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Varying coefficient models are useful extensions of the classical linear models.
Under the condition that the coefficient functions possess about the same degrees of
smoothness, the model can easily be estimated via simple local regression. This
leads to the one-step estimation procedure. In this paper, we consider a semivarying
coefficient model which is an extension of the varying coefficient model, which is
called the semivarying-coefficient model. Procedures for estimation of the linear
part and the nonparametric part are developed and their associated statistical
properties are studied. The proposed methods are illustrated by some simulation
studies and a real example. © 2001 Elsevier Science (USA)
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1. INTRODUCTION

In recent years, many useful nonparametric techniques have been devel-
oped to relax traditional parametric models and to exploit possible hidden
structure. For an introduction to these methods, see the books by Hastie
and Tibshirani (1990), Green and Silverman (1994), Wand and Jones
(1995) and Fan and Gijbels (1996), among others. In the literature, there
are many powerful approaches incorporated to avoid the so-called ‘‘curse
of dimensionality.’’ Examples include additive modeling (Breiman and
Friedman, 1985; Hastie and Tibshirani 1990), low-dimensional interaction
modeling (Friedman 1991; Gu and Wahba, 1993; Stone et al. 1997),
multiple-index models (Härdle and Stoker 1989), partially linear models
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(Wahba 1984; Green and Silverman 1994) and their hybrids (Carroll et al.
1997). An important alternative to the additive and other models is the
varying-coefficient model (Hastie and Tibshirani, 1993), in which the coef-
ficients of the linear models are replaced by smoothing nonparametric
functions and hence the regression coefficients are allowed to vary as func-
tions of other factors. The varying-coefficient model is defined by the
following linear model:

Y=C
p

j=1
aj(U) Xj+e, (1.1)

for given covariates (U, X1, ..., Xp)T and response variable Y with
E(e | U, X1, ..., Xp)=0, and Var(e | U, X1, ..., Xp)=s2(U). By selecting
X1 — 1, the model allows varying intercept in the model. Due to the gener-
ality of the function aj(U), the modeling bias can be reduced significantly
and the ‘‘curse of dimensionality’’ can be avoided. Moreover, it is well-
recognized that (Hastie and Tibshirani, 1993 and its discussion) the model
has extremely wide applications. For example, see Hoover et al. (1998) for
novel applications of the model to longitudinal data; Fan, Yao and Cai
(2000) for applications in ecologic data analysis; Chen and Tsay (1993),
and Cai, Fan and Yao (2000) for nonlinear time series applications.
Assuming the coefficient functions aj(U) possess about the same degree
of smoothness, Hastie and Tibshirani (1993) proposed an one-step estimate
for aj(U) via the dynamic linear model (West et al. 1985; West and
Harrison 1989) and the approach of penalized least squares (Wahba 1990).
Under the condition that the coefficient functions aj( · ), j=1, ..., p, possess
different degree of smoothness, Fan and Zhang (1999) showed that the one-
step method is not optimal, and they proposed a two-step method to repair
this drawback. The ‘‘two-step’’ idea has been applied to other problems,
such as the functional data analysis (Fan and Zhang, 1998).
In practice, investigators often want to know if a covariate affects the
response or if the coefficients are really varying, see Fan and Zhang (2000).
This amounts to test if the whole function is zero or constant, namely,
testing the null hypothesis H0 that aj(U)=aj, for some j. The model under
H0 will be called a semivarying coefficients model, which is defined by the
following linear model

Y=C
p

j=1
aj(U) Xj+ C

p+m

j=p+1
ajXj+e, (1.2)

for given covariates (U, X1, ..., Xp, Xp+1, ..., Xp+m)T and response variable
Y with E(e | U, X1, ..., Xp, Xp+1, ..., Xp+m)=0, and Var(e | U, X1, ..., Xp,
Xp+1, ..., Xp+m)=s2(U). This model consists of a nonparametric part that
involves coefficient functions aj(U), j=1, ..., p and a linear part that
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involves constant coefficients aj, j=p+1, ..., p+m. The classical semi-
parametric model can be regarded as its special case with a2(U) — · · · —
ap(U) — 0 and X1 — 1. On the other hand, if the constant coefficient aj is
viewed as a function, the semivarying coefficient model can be regarded as
a special case of the varying coefficient model. In this context, since the
coefficient functions clearly admit different degree of smoothness, a two-
step method should be used to obtain the estimators for aj( · ), j=
1, ..., p+m. This approach requires to estimate p+m functions. The asso-
ciated estimation problem is clearly more complicated than the one that
just requires to estimate p functions and m constant coefficients with a
semivarying coefficient model. Moreover, it is expected that the variance of
the estimator produced by this approach is larger.
To establish a test statistic for H0, we require to develop an estimation
method for the semiparametric coefficient model. In this paper, such an
estimation procedure is developed. The main ideas of this procedure are as
follows: The coefficients in the linear part of the model defined in (1.2) are
first estimated via local polynomial fitting with a small bandwidth. This
provides a class of raw estimators for each coefficient in the linear part.
The final estimates of these coefficients are obtained by taking the average
of these raw estimators. After replacing the coefficients in the linear part by
the obtained estimators, (1.2) is simplified to a varying coefficient model.
Then, the method given in Fan and Zhang (1999) is employed to produce
the estimators of the coefficient functions in nonparametric part. For this
procedure, the asymptotic conditional bias and variance will be derived to
give some idea about the mean square error of the estimator. Moreover, we
will show that the optimal rate of the convergence of the linear part esti-
mator is almost the same as the least squares estimator for the classical
linear model, and the performance of the nonparametric part estimator is
asymptotically identical to the estimator under the ideal situation where the
unknown constants of the linear part are known.

2. ESTIMATION PROCEDURE AND ITS PROPERTIES

Results presented in this paper are developed under some technical con-
ditions which are presented in the Appendix. Also, the following notations
are used: Let a (i)j denote the ith derivative of aj( · ), f(u) be the marginal
density of U, ri, j(u)=E(XiXj | U=u),

mi=F t iK(t) dt, aq=(mq+1, ..., m2q+1)T, mq=(m0, ..., mq)T and

ni=F t iK2(t) dt.
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Let Cq be a (q+1)×(q+1) matrix with the (i, j)th element mi+j, C̃q be the
matrix similar to Cq except replacing mi by ni, a

(k)
j, i=a

(k)
j (Ui); and D=

(U1, ..., Un, X11, ..., X1n, ..., Xp1, ..., Xpn)T; and ek, j be the unit vector of
length j with 1 at position k.

2.1. Estimation Procedure for the Linear Part

Our estimation procedure consists of the following two steps.
In the first step, for j=1, ..., p, and each point u, we approximate the
function aj(U) locally based on the idea of local polynomial modeling as

aj(U) % C
q

k=0

1
k!
a (k)j (u)(U−u)

k, j=1, ..., p, (2.1)

for U in a neighborhood of u. Then, consider the following local least-
squares problem: Minimize

C
n

i=1

3Yi− C
p

j=1
C
q

l=0
bj, l(Ui−u) l Xij− C

p+m

j=1+p
ajXij 4

2

Kh1 (Ui−u), (2.2)

with respect to bj, l and aj, for a given kernel function K and a bandwidth
h1. The solution of (2.2) gives an initial estimator â1, j(u) of aj. Note that
this estimator depends on u. Let

X=R
X11 · · · X11(U1−u)q · · · X1p · · · X1p(U1−u)q

x z x z x z x

Xn1 · · · Xn1(Un−u)q · · · Xnp · · · Xnp(Un−u)q

S ,
and

W=diag(Kh1 (U1−u), ..., Kh1 (Un−u)), Kh( · )=K(·/h)/h.

When u=Ui, we denote X andW by Xi andWi , respectively.
For each j=p+1, ..., p+m, a total of n initial estimators of aj can be
obtained as below by taking u equal to each of U1, ..., Un ,

â1, j(Ui)=e
T
pq+j, a(V

T
iWiVi)

−1 VTiWiY, i=1, ..., n,

where a=p(q+1)+m,

Vi=(XiT), and T=R
X1(p+1) · · · X1(p+m)

x z x

Xn(p+1) · · · Xn(p+m)

S .
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A procedure to select the bandwidth is required in the local least squares
problem (2.2). The unknown coefficient functions a1( · ), ..., ap( · ) demand
a small bandwidth, while the unknown constants ap+1, ..., ap+m demand a
large bandwidth. So, if we wish to reduce the MSE corresponding to the
estimators of a1( · ), ..., ap( · ) by selecting a small bandwidth, the MSE
corresponding to the estimators of ap+1, ..., ap+m will be increased. No
matter how to select the bandwidth h1, we cannot obtain good estimators
for both the unknown coefficient functions and the unknown constants.
Therefore, â1, j( · ) is only taken as an initial estimator of aj.
As it will be shown in Theorem 1, the conditional bias of our final esti-
mator is OP(h

q+1
1 ), while the conditional variance is OP(n

−1), as long as
nh1/log h1 Q.. This motivates us to choose the bandwidth h1 as small as
possible, subject to the constraint nh1/log h1 Q.. On the other hand, since
the sample size is finite in practice, large variance of the initial estimator
should be avoided. Thus, we suggest the following bandwidth selection
procedure in practical implementation: using the cross-validation method
(see, Hoover et al., 1998) to select a bandwidth h; then, take h1=0.5h (say)
as the final bandwidth for the first step.
In the second step, the main objective is to reduce the variance of initial
estimator which has small bias but large variance. One natural approach is
to take the average of â1, j(Ui) over i=1, ..., n. This leads to the following
final estimator âj of aj:

âj=
1
n
C
n

i=1
â1, j(Ui)=

1
n
C
n

i=1
eTpq+j, a(V

T
iWiVi)

−1 VTiWiY, j=p+1, ..., p+m.

(2.3)

Let

W1, 2(u)=E((X1, ..., Xp)T (Xp+1, ..., Xp+m) | U=u),

W(u)=E((X1, ..., Xp)T (X1, ..., Xp) | U=u)

A(u)=W2, 2(u)−m
T
qC

−1mqW
T
1, 2(u) W

−1(u) W1, 2(u),

and W2, 2(u)=E((Xp+1, ..., Xp+m)T (Xp+1, ..., Xp+m) | U=u).

The following theorem gives the asymptotic bias and variance of the final
estimator âj:

Theorem 1. Under the conditions nh1/log h1 Q. and h1 Q 0, we have

bias(âj |D)=M1h
q+1
1 (1+oP(1)), Var(âj |D)=M2n−1(1+oP(1)),
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where

M1=
(mq+1−m

T
qC

−1
q aq)

(q+1)!
eTj−p, mA−1(U) WT1, 2(U) R

a (q+1)1 (U)

x

a (q+1)p (U)

S
and

M2=E{e
T
j−p, mA−1(U)

×[W2, 2+{(m
T
qC

−1
q mq)2−2(m

T
qC

−1
q mq)} W

T
1, 2(U) W

−1(U) W1, 2(U)]

×A−1(U) ej−p, ms2(U)}.

Proofs of this theorem and the other theorems are given in the Appendix.
It follows from Theorem 1 that the conditional bias of our estimator is of
order OP(h

q+1
1 ), while the conditional variance is of order OP(n

−1). By
taking h1 as small as possible subject to the constraint nh1/log h1 Q., the
bias can be very close to zero, while the variance is of order OP(n−1).
Actually, if we choose h1 such that n1/2h

(q+1)
1 Q 0, our estimator has a

root-n convergent rate. In another words, the asymptotic performance of
our estimator for the linear part of the semivarying coefficient model is the
same as the least squares estimator for the classical linear model. We will
see from our simulation study that whether the coefficient functions in the
nonparametric part possess the same degree of smoothness does not affect
the linear part estimation.

2.2. A One-Stage Estimation Procedure for the Nonparametric Part
We first consider an one-stage procedure in estimating the coefficient
functions in the nonparametric part. Similar to the first step in the proce-
dure for estimating the linear part, we approximate aj(U) locally as in
(2.1), for j=1, ..., p. By minimizing (2.2) with respect to bj, l and aj, we
obtain the one-stage estimator of aj(u), as follows,

âv, o, j(u)=e
T
(q+1)(j−1)+1, a(V

TWoV)−1 VTWoY, j=1, ..., p, (2.4)

where V is the matrix Vi with Ui=u,Wo isW with h1=ho.
In practical implementation of this one-stage procedure, the bandwidth
ho can be chosen by the cross-validation method (Hoover et al., 1998). The
conditional bias and the conditional variance of this estimator are given by
the following theorem:

Theorem 2. Under the conditions nho Q. and ho Q 0, the conditional
bias of âv, o, j(u) is

bias(âv, o, j(u) |D)=
hq+1o

(q+1)!
eT1, q+1C

−1
q aqa

(q+1)
j (u)+hq+1o R1+oP(h

q+1
o );
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and the conditional variance is

Var(âv, o, j(u) |D)=
s2(u)
nhof(u)

eT1, q+1C
−1
q C̃qC

−1
q e1, q+1e

T
j, pW

−1(u) ej, p

+
s2(u)
nhof(u)

R2+oP((nho)−1),

where

R1=
eT1, q+1C

−1mq(mqC−1aq−mq+1)
(q+1)!

eTj, pW
−1(u) W1, 2(u) A−1(u)

×WT1, 2(u) R
a (q+1)1 (u)

x

a (q+1)p (u)

S ,
R2=(2e

T
1, q+1C

−1
q mqm

T
qC

−1
q C̃qC

−1
q e1, q+1−2e

T
1, q+1C

−1
q mqe

T
1, q+1C

−1
q nq)

×eTj, pW
−1(u) W1, 2(u) A−1(u) WT1, 2(u) W

−1(u) ej, p

+(eT1, q+1C
−1
q mq)2 (m

T
qC

−1
q C̃qC

−1
q mq−2n

T
qC

−1
q mq)

×eTj, pW
−1(u) W1, 2(u) A−1(u) WT1, 2(u) W

−1(u) W1, 2(u)

×A−1WT1, 2(u) W
−1(u) ej, p

+n0(e
T
1, q+1C

−1
q mq)2 e

T
j, pW

−1(u) W1, 2(u) A−1(u) W2, 2(u)

×A−1(u) WT1, 2W
−1(u) ej, p,

with nq=(n0, ..., nq)T.

Now, consider the ideal situation where ap+1, ..., ap+m are known. In this
situation, the model is simplified to the usual varying coefficient model
(1.1). From Fan and Zhang (1999), the coefficient functions can be
estimated by their one-step estimator with bandwidth ho ,

âo, j(u)=e
T
(j−1)(q+1)+1, p(q+1)(X

TWoX)−1 XTWoỸ, j=1, ..., p, (2.5)

where Ỹ=(Ỹ1, ..., Ỹn) with Ỹi=Yi−;p+m
j=p+1 ajXij. The resulting estimator

is called the ideal estimator, whose bias and variance are given by the
following theorem.

Theorem 3. If nho Q. and ho Q 0, then

bias(âo, j(u) |D)=
1

(q+1)!
eT1, q+1C

−1
q aqa

(q+1)
j (u) hq+1o (1+oP(1))
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and asymptotic conditional variance

Var(âo, j(u) |D)=
s2(u)
nhof(u)

eT1, q+1C
−1
q C̃qC

−1
q e1, q+1e

T
j, pW

−1(u) ej, p(1+oP(1)).

This is Theorem 1 in Zhang and Lee (2000).
From Theorem 2 and Theorem 3, we find that for j=1, ..., p, the
conditional bias of âv, o, j(u) is equal to the conditional bias of the ideal
estimator plus another term. Similar phenomenon is also observed for the
conditional variance.
Similar to the varying coefficient model, this estimator is not optimal for
coefficient functions in the nonparametric part admit different degree of
smoothness, see the Example 3 in next section. To improve the per-
formance, an estimation procedure that utilize the ‘‘two-step’’ idea is
proposed. For brevity, we will first present our method under the assump-
tion that the coefficient functions admit the same degree of smoothness;
and then explain how to extend it to the more complicated cases.

2.3. A Two-Stage Estimation Procedure for the Nonparametric Part

In the first stage of the proposed two-stage procedure, the estimation
procedure described in subsection 2.1 is used to obtain âj of aj in the linear
part, for j=p+1, ..., p+m; see equation (2.3).
In the second stage, replacing the unknown constant coefficient aj in the
semivarying coefficient model by its estimator âj, we obtain the following
model

Y− C
p+m

j=p+1
âjXj=C

p

j=1
aj(U) Xj+e. (2.6)

This is a varying coefficient model. When the coefficient functions admit
the same degree of smoothness, the final estimator of aj(u) is given by (2.5)
with Ỹi=Yi−;p+m

k=p+1 âkXik and ho=h3, namely, the estimator âTS, j(u) of
aj(u), for j=1, ..., p, is

âTS, j(u)=e
T
(q+1)(j−1)+1, p(q+1)(X

TWTSX)−1

×XTWTS 1Y1− C
p+m

k=p+1
âkX1k, ..., Yn− C

p+m

k=p+1
âkXnk 2

T

,

where

WTS=diag(Kh3 (U1−u), ..., Kh3 (Un−u)).
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Let

HTS=In−
1
n

T(0 Im) C
n

i=1
(VTiWiVi)

−1 VTiWi,

where 0 is a m×p matrix with all elements equal to zero. We have

aTS, j(u)=e
T
(j−1)(q+1)+1, p(q+1)(X

TWTSX)−1 XTWTSHTSY, j=1, ..., p.
(2.7)

Thus, this estimator is a linear estimator.
In the implementation of our estimation procedure, the bandwidth h3 in
the second stage can be chosen by some data-driven method, see Zhang
and Lee (1998); or by the cross-validation method, see Hoover et al. (1998).
The asymptotic conditional bias and conditional variance of the two-step
estimator is given by the following theorem.

Theorem 4. Under the conditions nh1/log h1 Q., h3 Q 0 and h1=o(h3),
the conditional bias of âTS, j, j=1, ..., p, is

bias(âTS, j(u) |D)=
1

(q+1)!
eT1, q+1C

−1
q aqa

(q+1)
j (u) hq+13 (1+oP(1)),

and the conditional variance is

Var(âTS, j(u) |D)=
s2(u)
nh3f(u)

eT1, q+1C
−1
q C̃qC

−1
q e1, q+1e

T
j, pW

−1(u) ej, p(1+oP(1)).

Under the situation that the coefficient functions admit about the same
degree of smoothness, Theorems 4 and 3 indicate that our two-stage esti-
mator âTS, j(u) has same asymptotic conditional bias and variance as the
ideal estimator. Hence, the performance of our two-stage estimator and the
ideal estimator is asymptotically identical.
Our proposed two-stage procedure can be modified to cope with the case
where a1( · ), ..., ap( · ) admit different degrees of smoothness. In particular,
consider the situation where ap( · ) is smoother than a1( · ), ..., ap−1( · ). In
the implementation of our two-stage procedure for this situation, the first
stage is the same as before. In the second stage, the one-step method as
described in Fan and Zhang (1999) is replaced by their two-step method in
estimating the model (2.6). Now the ideal estimator for the ideal situation,
where ap+1, ..., ap+m are known, can be obtained similarly via Fan and
Zhang’s two-step method. Using the same technique as in the proof of
Theorem 4, we can show that the modified two-step estimator has the same
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asymptotic conditional bias and variance as the ideal estimator. Hence, the
two-stage procedure is better than the one-stage method for the semivary-
ing coefficient model with coefficient functions in the nonparametric part
that admit different degrees of smoothness.
From Theorems 2, 3 and 4, we can see that the convergence rates of one-
stage, two-stage and ideal estimator are the same under the situation where
coefficient functions in the nonparametric part have the same smoothness.
Moreover, we will see from Examples 1 and 2 in the next section that the
finite sample performances of âv, o, j(u), âTS, j(u) and ideal estimator are the
same. So, if we have the prior information that the coefficient functions in
nonparametric part have the same smoothness, the two-stage procedure is
not necessary. But in practice, we have not such information, hence the two-
stage procedure will be recommended.

3. SIMULATIONS AND EXAMPLE

The following three examples will be used to illustrate the empirical
performance of our method.

Example 1. Y=sin(2pU) X1+cos(2pU) X2+X3+e,

Example 2. Y=sin(2pU) X1+(3.5[exp{−(4U−1)2}
+exp{−(4U−3)2}]−1.5) X2+X3+e,

Example 3. Y=sin(6pU) X1+sin(2pU) X2+X3+e,

where U follows a uniform distribution on [0, 1]; X1, X2 and X3 are nor-
mally distributed. The correlation coefficients between X1 and X2, X1 and
X3, X2 and X3 are 2−1/2, 2−1 and 2−1/2 respectively. Further, the marginal
distribution of X1, X2 and X3 is the standard normal and e, U and
(X1, X2, X3) are independent. The random variable e follows a normal dis-
tribution with mean zero and variance s2. For these examples, the s2 is
chosen so that the noise to signal ratio is about 1:5. Obviously, the func-
tional coefficients in Examples 1 and 2 possess the same degree of
smoothness; but the functional coefficients in Example 3 admit different
degrees of smoothness.

For each of the above examples, we conducted 100 replications with
sample size n=250 and 500. Furthermore, the local linear fit (q=1) for the
coefficient functions is considered, and the kernel function is taken to be
the Epanechnikov kernel K(t)=0.75(1−t2)+. The MISE for estimating the
functional coefficient and the mean squared errors (MSE) for estimating
the constant coefficient are recorded.
Figure 1 depicts the MSE of the estimator âj of the constant coefficient
in the linear part as a function of bandwidth h1. It indicates that the
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FIG. 1. Relation of MSE and the bandwidth in the linear part estimation.

bandwidth selection procedure for estimating the constant coefficient is less
crucial as long as it is not too small. This agrees with Theorem 1.
Based on a sample size n=250, h1=0.08, and 100 replications, the mean
and standard error of the estimator of the constant coefficient are summa-
rized in Table I. From Table I, it can be seen that our estimators in all the
examples are very close to the true values. Since the functional coef-
ficients in Example 3 admit different degrees of smoothness, we may
conclude that the estimation of the linear part is not affected by the
smoothness of the coefficient functions in the nonparametric part.

TABLE I

The Means and Standard Errors of the Constant Coefficients Estimators

Example 1 Example 2 Example 3

Mean 1.0013 1.0017 1.0011
Standard errors 0.0540 0.0627 0.0538
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To give some idea on the performance of the estimation methods for the
nonparametric part, we will demonstrate that the performances of the one-
stage, two-stage and the ideal estimators are almost the same in Examples 1
and 2; while the two-stage estimator is better than the one-stage estimator
in Example 3.
First, we discuss Examples 1 and 2. For the ideal estimator and the one-
stage estimator given in (2.4), the values of the MISE are plotted against
bandwidth. For the two-stage procedure, the small initial bandwidth h1 was
taken to 0.08 and 0.05 when n=250 and 500, respectively. The MISE for
the two-stage estimator was then computed as a function of h3 and plotted
against h3. These plots are presented in Figs. 2 and 3. From these figures,
we can see that the MISE curves of the one-stage estimator (solid curve),
the two-stage estimator (short-dashed curve) and the ideal estimator (long-
dashed curve) are almost coincident. This indicates that the empirical per-
formances of these estimators are almost identical. It is in line with our
asymptotic results in Theorems 2, 3 and 4.

FIG. 2. Comparisons of the performance between the one-step (solid-curve), the two-step
(short-dashed curve) and the ideal estimators (long-dashed curve).

SEMIVARYING COEFFICIENT MODELS 177



FIG. 3. Comparisons of the performance between the one-step (solid curve), the two-step
(short-dashed curve) and the ideal estimators (long-dashed curve).

To provide more information on the performance of the two-stage esti-
mator, we select among the 100 replications the one that the estimator has
the median performance, in the combination with h1=0.05 and n=500.
Figure 4 depicts the true functions and the estimated functions. It can be
seen that the estimated functions are quite accurate.
In Example 3, we only discuss the estimation of a2(u)=sin(2pu), which
fluctuates less than a1(u)=sin(6pu). The modified two-stage procedure as
discussed at the end of subsection 2.3 was used to obtain the two-stage
estimator. For completeness, the two stages of the whole procedure are
described as below: (1) Replace the constant coefficient by its estimator
given in (2.3) with bandwidth h1, and obtain the usual varying coefficient
model (2.6). (2) Apply Fan and Zhang’s two-step method to (2.6). Denote
the bandwidth in the first step of their two-step method by h2 and the
second step h3.
The bandwidths {h1, h2} for n=250 and 500 were taken to be
{0.08, 0.06} and {0.05, 0.04}, respectively. Then we computed the MISE
for the two-step estimators as a function of h3. The first two graphs in
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FIG. 4. The solid curve is the true coefficient function, the dashed curve is its two-step
estimator.

Fig. 5 report the results for both the one-stage and the two-stage estima-
tors. They indicate that the improvement of the two-stage estimator is quite
substantial. Further, for the two-stage estimator, the MISE curve is flatter
than that for the one-stage method. This in turn suggests that the
bandwidth for the two-stage estimator is less crucial than that for the one-
stage procedure. For the combination with h1=0.05, h2=0.04 and
n=500, we select the replication that the two-step estimator has the
median performance for further illustration. The third graph in Fig. 5
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FIG. 5. The first two graphs give comparisons of the performance between the one-step
estimator (solid curve) and the two-step estimator (short-dashed curve). The third graph
depicts the two-step estimator (dashed curve) and the true function (solid curve).

depicts the true function (solid curve) and the estimated function. It seems
that the estimated function is again quite accurate.
We now illustrate the methodology via an application to an environ-
mental data set. This data consists of a collection of daily measurements of
chemical pollutants and other environmental factors in Hong Kong
between January 1, 1994 and December 31, 1995; see Fan and Zhang
(1999). Our main interests are to study the association between the levels of
chemical pollutants and the number of daily total hospital admissions for
circulation and respiration, and to examine the extent to which the asso-
ciation varies with time. We consider the relation among the number of
daily hospital admission (Y) and the level of pollutant Sulphur Dioxide X2
(in mg/m3), the level of pollutant Nitrogen Dioxide X3 (in mg/m3), and the
level of dust X4 (in mg/m3).
We took X1=1 for the intercept term, and U=t. To avoid the extreme
effect by boundary, we used the data from Feb. 20, 1994 to Nov. 10, 1995.
On the basis of our main objective for examining the association between
the levels of chemical pollutants, and the analysis given in Fan and Zhang
(2000) that the hypothesis ‘‘a4( · )=a constant’’ is not significant, we
analyzed the data with coefficient functions a2(t) and a3(t) but treating the
coefficient corresponding to the level of dust a4( · ) as a constant. So, the
model

Y=a1(t)+a2(t) X2+a3(t) X3+a4X4+e

was used. As we argued before, estimators obtained from the proposed
semivarying coefficient model are more accurate because their variances are
reduced. The estimator of the constant coefficient is 0.136. For the non-
parametric part, the two-step method was used to estimate the coefficient
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FIG. 6. The estimated coefficient functions.

function aj( · ), j=1, 2, 3. The bandwidth h1=0.03 f 629 (three percents of
the whole interval) was chosen. In the second step, the bandwidth h3 was
equal to 30% of the interval length. Figure 6 depicts the estimated coeffi-
cient functions. It indicates that there is some strong time effect, and the
time trend a1(t) is increasing instead of seasonal.

4. FINAL REMARKS

The varying and the semivarying coefficient models have close relation-
ship with each other. Based on our motivations mentioned before, it is
advantageous to use the semivarying coefficient model for situations where
we have a clear model of interest in mind; that is, we have the prior inten-
tion or knowledge on which independent variable Xj is associated with a
coefficient function and which is associated with a constant coefficient. For
exploratory analysis, we need to decide which coefficients are functions and
which are constants. This is essentially a model selection problem. One
procedure to handle this problem is sketched as follows. First, we use one-
step method for the varying coefficient model (see, Fan and Zhang, 1999)
to obtain initial estimates â1, j( · ) of the coefficient functions. Then, based
on {(Ui, â1, j(Ui)), i=1, ..., n}, we decide whether aj( · ) has a constant
trend via some univariate model selection procedures (see, Linhart and
Zucchini, 1986). Clearly, more theoretical and computational results on the
model selection problem are needed to be developed in the future.

APPENDIX

The following technical conditions will be assumed to develop the
asymptotic results:
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(1) EX2sj <., for s > 2, j=1, ..., p.
(2) a (q+1)j ( · ) is continuous in a neighborhood of u, for j=

1, ..., p−1. Further, assume a (q+1)j (u) ] 0, for j=1, ..., p−1.
(3) The function ap( · ) has a continuous (q+3)th derivative in a

neighborhood of u.
(4) The marginal density f(u) of U has a continuous derivative and

f(u) ] 0. In addition, f(u) has a compact support.
(5) For any i, j, rij( · ) is continuous in a neighborhood of u.
(6) The function K(t) is a symmetric density function with a compact

support.

To prove Theorem 1–Theorem 4, the following lemma which follows
immediately from a result in Mack and Silverman (1982), is required:

Lemma 1. Let (X1, Y1), ..., (Xn, Yn) be i.i.d random vectors, where the
Yi’s are scalar random variables. Assume further that E |y| s <. and
supx > |y| s f(x, y) dy <., where f denotes the joint density of (X, Y). Let
K be a bounded positive function with a bounded support and satisfying a
Lipschitz condition. Then

sup
x ¥ D

:1
n
C
n

i=1
[Kh(Xi−x) Yi−E{Kh(Xi−x) Yi}] :=OP 13

log(1/h)
nh
41/22 ,

provided that n2e−1hQ. for some e < 1−s−1.

Proof of Theorem 1. First, we compute the bias of âj, j=p+1, ..., p+m
under the condition nh1/log h1 Q., we have

bias(âj |D)=E{e
T
pq+j, a(V

T
1W1V1)

−1 VT1W1Y |D}−aj

=
hq+11

(q+1)!
eTpq+j, a R

W(U) é Cq W1, 2(U) é mq

WT1, 2(U) é mTq W2, 2(U)
S−1

×R
W(U) é aq

mq+1W
T
1, 2(U)
S Ra

(q+1)
1 (U)

x

a (q+1)p (U)

S (1+oP(1))

=
hq+11 (mq+1−m

T
qC

−1
q aq)

(q+1)!
eTj−p, mA−1(U) WT1, 2(U) R

a (q+1)1 (U)

x

a (q+1)p (U)

S (1+oP(1)).
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The conditional variance of âj is

Var(âj |D)=
1
n2
(1, ..., 1) R

eTpq+j, a(V
T
1W1V1)

−1 VT1W1

x

eTpq+j, a(V
T
nWnVn)

−1 VTnWn

S Y

×R
eTpq+j, a(V

T
1W1V1)

−1 VT1W1

x

eTpq+j, a(V
T
nWnVn)

−1 VTnWn

ST R 1x
1

S

=
1
n2

C
n

i=1
C
n

j=1
eTpq+j, a(V

T
iWiVi)

−1 VTiWiYWjVj(V
T
jWjVj)

−1 epq+j, a

=
1
n
E 3eTpq+j, a R

W(U) é Cq W1, 2(U) é mq

WT1, 2(U) é mTq W2, 2(U)
S−1

×R
W(U) é mqm

T
q W1, 2(U) é mq

WT1, 2(U) é mTq W2, 2(U)
S

×R
W(U) é Cq W1, 2(U) é mq

WT1, 2(U) é mTq W2, 2(U)
S−1 epq+j, as2(U)4 (1+oP(1))

=
1
n
E 3eTpq+j, a R

W(U) é Cq W1, 2(U) é mq

WT1, 2(U) é mTq W2, 2(U)
S−1 epq+j, as2(U)

+eTpq+j, a R
W(U) é Cq W1, 2(U) é mq

WT1, 2(U) é mTq W2, 2(U)
S−1 RW(U) é (mqm

T
q −Cq) 0

0 0
S

×R
W(U) é Cq W1, 2(U) é mq

WT1, 2(U) é mTq W2, 2(U)
S−1 epq+j, as2(U)4 (1+oP(1))

=
1
n
E{eTj−p, mA−1(U)[ W2, 2+{(m

T
qC

−1
q mq)2−2(m

T
qC

−1
q mq)}

×WT1, 2(U) W
−1(U) W1, 2(U)]×A−1(U) ej−p, ms2(U)}(1+oP(1)).

Proof of Theorem 2. It follows from standard argument and calcula-
tion.

Proof of Theorem 4. First, we compute the conditional bias of âTS, j(u),
j=1, ..., p, as below.
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bias(âTS, j(u) |D)

=eT(j−1)(q+1)+1, p(q+1)(X
TWtX)−1 XTWt

×1 C
p

k=1
ak(U1) X1k, ..., C

p

k=1
ak(Un) Xnk 2

T

−aj(u)

− C
p+m

k=p+1
bias(âk |D) e

T
(j−1)(q+1)+1, p(q+1)(X

TWtX)−1 XTWt(X1k, ..., Xnk)T

=
1

(q+1)!
eT1, q+1C

−1
q aqa

(q+1)
j (u) hq+13 (1+oP(1))

−eT1, q+1C
−1
q mqe

T
j, pW

−1(u) W1, 2(u)

×(bias(âp+1 |D), ..., bias(âp+m |D))T (1+oP(1))

=
1

(q+1)!
eT1, q+1C

−1
q aqa

(q+1)
j (u) hq+13 (1+oP(1))

−
hq+11 (mq+1−m

T
qC

−1
q aq)

(q+1)!
eT1, q+1C

−1
q mq

×eTj, pW
−1(u) W1, 2(u) A−1(U)

×WT1, 2(U)(a
(q+1)
1 (U), ..., a (q+1)p (U))T (1+oP(1))

=
1

(q+1)!
eT1, q+1C

−1
q aqa

(q+1)
j (u) hq+13 (1+oP(1)).

In the following, we will discuss the conditional variance of âTS, j(u). From
(2.7), we have

Var(âTS, j(u) |D)

=eT(j−1)(q+1)+1, p(q+1)(X
TWtX)−1 XTWtHtYH

T
tWtX(X

TWtX)−1 e(j−1)(q+1)+1, p(q+1)

=eT(j−1)(q+1)+1, p(q+1)(X
TWtX)−1 XTWtYWtX(XTWtX)−1 e(j−1)(q+1)+1, p(q+1)

−
2
n
eT(j−1)(q+1)+1, p(q+1)(X

TWtX)−1 XTWtT(0 Im)

× C
n

i=1
(VTiWiVi)

−1 VTiWiYWtX(X
TWtX)−1 e(j−1)(q+1)+1, p(q+1)
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+
1
n2
eT(j−1)(q+1)+1, p(q+1)(X

TWtX)−1 XTWtT(0 Im)

× C
n

i=1
(VTiWiVi)

−1 VTiWiY C
n

i=1
WiVi(V

T
iWiVi)

−1 (0 Im)T TTWtX

×(XTWtX)−1 e(j−1)(q+1)+1, p(q+1)

¸ J1−2J2+J3.

Obviously,

J1=
s2(u)
nh3f(u)

eT1, q+1C
−1
q C̃qC

−1
q e1, q+1e

T
j, pW

−1(u) ej, p(1+oP(1)).

Using Lemma 1, and by some calculation, it follows that under the condi-
tions nh1/log h1 Q. and h1=o(h3),

J2=
(eT1, q+1C

−1
q mq)2 s2(u)
n

eTj, pW
−1(u) W1, 2(u)(0 Im)

×R
W(u) é Cq W1, 2(u) é mq

WT1, 2(u) é mTq W2, 2(u)
S−1 R ej, p é mq

WT1, 2(u) W
−1(u) ej, p
S (1+oP(1))

=
s2(u)
n
(eT1, q+1C

−1
q mq)2 (1−m

T
qC

−1mq)

×eTj, pW
−1(u) W1, 2(u) A−1(u) WT1, 2(u) W

−1(u) ej, p(1+oP(1)).

Using Lemma 1, and the technique in the proof of Theorem 2 in Fan and
Zhang (1999), we have

(0 Im) C
n

i=1
(VTiWiVi)

−1 VTiWiY C
n

i=1
WiVi(V

T
iWiVi)

−1 (0 Im)T

=(0 Im) C
n

k=1
s2(Uk) R

Wk é Cq W1, 2, k é mq

WT1, 2, k é mTq W2, 2, k

S−1

×R
(Xk1, ..., Xkp)T é mq

(Xk(p+1), ..., Xk(p+m))T
S

×((Xk1, ..., Xkp) é mTq , (Xk(p+1), ..., Xk(p+m)))

×R
Wk é Cq W1, 2, k é mq

WT1, 2, k é mTq W2, 2, k

S−1
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(0 Im)T×(1+oP(1))

=nE 3(0 Im) R
W(U) é Cq W1, 2(U) é mq

WT1, 2(U) é mTq W2, 2(U)
S−1

×R
W(U) é mqm

T
q W1, 2(U) é mq

WT1, 2(U) é mTq W2, 2(U)
S

×R
W(U) é Cq W1, 2(U) é mq

WT1, 2(U) é mTq W2, 2(U)
S−1 (0 Im)Ts2(U)4 (1+oP(1))

=nE([{(mTqC
−1
q mq)2−2(m

T
qC

−1
q mq)} A−1(U) WT1, 2(U) W

−1(U) W1, 2(U)

×A−1(U)+A−1(U) W2, 2(U) A−1] s2(U))(1+oP(1)),

where W1, 2, k=W1, 2(Uk), W2, 2, k=W2, 2(Uk). So, we have

J3=
(eT1, q+1C

−1mq)2

n
eTj, pW

−1(u)W1, 2(u)

×E([{(mTqC
−1
q mq)2−2(m

T
qC

−1
q mq)} A−1(U)WT1, 2(U)W

−1(U)W1, 2(U) A−1(U)

+A−1(U)W2, 2(U) A−1] s2(U))WT1, 2(u)W
−1(u) ej, p(1+oP(1)).

Hence, the conditional variance of âTS, j(u) is given by

Var(âTS, j(u) |D)=
s2(u)
nh3f(u)

eT1, q+1C
−1
q C̃qC

−1
q e1, q+1e

T
j, pW

−1(u) ej, p(1+oP(1))

−
2s2(u)
n
(eT1, q+1C

−1
q mq)2 (1−m

T
qC

−1mq)

×eTj, pW
−1(u) W1, 2(u) A−1(u) WT1, 2(u) W

−1(u) ej, p(1+oP(1))

+
(eT1, q+1C

−1mq)2

n
eTj, pW

−1(u) W1, 2(u) E([{(m
T
qC

−1
q mq)2−2(m

T
qC

−1
q mq)}

×A−1(U) WT1, 2(U) W
−1(U) W1, 2(U) A−1(U)

+A−1(U) W2, 2(U) A−1] s2(U)) WT1, 2(u) W
−1(u) ej, p(1+oP(1))

=
s2(u)
nh3f(u)

eT1, q+1C
−1
q C̃qC

−1
q e1, q+1e

T
j, pW

−1(u) ej, p(1+oP(1)).
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