sM(e)~gv(VL) implies sM(e)egv(VK),  and tM(e)egv(VL) implies 
t~(e) ~ gv(VK) for all e ~ E~  - gE(EL); 

(b) x # y, but g(x) = g(y) implies x, y ~ K for all x, y ~ L. 

Remark. (1) The graph morphisms g and h are also called occurrence maps. 
(2) The images g(K)  and h(K) are called the gluing parts, g ( L ) - g ( K )  and 

h( R ) - h( K ) the non-gluing parts of the occurrences. 
(3) Part (a) of Definition 2.2(2) is called contact condition, because it requires 

that edges from outside of the occurrence contact the gluing part at most. 
(4) Part (b) is called identification condition, because it makes sure that the 

non-gluing part of the occurrence is not deformed. 
(5) Contact condition and identification condition together are called gluing 

condition. 

Lemma 2.3. Let r = ( L, R, K ) be a rule and let M be a graph. Let g: L--> M be a graph 
morphism. 

(1) M - ( g ( L ) - g ( K ) )  induces a subgraph of M, denoted by REM, i f  and only if 
g satisfies the contact condition. 

In addition, let g satisfy the contact condition. 
(2) Then, d : K --> REM given by d(x) = g(x) for all x ~ K is a graph morphism. 
(3) Moreover, M is isomorphic to the d-gluing of L and REM along K provided 

that g satisfies the identification condition, too. 
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Remark. REM is called the remainder (of M according to g and r). 

Definition 2.4. Let r =  (L, R, K)  be a rule. Let M, N be graphs, and let g: L-> M 

specify a valid occurrence map. Let REM be the remainder of M according to g 

and  r with the corresponding graph morphism d:K--> REM ( s e e  Lemma 2.3). Let 
GLUE be the d-gluing of  R and REM along k. Then M directly derives N by applying 
r (according to g) if  N is isomorphic to the graph GLUE. 

Remark. (1) We write M ~ N  through r (and g) or M ~ r N  (and call this a direct 
derivation) if  M directly derives N by applying r according to g. 

(2) This defines a relation ~ on graphs, the reflexive and transitive closure of 
which is denoted by ~,.  A graph N is said to be derivable from M if M : ~  N. 

(3) A sequence of direct derivations Mo~r~ M1 :=>,2" " " ~ r n  M,,  where M~_I :=>,1 Mi 
is a direct derivation for i = 1 , . . . ,  n, is called a derivation from Mo to M,,. Obviously, 
M, is derivable from Mo in this case. 

(4) Let i:  GLUE ~ N be the assumed isomorphism. Let j : R ~ GLUE be the graph 

morphism according to Appendix A(9). Then the composition ioj defines an 

occurrence map h : R ~ N. Due to the identification condition the following is true: 
M ~ N  through r and g if and only if N ~ M  through r -~ and h. 

Figure 3 sketches the relation of the graphs involved in a direct derivation M ~  N 

through r = (L, R, K) and g : L ~ M. 

Now we allow to derive a graph from a given graph not only by applying one 

rule but  by applying a parallel rule which is a combination of given rules. 

L ~ K 

N ~ ~ N  

( 
C 

~__ GLUE~ 

)J 
R 

Fig. 3. Scheme of  a direct derivation. 

Definition 2.5. Let r~ = (Li, R~. K~) for i = 1 , . . . ,  n (n ~> 1) be rules, and let P be a 
set of  rules. 

(1) The parallel rule r = rl +-  • • + r, is given by the disjoint union of the com- 
ponents of r~, i.e., r = ( L1 +" • • + L , ,  R~  + .  • • + R , ,  K ~  + .  • • + K , , ) .  

(2) r is said to be a parallel rule over P if  r~ e P for i = 1 , . . . ,  n. 
P+ denotes the set of  parallel rules over P. 
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Remark. (1) For r = rl +" • • + r, we shall write r = ~ i~, ri, too. Instead of r + .  • • + r 

(n-times) we shall write n x r for short. 
(2) The disjoint union of rules defining parallel rules is commutative and associa- 

tive (up to isomorphism). Hence, P+ may be given by the following recursion: 

P ~ P+ and r, + r 2 E P+ provided that r,,  r 2 c P + .  

(3) Parallel rules are ordinary rules, so that they can be applied to graphs in the 

way defined above. A direct derivation M ~ N  through a parallel rule r~ +-  • • + rn 

is called direct parallel derivation. 

Example 2.6. Figure 4 explicitly shows a direct parallel derivation from a graph 

called GRAr'H(init) to a graph called GRAPH(follow) through a parallel rule 
r u  = ra + rb . 

The following theorem shows that parallel derivations can always be sequential- 

ized and states conditions under  which direct derivations can be paraUellized. Hence, 

the use of parallel rules may reduce the length of a derivation sequence, but cannot 

La+L b 

GRAPH(init) 

Ka+K b 

REN 

Ra+R b 

GRAPH(follow) 

t 

b 

4 

E 

E 

Fig. 4. GRAPH(init)=~,o+~ GRAPH(follow). 

? 
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increase the generative power. For the formulation of this result we introduce the 
notion of independency. 

Definition 2.7. (1) Let M ~ , ,  N=~r2X be a derivation sequence. Let h~:R~-> N be 
a right-occurrence map of the first derivation and let g2: L2--> N be a left-occurrence 
map of the second derivation. Then the given direct derivations are (sequential-) 
independent if  they satisfy the following condition: 

hi(R1) N g2(/--'2) ~ hl(Kx) ~ g2(g2)- 

(2) Let M ~ , , N  be direct derivations according to g~:L~--> M for i = 1, 2. Then 

the given derivations are (left-parallel-) independent if  they satisfy the following 
condition: 

gl(L1) t'~ g2(/-'2) --- g l ( K l )  c~ g2(K2). 

(3) Let N i ~ , , X  be direct derivations according to g~: L~-~ Ni for i =  1, 2. Then 
the given derivations are (right-parallel) independent if  the direct derivations X ~  N~ 
through r7 ~ are left-parallel-independent. 

Remark. (1) We say independent for short if it is clear which sort of independency 
we mean. 

(2) Independency means that the occurrences, which are assumed to be indepen- 
dent, may overlap, but share common gluing parts only. 

Theorem 2.8. (1) Let r = r~ + r2 be a parallel rule. Let M=O,X be a direct derivation. 
Then there exist two graphs N~ and N2 and two derivation sequences M =O ,~ N~ :=~,2 X 
and M=~,2 Na=~I X. 

:(2) Let M ~ , ,  N~=:~2X be sequential-independent derivations. Then there is a direct 
parallel derivaiion M =~,I+,2 X. 

(3) Let M ==~ N~ and M =:~,2 N2 be left-parallel-independent derivations. Then there 
is a direct parallel derivation M ~,,+,2X. 

(4) Let Nl ==~,~ X and N2=~,~ X be right-parallel-independent derivations. Then there 
is a direct parallel derivation M=~,,+,~X. 

Remark. (1) The derivation sequences M=~N~::~X for i=1,2,  constructed in 
Theorem 2.8(1), are called sequentializations of the direct derivation M ~ X .  

(2) The direct parallel derivation, constructed in (2), (3), and (4), is called 
paraUelization of the given derivations. 

(3) Sequentializations ar sequential-independent. 
(4) The derivations M ~ , , N ~  and M=:~,~N2 as well as N1~,2X and N 2 ~ , X ,  

constructed in Theorem 2.8(1), can be proved to be parallel-independent. 
(5) Note that r~ and r2 are parallel rules themselves. 
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Example 2.9. For the direct derivation 
shown in Example 2.6, there exist two 
GRAPH(m')=~rb GRAPH(follow) as well 
=~,,o GRAPH(follow). 

GRAPH(init) ~,o+,~ GRAPa(f0110W), 
sequentializations GRAPH(init)~,. 

as GgAea(ini t )~r~ GRAPH(m") 

Now we can introduce the notion of a graph grammar and a graph language. 

Definition 2.10. (1) A graph grammar G = ( C, P, S )cons i s t s  of 
- a pair of colour alphabets C = (Cv, CE. ) for vertices and edges, 
- a set of rules P, and 
- a startgraph S. 

(2) The (graph-) language generated by G is L ( G ) =  { M [ S ~ e M } .  

Remark. (1) Note that we do not distinguish between nonterminals and terminals, 
because we have no use of this distinction in our investigation so far. The reason 
is that we apply graph grammars to some models of Petri nets where the full 
reachability class of initial markings is of interest and no mechanism is employed 
to distinguish between 'terminal' and 'nonterminal' markings. In the terminology 
of formal languages this corresponds to the consideration of exhaustive languages 
which contain all derivable strings (or graphs) with and without nonterminals. 

(2) Because parallel derivations yield nothing more than sequential derivations, 
it is enough to give the (finite) set of rules in the grammar, but we can also work 
with the (infinite) set of parallel rules. 

3. Simulation of Petri nets by graph grammars 

Given a net, we associate a graph grammar rule to each transition so that each 
transformation of a marking is simulated by a direct derivation, The basic idea is 
a slight modification of marked nets where tokens and slots are no longer considered 
as labels but as additional bundles of nodes attached to their places by edges. 

To be able to represent the net by graphs and graph grammar rules we introduce 
the auxiliary notions of an underlying graph and of a bundle which means a place 
decorated by given numbers of incoming and outgoing edges. 

Assumption 3.1. Let N = (S, T, K, w, k) be a net. Let C = (Cv,  C~) be the pair of 

colour alphabets given by Cv = S u T w {*} and CE = {*}. 

Definition 3.2. (1) The graph M = ( S w T ,  F, s, t, l, m ) , where s , t : F - - > S u T  and 
l: S w T--> Cv and m : F--> C~ are defined by 

s(a,  b) = a and t(a, b) = b for (a, b) ~ F, 

l ( a ) = a  for a e S u  T, 

m(e)  = * for e e F, 

is called the underlying graph of N and denoted by nad(N) .  



N e t  processes correspond to derivation processes 285 

(2) For s e S and /~ ,  v ~ N we construct a graph bundle(s,/~, v) as follows: 

• Vbundle($,l~,v ) = {S} L.) { s i l l  : 1, • . . , ]~ "~ lP}, 

• Ebu~dle(~.~,~)={s, li = 1 , . . . , l ~  + ~'}, 
• Sbu,d~ets,~,~): E --> V is defined by 

I s  f o r l ~ < i ~ / ~ ,  
S bundle( s, bt,1, ) ( Si ) [ s~ for/.~ < i ~ / ~  + ~, 

• tbundle(s,~,u): E - - >  V i s  defined by 

tbundle(s.l~.~,)(~l):{: i f°r 1<~ i<~ it' 
for/~ < i<~ ~ + ~,, 

• lbundle<s,~,~): V"> CV is defined by 

Ibundle(s,~,j,)(S) m S, lbundle(s,l.t.v)(Si) = * for 1 <~ i <~/~ + v, 

• mbu,dl,(s,,,,~): E --> CE is defined by mbundle(~.,,.~)(e) = * for e ~ E. 

Remark. (1) I f  i, = 0, then the bundle is called token-bundle, i f /~  = 0, then the 
bundle is called a slot-bundle. 

(2) The vertices of  the bundle except the place s are called satellites, the satellites 
si for 1 ~< i ~<./~ are called token-satellites, the satellites si for/~ < i <~/~ + v are called 
slot-satellites, because they, will represent tokens and slots respectively. 

(3) Note that, by the choice of  nodes and edges, bundles of different places are 
disjoint. 

(4) Moreover, we assume that the intersection of a bundle with and (N)  consists 
of  the place of  the bundle only. 

A marked net (N,  m) is represented by a graph constructed as an extension of  
the underlying graph by bundles: the marking of a place s ~ S is represented in the 
graph by a token-bundle with re(s) satellites; for a place s '~  S, with bounded 
capacity, the slots are represented by a slot-bundle with sl(s') satellites. The width 
of  the edges of  the net will be expressed in the rules. 

] 
Construction 3.3. Let m be a marking of  N. Let S d be the (discrete) graph with 

Vs~ = S, Es~ = ~, and  ls~(v) = v for all v e Vs~. Let i be the inclusion of  S d to and(N) .  
The associated graph GRAPH(m) is the /-gluing of  Y.s~s bundle(s, m(s) ,  sl(s)) and 
and (N)  along sd (see Fig. 5). 

Remark. (1) Note  that  S d is subgraph of  Y.s~sbundle(s, m(s) ,  sl(ws)). Therefore, 
the / -g lu ing above is defined according to (8) of  Appendix A. 

(2) GnTO, H(m) is given by the following properties: 

• S u  T u  I- is is  (Vb~U~O.m(~),~l(,))--{S}) is the set of  nodes, 
• F U  ~Js~s (Ebundle(s, mts),si(s))) is the set of  edges, and 
• source, target, and  labels are defined in such a way that and (N)  and, for all s ~ S, 

bundle(s,  re(s), s l (s ) )  are subgraphs o f  GRAPH(m). 
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B o o o  

k(s)=,,o 
, t )  

s ' )  

k(s '  ),~-~ 

.====~ 

e o o  

o a o  

m(s ' )  s l ( s ' )  

Fig. 5. Construction of an associated graph. 

Example 3.4. For the marked net EXAMPLE----(example, init) in Example 1.4, the 
associated graph GRAPH(init) is given in Example 2.6. 

To be able to simulate the behaviour of the net, we construct graph grammar 
rules, one for each transition. Such a rule is obtained from a transition t E T in the 
following way: 

- The gluing graph consists of the transition t, all input and output places, and all 
connecting edges. All further nodes in the rules will be satellites, and all further 
edges will be incident to satellites. Hence, the application of such rules will never 
change the underlying graph (as the transformation of markings never changes 
the underlying net). 

- The left-hand side has, in addition to the gluing graph, for each input place i ~ *t, 
a token-bundle with w(i, t) satellites, and, for each output place o s t* with 
bounded capacity, a slot-bundle with w(t, o) satellites. Whenever such a rule is 
applied, these satellites are removed. This exactly simulates how the number of 
tokens and slots decreases if the corresponding transition fires. 

- The right-hand side of the rule has, in addition to the gluing graph, for each 
output place 0e  t * ,  a token-bundle with w(t, o) satellites, and, for each input 
place i e * t  with bounded capacity, a slot-bundle with w(i, t) satellites. In an 
application of a rule these satellites are added simulating how the number of 
tokens and slots increases if the corresponding transition fires. 

Construction 3.5 (cf. Fig. 6). (1) Let t~ T. Let (*t+t*) d be the (discrete) graph 
with V(.t+,.)~= (*t+t*) d, E(.t+t.)d=~, and l(.l+,.)~(v)= v for all v~ V(.t+,.)~. The 
corresponding rule rt = ( Lt, Rt, Kt) is defined by 
* Kt is the subgraph of und(N) induced by { t } u * t u  t*; 
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• ) 

w(t,o) w(t,o') w(t,o) 

Fig. 6. Construction of a corresponding rule. 

• L, is the d-gluing of K, and 

bundle(s, w(s, t), O)+ Y. bundle(s, 0, w(t, s)) 
s¢*t s~t*,k(s)~OO 

+ Y~ bundle(s, 0, 0) 
s~ t*,k(s)=oo 

along (* t+  t*) d, where d : (* t+  t*)d-> Kt is the graph rnorphism with dr(s) = s for 
all s E V(.,+:)d; 
• R, is the d-gluing of Kt and 

bundle(s, 0, w(s, t)) + ~, bundle(s, 0, 0) 
s~*t,k(s)~oo sE*t,k(s)=Oo 

+ ~ bundle(s, w(t, s), O) 
$ E t *  

along (* t+  t*) d. 

(2) Let U: T-->N be a' bag of transitions. The corresponding parallel rule ru is 
defined as ru =~,~T U(t) x r. 

R e m a r k .  (1) Note that (*t + t*) d is subgraph of the two disjoint unions of bundles 
so that the both d-gluings above are defined according to (8) of Appendix A. 

(2) !', = (L .  R,, K,) is defined by 
• Kt is the subgraph of und(N) induced by {t} u *t u t*; 
• Lt is characterized by the following properties: 

(i) VL,---- VK, L.) U (Vbundle(s,w(s,t),O)--{S}) L-) U (Vbundle(s,O,w(t,s))--(S}), 

(ii) 

s~*t s~t*,k(s)~oo 

EL, = EK, U L..J Ebundles(s,w(s, 0,0) U L..J  Ebundle(s,O,w(t, s)), 
s~*t s~t*,k(s)~Oo 



288 H.-J. Kreowski, A. Wilharm 

(iii) source, target, and labels are defined in such a way that K, and 
bundle(s, w(s, t), 0) for s ~ * t a m d  bundle(s, 0, w(t, s)) for s ~ t* with k ( s ) ~  oo are 
subgraphs of Lt; 
• R, is characterized by the following properties: 

(i) VR, = VK, L) U ( Vbundle(s,O,~v(s,t))--{S})k'J U ( Vbundle(s,w(t,s),O)--{S}), 
s~*t,k(s)~oo s~ t* 

(ii) ER, = Er, u (._J Ebundle(s,O,w(s,t)) L3 [,..J Ebundle(s,w(t " s),O), 
s~*t,k(s)~oo set* 

(iii) source, target, and labels are defined in such a way that K, and 
bundle(s, 0, w(s, t)) for s ~ *t with k(s) ~ oo and bundle(s, w(t, s), 0) for s ~ t* are 
subgraphs of Rt. 

Example 3.6. For the marked net EXAMPLE ---- (example, init) and the bag of transi- 
tion U (see Example 1.6), the corresponding rule rv is given in Example 2.6. 

The gluing condition makes sure that the transition t is enabled in the net whenever 
the corresponding rule rt can be applied. Removing the non-gluing part of the 
left-hand side and adding the non-gluing part of the right-hand side simulates the 
transformation of the marking. The same reasoning applies to rv as the following 
theorem states. 

Theorem 3.7. Let U be a bag of  transitions of  N, and let m, m' be markings of N. 
Then m[ U)m' if  and only if  GRAI, H(m)==~, U GRAPH(m'). 

Proof. I f  U is enabled under m, we have 

(*) re(s) >~ • U(t) x ff,(s, t) for all s ~ S, and 
t~T 

(**) k ( s ) - m ( s )  >~ E U( t )x f f , ( t , s )  f o r a l l s e S w i t h k ( s ) ~ o o .  
t~T 

In the associated graph GRAPH(m) there is, for each s e S, a bundle with re(s) 
token-satellites and sl(s) slot-satellites. The left-hand side Lv of the rule rv is given 
by Lv = Y. t~ r U(t) x Lt. 

In each left-hand side L, we have, for each s ~ *t, a bundle with w(s, t) token- 
satellites and, for each s e t* with k(s)~oo,  a bundle with w(t, s) slot-satellites. 
Therefore, in the left-hand side of the rule ru we have for each s ~ S, ~,,~r U ( t ) x  
if(s, t) token-satellites and, for each s ~ S with k(s) ~ oo, ~,,~r U(t) x ff,(t, s) slot- 
satellites. Now, ( .)  makes sure that there are at least as many token-satellites in 
GRAPH(m) as in Lv for each s ~ S, and (**) makes sure that there are at least as 
many slot-satellites in GRAPr~(m) as in Ltj for each s e S with bounded capacity. 
Therefore, there are injective mappings for all edges and satellites of bundles of 
the left-hand side into corresponding bundles in GRAPH(m), These can be extended 
to a graph morphism, g: Lv  -> GRAPh(m) by mapping all gluing graphs K, identi- 
cally. 



Net processes correspond to derivation processes 289 

The non-gluing nodes of the occurrence are the satellites, but, by construction, 
each satellite is either source or target of exactly one edge which belongs to the 
occurrence, too. This proves the contact condition. 

The identification condition is satisfied because g injectively maps satellites and 
adjacent edges (being the non-gluing items) to satellites and adjacent edges respec- 
tively. Parts of the underlying graph may be identified with each other, but this does 
not conflict with the identification because these are gluing terms. 

Now the application of ru to GRAPH(m) leaves the underlying graph und(N) 
unchanged, but removes and adds edges and satellites of the token- and slot-bundles 
of each place. 

The token-bundle of each place s ~ S has the following form after the application 
of ru: 

bundle(s, re(s), O) 

Y. V(t)  x ( X bundle(s, w(t, s), O) - • bundle(s, w(s, t), O) + 
t~  T \ s e t *  s ~ * t  / 

= bundle(s, m(s), O) 

+~,.~ r U ( t ) x  ( ,~s bundle( s' ff~( t" s )' O ) - ~'s~ s bundle( s, ff,( s, t ), O ) ) , 

so the number of token-satellites for each place s ~ S is given by m(s)+~,~r  U(t) x 
(O(t, s) - ~(s, t)) which is m'(s) by the definition of the transformation of m to m' 
by U. Hence, the new number of token-satellites for each place s c S is m'(s). 

The slot-bundle of each place s c S with k(s) # oo is given by 

bundle(s, O, sl(s)) 

+Y, U(t) × ( ~. 
t ~ T  s t 

bundle(s, O, w(s, t)) - ~Z~,* bundle(s, O, w(t, s))) 

= bundle(s, O, sl(s)) 

+ ,~r )-" U ( t ) x  ( ~ s  ~j bundle(s, O, ~,(s , t ))-  s~s y~ bundle(s, O, ~,(t,s))), 

so the number of slot-satellites for each place s e S with bounded capacity is 
s l ( s )+~ ,~ r  U(t)× (~(s, t ) - e ( t ,  s)) but this is exactly sl'(s) which is defined as 

s l ' ( s )=k(s ) -m ' ( s )  

= k ( s ) - m ( s ) +  Y. U(t)x(ff , (s ,  t ) - f f , ( t , s ) )  
t ~ T  

=sl(s)+ 
t ~ T  
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Note that for places s s S with unbounded capacity we have sl(s) = 0 and the new 
slot-bundles for these places are given by 

bundle(s,  0, sl(s) 

+Y',~T U ( t ) x  ( • ~. , bundle(s, O, O) - ~'.s~t. bundle(s, O, 0) )  

= bundle(s,  0, 0), 

so sl'(s) = 0 for all s ~ S with k(s)  = oo satisfies the definition of slots for places with 
unbounded capacity. 

Therefore, the derived graph is the associated graph GRAPH(m'). 
Conversely, if ru is applicable to GRAPH(m), then we have a graph morphism 

g:  Lu-> GRAPH(m) satisfying especially the identification condition. Hence, g is 
injective on satellites. This guarantees that  U is enabled under  m. And as shown 
above, due to the construction of  rv, the application of  the rule removes and adds 
token- and slot-satellites according to the width and simulates the transformation 
of m to m' by U so that the derived graph is the graph associated to the marking 
in'. []  

It should be mentioned that, as an immediate consequence of this result, the 
notion of  concurrency in nets and the notion of  independency in graph grammars 
are closely related, as is shown in the following corollary. 

Corollary 3.8. Let t and t ~ be two transitions o f  N which are enabled under the marking 

m. Then t and t o are concurrent i f  and only i f  there exist corresponding direct derivations 
GRAPH(m)=:~GRAPH(m') through rt and GRAPH( m ) ~ G R A P H (  m") through rt, which 
are independent. 

Proof. The two transitions t and t o are concurrent if there is a bag of transitions 
U:T-->N with U( t )~>l  and U(t°)~>l  for t # t  °, or U(t)~>2 for t = t  ° which is 
enabled under  m; so there is a step m[ U)m". Then, by Theorem 3.7, there is a direct 
derivation GRAPH(m)=~GRAPH(m") through ru. By assumption, rv has t h e  
following form: r u = . . . + r t + r t J +  . . . .  So there exists a sequentialization 
G R A P H ( m ) ~ G ~ H ( m ' )  through rv , = . .  "+rt and GRAPH(m' )~  GRAPH(m") 
through ru- = rtJ +"  • • and the direct derivations of  this sequentialization are indepen- 
dent (confer Theorem 2.8). 

On the other hand,  direct derivations rv, ="  • • + rt +-  • • and ru- =" • • + rt0 +" • • 
which are independent  can be parallelized to a direct derivation through rv = re, + re- 
and by Theorem 3.7 there is a corresponding step in the net by U, where t and t o 
are both involved, so they are concurrent. []  

Example 3.9. As an illustration of  Theorem 3.7, Fig. 2 shows a step init[ U)follow 
and Fig. 4 shows the direct derivation GRAPH(init)~GRAPH(fOIIow) through rv. 
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According to Corollary 3.8, in this case, the transitions a and b are concurrent 
and there are decompositions (see Example 1.8) as well as there are sequentializations 
and independent derivations through r~ and rb (see Example 2.9). 

Using the notions of associated graphs and corresponding rules we can introduce 
the graph grammar simulating a given net. 

Definition 3.10. Let (N, mo) be a marked net. G(N, mo) = (C, P, GRAPH(too)) with 
P = {rt[ t ~ T} is called the simulating graph grammar. 

Now, the results of this section can be formulated in terms of reachability and 
derivability. 

Corollary 3.11. Let (N, mo) be a marked net and let G(N, mo) be the simulating 
graph grammar. Then mo[*)m if and only if GRAI'H(mo)~p GRAPH(m). 

ra--( ~ ' 

rb=( ~ '  

rc--( ~ ' 

rd--( 

re=( 

, ~ ) and 

'~)" 
Fig. 7. Corresponding rules. 
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Example 3.12. The simulating graph grammar for the marked net EXAMPLE (see 

Example 1.4)is defined as G(EXAMPLE)= (C, {r.,, rb, re, rd, re}, GRAPn(init)), where 
C is given by Cv = {1, 2, 3, 4, 5} u {a, b, c, d, e} u {*} and CE = {*}; GRAeH(init) is 
shown in Example 2.6 and the rules are given in Fig. 7. 

4. N e t  processes  

Transformations of markings of nets describe a sequential behaviour of nets 
including 'synchronous' firing of transitions. In contrast to that, the intuition of 
concurrent systems allows 'asynchronous' activities where a strictly sequential or 
parallel relation of actions in time may not be known or observable. In the theory 
of nets such a view of concurrency is covered by the notion of processes. 

Assumption 4.1. We restrict our consideration to processes on condition/event 
systems (see Definition 4.2), because they are well studied in the literature (cf., 

e.g., [9]). 

Condition/event systems form a special case of the nets introduced in Section 1 
with capacity 1 for all places and width 1 for all edges. 

Def in i t ion  4.2. A condition~event system (N, mo) consists of 
- a net N = (S, T, F, w, k) with k(s) = 1 for all s c S and w(e) = 1 for all e e F, and 

- an initial marking mo. 

Remark. For condition/event systems, markings are also called cases. 

Example 4.3. The marked net EXAMPLE, shown in Fig. 1, is a condition/event system. 

All possible transformations of cases are represented in the case graph. 

Def in i t ion  4.4. Let (N, rap) be a condition/event system with N =  (S, T, F, w, k). 
Then the case graph CASE of (N, mo) is an unlabelled graph defined as follows: 

• Vc,~={mlmo[.)m}, 
• { (m,  U, m')lm[U)m', m, U: T-}N}, 
• U,m'))=m, 
• U, m ' ) )  = m '  

Example 4.5. Figure 8 shows the case graph CASEE,~M,~ of the condition/event 
system EXAMPLE, given in Example 1.4. A node of CASEE~,M~, i.e., the marking m 
of example, is represented by the set of places s ~ S with re(s) = 1 and an edge by 
the sum of all transitions involved in the step. 
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~1.51 

[ ~.41 > ~2.51 
a+b 

~2,41 ~ b+c > ~3.51 

e 

Fig. 8. CASEExAMrL P 

Note that  all paths in the case graph correspond to transformation sequences in 

the net. Hence,  CASE describes the sequential behaviour of the system including 

parallel steps. 
In contrast  to that, the concurrent behaviour of the system is formalized by 

processes. The idea of processes is to relax the sequential behaviour in such a way 

that the order in time of concurrent transitions need not be fixed. This is obtained 

by the not ion of  an occurrence net where the sequential order is replaced by the 

partial order. 

Def in i t i on  4.6. An occurrence net K = ( S, T, F, w, k) is a net, where 

* k ( s )  = 0 for all s ~ S, 

. w(e )  = 0 for all e ~ F, 

• und(N)  is acyclic, and 

• for each s ~ S ,  there is at most one t c  T with ( t , s ) ~ F ,  and at most one t '~  T 

with (s, t') ~ F. 

R e m a r k .  We have defined occurrence nets as a special form of nets so that we can 

use all notat ional  conventions for nets but we shall never use their (somewhat 
strange) capacity and width. 

The not ion of processes relates an occurrence net to the behaviour of a given net. 

The formal definition of a process is based on the concept of slices which will be 

introduced for an occurrence net in the following definition. 

Def in i t ion  4.7. Let K = (S, T, F, w, k) be an occurrence net. 
(1) A subset S ' c  S is called concurrent if, for all s, s ' e  S' with s ~ s', there is 

neither a path  from s to s' nor a path from s' to s. 
(2) A maximal  concurrent subset of places is said to be a slice. 
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Definition 4.8. A process on a condition/event system (N, mo) with N= 
(SN, TN, FN, wN, kN) consists of an occurrence net K = (S t ,  TK, FK, WK, kr )  and 
a map p : SK w TK -> SN u TN with the following properties: 

• p is injective on each slice; 
• the image of each slice is a node in CASE of (N, mo), i.e., a case of N reachable 

from mo; 
• p preserves the input and output structure of each transition in K, i.e., *p(t) = p(* t) 

and p(t)* =p( t* )  for all t~ Tr. 

Remark. Note that processes will be represented graphically by the occurrence net 
coloured with the places and transitions of the condition/event system. (See, e.g., 
[9] and Fig. 9). 

Example 4.9. Figure 9 shows a process PEx,~P~ on the condition/event system 
EXAMPLE. The slices of PEXA~PLE are {sl, s4}, {s2, s4}, {s3, s4}, {sl, sS}, {s2, s5}, 
{s3, s5}, and {s6, s7}. 

$4 s5  / ;  \ s7 

© 
Fig. 9. Process PEX*MPL~" 

More details can be found in [9] where, in addition, the following correspondence 
between paths in the case graph of a condition/event system (N, m0) and the 
processes on (N, mo) is shown. This relationship only works in case of a so-called 
contact-free condition/event system. This means that each transition is already 
enabled in each case if all its input places are marked. To assume contact-freeness 
does not establish a semantical restriction because each condition/event system can 
be transformed in a contact-free one with the same case graph (up to isomorphism). 

Definition 4.10. A condition/event system (N, m0) is called contact-free if, for all 
markings m with mo[*)m and for all t c T, it holds that 

m(s) = 1 implies m(s') = 0 for all s ~ *t, s '~  t*. 

Example 4.11. The condition/event system EXAMPLE is contact-free. 

The relationship between processes and paths in the case graph is based on the 
following observation. 
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Definition 4.12. Two paths p, p' in CASE are called equivalent if there are paths 
p , , . . . ,  p~ with p, =p and p, = p', and p~ and p~+l differ only by a decomposition 
of one step (in Pi or Pi+,). 

Remark. Note that the notion of decomposition in the sense of Theorem 1.7 is 
meaningful in" the situation above because edges in CASE are steps in the system. 

Example 4.13. The following paths of the case graph pathEx~,,~Ei for i = 1 , . . . ,  5 are 
equivalent: 

pathExA~L~l = (11, 4}, 

pathEx,,~,2 = ({1, 4}, 

pathEx~,LE3 = ({ 1, 4}, 

pathEx~M~4 = ({1, 4}, 

pathE~,M,=5 = ({1, 4}, 

a, {2, 4}), ({2, 4}, c, {3, 4}), ({3, 4}, b, {3, 5}), ({3, 5}, d, {1, 4}), 

a, {2, 4}), ({2, 4}, b+ c, {3, 5}), ({3, 5}, d, {1, 4}), 

a, {2, 4}), ({2, 4}, b, {2, 5}), ({2, 5}, c, {3, 5}), ({3, 5}, d, {1, 4}), 

a+b, {2, 5}), ({2, 5}, c, {3, 5}), ({3, 5}), d, {1, 4}), 

b, {1, 5}), ({1, 5}), a, {2, 5}), ({2, 5}, c, {3, S}), ({3, 5}), d, {1, 4}). 

Theorem 4.14. Let (IV, mo) be a contact-free condition~event system. Then there is a 
one-to-one correspondence between processes on ( N, mo) and the sets of equivalent 
paths in the case graph of ( N, mo). 

Remark. Note that there exists exactly one process corresponding to a given path, 
but on the other hand, several equivalent paths may be related to the same process. 

Example 4.15. The process PEx~M,,~ in Fig. 9 corresponds to {pathEx~,,LEi [ i = 1 , . . . ,  5} 
reflecting that the transition b is concurrent to a and c, whereas the transition c is 
not concurrent to a, and d is only enabled after c and b have fired. 

5. Graph grammar processes 

Similarly to net processes, a process in a graph grammar is a partial order of 
direct derivations. In this section we shall recall concepts and results from [5] as 
far as needed. 

Assumption 5.1. Let G = (C, P, S) be an arbitrary but fixed graph grammar. 

Definition 5.2. The derivation graph (of G) DERIVATION ---- ( V, E, s, t) is an unlabelled 
graph defined as follows: 
• V = { M I S : ~ M } ,  
• E={M==~rM'[M,M'eV,  rep+}, 
• s ( M  =~rM')  = M,  

• t(M=r~,M') = M'. 
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r d R ~  
~ / r  b -- : : ~  

GRAPH(~ 1,4{) ~ G 
ra~ ra+rb / 

GRAPH(12.40 ) GRAPHqa,sl) rb+rc /~ 

re 

Fig. 10. DERIVATION G(EXAMPLE)" 

Example 5.3. Figure 10 shows the derivation graph DERIVATIONU(Ex~MpLE) of the graph 
grammar G(EXAMPLE) simulating the marked net EXAMPLE (see Example 3.12). 
For the denotation of markings we use the same conventions as in Example 4.5. 
The edges are drawn as usual for direct derivations. 

Definition 5.4. A derivation process (in G) is a construct p = (A, a : A--> DERIVATION), 
where A is a connected acyclic unlabellcd graph and a is a graph morphism. 

Remark. In examples we shall graphically represent a derivation process by the 
underlying graph A, but colourcd in the following way: each v ~VA gets the graph 
av(v) as colour and each e~ EA gets the direct derivation aE(e) as colour. In 
drawings we explicitly give the colours only because they Completely reflect the 
underlying graphical structure (see, e.g., Fig. 11). 

Example 5.5. Figure 11 shows a derivation process PG(Ex.~.~) in the graph grammar 

G(EXAMPLE). 

There are some special situations of some importance later on. 

Definition 5.6. (1) A derivation process p = ( A ,  a) is called sequential if the 

underlying graph A is a path. 

GP~PH({ 1,4~) GRAPH(12,5}) 
r a +r b re ~ 

GRAPH(~2.4}) ~ GRAPH03.5~) ~ GRAPH(I1.4}) rb+r c r d 
Fig. 11. Process PG(ExA~P~)" 
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J N r 

r 

(a) (b) 

N N 

(c) 

Fig. 12. Doubles. 

(2) Let p = (A, a) be a derivation process, SuB a subgraph of A and sub the 
restriction of a to SuB. Then (Sun, sub) is called a subprocess of p. 

(3) A derivation process p = (A, a) is called double-free if there is no subprocess 
of p of one of the forms shown in Fig. 12. 

(4) A process is said to be locally conflict-free if each subprocess of p where two 
direct derivations start from the same graph are left-parallel independent, and each 
subprocess of p where two direct derivations lead to the same graph are right-parallel 
independent. 

Remark. (1) Note that sequential processes correspond to ordinary derivations. 
(2) By definition, subprocesses are derivation processes. 
(3) Each of the processes (a), (b), and (c) in Fig. 12 is called a double. 
(4) There is no local conflict within a local conflict-free process. 

Example 5.7. The derivation process PO<ExAM~L~) in Fig. 11 is not sequential. The 
derivation 

GRAPH({I, 4})-'----~. GRAPH({2, 5}) ".,G~PH({3, 5}) >G~PH({1,  4}) 
r a d - r  b r c rd  

is a subprocess of PO(Ex~MP=)- 

The results of Section 2 concerning independency can be summarized in terms 
of processes in the following way. 

Corollary 5.8. For each derivation process p which contains a subprocess Psub of  one 

of the forms shown in Fig. 13 (where the direct derivations are assumed to be indepen- 
dent), there is a process ~ which contains the subprocess Peompi (see Fig. 14) instead 
Of Psub, but equals p in all other parts. 

N I N I N I 

J 
M - -  M X M rl+r ? X 

Na N 2 

(a) (b) (c) (d) 

X 

Fig. 13. Independent situations. 
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M X 

N 2 ~  

Fig. 14. Complete situation. 

Remark. (1) /~ is called a local completion of p. 
(2) Note that the original process p is a subprocess of/~ such that p c~ Pcompl = Psub 

and p w Pcomp~ =/~. In this sense,/5 is covered by p and Pcompl meaning that each 
item of p belongs to p or to P¢omp~. 

This means that independent direct derivations can be performed in parallel or 
in arbitrary order with the same result. 

From a point of view of concurrency independent situations and their common 
local completion should not be distinguished, because they differ only in the order 
of time of occurring actions and in doubles. 

Definition 5.9. Derivation processes p and p' are called equivalent if there are 
processes P l , . . .  ,P ,  with Pl =P and p, =p' and, for i= 1 , . . . ,  n - 1 ,  pi is a local 
completion of p~+l or Pi+~ is a local completion of pi, or pi and p~+~ differ by a 

double (in Pi or P H )  only. 

It turns out that the completion procedure does not add new information to a 
derivation process after some steps. This leads to a normal form result for equivalent 
derivation processes in the following way. 

Definition 5.10. A double-free derivation process is complete if it differs from its 
local completions by doubles only. 

Example 5.11. The process PG(~x~MP-,) (see Fig. 15) is the complete process equivalent 
to the process PG~Ex,MPL~ in Example 5.5. 

Using this notion we can formulate the main result of this section. 

GRAPH(| 1,51) 

/ , ,  
GRAPH(|I,4J) ~ GRAPH(IR,5J) 

GRAPH(~2,41) ~ GRAPH(~3,5~) ~ GRAPH(~!,4~) 
Fc~ rb+rc ~Fb rd 

GRAPH(13.41) 

Fig. 15. Process a6G(ex.M~). 
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Theorem 5.12. Each equivalence class of  derivation processes contains a complete 
process as unique normal form. 

On the base of complete processes, we can introduce the notion of (globally) 
conflict-free processes. 

Definition 5.13. A process is called conflict-free if its complete process is locally 
conflict-free. 

Example 5.14. The process PG(Ex~M~_~) (confer Fig. 11) and its completion PG<E~,,P~) 
(confer Fig. 15) are conflict-free. 

Lemma 5.15. (1) A sequential process is conflict-free. 
(2) A process equivalent to another conflict-free process is conflict-free, too. 
(3) The set o f  equivalent sequential processes forms a subset o f  the class o f  equivalent 

conflict-free processes. 
(4) Two sequential processes s and s' are equivalent i f  and only if  there are derivation 

sequences sl,  . . . , s,  with sl = s and s, = s', and si and si+l differ only by a sequentializ- 

ation (in si or si+l). 

6. Relationship between processes in Petri nets and graph grammars 

In this section the non-sequential behaviour of a system described by a Petri net 
is related to the non-sequential behaviour of the graph grammar simulating the net. 

Analogously to Theorem 3.7 for the sequential behavior, we get as the main result 
of this paper a one-to-one correspondence between the non-sequential behaviours. 

Main Theorem 6.1. Let (N,  too) be a contact-free condition~event system. Let 
G(  N, too) be the simulating graph grammar. Then there is a one-to-one correspondence 

between processes on ( N, too) and the complete conflict-free processes on G( N, too). 

Proof. A process on (N, too) uniquely corresponds to a set of equivalent paths in 
CASE, the case graph of (N, too), according to Theorem 4.14. Using the following 
Lemma 6.2 this set of paths uniquely corresponds to a set of equivalent sequential 
processes in G ( N ,  too) which is a subset of their full equivalence class. By Lemma 
5.15, this class consists of conflict-free processes because it contains sequential 
processes. Using Theorem 5.12, this yields a unique complete conflict-free 
process. [] 

Remark. Note that we need the assumption of contact-freeness for the one-to-one 
correspondence between processes and equivalence classes of paths in CASE. All 
other steps of the proof above work for arbitrary condition/event systems. 
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Lemma 6.2. (1) Let CASE be the case graph of a condition~event system (N, too) 
and let DERIVATION be the derivation graph of the simulating graph grammar 
G( N, too). Then CASE is isomorphic to DERIVATION. 

(2) Paths in CASE are equivalent if and only if the corresponding sequential processes 
in DERIVATION are equivalent. 

Proof. (1) By mapping a case m to GRAPH(m) and a step m[U)m' to a direct 

derivation GRAPH(m)~GRAPH(m') through ru, we get a graph morphism i : CASE-~ 
DERIVATION. In condition/event systems the bundle of each place consists of one 
satellite only. Hence, using Theorem 3.7, it turns out that i is an isomorphism. 

(2) By Theorem 3.7, a step m[U)m" corresponds to a direct derivation 
GRAPH(m)~GRAPH(m") through ru and a decomposition m[ U')m'[ U")m" corre- 
sponds to a sequentialization GRAPH(m)OGRAPH(m') through ru, and 
GRAPH(re') ~ GRAPH(m") through ru,,. Decomposition generates the equivalence 
of paths in CASE and on the other hand, sequentialization generates the equivalence 
of sequential processes (cf. Lemma 5.15). This completes the proof. [] 

Example 6.3. Obviously, the case graph CASEEx̂ MvL ~ in Example 4.5 and the derivation 
graph DERIVATIONG(Ex̂ MpLE) in Example 5.6 are isomorphic. 

Moreover, the complete process PG(~,MPL~) on G(EXAMPLE) in Fig. 15 corresponds 
to the process P~,M,= on EXAMPLE in Fig. 9. 

7. Conclusion 

The diagram in Fig. 16 relates the results of this paper to each other. In the left 

column the results from net theory are summarized. For each c0ndition/event system 

there is a case graph containing the sets of all equivalent paths. And according to 

Theorem 4.14 there is a one-to-one correspondence between the sets of equivalent 

paths and the processes, but only in case of contact-freeness of the condition/event 

system. 

c o n d i t i o n / e v e n t  s y s t e m  . . . . . . .  > 
s i m u l a t i on  

case  g r a p h  

e qu i va l e n t  
equ iva l en t  p a t h s  ~-~ ' s e q u e n t i a l  p r o c e s s e s  

c o n t a c t - f r e e  

process < • 
MAIN THEOREM 

graph grammar 

derivation graph 

equivalent 
conflict-free processes 

conflict-free 
complete process 

Fig. 16. Summary. 
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Summarizing the results from graph grammar theory in the right column, the 
derivation graph of a graph grammar contains all equivalent processes for which 
the complete process is a unique representation by Theorem 5.12. 

If we consider now especially the graph grammar simulating a contact-free 
condition/event system, we get as a consequence of Theorem 3.7 (as shown in 
Lemma 6.2) the isomorphy of the case graph and the derivation graph, i.e., this 
result relates the sequential behaviour of nets and graph grammars as closely as 
possible. 

Due to Lemma 6.2, there is a one-to-one correspondence between equivalent 
paths and the equivalent sequential processes which form a subset of the equivalent 
conflict-free processes. And the bottom reflects the Main Theorem 6.1 stating a 
one-to-one correspondence between the processes on a contact-free condition/event 
system and the complete conflict-free processes in the simulating graph grammar. 

To give a more complete picture of the situation, there is a result of former studies 
(cf. [5]) stating that in each equivalence class of conflict-free processes there is a 
unique canonical derivation; this is a sequential process where all components are 
executed as early as possible so that each rule of the parallel derivation is dependent 
of the predecessing direct derivation or belongs to the first derivation of the sequence. 
In this way canonical derivations uniquely represent conflict-free non-sequential 
processes as complete processes, but, in general, the size of canonical derivations 
(being sequential) is much more feasible than the usually 'baroque' form of complete 
processes ornamented with the various diamonds of local completion (see I.emma 
5.15). 

Example 7.1. The derivation sequence, given in Example 5.7, is the canonical 
derivation of the complete conflict-free process/5~(E~.,,o~) in Fig. 15. 

It should be noticed that in the simulation presented in this paper we allow a 
transition t to be concurrent to itself (cf. Remarks 1.5(2) and (4) and Corollary 3.8) 
which is normally forbidden in net theory. We obtain a graph grammar reflecting 
this restriction by modifying nothing but the gluing graph K, of each corresponding 
rule r, in such a way that we remove the transition t and all its incoming and 
outgoing edges from it. All results remain true under this modification. Hence, with 
respect to our considerations, it does not matter whether a transition may be 
concurrent to itself or not. 

A lot of further work must be done in the line of this paper. In particular, the 
relationship between processes on nets and processes in graph grammars should be 
extended to more general marked nets than condition/event systems. On the other 
hand, having established a solid bridge between net and graph grammar theory, 
one may wonder whether the respective concepts and results can be carried over 
and applied mutually--with success and new insight. 

Final Example 7.2. Consider the (complete) conflict-free process in Fig. 17 and note 
that it would look even more horrible if  more than two direct derivations would be 
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O 

U _  GR.~.,~E ..,,t_/,,. B~A~Z.,;'UZ, ~t....) 

Fig. 17. Complete conflict-free process. 

parallel-independent. The mess of edges tends to muddle all information. What can 
be done? 

In some circles, a popular discussion takes place around "Small  is beautiful" 
(cf. [10]). We would like to call attention to a slightly different topic which becomes 
apparent if you have a look at the equivalent canonical derivation of the given 
process in Fig. 18. 

0 ~ , n  > 0 ~ M M A ~  0 5 0 ;, 0 
A R E  B E A U T I F U L  

Fig. 18. Canonical derivation. 

A p p e n d i x  A 

In this section we recall some basic notions, definitions, constructions and results 
concerning graphs as far as they are needed in this paper. For further details see, 
e.g., [3, 1]. 

(1) Let C = (Cv~ Cv) be a pair of colour alphabets for graphs, consisting of a 
colour alphabet Cv for vertices and a colour alphabet C~ for edges. 

(2) A (directed labelled) graph M = (V, E, s, t, 1, m) consists of 
- a set of vertices V, 
- a set of edges E, 

- two functions s, t:E--> V assigning source and target to each edge, and 
- two functions 1: V--> Cv and m : E --> Cz colouring vertices and edges of the graph 

respectively. 
The components of a graph M are referred to by indexing them with the name 

of the graph, i.e., by VM, Era, sM,, tM, l~, raM. The denotation x ~ M is an abbrevi- 
ation for 'x ~ V~ and x ~ E~  and is used whenever nodes and edges have not to be 
distinguished. Given graphs M and N, we consider frequently the set-theoretic 
differences VM--VN and EM-EN.  For this pair of sets we write 
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somewhat ambiguously M -  
one-element set. A graph M 

graph M is unlabelled if  Cv 

N. A graph M is  called node-labelled if CE is a 

is called edge-labelled, if Cv is a one-element set. A 

and C~ are one-element sets. In case of unlabelled 
graphs we omit the colouring functions IM and mM. 

(3) Let M = ( V, E, s, t, l, m) be a graph. A sequence of edges e l , . . . ,  e, is a path 
if  t(ei) = s(ei+l) for i = 1, . . . ,  n -  1. A path e l , . . . ,  en is a cycle if t(en) = s(e~). A 
graph M is acyclic if  no path  in M is a cycle. A graph M is connected if, for each 

two nodes v, v '~ V, there is a sequence of  nodes V l , . . . ,  vn such that v = v~ and 
v ' =  v, and, for i = 1 , . . . ,  n - 1, there is an edge e~ with s(ei) = v~ and t(e~) = vi+~, 
or t(ei)= vi and s(e~)= V i +  1 . 

(4) Let U and M be graphs with Vv ~ V~ and Eu ~ EM. U is a subgraph of M, 
denoted by U___ M, if su(e) = sM(e), tv(e)  = tM(e), lv(v) = l~(v), and my(e)  = 
m~vt(e) for all e ~ Eu and v ~ Vv. A subgraph U of  M is called induced by V c  VM 
if Vu = V and Ev = {e ~ E~ I sM (e), t~ (e) ~ V}. A subgraph U of M is called induced 
by V ~ V~ and E c EM if  Vv = V and Ev = E. Let M be a graph and U~, U2 ~ M. 

Then Vul n Vu2 and Eul ~ Eu2 induce a subgraph of M, called intersection of U~ 

and U2, and is denoted by U1 n/-/2. 
(5) Let M and N be graphs. M + N denotes te disjoint union of the graphs M 

and N, and is given by the disjoint union of  sets for nodes and edges separately. 

All nodes and edges of M + N keep their original labels, each edge keeps its original 

source and target. 

(6) Let L and M be graphs. A graph morphism g : L--> M from L to M consists 

of  two maps gv: VL--> VM and gu :EL--> E~  with gv(sL(e)) = s~(gE(e)), gv(h.(e)) = 
tM(gE(e)), IL(v) = l~(gv(v)) ,  and mL(e)= m~(g~(e))  for all e~ EL and v~ Vr. 

(7) Let g = (gv, gE) : M --> N be a graph morphism. The subsets gv(VM) - VN and 
g~(EM) c EN induce the subgraph g (M)  of  N, called the image of M under g. The 

denotat ion g(x) is an abbreviation for gv(X) or gE(x) and is used whenever nodes 

and edges have not to be distinguished. If  g is a bijective graph morphism, then it 
is called a graph isomorphism. In this case M and N are called isomorphic, which 

is denoted by M = N. U is a subgraph of  M if and only if the two inclusions 

inv :  Vv-> V~ and inn : Et~--> EM define a graph morphism in: U-> M. 
Let h : N --> P be another graph morphism. The composition h o g:  M ~ P, defined 

componentwise,  is a graph morphism. Let U ~ M and in: U--> M be the correspond- 
ing inclusion morphism. Then g o in: U--> N is called-the restriction of g to U. 

Let g ' :  M'--> N '  be another  graph morphism. Then g + g':  M + M'-> N + N '  
denotes the disjoint union of the graph morphisms g and g', and is defined by 
g + g'(x) = g(x) for x ~ M and g + g'(x) = g'(x) for x ~ M'.  

(8) Let B, K, D be three graphs, and let K ~ B and d : K ~ D be a graph morphism. 

Then the d-gluing of B and D along K is the graph M, constructed as follows: 

= + ( v B  - vK); 

EM = ED + ( EB -- Er ); 
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sM : E~--, VM 

ISo(e) 

with s~( e) = " { sB( e) 

I 
L dv(sB(e)) 

for e e  ED, 
for e ~ EB - EK 

with sB(e) ~ VB -- VK, 
for e ~ EB - EK 

with SB(e) ~ VK ; 

t~ : E ~  --> VM with tM(e)= 

to(e) 
tB(e) 

dv(tB(e)) 

for e ~/5o, 
f o r e ~ E B - E K  

with tB ('e) ~ VB -- VK, 
f o r e ~ E ~ - E K  

with tB(e) E VK ; 

to(v) for v ~ Vo, 
lM" V~ --> Cv with lM(v) = lB(v) otherwise; 

mM" EM-'> C~ with mM(e) = f{m°(e) 
for e E  Eo, 

t roB(e) otherwise. 

(9) Let M be the d-gluing of B and D along K. Then D c_ M due to construction. 

Moreover, there is a graph morphism h:B--> M defined by 

h ( x ) = { ~ ( x )  for v~ K, 

otherwise. 
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