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Weconsider nonlinear vector continuous-time optimization problemswith inequality type
of constraints. We derive new Fritz John and Karush–Kuhn–Tucker optimality conditions
that are valid when all functions are preinvex.
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1. Introduction

Let D be a nonempty subset of the Banach space Ln
∞

[0, T ] and let f (t, x(t)) = ζ (x)(t), ζ : D → Ls1[0, T ] and g(t, x(t)) =

ξ(x)(t), ξ : D → Lm1 [0, T ] be given functions. Here, by Ln
∞

[0, T ] we denote the space of all n-dimensional Lebesgue
measurable essentially bounded functions defined on the interval [0, T ] and Ln1[0, T ] denotes the space of all n-dimensional
essentially bounded and Lebesgue integrable functions defined on the interval [0, T ] with the corresponding norms

‖x‖∞ = max
1≤i≤n

ess sup{|xi(t)|, 0 ≤ t ≤ T }

and

‖x‖1 = max
1≤i≤n

∫ T

0
|xi(t)| dt.

Note that, for each t ∈ [0, T ], xi(t) is the ith component of x(t) ∈ Rn.
Consider the following nonlinear continuous-time optimization problem:

J(x) =

∫ T

0
f (t, x(t)) dt → inf; (1)

s.t. x ∈ Ω , where Ω is the set of all x ∈ D for which the following vector inequality
g(t, x(t)) ≤ 0, a.e. in [0, T ], (2)

is satisfied.
We assume that functions t → f (t, x(t)) and t → gi(t, x(t)), i = 1, . . . ,m are Lebesgue measurable and integrable for

all x ∈ D. Also, we assume that the admissible set Ω is nonempty.
Note that g(t, x(t)) ≤ 0 means that gi(t, x(t)) ≤ 0, i = 1, . . . ,m and g(t, x(t)) < 0 means that gi(t, x(t)) < 0, i =

1, . . . ,m. Also, all vectors in our paper are column vectors and we use ′ to denote transposition.
The minimization in the initial problem is in the sense of an efficient point.
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Definition 1.1. The point x̂ is an efficient point of the problem (1)–(2) if there is no other x ∈ Ω such that

J(x) ≤ J(x̂)

holds.

Scalar and vector continuous-time optimization problems have been intensively investigated in the past few years.
For scalar optimization problems, we refer to [1,2] where all functions are locally Lipschitz and where the necessary and
sufficient optimality conditions are obtained. Also, some related results can be found in [3–6].

The initial problem was considered in [7] with the minimization in the sense of a proper efficient solution. Among other
interesting results, there are obtained Karush–Kuhn–Tucker optimality conditions with the assumption that the Slater
condition holds. In this paper we derive new Fritz John and Karush–Kuhn–Tucker optimality conditions with the main
characteristic that they depend on the set of constraints that are linear in x.

Now we will give definitions of an invex set and a preinvex function. For more information about generalized convexity,
we refer to [8].

Definition 1.2. A subset S of a Banach space E is invex with respect to η : S × S → E if for all x1, x2 ∈ S and for each
θ ∈ (0, 1),

x2 + θη(x1, x2) ∈ S.

Definition 1.3. If S is invex with respect to η : S × S → E, a given function p : S → Rk is called preinvex with respect to η
if for all x1, x2 ∈ S and for each θ ∈ (0, 1),

p(x2 + θη(x1, x2)) ≤ θp(x1) + (1 − θ)p(x2).

We will formulate the generalized Gordan’s theorem that we shall use in our proof.

Theorem 1.1. Let D ⊂ Ln
∞

[0, T ] and let g : [0, T ]× Rn
→ Rm, where g(t, x(t)) = ξ(x)(t), a.e. in [0, T ] and ξ : D → Lm1 [0, T ].

Let D be the invex set with respect to η : D×D → Ln
∞

[0, T ] and let g be preinvex in x on [0, T ] with respect to the same η. Then,
exactly one of the following systems is consistent:
I. there exists x ∈ D such that

g(t, x(t)) < 0 a.e. in [0, T ];

II. there exist u ∈ Lm
∞

[0, T ], u(t) ≥ 0, u(t) ≠ 0 a.e. in [0, T ] such that∫ T

0
u′(t)g(t, x(t)) dt ≥ 0, ∀x ∈ D. (3)

The proof of the preceding theorem is given in [7], which is essentially based on the general idea from [9].

2. Fritz John optimality conditions

Let A be the subset of indices from the set {1, . . . ,m} for which the functions gi are nonlinear in x and let A be the set
{1, . . . ,m}\A, i.e., the subset of indices forwhich the functions gi are linear in x. Similarly, by Bwedenote the set of indices for
which the coordinate cost functions fi are nonlinear in x and by Bwe denote the set {1, . . . , s}\B. Also, if all functions fi and gi
are nonlinear in xwe assume that A = {1, . . . ,m} and B = {1, . . . , s}. By fA we denote all components of f with indices from
the set A. According to the preceding notations we have that u(t) = (uA(t), uA(t)) and g(t, x(t)) = (gA(t, x(t)), gA(t, x(t))).

Theorem 2.1. Let the set D be invex with respect to η : D × D → Ln
∞
, let the functions f (t, x(t)) = ζ (x)(t) and g(t, x(t)) =

ξ(x)(t) be preinvex in x with respect to the same η. Let x̂ be an efficient point of the problem (1)–(2). Assume that the following
control qualifications are satisfied:
CQ1: there exists x1 ∈ intD such that

gA(t, x1(t)) ≤ 0, a.e. in [0, T ];

CQ2: there exists x2 ∈ D such that

gA(t, x2(t)) < 0, a.e. in [0, T ].

Then there exist the multipliers λ̂ ∈ Rs, û ∈ Lm
∞

[0, T ] such that the following conditions are satisfied:
0.

(λ̂, ûA(t)) ≠ 0, a.e. in [0, T ],

1.
λ̂ ≥ 0, û(t) ≥ 0 a.e. in [0, T ],
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2. ∫ T

0
û′(t)g(t, x̂(t)) dt = 0,

3. ∫ T

0
λ̂′f (t, x(t)) dt +

∫ T

0
û′(t)g(t, x(t)) dt ≥

∫ T

0
λ̂′f (t, x̂(t)) dt +

∫ T

0
û′(t)g(t, x̂(t)) dt, ∀x ∈ D.

Proof. Let i ∈ {1, . . . , s} be fixed. Put

Ji(x) =

∫ T

0
fi(t, x(t)) dt.

It is known (see [10]) that if x̂ is an efficient point of the problem (1)–(2), then we have that there is no x ∈ D such that the
following system is consistent

Ji(x) < Ji(x̂),
g(t, x(t)) < 0, a.e. in [0, T ],∫ T

0
fj(t, x(t)) dt <

∫ T

0
fj(t, x̂(t)) dt, j = 1, . . . , s, j ≠ i, a.e. in [0, T ].

From the generalized Gordan’s theorem we have that there exist the multipliers λ̂i
∈ R, β̂ i

∈ Rs−1 and ûi
∈ Lm

∞
[0, T ]

such that

λ̂i
≥ 0, β̂ i

≥ 0, ûi(t) ≥ 0, (λ̂i, β̂ i, ûi(t)) ≠ 0, a.e. in [0, T ],

such that∫ T

0
λ̂ifi(t, x(t)) dt +

s−
j=1
j≠i

∫ T

0
β̂ i
j fj(t, x(t)) dt +

∫ T

0
(ûi)′(t)g(t, x(t)) dt

≥

∫ T

0
λ̂ifi(t, x̂(t)) dt +

s−
j=1
j≠i

∫ T

0
β̂ i
j fj(t, x̂(t)) dt

holds for all x ∈ D.
Putting x = x̂we obtain∫ T

0
(ûi)′(t)g(t, x̂(t)) dt ≥ 0.

Since the point x̂ is admissible, we have that the opposite inequality is also satisfied.
From the fact that∫ T

0
(ûi)′(t)g(t, x̂(t)) dt = 0

we obtain that∫ T

0
λ̂ifi(t, x(t)) dt +

s−
j=1
j≠i

∫ T

0
β̂ i
j fi(t, x(t)) dt +

∫ T

0
(ûi)′(t)g(t, x(t)) dt

≥

∫ T

0
λ̂ifi(t, x̂(t)) dt +

s−
j=1
j≠i

∫ T

0
β̂ i
j fi(t, x̂(t)) dt +

∫ T

0
(ûi)′(t)g(t, x̂(t)) dt (4)

holds for all x ∈ D.
Put λ̂ = (λ̂1, . . . , λ̂s) and û(t) = (û1(t), . . . , ûm(t)), where

λ̂i = λ̂i
+

s−
j=1
j≠i

β̂
j
i , i = 1, . . . , s,
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and

ûl(t) =

s−
i=1

ûi
l(t), l = 1, . . . ,m.

Summing inequalities (4), for i = 1, . . . , s, we obtain that for such λ̂ and û(t) the conditions 1–3 are satisfied. �

Now, we shall prove that the condition 0 holds. We will suppose that is not true. Let

(λ̂, ûA(t)) = 0, a.e. in [0, T ].

From the condition 3 we obtain∫ T

0

−
i∈A

ûi(t)gi(t, x(t)) dt ≥ 0, ∀x ∈ D.

For the point x = x1, from CQ1, we have that∫ T

0

−
i∈A

ûi(t)gi(t, x1(t)) dt ≤ 0

holds. It follows that∫ T

0

−
i∈A

ûi(t)gi(t, x1(t)) dt = 0.

Since the function

G(x) =

∫ T

0

−
i∈A

ûi(t)ξi(x)(t) dt

is linear in x, nonnegative on the set D, and since x1 belongs to the interior of the set D, we can conclude that the function
G(x) vanish on the whole set D. Specifically, for x = x2, we have that∫ T

0

−
i∈A

ûi(t)gi(t, x2(t)) dt = 0

holds, which is the contradiction with CQ2. Indeed, from CQ2 and from the fact that ûA(t) ≠ 0, a.e. in [0, T ], we obtain∫ T

0

−
i∈A

ûi(t)gi(t, x2(t)) dt < 0.

As an illustration, we will consider the following simple example from [10]:∫ 1

0
|x1(t) − t| dt,

∫ 1

0
|x2(t) − t| dt


→ inf;

−x1(t) ≤ 0, a.e. in [0, 1],
−x2(t) ≤ 0, a.e. in [0, 1],
x1(t) + x2(t) − 2t ≤ 0, a.e. in [0, 1].

It is obvious that x̂(t) = (x̂1(t), x̂2(t)) = (t, t) is an efficient point of the preceding problem. Since D = L2
∞

[0, 1] we have
that the condition CQ1 is satisfied for any admissible point. Also, we can take that x1(t) =

t
2 , x2(t) =

t
2 andwe have that CQ2

holds. From Theorem 2.1 immediately follows that the multiplier that correspond to the cost functions must be nonzero.
We have that necessary optimality conditions are satisfied for

λ̂ = (1, 1), û1(t) = û2(t) = 0, û3(t) = 1.

Remark 2.1. If the set D is open, or if D = Ln
∞

[0, T ], then CQ2 implies CQ1 and Theorem 2.1 can be proved only with the
assumption that CQ2 holds.

Remark 2.2. It is obvious that the set A in CQ1 and CQ2 can be replaced with a set A1 ⊂ A and in that case the condition 0
becomes

(λ̂, ûA1(t)) ≠ 0, a.e. in [0, T ],

where A1 = {1, . . . ,m} \ A1.
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3. Karush–Kuhn–Tucker optimality conditions

With the additional assumption we can obtain Karush–Kuhn–Tucker optimality conditions for the initial problem.

Theorem 3.1. Let the set D be invex with respect to η : D × D → Ln
∞
, let the functions f (t, x(t)) = ζ (x)(t) and g(t, x(t)) =

ξ(x)(t) be preinvex in x with respect to the same η. Let x̂ be a global minimizer of the problem (1)–(2). Assume that the following
conditions hold:
CQ1: there exists x1 ∈ intD such that

gA(t, x1(t)) ≤ 0, a.e. in [0, T ];

CQ2: there exists x2 ∈ D such that

gA(t, x2(t)) < 0, a.e. in [0, T ];

CQ3: there exists an admissible point x3 ∈ D such that

gA(t, x3(t)) < 0, a.e. in [0, T ].

Then there exist the multipliers λ̂ ∈ Rs, û ∈ Lm
∞

[0, T ] such that the following conditions are satisfied:
0.

λ̂ ≠ 0,
1.

û(t) ≥ 0 a.e. in [0, T ],

2. ∫ T

0
û′(t)g(t, x̂(t)) dt = 0,

3. ∫ T

0
λ̂′f (t, x(t)) dt +

∫ T

0
û′(t)g(t, x(t)) dt ≥

∫ T

0
λ̂′f (t, x̂(t)) dt +

∫ T

0
û′(t)g(t, x̂(t)) dt, ∀x ∈ D.

Proof. As in the proof of Theorem 2.1., we have that the conditions 1–3 are satisfied. Also, we have that

(λ̂, ûA(t)) ≠ 0, a.e. in [0, T ]

holds. Let us assume that λ̂ = 0. In that case, the condition 3 becomes∫ T

0
û′(t)g(t, x(t)) dt ≥ 0, ∀x ∈ D.

According to the fact that CQ3 holds, we obtain that∫ T

0

m−
i∈A

ûi(t)gi(t, x3(t)) dt +

∫ T

0

m−
i∈A

ûi(t)gi(t, x3(t)) dt < 0

which is the contradiction. �

Remark 3.1. Theorem 3.1 can be provedwith the assumption that the classical Slater condition holds, i.e., without CQ1, CQ2
and CQ3. Note that by the fact that the Slater condition holds, we mean that there exists a point x ∈ D such that

g(t, x(t)) < 0, a.e. in [0, T ].

However, if the set D is open or if D = Ln
∞

[0, T ], then we have that Theorem 3.1 was proved with the weaker assumptions,
since the Slater condition implies CQ2 and CQ3.

Remark 3.2. With the assumptions of the preceding theorem the condition 3 can be formulated as the saddle point
optimality criteria.

Define the function

L : D × Rs
× Lm

∞
[0, T ] → R

by

L(x, λ, u) =

∫ T

0
λ′f (t, x(t)) dt +

∫ T

0
u′(t)g(t, x(t)) dt. (5)
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The condition 3 can be replaced with

L(x̂, λ, u) ≤ L(x̂, λ̂, û) ≤ L(x, λ̂, û), (6)

for all x ∈ D, u ∈ Lm
∞

[0, T ], u(t) ≥ 0 a.e. in [0, T ]. Indeed, we have that∫ T

0
λ′f (t, x̂(t)) dt +

∫ T

0
û′(t)g(t, x̂(t)) dt ≥

∫ T

0
λ′f (t, x̂(t)) dt +

∫ T

0
u′(t)g(t, x̂(t)) dt,

since λ ≥ 0, u(t) ≥ 0 a.e. in [0, T ] and g(t, x̂(t)) ≤ 0 hold.

Remark 3.3. The assertions of Theorem 3.1 are also sufficient for the optimality of the point x̂. Indeed, if we put u(t) ≡ 0 in
(6), we obtain∫ T

0
λ̂′f (t, x̂(t)) dt ≤

∫ T

0
λ̂′f (t, x(t)) dt +

∫ T

0
û′(t)g(t, x(t)) dt.

For the admissible point x holds∫ T

0
λ̂′f (t, x̂(t)) dt ≤

∫ T

0
λ̂′f (t, x(t)) dt.

According to the known fact (see [7]) that the solution of the so-called weighting scalar problem associated with the initial
problem is the efficient solution for the initial problem, we have that∫ T

0
f (t, x̂(t)) dt ≤

∫ T

0
f (t, x(t)) dt

holds.

Using the same approach, we can obtain Karush–Kuhn–Tucker optimality conditions where all multipliers that
correspond to the nonlinear coordinate cost functions are nonzero.Wewill introduce constraint qualifications and regularity
conditions in order to prove the assertions.

Theorem 3.2. Let the set D be invex with respect to η : D × D → Ln
∞
, let the functions f (t, x(t)) = ζ (x)(t) and g(t, x(t)) =

ξ(x)(t) be preinvex in x with respect to the same η. Let x̂ be a global minimizer of the problem (1)–(2). Assume that the following
conditions hold:

RCQ1: there exists x1 ∈ intD such that

gA(t, x1(t)) ≤ 0, a.e. in [0, T ],

fB(t, x1(t)) ≤ fB(t, x̂(t)), a.e. in [0, T ];

RCQ2: there exists x2 ∈ D such that

gA(t, x2(t)) < 0, a.e. in [0, T ],

fB(t, x2(t)) < fB(t, x̂(t)), a.e. in [0, T ];

RCQ3: there exists an admissible point x3 ∈ D such that

gA(t, x3(t)) < 0, a.e. in [0, T ],

fB(t, x3(t)) < fB(t, x̂(t)), a.e. in [0, T ].

Then there exist the multipliers λ̂ ∈ Rs, û ∈ Lm
∞

[0, T ] such that the following conditions are satisfied:

0.

λ̂B ≠ 0,

1.

û(t) ≥ 0 a.e. in [0, T ],

2. ∫ T

0
û′(t)g(t, x̂(t)) dt = 0,
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3. ∫ T

0
λ̂′f (t, x(t)) dt +

∫ T

0
û′(t)g(t, x(t)) dt ≥

∫ T

0
λ̂′f (t, x̂(t)) dt +

∫ T

0
û′(t)g(t, x̂(t)) dt, ∀x ∈ D.

Note that by λ̂B we denote the set of multipliers λ̂i from λ̂ that correspond to the nonlinear coordinate cost functions.

Proof. As in the proof of Theorem 2.1., we have that the conditions 1–3 are satisfied. Moreover, from RCQ1 and RCQ2 we
have that

(λ̂B, ûA(t)) ≠ 0, a.e. in [0, T ]

holds. If we assume that λ̂B = 0, then the condition 3 becomes∫ T

0
λ̂′

BfB(t, x(t)) dt +

∫ T

0
û′(t)g(t, x(t)) dt ≥

∫ T

0
λ̂′

BfB(t, x̂(t)) dt,

for all x ∈ D. According to the fact that RCQ3 holds, we obtain that∫ T

0
λ̂′

BfB(t, x3(t)) dt +

∫ T

0
û′(t)g(t, x3(t)) dt <

∫ T

0
λ̂′

BfB(t, x̂(t)) dt

which is the contradiction. �
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