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Abstract

In this paper, we study the existence of traveling wave solutions for a class of delayed non-local reaction–
diffusion equations without quasi-monotonicity. The approach is based on the construction of two associ-
ated auxiliary reaction–diffusion equations with quasi-monotonicity and a profile set in a suitable Banach
space by using the traveling wavefronts of the auxiliary equations. Under monostable assumption, by using
the Schauder’s fixed point theorem, we then show that there exists a constant c∗ > 0 such that for each
c > c∗, the equation under consideration admits a traveling wavefront solution with speed c, which is not
necessary to be monotonic.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction and main result

Traveling wave solutions of reaction–diffusion equations have been extensively investigated
due to their important role in describing the long term behavior of solutions to the associated
initial value problems (see [2,11]). Such solutions also have their own practical background, such
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as transition between different states of a physical system, propagation of patterns, and domain
invasion of species in population biology. For the reaction–diffusion equation of monostable type

wt(t, x) = Dwxx(t, x) + f
(
w(t, x)

)
, x ∈ R, t � 0, (1.1)

with f (w) satisfying f (0) = f (k) = 0 for some k > 0, and f (w) > 0 for all w ∈ (0, k), it
is well known from long time ago that in the case f (w) � f ′(0)w for all w ∈ (0, k), cmin =
2
√

Df ′(0) > 0 is the minimal wave speed in the sense that (i) for every c > cmin there exists
a traveling wavefront of the form w(x, t) = u(x + ct) with u(s) increasing and u(−∞) = 0,
u(∞) = k; (ii) the wavefront is unique up to translation; (iii) for c < cmin, there is no such
monotone wavefront with speed c. It is also well known that the existence of traveling waves of
Eq. (1.1) is independent of the monotonicity of the reaction function f .

Another area of intensive study in ecological modeling has been the incorporation of time
lags and the role of time-delays in the dynamics of the solutions of the resulting equations. Not
surprisingly, traveling wave solution of parabolic equations with delay have become the subject
of considerable interest in recent years. We refer to the book by Wu [14] for theoretical discussion
on delay equations with diffusion arising in biological and ecological problems.

Recently, traveling waves for non-local reaction–diffusion equations have also attracted much
attention and up to now many significant results have been published [3,4,6,8–10]. We also refer
the readers to [5] for a survey of the short history and the current status of the study of reaction–
diffusion equations with non-local delayed interactions.

Mathematically, both time delay and non-local term present significant additional technical
difficulties in the study of the existence of traveling wave solutions. In order to obtain some exis-
tence results, many researchers have proposed the so-called quasi-monotonicity assumptions on
the reaction functions [1,5,7–10,13]. These conditions are very restrictive and most of reaction–
diffusion equations with delay or non-local response do not satisfy such conditions. The existence
of traveling waves for delayed non-local diffusion equations with non-quasi-monotonic reaction
terms seem to be very interesting and challenging problem.

In this paper, we shall develop a new approach to obtain the existence of traveling wave
solutions for delayed non-local reaction–diffusion equations without quasi-monotonicity. Our
approach is based on the well-known Schauder’s fixed point theorem. To apply this fixed point
theorem, our main objective is to construct two associated auxiliary reaction–diffusion equa-
tions with quasi-monotonicity and a profile set in a suitable Banach space by using the traveling
wavefronts of the auxiliary equations.

In the present paper, we consider the non-local delayed reaction–diffusion equation

wt(t, x) = Dwxx(t, x) − g
(
w(t, x)

) + h
(
w(t, x)

)∫
R

f
(
w(t − r, y)

)
J (x − y)dy, (1.2)

where D > 0, r � 0 are constants, f , h and g are Lipschitz continuous functions on any compact
interval, f (0) = g(0) = 0 and g(K) = h(K)f (K) for some K > 0. We always assume that
J (y) = J (−y) � 0 for all y ∈ R and∫

R

J (y)dy = 1,

∫
R

e−λyJ (y) dy < +∞,

for any λ > 0.
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When J (x) = δ(x), where δ(·) is the Dirac delta function, then (1.2) reduces to the local
equation

wt(t, x) = Dwxx(t, x) − g
(
w(t, x)

) + h
(
w(t, x)

)
f

(
w(t − r, x)

)
. (1.3)

A prototype of such equations which has been widely investigated in the literature (see [8,9]
and references therein) reads as

wt(t, x) = Dwxx(t, x) − dw(t, x) + ε

∫
R

1√
4πα

e− (x−y)2

4α b
(
w(t − r, y)

)
dy, (1.4)

which was derived by So, Wu and Zou [9] as a model to describe the evolution of the adult
population of a single species population with two age classes and moving around in a unbounded
1-dimensional spatial domain. In this context, D > 0 and d > 0 denote the diffusion rate and
death rate of the adult population, respectively, r � 0 is the maturation time for the species, b(·)
is the birth function, and ε > 0 and α � 0 reflect the impact of the death rate and the dispersal rate
of the immature on the matured population, respectively. When α → 0, that is, as the immature
become immobile, (1.4) reduces to

wt(t, x) = Dwxx(t, x) − dw(t, x) + εb
(
w(t − r, y)

)
, (1.5)

and the non-local effect disappears. We refer to So, Wu and Zou [9] for more details.
As another special case of Eq. (1.2), the following reaction–diffusion equation

wt(t, x) = Dwxx(t, x) − βw2(t, x) + αe−γ r

∫
R

1√
4πdr

e− (x−y)2

4dr w(t − r, y) dy (1.6)

with β > 0, d � 0, α > 0 and r � 0, was also proposed by Gourley and Kuang [4] to describe
the evolution of the mature population of a single species population with age structure.

We assume that there exists K∗ � K such that g(K∗)/h(K∗) � max{f (u) | 0 � u � K∗} and
g(u)/h(u) < g(K∗)/h(K∗) for all u ∈ [0,K∗).

If f ′(0) > g′(0)/h(0) and f (u) > 0 for all u ∈ (0,K∗], then

K∗ := inf
{
u

∣∣∣ g(u)/h(u) = inf
s∈(0,K∗]

{
f (s)

∣∣ f (s) � g(s)/h(s)
}}

> 0

is well defined and f (u) > g(u)/h(u) for all u ∈ (0,K∗).
We also need the following assumptions:

(H1) f ′(0) > g′(0)/h(0) and there is a ν ∈ (0,1] such that

lim sup
u→0+

[
f ′(0) − f (u)/u

]
u−ν < +∞, lim sup

u→0+

[
g(u)/u − g′(0)

]
u−ν < +∞

and

lim sup
u→0+

[
h(0) − h(u)

]
u−(1+ν) < +∞;
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(H2) f ′(0)u � f (u) > 0, g(u) � g′(0)u, h(0) � h(u) > 0 and f ′(0)u > g(u)/h(u) for all
u ∈ (0,K∗];

(H3) g(u)/h(u) is strictly increasing on [K∗,K∗] and

g(u)/h(u) < f (u) < 2g(K)/h(K) − g(u)/h(u) for u ∈ [K∗,K),

g(u)/h(u) > f (u) > 2g(K)/h(K) − g(u)/h(u) for u ∈ (K,K∗].

In the above assumptions, by f ′(0) > g′(0)/h(0), we mean that f (u) and g(u) are differen-
tiable at u = 0 and f ′(0) > g′(0)/h(0), and the others can be understood similarly. It is easily
seen that if f,g,h are of class C2, f ′(0) > g′(0)/h(0) and h′(0) = 0, then (H1) holds sponta-
neously.

In the present paper, we are interested in finding traveling waves w(t, x) = U(x + ct) of
Eq. (1.2), with limξ→−∞ U(ξ) = 0 and limξ→+∞ U(ξ) = K . To this end, we need to find a
solution U(ξ), where ξ = x + ct , for the following associated wave equation

cU ′(ξ) − DU ′′(ξ) + g
(
U(ξ)

) − h
(
U(ξ)

)∫
R

f
(
U(ξ − y − cr)

)
J (y)dy = 0, (1.7)

subject to the boundary conditions

U(−∞) := lim
ξ→−∞U(ξ) = 0, U(+∞) := lim

ξ→+∞U(ξ) = K. (1.8)

If the function f (u) is nondecreasing on the interval [0,K], then the problem becomes easier
since the whole interaction term is quasi-monotone. One can apply the upper–lower solutions
and monotone iteration technique developed in Wu and Zou [12] to establish the existence of
monotone traveling wavefronts. This trick has been used in several papers (see [7,9,12,13]).
When K is such that f (u) is not increasing on [0,K], the monotone iteration method developed
in Wu and Zou [12] cannot be used as the involved iteration scheme is no longer monotone. Due
to lack of quasi-monotonicity, the problem becomes much harder and a little has been done for
the existence of traveling waves for reaction–diffusion equations without quasi-monotonicity. For
such delayed equations without quasi-monotonicity, some existence results for traveling waves
have been obtained in Huang and Zou [6] and Wu and Zou [12,13] by using the idea of the so-
called exponential ordering for delayed differential equations. But these results are valid only for
small values of the delay r , and their application to particular model equations is not trivial as it
requires construction of very demanding upper–lower solutions.

In this paper, we do not assume that the function f (u) is nondecreasing on the interval [0,K].
Thus, we cannot apply the upper–lower solutions and monotone iteration technique developed
in Wu and Zou [12] to establish the existence of monotone traveling wavefronts. Fortunately,
we can use an argument as used in Ma [7] and the Schauder’s fixed point theorem to prove the
existence of traveling waves that is not necessary to be monotonic.

Now we formulate our main result as follows:

Theorem 1.1. Assume that (H1) and (H2) hold. Then there exists c∗ > 0 such that for every
c > c∗, Eq. (1.2) admits a traveling wave solution w(t, x) = U(x + ct) satisfying U(−∞) = 0
and K∗ � lim supξ→+∞ U(ξ) � lim infξ→+∞ U(ξ) � K∗ > 0. If, in addition, (H3) also holds,
then U(+∞) = K .
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Remark 1.1. The result obtained in Theorem 1.1 is still valid for the local equation (1.3). In our
main Theorem 1.1, instead of (H3), we may assume that the following weaker condition holds:
g(u)/h(u) is strictly increasing in [K∗,K∗], g(u)/h(u) < f (u) � 2g(K)/h(K) − g(u)/h(u)

for u ∈ [K∗,K), g(u)/h(u) > f (u) � 2g(K)/h(K) − g(u)/h(u) for u ∈ (K,K∗], and there is
no pair α,β ∈ [K∗,K∗] with α < K < β , such that g(α)/h(α) � f (β) and g(β)/h(β) � f (α).
In particular, if g(K)/h(K) � f (u) > g(u)/h(u) for all u ∈ (0,K), then K∗ = K = K∗, and
hence these conditions hold spontaneously.

Remark 1.2. In [9], the authors have taken a particular birth function b(u) = pue−au,
where p > 0 and a > 0 are parameters, and it has been shown that if 1 <

εp
d

� e, then there
exists c∗ > 0 such that for every c > c∗, Eq. (1.4) has a nondecreasing wave solution which
connects the trivial equilibrium w1 = 0 and w2 = 1

a
ln εp

d
. Recently, it has been shown in [3] that

if e <
εp
d

� e2, then there exist r∗ > 0 and a sufficiently large c∗ > 0 such that for every c > c∗,
Eq. (1.4) with r < r∗ admits a traveling wave solution connecting w1 and w2. As a direct conse-
quence of Theorem 1.1, we can easily show that if 1 <

εp
d

� e2, then for every c > c∗, Eq. (1.4)
admits a traveling wave solution connecting w1 and w2 for all values of the delay r � 0.

Remark 1.3. In contrast to the results in Huang and Zou [6] and Wu and Zou [12,13], our main
Theorem 1.1 is valid for all values of the delay r � 0.

Remark 1.4. The technique used in the present paper can been used to obtain analogous results
for lattice differential equations

u′
n(t) = D

∑
i∈Z\{0}

J (i)
[
un−i (t) − un(t)

] − dun(t) +
∑
i∈

Q(i)b
(
un−i (t − r)

)
, (1.9)

where un(t) ∈ R, n ∈ Z, t > 0, D,d > 0, r � 0, b(·) is a Lipschitz continuous function on any
compact interval and b(0) = dK − b(K) = 0 for some K > 0. Moreover, the kernel functions J

and Q are non-negative and satisfy

∑
i∈Z\{0}

J (i) = 1,
∑

i∈Z\{0}
J (i)e−λi < +∞,

∑
i∈Z

Q(i) = 1,
∑
i∈Z

Q(i)e−λi < +∞,

for any λ > 0. Under the assumptions

(H4) b′(0) > d and lim supu→0+[b′(0) − b(u)/u]u−ν < +∞ for some ν ∈ (0,1];
(H5) min{b′(0)u, dK∗} � b(u) > 0 for some K∗ � K and for all u ∈ (0,K∗];
(H6) du < b(u) < d(2K − u) for u ∈ [K∗,K), and du > b(u) > d(2K − u) for u ∈ (K,K∗],

where K∗ := 1
d

infu∈(0,K∗]{b(u) | b(u) � du}

the following result can been established.

Theorem 1.2. Assume that (H4) and (H5) hold. Then there exists c∗ > 0 such that for
every c > c∗, Eq. (1.9) admits a traveling wave solution un(t) = U(n+ct) satisfying U(−∞) = 0
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and K∗ � lim supξ→+∞ U(ξ) � lim infξ→+∞ U(ξ) � K∗ > 0. If, in addition, (H6) also hold,
then U(+∞) = K .

The rest of this paper is organized as follows. In Section 2, by using the super- and subsolution
technique and the Schauder’s fixed point theorem, we study the existence and the behavior of
traveling wavefronts of (1.2) when the function f is nondecreasing in [0,K]. In Section 3, we
firstly construct two auxiliary reaction–diffusion equations with quasi-monotonicity and then
prove our main result by using the results obtained in Section 2 and the Schauder’s fixed point
theorem.

2. Preliminary lemmas

Our approach for the existence of traveling wavefronts of Eq. (1.2) is based on the Schauder’s
fixed point theorem. To this end, we need to construct a closed subset in a suitable Banach
space. In the present paper, this closed subset is constructed by using the nondecreasing traveling
wavefronts of two auxiliary reaction–diffusion equations with quasi-monotonicity. Therefore, we
must study the existence and the behavior of traveling wavefronts for delayed reaction–diffusion
equations with quasi-monotonicity.

In this section, we always assume that (H1), (H2) hold, K∗ = K and f (u) is nondecreasing
on [0,K].

At first, we establish the existence of traveling waves of (1.2) under these conditions by using
the sub–super-solution technique and the Schauder’s fixed point theorem.

We set

Δ(c,λ) := cλ − Dλ2 + g′(0) − h(0)f ′(0)

∫
R

e−λ(y+cr)J (y) dy. (2.1)

If f ′(0) > g′(0)/h(0), we have Δ(c,0) = g′(0) − h(0)f ′(0) < 0 for all c � 0 and
limλ→+∞ Δ(c,λ) = −∞. For fixed c � 0 and any λ1, λ2 � 0 with λ1 �= λ2, we have

1

2

[
Δ(c,λ1) + Δ(c,λ2)

]

= c
λ1 + λ2

2
− D

λ2
1 + λ2

2

2
+ g′(0) − h(0)f ′(0)

∫
R

e−λ1(y+cr) + e−λ2(y+cr)

2
J (y)dy

< c
λ1 + λ2

2
− D

(
λ1 + λ2

2

)2

+ g′(0) − h(0)f ′(0)

∫
R

e−(λ1+λ2)(y+cr)/2J (y)dy

= Δ

(
c,

λ1 + λ2

2

)
.

Differentiating Δ(c,λ) with respect to c, we get

∂

∂c
Δ(c,λ) = λ + λrh(0)f ′(0)

∫
e−λ(y+cr)J (y) dy > 0 for all λ > 0.
R
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Furthermore, for each fixed λ > 0, we have limc→+∞ Δ(c,λ) = +∞ and

Δ(0, λ) = −Dλ2 + g′(0) − h(0)f ′(0)

∫
R

e−λyJ (y) dy < 0.

Therefore, we have the following observations:

Lemma 2.1. Assume that f ′(0) > g′(0)/h(0). Then there exists a unique c∗ > 0 such that

(i) if c � c∗, then there exist two positive numbers Λ1(c) and Λ2(c) with Λ1(c) � Λ2(c) such
that

Δ
(
c,Λ1(c)

) = Δ
(
c,Λ2(c)

) = 0;

(ii) if c < c∗, then Δ(c,λ) < 0 for all λ � 0;
(iii) if c = c∗, then Λ1(c) = Λ2(c) := Λ∗, and if c > c∗, then Λ1(c) < Λ∗ < Λ2(c) and

Δ(c, ·) > 0 in
(
Λ1(c),Λ2(c)

)
, Δ(c, ·) < 0 in R \ [

Λ1(c),Λ2(c)
]
.

Definition 2.1. A continuous function φ : R → [0,K] is called a supersolution of (1.7) if there
exists a finite subset S ⊂ R such that φ is twice continuously differentiable in R \ S and

Nc[φ](ξ) := cφ′(ξ) − φ′′(ξ) + g
(
φ(ξ)

)
− h

(
φ(ξ)

) ∫
R

f
(
φ(ξ − y − cr)

)
J (y)dy � 0, on R \ S. (2.2)

A subsolution of (1.7) is defined in a similar way by reversing the inequality in (2.2).

Lemma 2.2. Assume that (H1), (H2) hold, K∗ = K and f (u) is nondecreasing on [0,K]. Let
c > c∗ and Λ1(c),Λ2(c) be defined as in Lemma 2.1. Then for every γ ∈ (1,min{1 + ν,

Λ2(c)
Λ1(c)

}),
there exists Q(c,γ ) � 1, such that for any q � Q(c,γ ) and any ξ± ∈ R, the functions φ± defined
by

φ+(ξ) := min
{
K,eΛ1(c)(ξ+ξ+) + qeγΛ1(c)(ξ+ξ+)

}
, ξ ∈ R, (2.3)

and

φ−(ξ) := max
{
0, eΛ1(c)(ξ+ξ−) − qeγΛ1(c)(ξ+ξ−)

}
, ξ ∈ R, (2.4)

are a supersolution and a subsolution to (1.7), respectively.

Proof. It is easily seen that there exists ξ∗ � −ξ+− 1
βΛ1(c)

ln q
K

, such that φ+(ξ) = K for ξ > ξ∗

and φ+(ξ) = eΛ1(c)(ξ+ξ+) + qeγΛ1(c)(ξ+ξ+) for ξ � ξ∗.
For ξ > ξ∗, we have
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Nc

[
φ+]

(ξ) = g(K) − h(K)

∫
R

f
(
φ+(ξ − y − cr)

)
J (y)dy

� g(K) − h(K)f (K) = 0.

Notice that f (u) � f ′(0)u, g(u) � g′(0)u and h(u) � h(0) for all u ∈ (0,K). For ξ < ξ∗, we
have

Nc

[
φ+]

(ξ) = eΛ1(c)(ξ+ξ+)
[
cΛ1(c) − DΛ2

1(c)
] + qeγΛ1(c)(ξ+ξ+)

[
cγΛ1(c) − Dγ 2Λ2

1(c)
]

+ g
(
φ+(ξ)

) − h
(
φ+(ξ)

) ∫
R

f
(
φ+(ξ − y − cr)

)
J (y)dy

� qeγΛ1(c)(ξ+ξ+)Δ
(
c, γΛ1(c)

) − g′(0)φ+(ξ)

+ h(0)f ′(0)

∫
R

φ+(ξ − y − cr)J (y) dy

+ g
(
φ+(ξ)

) − h
(
φ+(ξ)

) ∫
R

f
(
φ+(ξ − y − cr)

)
J (y)dy

> 0.

Therefore, φ+ is a supersolution of (1.7).
Let ξ∗ = −ξ− − 1

(γ−1)Λ1(c)
lnq . If q � 1, then ξ∗ � −ξ−. Clearly, φ−(ξ) = 0 for ξ > ξ∗ and

φ−(ξ) = eΛ1(c)(ξ+ξ−) − qeγΛ1(c)(ξ+ξ−) for ξ � ξ∗.
For ξ > ξ∗, we have

Nc

[
φ−]

(ξ) = g(0) − h(0)

∫
R

f
(
φ−(ξ − y − cr)

)
J (y)dy � 0.

For ξ < ξ∗, we have ξ + ξ− < − 1
(γ−1)Λ1(c)

lnq . By (H1), we can choose a positive number

M > 0 so that f ′(0)u − f (u) � Mu1+ν , g(u) − g′(0)u � Mu1+ν and h(0) − h(u) � Mu1+ν for
all u ∈ (0,K). Therefore, for ξ < ξ∗, we have

Nc

[
φ−]

(ξ) = eΛ1(c)(ξ+ξ−)
[
cΛ1(c) − DΛ2

1(c)
] − qeγΛ1(c)(ξ+ξ−)

[
cγΛ1(c) − Dγ 2Λ2

1(c)
]

+ g
(
φ−(ξ)

) − h
(
φ−(ξ)

)∫
R

f
(
φ−(ξ − y − cr)

)
J (y)dy

� −qeγΛ1(c)(ξ+ξ−)Δ
(
c, γΛ1(c)

) − g′(0)φ−(ξ) + g
(
φ−(ξ)

)
+ h(0)f ′(0)

∫
R

φ−(ξ − y − cr)J (y) dy

− h
(
φ−(ξ)

)∫
f

(
φ−(ξ − y − cr)

)
J (y)dy
R
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� −qeγΛ1(c)(ξ+ξ−)Δ
(
c, γΛ1(c)

) + M
(
1 + f (K)

)[
φ−(ξ)

]1+ν

+ Mh(0)

∫
R

[
φ−(ξ − y − cr)

]1+ν
J (y) dy

� eγΛ1(c)(ξ+ξ−)

{
−qΔ

(
c, γΛ1(c)

)

+ M

(
1 + f (K) + h(0)

∫
R

e−(1+ν)Λ1(c)(y+cr)J (y) dy

)
e(1+ν−γ )Λ1(c)(ξ+ξ−)

}

� eγΛ1(c)(ξ+ξ−)

{
−qΔ

(
c, γΛ1(c)

)

+ M

(
1 + f (K) + h(0)

∫
R

e−(1+ν)Λ1(c)(y+cr)J (y) dy

)}

� 0,

provided that

q � Q(c,γ ) := max

{
1,

M

Δ(c, γΛ1(c))

(
1 + f (K) + h(0)

∫
R

e−(1+ν)Λ1(c)(y+cr)J (y) dy

)}
.

Therefore, φ− is a subsolution of (1.7). The proof is complete. �
When f is nondecreasing, the following result establish the existence and the behavior of

nondecreasing traveling wavefronts of Eq. (1.2).

Lemma 2.3. Assume that (H1), (H2) hold, K∗ = K , f (u) is nondecreasing on [0,K] and f (u) >

g(u)/h(u) for all u ∈ (0,K). Let c∗ > 0 be as in Lemma 2.1. Then for each c > c∗, Eq. (1.2)
admits a nondecreasing traveling wave solution w(t, x) = U(x + ct) satisfying U(+∞) = K

and

lim
ξ→−∞U(ξ)e−Λ1(c)ξ = 1, (2.5)

where λ = Λ1(c) > 0 is the smallest solution to the equation

Δ(c,λ) = cλ − Dλ2 + g′(0) − h(0)f ′(0)

∫
R

e−λ(y+cr)J (y) dy = 0.

Proof. For c > c∗, by virtue of Lemma 2.2, φ+ and φ− with ξ± = 0 are a supersolution and a
subsolution to (1.7), respectively. Let � := Lg + Lhf (K), here and in what follows, Lg and Lh

are the Lipschitz constants of g and h on [0,K], respectively. Let

H [φ](ξ) = �φ(ξ) − g
(
φ(ξ)

) + h
(
φ(ξ)

) ∫
f

(
φ(ξ − y − cr)

)
J (y)dy, ξ ∈ R.
R
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Then for any φ,ψ ∈ C(R, [0,K]) with φ(ξ) � ψ(ξ), ξ ∈ R, we have

H [φ](ξ) − H [ψ](ξ)

= �
[
φ(ξ) − ψ(ξ)

] − [
g
(
φ(ξ)

) − g
(
ψ(ξ)

)]
+ h

(
φ(ξ)

)∫
R

f
(
φ(ξ − y − cr)

)
J (y)dy − h

(
ψ(ξ)

)∫
R

f
(
ψ(ξ − y − cr)

)
J (y)dy

� �
[
φ(ξ) − ψ(ξ)

] − [
g
(
φ(ξ)

) − g
(
ψ(ξ)

)]
+ [

h
(
φ(ξ)

) − h
(
ψ(ξ)

)] ∫
R

f
(
ψ(ξ − y − cr)

)
J (y)dy

�
[
� − Lg − Lhf (K)

](
φ(ξ) − ψ(ξ)

) = 0,

and hence

H [φ](ξ) � H [ψ](ξ), ξ ∈ R.

Let

λ1 := c − √
c2 + 4D�

2D
, λ2 := c + √

c2 + 4D�

2D
.

Then each solution U of (1.7) satisfies

U(ξ) = 1

D(λ2 − λ1)

[ ξ∫
−∞

eλ1(ξ−s)H [U ](s) ds +
+∞∫
ξ

eλ2(ξ−s)H [U ](s) ds

]
, ξ ∈ R.

For any λ ∈ (0,min{Λ1(c), λ2}), let

Xλ =
{
φ ∈ C(R,R)

∣∣∣ sup
ξ∈R

∣∣φ(ξ)
∣∣e−λξ < +∞

}
, ‖φ‖λ = sup

ξ∈R

∣∣φ(ξ)
∣∣e−λξ .

Then (Xλ,‖ · ‖λ) is a Banach space. Since φ−(ξ) � φ+(ξ) for all ξ ∈ R and φ+(ξ) is nonde-
creasing on R, it is easily known that the set

Γ :=
{

φ ∈ C
(
R, [0,K])

∣∣∣∣∣
(i) φ(ξ) is nondecreasing on R;

(ii) φ−(ξ) � φ(ξ) � φ+(ξ) for all ξ ∈ R;
(iii) |φ(ξ1) − φ(ξ2)| � 2K

√
�
D

|ξ1 − ξ2| for all ξ1, ξ2 ∈ R

}

is nonempty, convex and compact in Xλ.
Define F :Γ → Γ by

F [φ](ξ) = 1

D(λ2 − λ1)

[ ξ∫
−∞

eλ1(ξ−s)H [φ](s) ds +
+∞∫

eλ2(ξ−s)H [φ](s) ds

]
.

ξ
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By using an argument as used in [7], it is easily seen that F is well defined and a fixed point of
F is a solution of (1.7) and (1.8).

For any φ,ψ ∈ Γ , we have

∣∣H [φ](ξ) − H [ψ](ξ)
∣∣e−λξ

� �
∣∣φ(ξ) − ψ(ξ)

∣∣e−λξ + ∣∣g(
φ(ξ)

) − g
(
ψ(ξ)

)∣∣e−λξ

+ ∣∣h(
φ(ξ)

) − h
(
ψ(ξ)

)∣∣e−λξ

∫
R

f
(
ψ(ξ − y − cr)

)
J (y)dy

+ h
(
ψ(ξ)

)∫
R

∣∣f (
φ(ξ − y − cr)

) − f
(
ψ(ξ − y − cr)

)∣∣e−λξ J (y) dy

� L‖φ − ψ‖λ,

where L := � + Lg + f (K)Lh + h(0)Lf

∫
R

e−λ(y+cr)J (y) dy, where Lf is the Lipschitz con-
stant of f on [0,K]. Therefore, we have

D(λ2 − λ1)
∣∣F [φ](ξ) − F [ψ](ξ)

∣∣e−λξ

� e−λξ

{ ξ∫
−∞

eλ1(ξ−s)
∣∣H [φ](s) − H [ψ](s)∣∣ds +

+∞∫
ξ

eλ2(ξ−s)
∣∣H [φ](s) − H [ψ](s)∣∣ds

}

�
{ ξ∫

−∞
e(λ1−λ)(ξ−s) ds +

+∞∫
ξ

e(λ2−λ)(ξ−s)

}
sup
ξ∈R

∣∣H [φ](ξ) − H [ψ](ξ)
∣∣e−λξ

� λ1 − λ2

(λ1 − λ)(λ2 − λ)
L‖φ − ψ‖λ,

which yields

∥∥F [φ] − F [ψ]∥∥
λ

� L

D(λ − λ1)(λ2 − λ)
‖φ − ψ‖λ. (2.6)

That is, F :Γ → Γ is continuous. By virtue of the Schauder’s fixed point theorem, it follows that
F has a fixed point U in Xλ. Moreover, U satisfies U(+∞) = K and

eΛ1(c)ξ − qeγΛ1(c)ξ � U(ξ) � eΛ1(c)ξ + qeγΛ1(c)ξ , ξ ∈ R,

which implies that

lim
ξ→−∞

∣∣U(ξ)e−Λ1(c)ξ − 1
∣∣ � lim

ξ→−∞qe(γ−1)Λ1(c)ξ = 0.

This completes the proof. �
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3. Proof of the main theorem

In this section, we shall apply the results obtained in the previous section to prove our main
Theorem 1.1. To this end, we firstly need to construct two auxiliary reaction–diffusion equations
with quasi-monotonicity.

In what follows, we always assume that (H1) and (H2) hold. Since f ′(0) > g′(0)/h(0) and
f (u) > 0 for u ∈ (0,K∗], it follows from the definition of K∗ that g(K∗)/h(K∗) > 0. Therefore,
there is a small ε0 ∈ (0,K∗) such that g(K∗ − ε)/h(K∗ − ε) > 0 for every ε ∈ [0, ε0]. For any
ε ∈ (0, ε0), define two continuous functions as follows:

f ∗(u) =
{

min{f ′(0)u, g(K∗)/h(K∗)}, for u ∈ [0,K∗],
max{g(K∗)/h(K∗), f (u)}, for u > K∗,

(3.1)

and

fε(u) =
{

infη∈[u,K∗]{f (η), g(K∗ − ε)/h(K∗ − ε)}, for u ∈ [0,K∗],
min{f (u), g(K∗ − ε)/h(K∗ − ε)}, for u > K∗.

(3.2)

Then we have the following observations:

Lemma 3.1. The following statements hold true:

(i) f ∗ and fε are continuous on [0,+∞) and nondecreasing on [0,K∗];
(ii) f ∗(u) � f (u) � fε(u) for all u � 0;

(iii) f ′(0)u � f ∗(u) > 0 and f ′(0)u � fε(u) > 0 for all u ∈ (0,K∗];
(iv) f ∗(0) = g(K∗)/h(K∗) − f ∗(K∗) = 0 and f ∗(u) > g(u)/h(u) for all u ∈ (0,K∗);
(v) fε(0) = g(K∗ − ε)/h(K∗ − ε) − fε(K∗ − ε) = 0 and fε(u) > g(u)/h(u) for

all u ∈ (0,K∗ − ε);
(vi) f ′

ε(0) = f ′(0) and lim supu→0+[f ′
ε(0) − fε(u)/u]u−ν < +∞.

Proof. We only prove (vi). The others are obvious and their proofs are omitted.
Since K∗ − ε > 0, it follows from the definition of fε(·) that fε(u) = infη∈[u,δ0] f (η) for some

small δ0 > 0 and all u ∈ [0, δ0].
Since f (u) � f ′(0)u for all u ∈ [0,K∗] and lim supu→0+[f ′

ε(0)− fε(u)/u]u−ν < +∞, there
exists M > 0 such that

0 � f ′(0) − f (u)/u � Muν for u ∈ (0, δ0],

and hence

f ′(0)u − Mu1+ν � f (u) � f ′(0)u for u ∈ [0, δ0].

We can choose δ0 > 0 small enough so that f ′(0)u−Mu1+ν is increasing on [0, δ0], so it follows
that

f ′(0)u − Mu1+ν � fε(u) � f ′(0)u for u ∈ [0, δ0],
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from which we conclude that f ′
ε(0) = f ′(0) and lim supu→0+[f ′

ε(0)−fε(u)/u]u−ν < +∞. This
completes the proof. �

Consider the following two auxiliary delayed diffusion equations

wt(t, x) = Dwxx(t, x) − g
(
w(t, x)

) + h
(
w(t, x)

)∫
R

f ∗(w(t − r, y)
)
J (x − y)dy (3.3)

and

wt(t, x) = Dwxx(t, x) − g
(
w(t, x)

) + h
(
w(t, x)

)∫
R

fε

(
w(t − r, y)

)
J (x − y)dy. (3.4)

Clearly, the wave equations corresponding to (3.3) and (3.4) read as

cU ′(ξ) − DU ′′(ξ) + g
(
U(ξ)

) − h
(
U(ξ)

)∫
R

f ∗(U(ξ − i − cr)
)
J (y)dy = 0 (3.5)

and

cU ′(ξ) − DU ′′(ξ) + g
(
U(ξ)

) − h
(
U(ξ)

) ∫
R

fε

(
U(ξ − i − cr)

)
J (y)dy = 0, (3.6)

respectively.
The following lemma is a direct consequence of Lemmas 2.3 and 3.1.

Lemma 3.2. Assume that (H1) and (H2) hold. Let c∗ > 0 be as in Lemma 2.1. Then for
each c > c∗, Eqs. (3.3) and (3.4) have nondecreasing traveling wave solutions U∗(x + ct) and
Uε(x + ct), respectively, satisfying U∗(+∞) = K∗, Uε(+∞) = K∗ − ε and

lim
ξ→−∞U∗(ξ)e−Λ1(c)ξ = lim

ξ→−∞Uε(ξ)e−Λ1(c)ξ = 1, (3.7)

where λ = Λ1(c) > 0 is the smallest solution to the equation

Δ(c,λ) = cλ − Dλ2 + g′(0) − h(0)f ′(0)

∫
R

e−λ(y+cr)J (y) dy = 0.

We are now in a position to give a proof of our main result.

Proof of Theorem 1.1. For c > c∗, let U∗(x +ct) and Uε(x +ct) be the nondecreasing traveling
wavefronts of (3.3) and (3.4), respectively, which are given in Lemma 3.2. Let a1 > 0 be such
that eΛ1(c)a1 � 3. Then

lim U∗(ξ + a1)e
−Λ1(c)ξ = eΛ1(c)a1 � 3. (3.8)
ξ→−∞



272 S. Ma / J. Differential Equations 237 (2007) 259–277
Therefore, there exists M1 > 0 such that

U∗(ξ + a1)e
−Λ1(c)ξ > 2 > Uε(ξ)e−Λ1(c)ξ for all ξ � −M1. (3.9)

Since U∗(+∞) = K∗ > K∗ − ε = Uε(+∞), we can choose a2 > 0 sufficiently large, so that

U∗(ξ + a2) > Uε(ξ) for all ξ � −M1. (3.10)

Let a0 = max{a1, a2}. Since U∗(·) is nondecreasing, it follows from (3.9) and (3.10) that

U∗(ξ + a0) > Uε(ξ) for all ξ ∈ R. (3.11)

Let � ∗ := L∗
g + L∗

hg(K∗)/h(K∗), here and in what follows, L∗
g and L∗

h are the Lipschitz
constants of g and h on [0,K∗], respectively. Define

H ∗[φ](ξ) = � ∗φ(ξ) − g
(
φ(ξ)

) + h
(
φ(ξ)

)∫
R

f ∗(φ(ξ − y − cr)
)
J (y)dy, ξ ∈ R,

and

Hε[φ](ξ) = � ∗φ(ξ) − g
(
φ(ξ)

) + h
(
φ(ξ)

)∫
R

fε

(
φ(ξ − y − cr)

)
J (y)dy, ξ ∈ R,

then for any φ,ψ ∈ C(R, [0,K∗]) with φ(ξ) � ψ(ξ), ξ ∈ R, we have

H ∗[φ](ξ) � H ∗[ψ](ξ) and Hε[φ](ξ) � Hε[ψ](ξ) for all ξ ∈ R. (3.12)

Set

Γ ∗ :=
{
φ ∈ C

(
R, [0,K∗]) ∣∣∣∣ (i) Uε(ξ) � φ(ξ) � U∗(ξ + a0) for all ξ ∈ R;

(ii) |φ(ξ1) − φ(ξ2)| � 2K∗
√

� ∗
D

|ξ1 − ξ2| for all ξ1, ξ2 ∈ R

}
.

Then, we can show that Γ ∗ is nonempty, convex and compact in Xλ, where for any
λ ∈ (0,min{Λ1(c), λ

∗
2}), Xλ is the Banach space as given in the proof of Lemma 2.3.

Define F ∗ : Γ ∗ → C(R, [0,K∗]) by

F ∗(φ)(ξ) = 1

D(λ∗
2 − λ∗

1)

[ ξ∫
−∞

eλ∗
1(ξ−s)H(φ)(s) ds +

+∞∫
ξ

eλ∗
2(ξ−s)H(φ)(s) ds

]
,

where H(φ)(ξ) = � ∗φ(ξ) − g(φ(ξ)) + h(φ(ξ))
∫

R
f (φ(ξ − y − cr))J (y) dy, ξ ∈ R, and

λ∗
1 := c − √

c2 + 4D� ∗
2D

, λ∗
2 := c + √

c2 + 4D� ∗
2D

.

Clearly, for any φ ∈ Γ ∗ ⊂ C(R, [0,K∗]), it follows from (3.12) that
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0 � Hε[φ](ξ) � H(φ)(ξ) � H ∗[φ](ξ) � � ∗K∗ − g(K∗) + h(K∗)f ∗(K∗)

� � ∗K∗, (3.13)

for all ξ ∈ R. So it follows that

0 � F ∗(φ)(ξ) � � ∗K∗

D(λ∗
2 − λ∗

1)

[ ξ∫
−∞

eλ∗
1(ξ−s) ds +

+∞∫
ξ

eλ∗
2(ξ−s) ds

]
= K∗,

and hence, F ∗ : Γ ∗ → C(R, [0,K∗]) is well defined. Furthermore, it is easily seen that a fixed
point of F ∗ is a solution of (1.7).

For any φ,ψ ∈ Γ ∗, an argument similar to (2.6) shows that

∥∥F ∗(φ) − F ∗(ψ)
∥∥

λ
� L∗

D(λ − λ∗
1)(λ

∗
2 − λ)

‖φ − ψ‖λ,

where L∗ := � ∗ + L∗
g + f (K∗)L∗

h + h(0)L∗
f

∫
R

e−λ(y+cr)J (y) dy, where L∗
f is the Lipschitz

constant of f on [0,K∗]. Therefore, F ∗ :Γ ∗ → C(R, [0,K∗]) is continuous.
Next, we shall show that F ∗(Γ ∗) ⊆ Γ ∗. Since Uε(ξ) is a solution of (3.6), we have

Uε(ξ) = 1

D(λ∗
2 − λ∗

1)

[ ξ∫
−∞

eλ∗
1(ξ−s)Hε[Uε](s) ds +

+∞∫
ξ

eλ∗
2(ξ−s)Hε[Uε](s) ds

]
. (3.14)

For any φ ∈ Γ ∗, we have 0 � Uε(ξ) � φ(ξ) � U∗(ξ + a0) � K∗ for all ξ ∈ R. Therefore, it
follows from (3.12)–(3.14) that

F ∗(φ)(ξ) = 1

D(λ∗
2 − λ∗

1)

[ ξ∫
−∞

eλ∗
1(ξ−s)H(φ)(s) ds +

+∞∫
ξ

eλ∗
2(ξ−s)H(φ)(s) ds

]

� 1

D(λ∗
2 − λ∗

1)

[ ξ∫
−∞

eλ∗
1(ξ−s)Hε[φ](s) ds +

+∞∫
ξ

eλ∗
2(ξ−s)Hε[φ](s) ds

]

� 1

D(λ∗
2 − λ∗

1)

[ ξ∫
−∞

eλ∗
1(ξ−s)Hε[Uε](s) ds +

+∞∫
ξ

eλ∗
2(ξ−s)Hε[Uε](s) ds

]

= Uε(ξ).

Since U∗(ξ + a0) is a solution of (3.5), by using a similar argument, we can show that
F ∗(φ)(ξ) � U∗(ξ + a0) for all ξ ∈ R.

For any φ ∈ Γ ∗ and ξ1, ξ2 ∈ R with ξ1 < ξ2, it follows from (3.13) that
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D
(
λ∗

2 − λ∗
1

)∣∣F ∗(φ)(ξ1) − F ∗(φ)(ξ2)
∣∣

=
∣∣∣∣∣

ξ1∫
−∞

eλ∗
1(ξ1−s)H(φ)(s) ds −

+∞∫
ξ2

eλ∗
2(ξ2−s)H(φ)(s) ds

∣∣∣∣∣

�
(
eλ∗

1ξ2 − eλ∗
1ξ1

) ξ1∫
−∞

e−λ∗
1sH(φ)(s) ds +

ξ2∫
ξ1

eλ∗
1(ξ2−s)H(φ)(s) ds

+
ξ2∫

ξ1

eλ∗
2(ξ1−s)H(φ)(s) ds + (

eλ∗
2ξ2 − eλ∗

2ξ1
) +∞∫

ξ2

e−λ∗
2s)H(φ)(s) ds

=
{

−λ∗
1e

λ∗
1ξ1

ξ1∫
−∞

e−λ∗
1s ds + 2 + λ∗

2e
λ2ξ2

+∞∫
ξ2

e−λ∗
2s ds

}
|ξ1 − ξ2| sup

ξ∈R

H(φ)(ξ)

� 4� ∗K∗|ξ1 − ξ2|.
Since D(λ∗

2 − λ∗
1) = √

c2 + 4D� ∗ � 2
√

D� ∗, the last inequality implies that

∣∣F ∗(φ)(ξ1) − F ∗(φ)(ξ2)
∣∣ � 2K∗

√
� ∗
D

|ξ1 − ξ2|.

Therefore, we conclude that F ∗(φ) ∈ Γ ∗ for all φ ∈ Γ ∗.
By virtue of the Schauder’s fixed point theorem, it follows that F ∗ has a fixed point U in

Γ ∗ ⊂ Xλ, which satisfies

U(ξ) = 1

D(λ∗
2 − λ∗

1)

[ ξ∫
−∞

eλ∗
1(ξ−s)H(U)(s) ds +

+∞∫
ξ

eλ∗
2(ξ−s)H(U)(s) ds

]
(3.15)

and

Uε(ξ) � U(ξ) � U∗(ξ + a0) for all ξ ∈ R. (3.16)

Sending ξ → −∞ and ξ → +∞ in (3.16), respectively, we get U(−∞) = 0 and

K∗ − ε � lim inf
ξ→+∞U(ξ) � lim sup

ξ→+∞
U(ξ) � K∗.

Since U(ξ) is independent of ε, taking the limit as ε → 0+ in the last inequality, we get

K∗ � lim inf
ξ→+∞U(ξ) � lim sup

ξ→+∞
U(ξ) � K∗. (3.17)

In what follows, we assume that (H3) also holds. Set α := lim infξ→+∞ U(ξ) and β :=
lim supξ→+∞ U(ξ). Then K∗ � α � β � K∗. We shall show that α = β . Suppose for the con-
trary that α < β . If there is a large number M > 0 such that U ′ > 0 on [M,+∞) or U ′ < 0
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on [M,+∞), then limξ→+∞ U(ξ) exists and hence α = β , a contradiction. So there exists a se-
quence {ξj }j∈N, with ξj → +∞ as j → +∞, such that U ′(ξj ) = 0, U ′′(ξj ) � 0 and U(ξj ) → β

as j → +∞. Then we have

0 = cU ′(ξj ) = DU ′′(ξj ) − g
(
U(ξj )

) + h
(
U(ξj )

)∫
R

f
(
U(ξj − y − cr)

)
J (y)dy

� −g
(
U(ξj )

) + h
(
U(ξj )

) ∫
R

f
(
U(ξj − y − cr)

)
J (y)dy,

and hence

g
(
U(ξj )

)
/h

(
U(ξj )

)
�

∫
R

f
(
U(ξj − y − cr)

)
J (y)dy. (3.18)

For any ε > 0, there is a sufficiently large number N > 0, such that

g(K∗)/h(K∗)
∫

|y|>N

J (y)dy < ε. (3.19)

Since f is continuous, we can choose δ > 0 such that δ < ε and

max
{
f (u)

∣∣ u ∈ [α − δ,β + δ]} < max
{
f (u)

∣∣ α � u � β
} + ε. (3.20)

For such a δ > 0, we take a large number M2 > 0 such that

U(ξ) ∈ [α − δ,β + δ] for all ξ � M2. (3.21)

Choose a positive integer J0 > 0 such that

ξj � M2 + N + cr for all j � J0. (3.22)

Therefore, for j � J0, it follows from (3.18)–(3.21) that

g
(
U(ξj )

)
/h

(
U(ξj )

)
�

∫
|y|�N

f
(
U(ξj − y − cr)

)
J (y)dy +

∫
|y|>N

f
(
U(ξj − y − cr)

)
J (y)dy

� max
{
f (u)

∣∣ u ∈ [α − δ,β + δ]} + g(K∗)/h(K∗)
∫

|y|>N

J (y)dy

� max
{
f (u)

∣∣ α � u � β
} + 2ε.

Taking the limit as j → +∞ in the last inequality, we get

g(β)/h(β) � max
{
f (u)

∣∣ α � u � β
} + 2ε,
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which yields, by sending ε → 0+, that

g(β)/h(β) � max
{
f (u)

∣∣ α � u � β
}
. (3.23)

In a similar way, we can obtain

g(α)/h(α) � min
{
f (u)

∣∣ α � u � β
}
. (3.24)

If α < β � K , then (3.23) implies that g(α)/h(α) � min{f (u) | α � u � β} > g(α)/h(α),
a contradiction, and if K � α < β , then (3.22) implies that g(β)/h(β) � max{f (u) | α �
u � β} < g(β)/h(β), a contradiction. Therefore, we conclude that α < K < β .

Take u1, u2 ∈ [α,β] so that f (u1) = max{f (u) | α � u � β} and f (u2) = min{f (u) | α �
u � β}. We distinguish among three cases:

Case (i). K � u1 � β . If u1 = β , then (3.22) yields g(β)/h(β) � f (β), which is impossible
since β > K . Therefore, we have u1 < β and hence

g(β)/h(β) � max
{
f (u)

∣∣ α � u � β
} = f (u1) � g(u1)/h(u1) < g(β)/h(β),

which is a contradiction.
Case (ii). α � u2 � K . By using a similar argument as used in (i), we get α < u2 and

g(α)/h(α) � min
{
f (u)

∣∣ α � u � β
} = f (u2) � g(u2)/h(u2) > g(α)/h(α),

which is also a contradiction.
Case (iii). u1 < K < u2. In this case, we have u1 = α and u2 = β . Otherwise, we have

g(β)/h(β) − g(α)/h(α) � f (u1) − f (u2)

� 2g(K)/h(K) − g(u1)/h(u1) − [
2g(K)/h(K) − g(u2)/h(u2)

]
= g(u2)/h(u2) − g(u1)/h(u1)

< g(β)/h(β) − g(α)/h(α),

which is a contradiction. Therefore, we have g(α)/h(α) � f (β) and g(β)/h(β) � f (α). So we
have

g(β)/h(β) − g(α)/h(α) � f (α) − f (β)

< 2g(K)/h(K) − g(α)/h(α) − [
2g(K)/h(K) − g(β)/h(α)

]
= g(β)/h(β) − g(α)/h(α),

which is impossible.
Thus, α = β , and hence the limit limξ→+∞ U(ξ) = α ∈ [K∗,K∗] exists. Taking the limit as

ξ → +∞ in (3.15) and applying the Lebesgue’s dominated convergence theorem to get
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α = 1

D(λ∗
2 − λ∗

1)
lim

ξ→+∞

[ ξ∫
−∞

eλ∗
1(ξ−s)H(U)(s) ds +

+∞∫
ξ

eλ∗
2(ξ−s)H(U)(s) ds

]

= 1

D(λ∗
2 − λ∗

1)

[
1

λ∗
2

− 1

λ∗
1

]
lim

ξ→+∞H(U)(ξ)

= 1

−Dλ∗
1λ

∗
2

[
� ∗α − g(α) + h(α)f (α)

]

= 1

� ∗
[
� ∗α − g(α) + h(α)f (α)

]
,

which yields g(α)/h(α) = f (α), and hence limξ→+∞ U(ξ) = α = K . This completes the
proof. �
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