
Theoretical Computer Science 44 (1986) 275-305
North-Holland

275

NET PROCESSES CORRESPOND TO DERIVATION
PROCESSES IN GRAPH GRAMMARS*

Hans-J6rg KREOWSKI and Anne WILHARM
Department of Mathematics and Computer Science, Universitiit Bremen, D-2800 Bremen 33, Fed.
Rep. Germany

Communicated by E. Engeler
Received April 1985
Revised August 1985

Abstract. The aim of this paper is to compare the running behaviour of Petri nets, given by firing
sequences and processes, with derivations and derivation processes in graph grammars. In a first
step, Petri nets are simulated by graph grammars so that each firing in a net corresponds exactly
to a direct derivation in the simulating graph grammar. In a second step the non-sequential
behaviour of nets described by net processes is related to the non-sequential behaviour of graph
grammars given by derivation processes. A one-to-one correspondence can be established between
the processes on a Petri net and the complete conflict-free processes in the graph grammar
simulating the net. This adds a new piece of evidence substantiating the close relationship between
net and graph grammar theory.

Introduction

In computer science one deals with systems and their sequentialand non-sequen-
tial behaviour, frequently described as processes. This requires to study various
questions: Which manipulations can be performed in parallel! Which actions
influence or exclude each other and must be synchronized? Which activities can be
organized without deadlocks and inconsistencies? etc.

Because such problems are important and occur in several different areas, there
are many approaches claiming to describe and to solve some of these problems.
Among them you can find Petri nets and graph grammars which both use graphical
notations to investigate systems and their behaviour.

Some work has already been done in comparing both theories (cf., e.g., [2, 4, 8,
11, 12]). In particular, in [4] a graph grammar is constructed from a given
place/transition net so that direct derivations in the graph grammar correspond to
firings of transitions in the net. Generalizing this simulation to arc-weighted nets
with capacity, the present paper establishes a one-to-one correspondence between

* A short version of this paper was presented at the Workshop on Graph-theoretic Concepts in
Computer Science, 1984 (see [6]).

0304-3975/86/$3.50 © 1986, Elsevier Science Publishers B.V. (North-Holland)

276 H.-J. Kreowski, A. Wilharm

processes on a Petri net and complete, conflict-free processes in the graph grammar
simulating the net. Intuitively speaking, the notion of a process in both approaches
relates actions in a concurrent or distributed system by a partial order in contrast
to the assumption that changes happen one after the other as in a sequential system.

This paper consists of two parts. The first part concerns the sequential behaviour
of systems described by Petri nets and graph grammars. For this purpose we shall

recall the basic notions of Petri nets (Section 1) and of graph grammars (Section
2). Then a net will be simulated by a graph grammar (Section 3) in the way that
graphs and a graph grammar rules are obtained from a given arc-weighted net with
capacity. It will be shown that there is a one-to-one correspondence ,between the
sequential behaviour of a Petri net and the sequential behaviour of the simulating
graph grammar, i.e., between firing sequences and derivations.

In the second part of this paper the non-sequential behaviour of systems described
by nets and graph grammars is investigated. For that reason the concepts of net
processes, specialized to condition/event systems (Section 4), and of derivation
processes in graph grammars (Section 5) will be recalled. The main result (Section
6) establishes a one-to-one correspondence between processes on a net and complete,
conflict-free processes in the graph grammar simulating the net. Section 7 will present
some concluding remarks. The concepts of graph theory used in this paper are piled
up in Appendix A.

1. Petri nets

In this section we recall some basic notions of net theory (cf., e.g., [9]).
The underlying invariant structure is a net, which is a graph where the set of

nodes is bi-partitioned into places and transitions.
Each place of the net may store tokens, the number of which is unbounded or

bounded by a given capacity.
Transitions represent actions that can take place in the net. They are connected

with places by the flow relation. For each edge of the net, i.e., an element of the
flow relation, the width denotes the number of tokens flowing through this edge if
its transition fires.

Def in i t ion 1.1. A net N = (S, T, F, w, k) consists of

- a set S of p laces ,

- a set T of t r a n s i t i o n s with S c~ T = 0,
- a f l o w relation F ~ S x T u T x S,
- a w i d t h function w : F - > N , and
- a c a p a c i t y function k: S -~ N u {co}.

Remark . (1) For technical reasons we extend w to the e x t e n d e d - w i d t h function

Net processes correspond to derivation processes 277

: S x T u T x S-~ N in the following way:

ff,(a, b) := {o(a, b) forall (a, b)~

(2) The input places of a transition t e T are given by the set * t = {s e S I (s, t) ~ F},
and the output places of a transition t e T are given by the set t* = {s e S[(t, s) ~ F}.

(3) We say that s ~ S is a place with bounded capacity if k(s) ~ oo. Otherwise, s
is a place with unbounded capacity.

All components of a net are static, i.e., they cannot be changed. To obtain a
dynamic system a net is equipped with a marking assigning a number of tokens to
each place of the net up to its capacity.

The behaviour of the system will be desribed by the transformation of markings.

Definit ion 1.2. Let N = (S, T, F, w, k) be a net. A funct ion m : S-> N is called marking
of N if m(s) <~ k(s) for all s e S with k(s) # oo.

Remark. Let N = (S, T, F, w, k) be a net m : S ~ N be a marking. A slot function
sl: S ~ N, indicating the free capacity of a place with hounded capacity, is defined

in the following way:

sl(s):={~ (s) - m (s) otherwise.f°ralls~Swithk(s)~°°'

Definit ion 1.3. Let N be a net, and let m be a marking of N. Then the pair (N, m)
is called a marked net.

Example 1.4. Let example= (S, T, F, w, k) be the net with S={1 , 2, 3, 4, 5}, T =
{a, b, c, d, e}, F = {(1, a), (a, 2), (4, b), (b, 5), (2, c), (c, 3), (3, d), (5, d), (d, 1), (d, 4),
(1, e), (4, e), (e, 3), (e, 5)}, w (e) = 1 for all e e F and k (s) = 1 for all s e $ and let
init: S-~ N be a marking with in i t (1)= ini t (4)= 1 and ini t (2)= ini t (3)= ini t (5)= 0.
Then EXAMPLE = (example, init) is a marked net and can be drawn as usual in net
theory (see Fig. 1) (confer, e.g., [9]).

The marking of a net can be transformed into a follower marking by firing enabled
transitions. Transitions are enabled if all their input places carry at least as many
tokens as required by the width of the connecting edges and if analogously, all their
output places with bounded capacity have enough slots. Transitions transform a
marking into a follower marking by decreasing the number of tokens of each input
place and by increasing the number of tokens of each output place both according
to the width. We do not only allow that different transitions are fired simultaneously,
but also that each transition may be fired several times within one transformation.
To make this precise, a frequency is assigned to each transition so that a bag of
transitions rather than a set of transitions is involved in a transformation.

278 H.-J. Kreowski, A. Wilharm

d

Fig. 1. EXAMPLE.

Definition 1.5. Let N = (S, T, F, w, k) be a net and m be a marking of N. Let U" T- ,

be a function.

(1) U is enabled under m if

m(s)>~ ~, U(t)x~,(s,t)
t ~ T

sl(s) = k(s) - m(s) >~ ~ U(t) x ~(t, s)
t ~ T

for all s ~ S, and

for all s e S with k(s) ~ oo.

(2) In this case U transforms m to m' defined by

m'(s)=m(s)+ ~ U(t)x[~,(t , s) -~(s , t)]
t ~ T

for all s ~ S.

Remark. (1) This is called a step from marking m to m' by firing U and denoted

by m[U)m', and m' is called follower marking of m (under U).
(2) A function U: t - , N is called a bag of transitions. It should be noted that some

authors call such a function a multiset. For a transit ion t, U(t) is the frequency t

is fired with in a step.
(3) The case that a single transit ion to is fired is included in our notion by means

of the following hag Uto defined by Uto(to)= 1 and Uto(t) = 0 otherwise. In this case

we write re[to)re' instead of m[UOm'.
(4) The transitions involved in a step are said to be concurrent.
(5) [*) denotes the reflexive, transitive closure of [). Let m and m' be markings

of a net N ; m' is called reachable from m if m[*)m'.

Example 1.6. Let EXAMPLE be the marked net from Example 1.4. Let U : T--, N be

the bag of transitions with U(a)= U(b)= 1 and U(c)= U(d)= U(e)-0 .

Net processes correspond to derivation processes 279

U is enabled under init and transforms init to the follower marking follow where
follow is defined by fo l low(2)=fol low(5)=l and follow(1)=foUow(3)=
follow(4) = 0. The transitions a and b are concurrent in the step init[U)follow.

Figure 2 illustrates the effect of the step init[U)follow.

Later on we shall make use of the well-known fact that transitions which can be
fired simultaneously can also be fired one after the other with the same resulting
marking.

[,>

d d

Fig. 2. init[u)follow.

Theorem 1.7. Le t N be a net. Let U, U1, and I-I2 be bags of transitions with U (t) =

Ul(t)+ U2(t) for all t~ T. Let m and m" be markings with m[U)m". Then there is a
marking m' such that m[Ul)m'[U2)m".

Remark. m[Ui)m'[U2)m" will be called a decomposition of m[U)m".

Example 1.8. For t he step init[U)follow in Example 1.6, there are two proper
decompositions init[a)m'[b)follow as well as init[b)m"[a)follow, where m' is given
by m'(2)= m ' (4) = l and m'(1)= m'(3)=m'(5)=O, and m" is given by m"(1)=
m"(5) = 1 and m"(2) = m"(3) = m"(4) = 0.

2. Graph grammars

In this section we specialize and adapt the basic notions of graph grammar rules
and derivations (cf., e.g., [3, 1]) to our purposes. The procedure of deriving graphs
from graphs is based on a specific kind of graph removing and gluing. Note that
all notions, constructions, and notational conventions concerning graphs are sum-
marized in the appendix.

An alternative approach to graph rewriting can be found, e.g., in Nagl's book [7].

280 H..J. Kreowski, A. Wilharm

Definition 2.1. A rule r = (L, R, K) consists of three graphs L, R, and K with K ~ L
and K _~ R.

Remark. (1) L is called the left-hand side of r, R the right-hand side of r, and K
the gluing graph of r.

(2) r -~ = (R, L, K) is called the inverse rule of r.

To apply a rule r = (L, R, K) to a graph M, four steps must be performed:
(1) choose an occurrence of L in M,
(2) check the gluing condition,
(3) remove the non-gluing part of the occurrence,
(4) add to the remainder the non-gluing part of R by gluing together correspond-

ing gluing parts.

Definition 2.2. Let r = (L, R, K) be a rule. Let M and N be graphs. Let g:L-> M
and h : R --> N be graph morphisms.

(1) The image g(L) is called a (left-)occurrence of r in M. The image h(R) is
called a right-occurrence of r in N.

(2) A graph morphism g is a valid occurrence map if the following conditions
are satisfied:

(a) sM(e)~gv(VL) implies sM(e)egv(VK), and tM(e)egv(VL) implies
t~(e) ~ gv(VK) for all e ~ E~ - gE(EL);

(b) x # y, but g(x) = g(y) implies x, y ~ K for all x, y ~ L.

Remark. (1) The graph morphisms g and h are also called occurrence maps.
(2) The images g(K) and h(K) are called the gluing parts, g (L) - g (K) and

h(R) - h(K) the non-gluing parts of the occurrences.
(3) Part (a) of Definition 2.2(2) is called contact condition, because it requires

that edges from outside of the occurrence contact the gluing part at most.
(4) Part (b) is called identification condition, because it makes sure that the

non-gluing part of the occurrence is not deformed.
(5) Contact condition and identification condition together are called gluing

condition.

Lemma 2.3. Let r = (L, R, K) be a rule and let M be a graph. Let g: L--> M be a graph
morphism.

(1) M - (g (L) - g (K)) induces a subgraph of M, denoted by REM, i f and only if
g satisfies the contact condition.

In addition, let g satisfy the contact condition.
(2) Then, d : K --> REM given by d(x) = g(x) for all x ~ K is a graph morphism.
(3) Moreover, M is isomorphic to the d-gluing of L and REM along K provided

that g satisfies the identification condition, too.

Net processes correspond to derivation processes 281

Remark. REM is called the remainder (of M according to g and r).

Definition 2.4. Let r = (L, R, K) be a rule. Let M, N be graphs, and let g: L-> M

specify a valid occurrence map. Let REM be the remainder of M according to g

and r with the corresponding graph morphism d:K--> REM (s e e Lemma 2.3). Let
GLUE be the d-gluing of R and REM along k. Then M directly derives N by applying
r (according to g) if N is isomorphic to the graph GLUE.

Remark. (1) We write M ~ N through r (and g) or M ~ r N (and call this a direct
derivation) if M directly derives N by applying r according to g.

(2) This defines a relation ~ on graphs, the reflexive and transitive closure of
which is denoted by ~,. A graph N is said to be derivable from M if M : ~ N.

(3) A sequence of direct derivations Mo~r~ M1 :=>,2" " " ~ r n M,, where M~_I :=>,1 Mi
is a direct derivation for i = 1 , . . . , n, is called a derivation from Mo to M,,. Obviously,
M, is derivable from Mo in this case.

(4) Let i: GLUE ~ N be the assumed isomorphism. Let j : R ~ GLUE be the graph

morphism according to Appendix A(9). Then the composition ioj defines an

occurrence map h : R ~ N. Due to the identification condition the following is true:
M ~ N through r and g if and only if N ~ M through r -~ and h.

Figure 3 sketches the relation of the graphs involved in a direct derivation M ~ N

through r = (L, R, K) and g : L ~ M.

Now we allow to derive a graph from a given graph not only by applying one

rule but by applying a parallel rule which is a combination of given rules.

L ~ K

N ~ ~ N

(
C

~__ GLUE~

)J
R

Fig. 3. Scheme of a direct derivation.

Definition 2.5. Let r~ = (Li, R~. K~) for i = 1 , . . . , n (n ~> 1) be rules, and let P be a
set of rules.

(1) The parallel rule r = rl +- • • + r, is given by the disjoint union of the com-
ponents of r~, i.e., r = (L1 +" • • + L , , R~ + . • • + R , , K ~ + . • • + K , ,) .

(2) r is said to be a parallel rule over P if r~ e P for i = 1 , . . . , n.
P+ denotes the set of parallel rules over P.

282 H.-J. Kreowski, ,4. Wilharm

Remark. (1) For r = rl +" • • + r, we shall write r = ~ i~, ri, too. Instead of r + . • • + r

(n-times) we shall write n x r for short.
(2) The disjoint union of rules defining parallel rules is commutative and associa-

tive (up to isomorphism). Hence, P+ may be given by the following recursion:

P ~ P+ and r, + r 2 E P+ provided that r,, r 2 c P + .

(3) Parallel rules are ordinary rules, so that they can be applied to graphs in the

way defined above. A direct derivation M ~ N through a parallel rule r~ +- • • + rn

is called direct parallel derivation.

Example 2.6. Figure 4 explicitly shows a direct parallel derivation from a graph

called GRAr'H(init) to a graph called GRAPH(follow) through a parallel rule
r u = ra + rb .

The following theorem shows that parallel derivations can always be sequential-

ized and states conditions under which direct derivations can be paraUellized. Hence,

the use of parallel rules may reduce the length of a derivation sequence, but cannot

La+L b

GRAPH(init)

Ka+K b

REN

Ra+R b

GRAPH(follow)

t

b

4

E

E

Fig. 4. GRAPH(init)=~,o+~ GRAPH(follow).

?

Net processes correspond to derivation processes 283

increase the generative power. For the formulation of this result we introduce the
notion of independency.

Definition 2.7. (1) Let M ~ , , N=~r2X be a derivation sequence. Let h~:R~-> N be
a right-occurrence map of the first derivation and let g2: L2--> N be a left-occurrence
map of the second derivation. Then the given direct derivations are (sequential-)
independent if they satisfy the following condition:

hi(R1) N g2(/--'2) ~ hl(Kx) ~ g2(g2)-

(2) Let M ~ , , N be direct derivations according to g~:L~--> M for i = 1, 2. Then

the given derivations are (left-parallel-) independent if they satisfy the following
condition:

gl(L1) t'~ g2(/-'2) --- g l (K l) c~ g2(K2).

(3) Let N i ~ , , X be direct derivations according to g~: L~-~ Ni for i = 1, 2. Then
the given derivations are (right-parallel) independent if the direct derivations X ~ N~
through r7 ~ are left-parallel-independent.

Remark. (1) We say independent for short if it is clear which sort of independency
we mean.

(2) Independency means that the occurrences, which are assumed to be indepen-
dent, may overlap, but share common gluing parts only.

Theorem 2.8. (1) Let r = r~ + r2 be a parallel rule. Let M=O,X be a direct derivation.
Then there exist two graphs N~ and N2 and two derivation sequences M =O ,~ N~ :=~,2 X
and M=~,2 Na=~I X.

:(2) Let M ~ , , N~=:~2X be sequential-independent derivations. Then there is a direct
parallel derivaiion M =~,I+,2 X.

(3) Let M ==~ N~ and M =:~,2 N2 be left-parallel-independent derivations. Then there
is a direct parallel derivation M ~,,+,2X.

(4) Let Nl ==~,~ X and N2=~,~ X be right-parallel-independent derivations. Then there
is a direct parallel derivation M=~,,+,~X.

Remark. (1) The derivation sequences M=~N~::~X for i=1,2, constructed in
Theorem 2.8(1), are called sequentializations of the direct derivation M ~ X .

(2) The direct parallel derivation, constructed in (2), (3), and (4), is called
paraUelization of the given derivations.

(3) Sequentializations ar sequential-independent.
(4) The derivations M ~ , , N ~ and M=:~,~N2 as well as N1~,2X and N 2 ~ , X ,

constructed in Theorem 2.8(1), can be proved to be parallel-independent.
(5) Note that r~ and r2 are parallel rules themselves.

284 H.-J. Kreowski, A. Wilharm

Example 2.9. For the direct derivation
shown in Example 2.6, there exist two
GRAPH(m')=~rb GRAPH(follow) as well
=~,,o GRAPH(follow).

GRAPH(init) ~,o+,~ GRAPa(f0110W),
sequentializations GRAPH(init)~,.

as GgAea(ini t)~r~ GRAPH(m")

Now we can introduce the notion of a graph grammar and a graph language.

Definition 2.10. (1) A graph grammar G = (C, P, S)cons i s t s of
- a pair of colour alphabets C = (Cv, CE.) for vertices and edges,
- a set of rules P, and
- a startgraph S.

(2) The (graph-) language generated by G is L (G) = { M [S ~ e M } .

Remark. (1) Note that we do not distinguish between nonterminals and terminals,
because we have no use of this distinction in our investigation so far. The reason
is that we apply graph grammars to some models of Petri nets where the full
reachability class of initial markings is of interest and no mechanism is employed
to distinguish between 'terminal' and 'nonterminal' markings. In the terminology
of formal languages this corresponds to the consideration of exhaustive languages
which contain all derivable strings (or graphs) with and without nonterminals.

(2) Because parallel derivations yield nothing more than sequential derivations,
it is enough to give the (finite) set of rules in the grammar, but we can also work
with the (infinite) set of parallel rules.

3. Simulation of Petri nets by graph grammars

Given a net, we associate a graph grammar rule to each transition so that each
transformation of a marking is simulated by a direct derivation, The basic idea is
a slight modification of marked nets where tokens and slots are no longer considered
as labels but as additional bundles of nodes attached to their places by edges.

To be able to represent the net by graphs and graph grammar rules we introduce
the auxiliary notions of an underlying graph and of a bundle which means a place
decorated by given numbers of incoming and outgoing edges.

Assumption 3.1. Let N = (S, T, K, w, k) be a net. Let C = (Cv, C~) be the pair of

colour alphabets given by Cv = S u T w {*} and CE = {*}.

Definition 3.2. (1) The graph M = (S w T , F, s, t, l, m) , where s , t : F - - > S u T and
l: S w T--> Cv and m : F--> C~ are defined by

s(a, b) = a and t(a, b) = b for (a, b) ~ F,

l (a) = a for a e S u T,

m(e) = * for e e F,

is called the underlying graph of N and denoted by nad(N) .

N e t processes correspond to derivation processes 285

(2) For s e S and /~ , v ~ N we construct a graph bundle(s,/~, v) as follows:

• Vbundle($,l~,v) = {S} L.) { s i l l : 1, • . . ,]~ "~ lP},

• Ebu~dle(~.~,~)={s, li = 1 , . . . , l ~ + ~'},
• Sbu,d~ets,~,~): E --> V is defined by

I s f o r l ~ < i ~ / ~ ,
S bundle(s, bt,1,) (Si) [s~ for/.~ < i ~ / ~ + ~,

• tbundle(s,~,u): E - - > V i s defined by

tbundle(s.l~.~,)(~l):{: i f°r 1<~ i<~ it'
for/~ < i<~ ~ + ~,,

• lbundle<s,~,~): V"> CV is defined by

Ibundle(s,~,j,)(S) m S, lbundle(s,l.t.v)(Si) = * for 1 <~ i <~/~ + v,

• mbu,dl,(s,,,,~): E --> CE is defined by mbundle(~.,,.~)(e) = * for e ~ E.

Remark. (1) I f i, = 0, then the bundle is called token-bundle, i f /~ = 0, then the
bundle is called a slot-bundle.

(2) The vertices of the bundle except the place s are called satellites, the satellites
si for 1 ~< i ~<./~ are called token-satellites, the satellites si for/~ < i <~/~ + v are called
slot-satellites, because they, will represent tokens and slots respectively.

(3) Note that, by the choice of nodes and edges, bundles of different places are
disjoint.

(4) Moreover, we assume that the intersection of a bundle with and (N) consists
of the place of the bundle only.

A marked net (N, m) is represented by a graph constructed as an extension of
the underlying graph by bundles: the marking of a place s ~ S is represented in the
graph by a token-bundle with re(s) satellites; for a place s '~ S, with bounded
capacity, the slots are represented by a slot-bundle with sl(s') satellites. The width
of the edges of the net will be expressed in the rules.

]
Construction 3.3. Let m be a marking of N. Let S d be the (discrete) graph with

Vs~ = S, Es~ = ~, and ls~(v) = v for all v e Vs~. Let i be the inclusion of S d to and(N) .
The associated graph GRAPH(m) is the /-gluing of Y.s~s bundle(s, m(s) , sl(s)) and
and (N) along sd (see Fig. 5).

Remark. (1) Note that S d is subgraph of Y.s~sbundle(s, m(s) , sl(ws)). Therefore,
the / -g lu ing above is defined according to (8) of Appendix A.

(2) GnTO, H(m) is given by the following properties:

• S u T u I- is is (Vb~U~O.m(~),~l(,))--{S}) is the set of nodes,
• F U ~Js~s (Ebundle(s, mts),si(s))) is the set of edges, and
• source, target, and labels are defined in such a way that and (N) and, for all s ~ S,

bundle(s, re(s), s l (s)) are subgraphs o f GRAPH(m).

286 H.-J. Kreowski, A. Wilharm

B o o o

k(s)=,,o
, t)

s ')

k(s '),~-~

.====~

e o o

o a o

m(s ') s l (s ')

Fig. 5. Construction of an associated graph.

Example 3.4. For the marked net EXAMPLE----(example, init) in Example 1.4, the
associated graph GRAPH(init) is given in Example 2.6.

To be able to simulate the behaviour of the net, we construct graph grammar
rules, one for each transition. Such a rule is obtained from a transition t E T in the
following way:

- The gluing graph consists of the transition t, all input and output places, and all
connecting edges. All further nodes in the rules will be satellites, and all further
edges will be incident to satellites. Hence, the application of such rules will never
change the underlying graph (as the transformation of markings never changes
the underlying net).

- The left-hand side has, in addition to the gluing graph, for each input place i ~ *t,
a token-bundle with w(i, t) satellites, and, for each output place o s t* with
bounded capacity, a slot-bundle with w(t, o) satellites. Whenever such a rule is
applied, these satellites are removed. This exactly simulates how the number of
tokens and slots decreases if the corresponding transition fires.

- The right-hand side of the rule has, in addition to the gluing graph, for each
output place 0e t * , a token-bundle with w(t, o) satellites, and, for each input
place i e * t with bounded capacity, a slot-bundle with w(i, t) satellites. In an
application of a rule these satellites are added simulating how the number of
tokens and slots increases if the corresponding transition fires.

Construction 3.5 (cf. Fig. 6). (1) Let t~ T. Let (*t+t*) d be the (discrete) graph
with V(.t+,.)~= (*t+t*) d, E(.t+t.)d=~, and l(.l+,.)~(v)= v for all v~ V(.t+,.)~. The
corresponding rule rt = (Lt, Rt, Kt) is defined by
* Kt is the subgraph of und(N) induced by { t } u * t u t*;

Net processes correspond to derivation processes 287

•)

w(t,o) w(t,o') w(t,o)

Fig. 6. Construction of a corresponding rule.

• L, is the d-gluing of K, and

bundle(s, w(s, t), O)+ Y. bundle(s, 0, w(t, s))
s¢*t s~t*,k(s)~OO

+ Y~ bundle(s, 0, 0)
s~ t*,k(s)=oo

along (* t+ t*) d, where d : (* t+ t*)d-> Kt is the graph rnorphism with dr(s) = s for
all s E V(.,+:)d;
• R, is the d-gluing of Kt and

bundle(s, 0, w(s, t)) + ~, bundle(s, 0, 0)
s~*t,k(s)~oo sE*t,k(s)=Oo

+ ~ bundle(s, w(t, s), O)
$ E t *

along (* t+ t*) d.

(2) Let U: T-->N be a' bag of transitions. The corresponding parallel rule ru is
defined as ru =~,~T U(t) x r.

R e m a r k . (1) Note that (*t + t*) d is subgraph of the two disjoint unions of bundles
so that the both d-gluings above are defined according to (8) of Appendix A.

(2) !', = (L . R,, K,) is defined by
• Kt is the subgraph of und(N) induced by {t} u *t u t*;
• Lt is characterized by the following properties:

(i) VL,---- VK, L.) U (Vbundle(s,w(s,t),O)--{S}) L-) U (Vbundle(s,O,w(t,s))--(S}),

(ii)

s~*t s~t*,k(s)~oo

EL, = EK, U L..J Ebundles(s,w(s, 0,0) U L..J Ebundle(s,O,w(t, s)),
s~*t s~t*,k(s)~Oo

288 H.-J. Kreowski, A. Wilharm

(iii) source, target, and labels are defined in such a way that K, and
bundle(s, w(s, t), 0) for s ~ * t a m d bundle(s, 0, w(t, s)) for s ~ t* with k (s) ~ oo are
subgraphs of Lt;
• R, is characterized by the following properties:

(i) VR, = VK, L) U (Vbundle(s,O,~v(s,t))--{S})k'J U (Vbundle(s,w(t,s),O)--{S}),
s~*t,k(s)~oo s~ t*

(ii) ER, = Er, u (._J Ebundle(s,O,w(s,t)) L3 [,..J Ebundle(s,w(t " s),O),
s~*t,k(s)~oo set*

(iii) source, target, and labels are defined in such a way that K, and
bundle(s, 0, w(s, t)) for s ~ *t with k(s) ~ oo and bundle(s, w(t, s), 0) for s ~ t* are
subgraphs of Rt.

Example 3.6. For the marked net EXAMPLE ---- (example, init) and the bag of transi-
tion U (see Example 1.6), the corresponding rule rv is given in Example 2.6.

The gluing condition makes sure that the transition t is enabled in the net whenever
the corresponding rule rt can be applied. Removing the non-gluing part of the
left-hand side and adding the non-gluing part of the right-hand side simulates the
transformation of the marking. The same reasoning applies to rv as the following
theorem states.

Theorem 3.7. Let U be a bag of transitions of N, and let m, m' be markings of N.
Then m[U)m' if and only if GRAI, H(m)==~, U GRAPH(m').

Proof. I f U is enabled under m, we have

(*) re(s) >~ • U(t) x ff,(s, t) for all s ~ S, and
t~T

(**) k (s) - m (s) >~ E U(t)x f f , (t , s) f o r a l l s e S w i t h k (s) ~ o o .
t~T

In the associated graph GRAPH(m) there is, for each s e S, a bundle with re(s)
token-satellites and sl(s) slot-satellites. The left-hand side Lv of the rule rv is given
by Lv = Y. t~ r U(t) x Lt.

In each left-hand side L, we have, for each s ~ *t, a bundle with w(s, t) token-
satellites and, for each s e t* with k(s)~oo, a bundle with w(t, s) slot-satellites.
Therefore, in the left-hand side of the rule ru we have for each s ~ S, ~,,~r U (t) x
if(s, t) token-satellites and, for each s ~ S with k(s) ~ oo, ~,,~r U(t) x ff,(t, s) slot-
satellites. Now, (.) makes sure that there are at least as many token-satellites in
GRAPH(m) as in Lv for each s ~ S, and (**) makes sure that there are at least as
many slot-satellites in GRAPr~(m) as in Ltj for each s e S with bounded capacity.
Therefore, there are injective mappings for all edges and satellites of bundles of
the left-hand side into corresponding bundles in GRAPH(m), These can be extended
to a graph morphism, g: Lv -> GRAPh(m) by mapping all gluing graphs K, identi-
cally.

Net processes correspond to derivation processes 289

The non-gluing nodes of the occurrence are the satellites, but, by construction,
each satellite is either source or target of exactly one edge which belongs to the
occurrence, too. This proves the contact condition.

The identification condition is satisfied because g injectively maps satellites and
adjacent edges (being the non-gluing items) to satellites and adjacent edges respec-
tively. Parts of the underlying graph may be identified with each other, but this does
not conflict with the identification because these are gluing terms.

Now the application of ru to GRAPH(m) leaves the underlying graph und(N)
unchanged, but removes and adds edges and satellites of the token- and slot-bundles
of each place.

The token-bundle of each place s ~ S has the following form after the application
of ru:

bundle(s, re(s), O)

Y. V(t) x (X bundle(s, w(t, s), O) - • bundle(s, w(s, t), O) +
t~ T \ s e t * s ~ * t /

= bundle(s, m(s), O)

+~,.~ r U (t) x (,~s bundle(s' ff~(t" s)' O) - ~'s~ s bundle(s, ff,(s, t), O)) ,

so the number of token-satellites for each place s ~ S is given by m(s)+~,~r U(t) x
(O(t, s) - ~(s, t)) which is m'(s) by the definition of the transformation of m to m'
by U. Hence, the new number of token-satellites for each place s c S is m'(s).

The slot-bundle of each place s c S with k(s) # oo is given by

bundle(s, O, sl(s))

+Y, U(t) × (~.
t ~ T s t

bundle(s, O, w(s, t)) - ~Z~,* bundle(s, O, w(t, s)))

= bundle(s, O, sl(s))

+ ,~r)-" U (t) x (~ s ~j bundle(s, O, ~,(s , t))- s~s y~ bundle(s, O, ~,(t,s))),

so the number of slot-satellites for each place s e S with bounded capacity is
s l (s)+~ ,~ r U(t)× (~(s, t) - e (t , s)) but this is exactly sl'(s) which is defined as

s l ' (s)=k(s) -m ' (s)

= k (s) - m (s) + Y. U(t)x(ff , (s , t) - f f , (t , s))
t ~ T

=sl(s)+
t ~ T

290 H.-J. Kreowski, .4. grdharm

Note that for places s s S with unbounded capacity we have sl(s) = 0 and the new
slot-bundles for these places are given by

bundle(s, 0, sl(s)

+Y',~T U (t) x (• ~. , bundle(s, O, O) - ~'.s~t. bundle(s, O, 0))

= bundle(s, 0, 0),

so sl'(s) = 0 for all s ~ S with k(s) = oo satisfies the definition of slots for places with
unbounded capacity.

Therefore, the derived graph is the associated graph GRAPH(m').
Conversely, if ru is applicable to GRAPH(m), then we have a graph morphism

g: Lu-> GRAPH(m) satisfying especially the identification condition. Hence, g is
injective on satellites. This guarantees that U is enabled under m. And as shown
above, due to the construction of rv, the application of the rule removes and adds
token- and slot-satellites according to the width and simulates the transformation
of m to m' by U so that the derived graph is the graph associated to the marking
in'. []

It should be mentioned that, as an immediate consequence of this result, the
notion of concurrency in nets and the notion of independency in graph grammars
are closely related, as is shown in the following corollary.

Corollary 3.8. Let t and t ~ be two transitions o f N which are enabled under the marking

m. Then t and t o are concurrent i f and only i f there exist corresponding direct derivations
GRAPH(m)=:~GRAPH(m') through rt and GRAPH(m) ~ G R A P H (m") through rt, which
are independent.

Proof. The two transitions t and t o are concurrent if there is a bag of transitions
U:T-->N with U(t)~>l and U(t°)~>l for t # t °, or U(t)~>2 for t = t ° which is
enabled under m; so there is a step m[U)m". Then, by Theorem 3.7, there is a direct
derivation GRAPH(m)=~GRAPH(m") through ru. By assumption, rv has t h e
following form: r u = . . . + r t + r t J + So there exists a sequentialization
G R A P H (m) ~ G ~ H (m ') through rv , = . . "+rt and GRAPH(m')~ GRAPH(m")
through ru- = rtJ +" • • and the direct derivations of this sequentialization are indepen-
dent (confer Theorem 2.8).

On the other hand, direct derivations rv, =" • • + rt +- • • and ru- =" • • + rt0 +" • •
which are independent can be parallelized to a direct derivation through rv = re, + re-
and by Theorem 3.7 there is a corresponding step in the net by U, where t and t o
are both involved, so they are concurrent. []

Example 3.9. As an illustration of Theorem 3.7, Fig. 2 shows a step init[U)follow
and Fig. 4 shows the direct derivation GRAPH(init)~GRAPH(fOIIow) through rv.

Net processes correspond to derivation processes 291

According to Corollary 3.8, in this case, the transitions a and b are concurrent
and there are decompositions (see Example 1.8) as well as there are sequentializations
and independent derivations through r~ and rb (see Example 2.9).

Using the notions of associated graphs and corresponding rules we can introduce
the graph grammar simulating a given net.

Definition 3.10. Let (N, mo) be a marked net. G(N, mo) = (C, P, GRAPH(too)) with
P = {rt[t ~ T} is called the simulating graph grammar.

Now, the results of this section can be formulated in terms of reachability and
derivability.

Corollary 3.11. Let (N, mo) be a marked net and let G(N, mo) be the simulating
graph grammar. Then mo[*)m if and only if GRAI'H(mo)~p GRAPH(m).

ra--(~ '

rb=(~ '

rc--(~ '

rd--(

re=(

, ~) and

'~)"
Fig. 7. Corresponding rules.

292 H.-J. Kreowski, A. Wilharm

Example 3.12. The simulating graph grammar for the marked net EXAMPLE (see

Example 1.4)is defined as G(EXAMPLE)= (C, {r.,, rb, re, rd, re}, GRAPn(init)), where
C is given by Cv = {1, 2, 3, 4, 5} u {a, b, c, d, e} u {*} and CE = {*}; GRAeH(init) is
shown in Example 2.6 and the rules are given in Fig. 7.

4. N e t processes

Transformations of markings of nets describe a sequential behaviour of nets
including 'synchronous' firing of transitions. In contrast to that, the intuition of
concurrent systems allows 'asynchronous' activities where a strictly sequential or
parallel relation of actions in time may not be known or observable. In the theory
of nets such a view of concurrency is covered by the notion of processes.

Assumption 4.1. We restrict our consideration to processes on condition/event
systems (see Definition 4.2), because they are well studied in the literature (cf.,

e.g., [9]).

Condition/event systems form a special case of the nets introduced in Section 1
with capacity 1 for all places and width 1 for all edges.

Def in i t ion 4.2. A condition~event system (N, mo) consists of
- a net N = (S, T, F, w, k) with k(s) = 1 for all s c S and w(e) = 1 for all e e F, and

- an initial marking mo.

Remark. For condition/event systems, markings are also called cases.

Example 4.3. The marked net EXAMPLE, shown in Fig. 1, is a condition/event system.

All possible transformations of cases are represented in the case graph.

Def in i t ion 4.4. Let (N, rap) be a condition/event system with N = (S, T, F, w, k).
Then the case graph CASE of (N, mo) is an unlabelled graph defined as follows:

• Vc,~={mlmo[.)m},
• { (m, U, m')lm[U)m', m, U: T-}N},
• U,m'))=m,
• U, m ')) = m '

Example 4.5. Figure 8 shows the case graph CASEE,~M,~ of the condition/event
system EXAMPLE, given in Example 1.4. A node of CASEE~,M~, i.e., the marking m
of example, is represented by the set of places s ~ S with re(s) = 1 and an edge by
the sum of all transitions involved in the step.

Net processes correspond to derivation processes 293

~1.51

[~.41 > ~2.51
a+b

~2,41 ~ b+c > ~3.51

e

Fig. 8. CASEExAMrL P

Note that all paths in the case graph correspond to transformation sequences in

the net. Hence, CASE describes the sequential behaviour of the system including

parallel steps.
In contrast to that, the concurrent behaviour of the system is formalized by

processes. The idea of processes is to relax the sequential behaviour in such a way

that the order in time of concurrent transitions need not be fixed. This is obtained

by the not ion of an occurrence net where the sequential order is replaced by the

partial order.

Def in i t i on 4.6. An occurrence net K = (S, T, F, w, k) is a net, where

* k (s) = 0 for all s ~ S,

. w(e) = 0 for all e ~ F,

• und(N) is acyclic, and

• for each s ~ S , there is at most one t c T with (t , s) ~ F , and at most one t '~ T

with (s, t') ~ F.

R e m a r k . We have defined occurrence nets as a special form of nets so that we can

use all notat ional conventions for nets but we shall never use their (somewhat
strange) capacity and width.

The not ion of processes relates an occurrence net to the behaviour of a given net.

The formal definition of a process is based on the concept of slices which will be

introduced for an occurrence net in the following definition.

Def in i t ion 4.7. Let K = (S, T, F, w, k) be an occurrence net.
(1) A subset S ' c S is called concurrent if, for all s, s ' e S' with s ~ s', there is

neither a path from s to s' nor a path from s' to s.
(2) A maximal concurrent subset of places is said to be a slice.

294 H.-J. Kreowski, A. Wilharm

Definition 4.8. A process on a condition/event system (N, mo) with N=
(SN, TN, FN, wN, kN) consists of an occurrence net K = (S t , TK, FK, WK, kr) and
a map p : SK w TK -> SN u TN with the following properties:

• p is injective on each slice;
• the image of each slice is a node in CASE of (N, mo), i.e., a case of N reachable

from mo;
• p preserves the input and output structure of each transition in K, i.e., *p(t) = p(* t)

and p(t)* =p(t*) for all t~ Tr.

Remark. Note that processes will be represented graphically by the occurrence net
coloured with the places and transitions of the condition/event system. (See, e.g.,
[9] and Fig. 9).

Example 4.9. Figure 9 shows a process PEx,~P~ on the condition/event system
EXAMPLE. The slices of PEXA~PLE are {sl, s4}, {s2, s4}, {s3, s4}, {sl, sS}, {s2, s5},
{s3, s5}, and {s6, s7}.

$4 s5 / ; \ s7

©
Fig. 9. Process PEX*MPL~"

More details can be found in [9] where, in addition, the following correspondence
between paths in the case graph of a condition/event system (N, m0) and the
processes on (N, mo) is shown. This relationship only works in case of a so-called
contact-free condition/event system. This means that each transition is already
enabled in each case if all its input places are marked. To assume contact-freeness
does not establish a semantical restriction because each condition/event system can
be transformed in a contact-free one with the same case graph (up to isomorphism).

Definition 4.10. A condition/event system (N, m0) is called contact-free if, for all
markings m with mo[*)m and for all t c T, it holds that

m(s) = 1 implies m(s') = 0 for all s ~ *t, s '~ t*.

Example 4.11. The condition/event system EXAMPLE is contact-free.

The relationship between processes and paths in the case graph is based on the
following observation.

Net processes correspond to derivation processes 295

Definition 4.12. Two paths p, p' in CASE are called equivalent if there are paths
p , , . . . , p~ with p, =p and p, = p', and p~ and p~+l differ only by a decomposition
of one step (in Pi or Pi+,).

Remark. Note that the notion of decomposition in the sense of Theorem 1.7 is
meaningful in" the situation above because edges in CASE are steps in the system.

Example 4.13. The following paths of the case graph pathEx~,,~Ei for i = 1 , . . . , 5 are
equivalent:

pathExA~L~l = (11, 4},

pathEx,,~,2 = ({1, 4},

pathEx~,LE3 = ({ 1, 4},

pathEx~M~4 = ({1, 4},

pathE~,M,=5 = ({1, 4},

a, {2, 4}), ({2, 4}, c, {3, 4}), ({3, 4}, b, {3, 5}), ({3, 5}, d, {1, 4}),

a, {2, 4}), ({2, 4}, b+ c, {3, 5}), ({3, 5}, d, {1, 4}),

a, {2, 4}), ({2, 4}, b, {2, 5}), ({2, 5}, c, {3, 5}), ({3, 5}, d, {1, 4}),

a+b, {2, 5}), ({2, 5}, c, {3, 5}), ({3, 5}), d, {1, 4}),

b, {1, 5}), ({1, 5}), a, {2, 5}), ({2, 5}, c, {3, S}), ({3, 5}), d, {1, 4}).

Theorem 4.14. Let (IV, mo) be a contact-free condition~event system. Then there is a
one-to-one correspondence between processes on (N, mo) and the sets of equivalent
paths in the case graph of (N, mo).

Remark. Note that there exists exactly one process corresponding to a given path,
but on the other hand, several equivalent paths may be related to the same process.

Example 4.15. The process PEx~M,,~ in Fig. 9 corresponds to {pathEx~,,LEi [i = 1 , . . . , 5}
reflecting that the transition b is concurrent to a and c, whereas the transition c is
not concurrent to a, and d is only enabled after c and b have fired.

5. Graph grammar processes

Similarly to net processes, a process in a graph grammar is a partial order of
direct derivations. In this section we shall recall concepts and results from [5] as
far as needed.

Assumption 5.1. Let G = (C, P, S) be an arbitrary but fixed graph grammar.

Definition 5.2. The derivation graph (of G) DERIVATION ---- (V, E, s, t) is an unlabelled
graph defined as follows:
• V = { M I S : ~ M } ,
• E={M==~rM'[M,M'eV, rep+},
• s (M =~rM') = M,

• t(M=r~,M') = M'.

296 H.-J. Kreowski, A. Wilharm

r d R ~
~ / r b -- : : ~

GRAPH(~ 1,4{) ~ G
ra~ ra+rb /

GRAPH(12.40) GRAPHqa,sl) rb+rc /~

re

Fig. 10. DERIVATION G(EXAMPLE)"

Example 5.3. Figure 10 shows the derivation graph DERIVATIONU(Ex~MpLE) of the graph
grammar G(EXAMPLE) simulating the marked net EXAMPLE (see Example 3.12).
For the denotation of markings we use the same conventions as in Example 4.5.
The edges are drawn as usual for direct derivations.

Definition 5.4. A derivation process (in G) is a construct p = (A, a : A--> DERIVATION),
where A is a connected acyclic unlabellcd graph and a is a graph morphism.

Remark. In examples we shall graphically represent a derivation process by the
underlying graph A, but colourcd in the following way: each v ~VA gets the graph
av(v) as colour and each e~ EA gets the direct derivation aE(e) as colour. In
drawings we explicitly give the colours only because they Completely reflect the
underlying graphical structure (see, e.g., Fig. 11).

Example 5.5. Figure 11 shows a derivation process PG(Ex.~.~) in the graph grammar

G(EXAMPLE).

There are some special situations of some importance later on.

Definition 5.6. (1) A derivation process p = (A , a) is called sequential if the

underlying graph A is a path.

GP~PH({ 1,4~) GRAPH(12,5})
r a +r b re ~

GRAPH(~2.4}) ~ GRAPH03.5~) ~ GRAPH(I1.4}) rb+r c r d
Fig. 11. Process PG(ExA~P~)"

Net processes correspond to derivation processes 297

J N r

r

(a) (b)

N N

(c)

Fig. 12. Doubles.

(2) Let p = (A, a) be a derivation process, SuB a subgraph of A and sub the
restriction of a to SuB. Then (Sun, sub) is called a subprocess of p.

(3) A derivation process p = (A, a) is called double-free if there is no subprocess
of p of one of the forms shown in Fig. 12.

(4) A process is said to be locally conflict-free if each subprocess of p where two
direct derivations start from the same graph are left-parallel independent, and each
subprocess of p where two direct derivations lead to the same graph are right-parallel
independent.

Remark. (1) Note that sequential processes correspond to ordinary derivations.
(2) By definition, subprocesses are derivation processes.
(3) Each of the processes (a), (b), and (c) in Fig. 12 is called a double.
(4) There is no local conflict within a local conflict-free process.

Example 5.7. The derivation process PO<ExAM~L~) in Fig. 11 is not sequential. The
derivation

GRAPH({I, 4})-'----~. GRAPH({2, 5}) ".,G~PH({3, 5}) >G~PH({1, 4})
r a d - r b r c rd

is a subprocess of PO(Ex~MP=)-

The results of Section 2 concerning independency can be summarized in terms
of processes in the following way.

Corollary 5.8. For each derivation process p which contains a subprocess Psub of one

of the forms shown in Fig. 13 (where the direct derivations are assumed to be indepen-
dent), there is a process ~ which contains the subprocess Peompi (see Fig. 14) instead
Of Psub, but equals p in all other parts.

N I N I N I

J
M - - M X M rl+r ? X

Na N 2

(a) (b) (c) (d)

X

Fig. 13. Independent situations.

298 H.-J. Kreowski, A. Wilharm

M X

N 2 ~

Fig. 14. Complete situation.

Remark. (1) /~ is called a local completion of p.
(2) Note that the original process p is a subprocess of/~ such that p c~ Pcompl = Psub

and p w Pcomp~ =/~. In this sense,/5 is covered by p and Pcompl meaning that each
item of p belongs to p or to P¢omp~.

This means that independent direct derivations can be performed in parallel or
in arbitrary order with the same result.

From a point of view of concurrency independent situations and their common
local completion should not be distinguished, because they differ only in the order
of time of occurring actions and in doubles.

Definition 5.9. Derivation processes p and p' are called equivalent if there are
processes P l , . . . ,P , with Pl =P and p, =p' and, for i= 1 , . . . , n - 1 , pi is a local
completion of p~+l or Pi+~ is a local completion of pi, or pi and p~+~ differ by a

double (in Pi or P H) only.

It turns out that the completion procedure does not add new information to a
derivation process after some steps. This leads to a normal form result for equivalent
derivation processes in the following way.

Definition 5.10. A double-free derivation process is complete if it differs from its
local completions by doubles only.

Example 5.11. The process PG(~x~MP-,) (see Fig. 15) is the complete process equivalent
to the process PG~Ex,MPL~ in Example 5.5.

Using this notion we can formulate the main result of this section.

GRAPH(| 1,51)

/ , ,
GRAPH(|I,4J) ~ GRAPH(IR,5J)

GRAPH(~2,41) ~ GRAPH(~3,5~) ~ GRAPH(~!,4~)
Fc~ rb+rc ~Fb rd

GRAPH(13.41)

Fig. 15. Process a6G(ex.M~).

Net processes correspond to derivation processes 299

Theorem 5.12. Each equivalence class of derivation processes contains a complete
process as unique normal form.

On the base of complete processes, we can introduce the notion of (globally)
conflict-free processes.

Definition 5.13. A process is called conflict-free if its complete process is locally
conflict-free.

Example 5.14. The process PG(Ex~M~_~) (confer Fig. 11) and its completion PG<E~,,P~)
(confer Fig. 15) are conflict-free.

Lemma 5.15. (1) A sequential process is conflict-free.
(2) A process equivalent to another conflict-free process is conflict-free, too.
(3) The set o f equivalent sequential processes forms a subset o f the class o f equivalent

conflict-free processes.
(4) Two sequential processes s and s' are equivalent i f and only if there are derivation

sequences sl, . . . , s, with sl = s and s, = s', and si and si+l differ only by a sequentializ-

ation (in si or si+l).

6. Relationship between processes in Petri nets and graph grammars

In this section the non-sequential behaviour of a system described by a Petri net
is related to the non-sequential behaviour of the graph grammar simulating the net.

Analogously to Theorem 3.7 for the sequential behavior, we get as the main result
of this paper a one-to-one correspondence between the non-sequential behaviours.

Main Theorem 6.1. Let (N, too) be a contact-free condition~event system. Let
G(N, too) be the simulating graph grammar. Then there is a one-to-one correspondence

between processes on (N, too) and the complete conflict-free processes on G(N, too).

Proof. A process on (N, too) uniquely corresponds to a set of equivalent paths in
CASE, the case graph of (N, too), according to Theorem 4.14. Using the following
Lemma 6.2 this set of paths uniquely corresponds to a set of equivalent sequential
processes in G (N , too) which is a subset of their full equivalence class. By Lemma
5.15, this class consists of conflict-free processes because it contains sequential
processes. Using Theorem 5.12, this yields a unique complete conflict-free
process. []

Remark. Note that we need the assumption of contact-freeness for the one-to-one
correspondence between processes and equivalence classes of paths in CASE. All
other steps of the proof above work for arbitrary condition/event systems.

300 H.-J. Kreowski, A. Wilharm

Lemma 6.2. (1) Let CASE be the case graph of a condition~event system (N, too)
and let DERIVATION be the derivation graph of the simulating graph grammar
G(N, too). Then CASE is isomorphic to DERIVATION.

(2) Paths in CASE are equivalent if and only if the corresponding sequential processes
in DERIVATION are equivalent.

Proof. (1) By mapping a case m to GRAPH(m) and a step m[U)m' to a direct

derivation GRAPH(m)~GRAPH(m') through ru, we get a graph morphism i : CASE-~
DERIVATION. In condition/event systems the bundle of each place consists of one
satellite only. Hence, using Theorem 3.7, it turns out that i is an isomorphism.

(2) By Theorem 3.7, a step m[U)m" corresponds to a direct derivation
GRAPH(m)~GRAPH(m") through ru and a decomposition m[U')m'[U")m" corre-
sponds to a sequentialization GRAPH(m)OGRAPH(m') through ru, and
GRAPH(re') ~ GRAPH(m") through ru,,. Decomposition generates the equivalence
of paths in CASE and on the other hand, sequentialization generates the equivalence
of sequential processes (cf. Lemma 5.15). This completes the proof. []

Example 6.3. Obviously, the case graph CASEEx̂ MvL ~ in Example 4.5 and the derivation
graph DERIVATIONG(Ex̂ MpLE) in Example 5.6 are isomorphic.

Moreover, the complete process PG(~,MPL~) on G(EXAMPLE) in Fig. 15 corresponds
to the process P~,M,= on EXAMPLE in Fig. 9.

7. Conclusion

The diagram in Fig. 16 relates the results of this paper to each other. In the left

column the results from net theory are summarized. For each c0ndition/event system

there is a case graph containing the sets of all equivalent paths. And according to

Theorem 4.14 there is a one-to-one correspondence between the sets of equivalent

paths and the processes, but only in case of contact-freeness of the condition/event

system.

c o n d i t i o n / e v e n t s y s t e m >
s i m u l a t i on

case g r a p h

e qu i va l e n t
equ iva l en t p a t h s ~-~ ' s e q u e n t i a l p r o c e s s e s

c o n t a c t - f r e e

process < •
MAIN THEOREM

graph grammar

derivation graph

equivalent
conflict-free processes

conflict-free
complete process

Fig. 16. Summary.

Net processes correspond to derivation processes 301

Summarizing the results from graph grammar theory in the right column, the
derivation graph of a graph grammar contains all equivalent processes for which
the complete process is a unique representation by Theorem 5.12.

If we consider now especially the graph grammar simulating a contact-free
condition/event system, we get as a consequence of Theorem 3.7 (as shown in
Lemma 6.2) the isomorphy of the case graph and the derivation graph, i.e., this
result relates the sequential behaviour of nets and graph grammars as closely as
possible.

Due to Lemma 6.2, there is a one-to-one correspondence between equivalent
paths and the equivalent sequential processes which form a subset of the equivalent
conflict-free processes. And the bottom reflects the Main Theorem 6.1 stating a
one-to-one correspondence between the processes on a contact-free condition/event
system and the complete conflict-free processes in the simulating graph grammar.

To give a more complete picture of the situation, there is a result of former studies
(cf. [5]) stating that in each equivalence class of conflict-free processes there is a
unique canonical derivation; this is a sequential process where all components are
executed as early as possible so that each rule of the parallel derivation is dependent
of the predecessing direct derivation or belongs to the first derivation of the sequence.
In this way canonical derivations uniquely represent conflict-free non-sequential
processes as complete processes, but, in general, the size of canonical derivations
(being sequential) is much more feasible than the usually 'baroque' form of complete
processes ornamented with the various diamonds of local completion (see I.emma
5.15).

Example 7.1. The derivation sequence, given in Example 5.7, is the canonical
derivation of the complete conflict-free process/5~(E~.,,o~) in Fig. 15.

It should be noticed that in the simulation presented in this paper we allow a
transition t to be concurrent to itself (cf. Remarks 1.5(2) and (4) and Corollary 3.8)
which is normally forbidden in net theory. We obtain a graph grammar reflecting
this restriction by modifying nothing but the gluing graph K, of each corresponding
rule r, in such a way that we remove the transition t and all its incoming and
outgoing edges from it. All results remain true under this modification. Hence, with
respect to our considerations, it does not matter whether a transition may be
concurrent to itself or not.

A lot of further work must be done in the line of this paper. In particular, the
relationship between processes on nets and processes in graph grammars should be
extended to more general marked nets than condition/event systems. On the other
hand, having established a solid bridge between net and graph grammar theory,
one may wonder whether the respective concepts and results can be carried over
and applied mutually--with success and new insight.

Final Example 7.2. Consider the (complete) conflict-free process in Fig. 17 and note
that it would look even more horrible if more than two direct derivations would be

302 H.-J. Kreowsta, A Waharm

O

U _ GR.~.,~E ..,,t_/,,. B~A~Z.,;'UZ, ~t....)

Fig. 17. Complete conflict-free process.

parallel-independent. The mess of edges tends to muddle all information. What can
be done?

In some circles, a popular discussion takes place around "Small is beautiful"
(cf. [10]). We would like to call attention to a slightly different topic which becomes
apparent if you have a look at the equivalent canonical derivation of the given
process in Fig. 18.

0 ~ , n > 0 ~ M M A ~ 0 5 0 ;, 0
A R E B E A U T I F U L

Fig. 18. Canonical derivation.

A p p e n d i x A

In this section we recall some basic notions, definitions, constructions and results
concerning graphs as far as they are needed in this paper. For further details see,
e.g., [3, 1].

(1) Let C = (Cv~ Cv) be a pair of colour alphabets for graphs, consisting of a
colour alphabet Cv for vertices and a colour alphabet C~ for edges.

(2) A (directed labelled) graph M = (V, E, s, t, 1, m) consists of
- a set of vertices V,
- a set of edges E,

- two functions s, t:E--> V assigning source and target to each edge, and
- two functions 1: V--> Cv and m : E --> Cz colouring vertices and edges of the graph

respectively.
The components of a graph M are referred to by indexing them with the name

of the graph, i.e., by VM, Era, sM,, tM, l~, raM. The denotation x ~ M is an abbrevi-
ation for 'x ~ V~ and x ~ E~ and is used whenever nodes and edges have not to be
distinguished. Given graphs M and N, we consider frequently the set-theoretic
differences VM--VN and EM-EN. For this pair of sets we write

Net processes correspond to derivation processes 303

somewhat ambiguously M -
one-element set. A graph M

graph M is unlabelled if Cv

N. A graph M is called node-labelled if CE is a

is called edge-labelled, if Cv is a one-element set. A

and C~ are one-element sets. In case of unlabelled
graphs we omit the colouring functions IM and mM.

(3) Let M = (V, E, s, t, l, m) be a graph. A sequence of edges e l , . . . , e, is a path
if t(ei) = s(ei+l) for i = 1, . . . , n - 1. A path e l , . . . , en is a cycle if t(en) = s(e~). A
graph M is acyclic if no path in M is a cycle. A graph M is connected if, for each

two nodes v, v '~ V, there is a sequence of nodes V l , . . . , vn such that v = v~ and
v ' = v, and, for i = 1 , . . . , n - 1, there is an edge e~ with s(ei) = v~ and t(e~) = vi+~,
or t(ei)= vi and s(e~)= V i + 1 .

(4) Let U and M be graphs with Vv ~ V~ and Eu ~ EM. U is a subgraph of M,
denoted by U___ M, if su(e) = sM(e), tv(e) = tM(e), lv(v) = l~(v), and my(e) =
m~vt(e) for all e ~ Eu and v ~ Vv. A subgraph U of M is called induced by V c VM
if Vu = V and Ev = {e ~ E~ I sM (e), t~ (e) ~ V}. A subgraph U of M is called induced
by V ~ V~ and E c EM if Vv = V and Ev = E. Let M be a graph and U~, U2 ~ M.

Then Vul n Vu2 and Eul ~ Eu2 induce a subgraph of M, called intersection of U~

and U2, and is denoted by U1 n/-/2.
(5) Let M and N be graphs. M + N denotes te disjoint union of the graphs M

and N, and is given by the disjoint union of sets for nodes and edges separately.

All nodes and edges of M + N keep their original labels, each edge keeps its original

source and target.

(6) Let L and M be graphs. A graph morphism g : L--> M from L to M consists

of two maps gv: VL--> VM and gu :EL--> E~ with gv(sL(e)) = s~(gE(e)), gv(h.(e)) =
tM(gE(e)), IL(v) = l~(gv(v)) , and mL(e)= m~(g~(e)) for all e~ EL and v~ Vr.

(7) Let g = (gv, gE) : M --> N be a graph morphism. The subsets gv(VM) - VN and
g~(EM) c EN induce the subgraph g (M) of N, called the image of M under g. The

denotat ion g(x) is an abbreviation for gv(X) or gE(x) and is used whenever nodes

and edges have not to be distinguished. If g is a bijective graph morphism, then it
is called a graph isomorphism. In this case M and N are called isomorphic, which

is denoted by M = N. U is a subgraph of M if and only if the two inclusions

inv : Vv-> V~ and inn : Et~--> EM define a graph morphism in: U-> M.
Let h : N --> P be another graph morphism. The composition h o g: M ~ P, defined

componentwise, is a graph morphism. Let U ~ M and in: U--> M be the correspond-
ing inclusion morphism. Then g o in: U--> N is called-the restriction of g to U.

Let g ' : M'--> N ' be another graph morphism. Then g + g': M + M'-> N + N '
denotes the disjoint union of the graph morphisms g and g', and is defined by
g + g'(x) = g(x) for x ~ M and g + g'(x) = g'(x) for x ~ M'.

(8) Let B, K, D be three graphs, and let K ~ B and d : K ~ D be a graph morphism.

Then the d-gluing of B and D along K is the graph M, constructed as follows:

= + (v B - vK);

EM = ED + (EB -- Er);

304 H.-J. Kreowski, A. Wilharm

sM : E~--, VM

ISo(e)

with s~(e) = " { sB(e)

I
L dv(sB(e))

for e e ED,
for e ~ EB - EK

with sB(e) ~ VB -- VK,
for e ~ EB - EK

with SB(e) ~ VK ;

t~ : E ~ --> VM with tM(e)=

to(e)
tB(e)

dv(tB(e))

for e ~/5o,
f o r e ~ E B - E K

with tB ('e) ~ VB -- VK,
f o r e ~ E ~ - E K

with tB(e) E VK ;

to(v) for v ~ Vo,
lM" V~ --> Cv with lM(v) = lB(v) otherwise;

mM" EM-'> C~ with mM(e) = f{m°(e)
for e E Eo,

t roB(e) otherwise.

(9) Let M be the d-gluing of B and D along K. Then D c_ M due to construction.

Moreover, there is a graph morphism h:B--> M defined by

h (x) = { ~ (x) for v~ K,

otherwise.

Acknowledgment

We would like to thank P.S. Thiagarajan, Annegret Habel, and Udo Hummert

for their valuable comments on an earlier version of this paper and the unknown

referee for his (or her) clarifying suggestions.

References

[1] H. Ehrig, Introduction to the algebraic theory of graph grammars, Lecture Notes in Computer Science
73 (Springer, Berlin, 1979) 1-69.

[2] H.J. Genrich, D. Janssens, G. Rozenberg and P.S. Thiagarajan, Generalized handle grammars and
their relation to Petri nets, Tech. Rept. 82-01, University of Antwerp, 1982.

[3] H.-J. Kreowski, Manipulationen yon Graphmanipulationen, Ph.D. Thesis, Computer Science
Department, Technical University of Berlin, 1977.

[4] H.-J. Kreowski, A comparison between Petri nets and graph grammars, Proc. Internal Workshop
WG "80, Bad Honnef, June 1980, Lecture Notes in Computer Science 100 (Springer, Berlin, 1980)
306-317.

[5] H.-J. Kreowski, Graph grammar derivation processes, Proc Internat. Workshop WG "83, Osnabriick,
June 1983 (Trauner Verlag, Linz, 1983) 136-150.

[6] H.-J. Kreowski and A. Wilharm, Processes on Petri nets and graph grammars, Proc. Internat.
Workshop WG "84, Berlin, June 1984 (Trauner Verlag, Linz, 1984) 189-200.

Net processes correspond to derivation processes 305

[7] M. Nagl, Grapk-Grammatiken: Theorie, lmplementierung und Anwendungen (Vieweg Verlag, Braun-
schweig-Weisbaden, 1979).

[8] W. Reisig, An application of graph grammars to net theory, Proc. Internat. Workshop WG '80, Bad
Honnef, June 1980, Lecture Notes in Computer Science 100 (Springer, Berlin, 1980) 318-325.

[9] W. Reisig, Netze---Eine Einfiihrung (Springer, Berlin, 1982).
[10] E.F. Schumacher, Small is beautiful (London, 1976).
[11] P. Starke, Graph grammars for Petri net processes, Elektron. lnformationsverarb. Kybernet. 19(4, 5)

(1983) 199-233.
[12] P. Wilke, Zusammenh~nge und Unterschiede zwischen Graph-Grammatiken und Petri-Netzen sowie

verwandter Systeme, Arbeitsberichte des Instituts f'fir Mathematische Maschinen und Datenverar-
beitung 16(14) Universitiit Erlangen, 1983.

