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Abstract

We study some properties of Gram matrices with non-negative inverse which lead to the
constructions of obtuse cones. These constructions can find applications in optimization prob-
lems, e.g., in methods of convex feasibility problems or of convex minimization problems. ©
2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

In optimization methods we often have to solve the following problem:
Given a system of linear inequalities ATx � b, where A is a matrix of type n × m,
x ∈ Rn and b ∈ Rm, and an approximation x ∈ Rn of a solution of this system.
Find x+ which essentially better approximates a solution x∗ ∈ M = {x : ATx �
b} or detect that M = ∅.

The best possibility would be to take x+ = PMx but the evaluation of such a
projection is often too expensive. On the other hand, x+ evaluated as a projection
P{x:aT

i x�bi }x, where ai is the ith column of A and i ∈ I = {1, . . . , m} such that aT
i x >

bi is often not essentially a better approximation of a solution x∗ than x. There is also
a compromise: choose appropriate columns J ⊂ I of the matrix A (denote by AJ the
submatrix of A which consists of the chosen columns J ⊂ I and by bJ the subvector
of b which consists of the coordinates J ⊂ I ) and evaluate
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x+ = P{x:AT
J x�bJ }x. (1)

Now, a new problem arises in this context: how to choose J ⊂ I such that x+ eval-
uated by (1) essentially better approximates a solution x∗ than x and such that x+
can easily be evaluated. It seems natural to choose J such that AT

J x > bJ or at least
AT

J x � bJ . Suppose that AJ has full column rank and evaluate x′ = P{x:AT
J x=bJ }x.

Of course, x′ is not necessarily equal to x+ given by (1). Nevertheless, it can be eas-
ily shown that equality x′ = x+ holds if and only if λ := (AT

JAJ )
−1(AT

J x − bJ ) �
0 (in fact, λ is the Lagrange multipliers vector for the problem min{ 1

2‖x − x‖2 :
AT

J x � bJ }). Since we have assumed AT
J x � bJ we see that λ � 0 when (AT

JAJ )
−1

� 0. This observation leads to a study of the properties of a full column rank matrix
whose Gram matrix has non-negative inverse. Such matrices are strictly connected
with the so-called acute cones (see, e.g. [3,4,10,12]). We are interested in our study
on the properties of such matrices which can help us to construct obtuse cones. The
projections evaluated by (1) have in these cases interesting properties which lead to
an essentially better approximation x+ of a solution than the actual one.

We start with the notations and definitions which will be occurring in the paper.
We use the following notations:
• x = (x1, . . . , xn)

T—an element of Rn,
• 〈·, ·〉—the usual scalar product in Rn, i.e., 〈x, y〉 = xTy = ∑n

j=1 xjyj , for
x, y ∈ Rn,

• ‖ · ‖ = √〈·, ·〉—the Euclidean norm in Rn,
• ei—ith element of the standard basis in Rn,
• PDx—the metric projection of x onto a given closed convex subset D.

Furthermore, for a given matrix A of type n × m, we denote:
• LinA—the linear subspace generated by the columns of A,
• (LinA)⊥—the linear subspace orthogonal to LinA,
• coneA—the cone generated by the columns of A,
• r (A)—the rank of A,

and we write:
• A � 0 (>0) if all elements of A are non-negative (positive),
• A has full column rank if r (A) = m (or in other words, the columns of A are

linearly independent).
Finally, for a given cone C we define the dual cone of C by

C∗ = {s ∈ Rn : 〈s, x〉 � 0 for all x ∈ C}.
The matrices we consider in the paper are real matrices.

Definition 1.1. A cone C is said to be acute if 〈x, y〉 � 0 for all x, y ∈ C. A cone
C is said to be obtuse (in LinC) if C∗ ∩ LinC is an acute cone.

Definition 1.2. Let A be a matrix of type n × m. The matrix ATA is said to be the
Gram matrix of A.
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Remark 1.3. It is well known that the Gram matrix of A is non-negative definite
and that it is positive definite if and only if A has full column rank.

Definition 1.4. Let A be a matrix with full column rank. The matrix

A+ = (ATA)−1AT (2)

is said to be the (Moore–Penrose) pseudoinverse of A.

Definition 1.5. A matrix G is said to be monotone if

Gx � 0 ⇒ x � 0.

The following result which connects the introduced objects is well known (see,
e.g. [1–4,6,10,12]). Nevertheless, we present in Appendix A a proof of the following
lemma.

Lemma 1.6. Let A have full column rank. The following conditions are equivalent:
(i) coneA is obtuse,
(ii) coneA+T is acute,
(iii) (coneA)∗ ∩ LinA ⊂ − coneA,

(iv) (ATA)−1 � 0,
(v) ATA is monotone.

The paper is organized as follows. In Section 2, we present some properties of
Gram matrices with non-negative inverse, which lead to the constructions of an ob-
tuse cone. These constructions consist in an addition of one vector to a given system
of vectors generating an obtuse cone. Such properties and constructions are known
(see, e.g. [3,4,10,12]). Therefore, Section 2 has an auxiliary character. The main re-
sult of this section, Theorem 2.3, will be generalized in the following section in Lem-
ma 3.6 and in Theorem 3.11. In Section 3, we present the sufficient and necessary
conditions for a block matrix A = [A1, A2] having a Gram matrix with non-negative
inverse. These conditions lead to the construction of an obtuse cone which consists
in addition of several vectors to a given system of vectors generating an obtuse cone.
In Section 4, we present the results of Section 3 in terms of the QR-factorization.
Finally, in Appendix A, we present a proof of Lemma 1.6.

2. One-dimensional update of obtuse cones

Definition 2.1. A matrix A of type n × m is said to be strongly admissible if there
exists x ∈ Rn such that ATx > 0. A matrix A of type n × m is said to be weak-
ly admissible if there exists x ∈ Rn such that ATx � 0 with at least one positive
coordinate.



170 A. Cegielski / Linear Algebra and its Applications 335 (2001) 167–181

Denote by A1 a matrix of type n × m1 with columns ai, i = 1, . . . , m1, by a an
element of Rn and by A the n × m matrix [A1, a], where m = m1 + 1.

Lemma 2.2. Let A = [A1, a] be weakly admissible and let x ∈ Rn and
j ∈ {1, . . . , m} be such that ATx � 0 with positive jth coordinate. If
(i) A1 has full column rank,
(ii) A+

1 a � 0 with negative jth coordinate if j < m,

then A has full column rank.

Proof. Suppose r (A) < m. Then, by the Kronecker–Capelli theorem, a = A1α for
some α ∈ Rm1 since A1 has full column rank. Furthermore, this representation is
unique. Let x ∈ Rn and j � m be such that ATx � 0 with positive jth coordinate.
Such x and j exist since A is weakly admissible. By (ii) we have

A+
1 a = A+

1 A1α = α � 0

with αj < 0 if j < m. The above claims leads to the following inequalities:

0 � aTx = αTAT
1x � 0,

where the first inequality is strict if j = m and the second one is strict if j < m. The
contradiction shows that A has full column rank. �

Theorem 2.3. Let A = [A1, a] be a matrix with full column rank. If
(i) (AT

1A1)
−1 � 0,

(ii) A+
1 a � 0,

then

(iii) (ATA)−1 � 0.

Remark 2.4. A proof of a lemma which is formulated equivalently to Theorem 2.3
can be found in [2, Lemma 5.6.B]. In the quoted lemma, the condition A+

1 a � 0 has
an equivalent form a ∈ −coneA1 + (LinA1)

⊥. Theorem 2.3 also follows from [10,
Lemma 3.2]. In Section 3 we will prove a generalization of this theorem.

Corollary 2.5. Let A = [A1, a] be weakly admissible and let j ∈ {1, . . . , m} be
such that the jth coordinate of ATx is positive for some j, and for some x ∈ Rn. If
(i) A1 has full column rank,

(ii) (AT
1A1)

−1 � 0,

(iii) A+
1 a � 0 with negative jth coordinate if j < m,

then

(iv) A has full column rank and

(v) (ATA)−1 � 0.
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Proof. The corollary follows directly from Theorem 2.3 and Lemma 2.2. �

Remark 2.6. Compare also [10, Lemma 3.2], where the above corollary is proved,
or [4, Remark 10], where a proof of the above corollary is suggested.

Corollary 2.7. Let A = [A1, a] be strongly admissible. If
(i) A1 has full column rank,

(ii) (AT
1A1)

−1 � 0,

(iii) A+
1 a � 0,

then

(iv) A has full column rank and

(v) (ATA)−1 � 0.

Proof. Take j = m in Corollary 2.5 which can be done since A is strongly admissi-
ble. �

Remark 2.8. A proof of Corollary 2.7 can also be found in [10, Lemma 3.2] or in
[4, Theorem 5].

Corollary 2.9. Let A = [A1, a] be a matrix with full column rank. If
(i) (AT

1A1)
−1 � 0,

(ii) AT
1a � 0,

then

(iii) (ATA)−1 � 0.

Proof. From assumptions (i) and (ii) it follows that

A+
1 a = (AT

1A1)
−1AT

1a � 0.

The corollary now follows from Theorem 2.3 �

Remark 2.10. Other proofs of Corollary 2.9 can be found in [12, Corollary 4.1] or
in [2, Theorem 5.4.A].

Corollary 2.11. Let A = [A1, a] be weakly admissible and let the jth coordinate of
AT

1x be positive for some x ∈ Rn. If
(i) A1 has full column rank,

(ii) (AT
1A1)

−1 � 0,

(iii) AT
1a � 0 with negative jth coordinate,

then
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(iv) A has full column rank and

(v) (ATA)−1 � 0.

Proof. From assumptions (ii) and (iii) it follows that

A+
1 a = (AT

1A1)
−1AT

1a � 0.

Denote by αi the ith coordinate of A+
1 a, by bi the ith coordinate of AT

1a and by bik

the (i, k)th element of (AT
1A1)

−1. Of course bjj > 0 since all diagonal elements of
a positive definite matrix are positive. By (ii) and (iii) we have

αj =
m1∑
k=1

bjkbk � bjj bj < 0.

Now, we obtain by Lemma 2.2 that A has full column rank, and by Theorem 2.3 that
(ATA)−1 � 0. �

Remark 2.12. Similarly as in Corollary 2.7 one can also formulate the following
version of Corollary 2.11.

Corollary 2.13. If the Gram matrix G of A has full column rank and non-positive
off-diagonal elements, then G−1 � 0.

Proof. The corollary can be verified by the repeated application of Corollary 2.9.
�

Remark 2.14. Similarly as in Corollary 2.11 one can formulate versions of Cor-
ollary 2.13 by an appropriate use of strong or weak admissibility instead of linear
independency.

Remark 2.15. Corollary 2.13 follows also from [5, Theorem 4.3] and from [11,
Theorem 5′] which deal with the so-called Minkowski matrices (non-singular matri-
ces with non-positive off-diagonal elements and with non-negative inverse). Some
other formulations of Corollary 2.13 in terms of cones can be found in [2,7–9,12].

Remark 2.16. Theorem 2.3 allows more general constructions of obtuse cones
than those obtained by application of Corollaries 2.9 or 2.13 which can be seen in
the example below.

Example 2.17. Let A = [a1, a2, a3], where a1 = (1, 0, 0)T, a2 = (−1,− 1
4 ,

1
4 )

T,

a3 = (−1, 1
4 ,

1
4 )

T. One can see that coneA is obtuse since

(ATA)−1 =

17 8 8

8 8 0
8 0 8


 � 0.
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On the other hand, aT
2 a3 > 0 and coneA cannot be constructed by an application

of Corollaries 2.9 or 2.13. Nevertheless, coneA can be constructed by an iterative
application of Theorem 2.3: take in the first iteration A1 = a1, a = a2, and in the
second one A1 = [a1, a2], a = a3.

3. A general construction of obtuse cones

We start with the following example which shows that there exist obtuse cones
which cannot be obtained by an application of the constructions presented in
Section 2.

Example 3.1. Consider the following matrix G:

G =




175
88

65
88 − 25

22 − 25
22

65
88

175
88 − 25

22 − 25
22

− 25
22 − 25

22
175
88

65
88

− 25
22 − 25

22
65
88

175
88


 .

G is positive definite and its inverse is equal to

G−1 =




1 1
5

1
2

1
2

1
5 1 1

2
1
2

1
2

1
2 1 1

5
1
2

1
2

1
5 1


 ,

i.e., by Lemma 1.6, G is the Gram matrix of a system of vectors A = [a1, a2, a3, a4]
which generates an obtuse cone. Nevertheless, none of the 3-element subsystems of
A generate an obtuse cone, because if one cancels the ith row and the ith column from
the matrix G (i = 1, 2, 3, 4 ), then the obtained matrix does not have non-negative
inverse:


175
88 − 25

22 − 25
22

− 25
22

175
88

65
88

− 25
22

65
88

175
88




−1

=



24
25

2
5

2
5

2
5

3
4 − 1

20
2
5 − 1

20
3
4


 ,




175
88

65
88 − 25

22
65
88

175
88 − 25

22

− 25
22 − 25

22
175
88




−1

=



3
4 − 1

20
2
5

− 1
20

3
4

2
5

2
5

2
5

24
25


 .

Therefore, the system A which generates an obtuse cone cannot be constructed by an
application of Theorem 2.3 or of any of its corollaries presented in Section 2.
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Observe that there exist 2-element subsystems [a1, a3] and [a2, a4] of A which
generate obtuse cones since[

175
88 − 25

22

− 25
22

175
88

]−1

=
[

56
75

32
75

32
75

56
75

]
� 0.

In this section, we present a construction of obtuse cones which is more general
than that obtained by an application of Theorem 2.3.

Lemma 3.2. A matrix B is the pseudoinverse of a full column rank matrix A if and
only if
(i) BA = I (i.e., B is a left inverse of A);

(ii) B = �AT for some square matrix � (i.e., rows of B ∈ LinA).

Proof. The necessity of (i) and (ii) is obvious. Now, we prove the sufficiency.
By (i) and (ii) we have I = BA = �ATA, i.e., � = (ATA)−1. Hence, B = �AT =
(ATA)−1AT. �

Let A1, A2 be matrices of types n × m1 and n × m2, respectively, and let the
matrix A = [A1, A2] have full column rank. One can decompose A1 into a sum of
a part linearly dependent on the columns of A2 and a part orthogonal to LinA2. We
have

A1 = A2A
+
2 A1 + A⊥

2 , (3)

where

A⊥
2 = (I − A2A

+
2 )A1. (4)

There hold the obvious equalities

A⊥T
2 A2 = 0 (5)

and

A⊥T
2 A1 = A⊥T

2 A⊥
2 . (6)

Analogously, the matrix A2 can be decomposed into a sum of a part linearly depen-
dent on the columns of A1 and a part orthogonal to LinA1. So, we have

A2 = A1A
+
1 A2 + A⊥

1 , (7)

where

A⊥
1 = (I − A1A

+
1 )A2 (8)

and

A⊥T
1 A1 = 0, (9)

A⊥T
1 A2 = A⊥T

1 A⊥
1 . (10)



A. Cegielski / Linear Algebra and its Applications 335 (2001) 167–181 175

Furthermore, by equalities

A⊥
2 α = A1α − A2A

+
2 A1α = A

[
α

−A+
2 A1α

]
,

where α ∈ Rm1 , one easily obtains from the definition that the columns of A⊥
2 are

linearly independent since the columns of A are linearly independent. Therefore
r (A⊥

2 ) = m1, consequently, there exist matrices A⊥+
2 , (A⊥T

2 A⊥
2 )+ and (A⊥T

2 A1)
+.

Correspondingly, r (A⊥
1 ) = m2 and there exist matrices A⊥+

1 , (A⊥T
1 A⊥

1 )+ and
(A⊥T

1 A2)
+.

Lemma 3.3. The matrix

A′ =

A+

1 − A+
1 A2A

⊥+
1

A+
2 − A+

2 A1A
⊥+
2




is the pseudoinverse of the matrix A.

Proof. First we prove that A′ = �AT for

�=

(AT

1A1)
−1 + A+

1 A2(A
⊥T
1 A⊥

1 )−1(A+
1 A2)

T

−A+
2 A1(A

⊥T
2 A⊥

2 )−1

−A+
1 A2(A

⊥T
1 A⊥

1 )−1

(AT
2A2)

−1 + A+
2 A1(A

⊥T
2 A⊥

2 )−1(A+
2 A1)

T


 .

By (7), (3) and (2) we have

�AT =

A+

1 − A+
1 A2(A

⊥T
1 A⊥

1 )−1(A2 − A1A
+
1 A2)

T

A+
2 − A+

2 A1(A
⊥T
2 A⊥

2 )−1(A1 − A2A
+
2 A1)

T




=

A+

1 − A+
1 A2(A

⊥T
1 A⊥

1 )−1A⊥T
1

A+
2 − A+

2 A1(A
⊥T
2 A⊥

2 )−1A⊥T
2


 = A′.

Furthermore, by equalities (9), (10), (5) and (6), and by the definition of the pseudo-
inverse we easily obtain A′A = I . The lemma follows now from Lemma 3.2. �

Lemma 3.4. The matrix

A
′′ =

[
A⊥+

2

A⊥+
1

]

is the pseudoinverse of the matrix A.
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Proof. The matrix A′′ can be presented in the form A′′ = �AT for

� =
[

(A⊥T
2 A⊥

2 )−1 −(A⊥T
2 A⊥

2 )−1(A+
2 A1)

T

−(A⊥T
1 A⊥

1 )−1(A+
1 A2)

T (A⊥T
1 A⊥

1 )−1

]
.

Indeed, by equalities (3), (7) and (2) we have

�AT =
[

(A⊥T
2 A⊥

2 )−1AT
1 − (A⊥T

2 A⊥
2 )−1(A+

2 A1)
TAT

2

−(A⊥T
1 A⊥

1 )−1(A+
1 A2)

TAT
1 + (A⊥T

1 A⊥
1 )−1AT

2

]

=
[
(A⊥T

2 A⊥
2 )−1(A1 − A2A

+
2 A1)

T

(A⊥T
1 A⊥

1 )−1(A2 − A1A
+
1 A2)

T

]

=
[
(A⊥T

2 A⊥
2 )−1A⊥T

2

(A⊥T
1 A⊥

1 )−1A⊥T
1

]
=

[
A⊥+

2

A⊥+
1

]
.

Furthermore, by equalities (3), (7), (5) and (9), we obtain

A
′′
A=

[
A⊥+

2

A⊥+
1

]
[A1, A2] =

[
A⊥+

2 A1 A⊥+
2 A2

A⊥+
1 A1 A⊥+

1 A2

]

=
[
(A⊥T

2 A⊥
2 )−1A⊥T

2 (A2A
+
2 A1 + A⊥

2 )

(A⊥T
1 A⊥

1 )−1A⊥T
1 A1

(A⊥T
2 A⊥

2 )−1A⊥T
2 A2

(A⊥T
1 A⊥

1 )−1A⊥T
1 (A1A

+
1 A2 + A⊥

1 )

]

=
[
(A⊥T

2 A⊥
2 )−1A⊥T

2 A⊥
2 0

0 (A⊥T
1 A⊥

1 )−1A⊥T
1 A⊥

1

]
=

[
Im1 0
0 Im2

]
= I.

The lemma follows now from Lemma 3.2. �

Corollary 3.5. There holds the equality A′ = A
′′
.

Proof. The assertion follows from Lemmas 3.3 and 3.4. Namely, the pseudoinverse
of a matrix is uniquely determined. �

Observe that, for a matrix B with full column rank, there holds the equality

B+B+T = (BTB)−1. (11)

Present the matrix (ATA)−1 in the form of a block matrix

(ATA)−1 =
[
D11 D12
D21 D22

]
,
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where D11, D12, D21, D22 are matrices of types m1 × m1, m1 × m2, m2 × m1 and
m2 × m2, respectively. Similarly, present the matrices A′ and A′′ in Lemmas 3.3 and
3.4 in the form of block matrices:

A′ =
[
A′

1

A′
2

]
,

A
′′ =

[
A

′′
1

A
′′
2

]
,

where A′
1, A

′′
1 are matrices of type m1 × n and A′

2, A
′′
2 are matrices of type m2 × n.

Lemma 3.6. There hold equalities

D11 = (AT
1A1)

−1 + A+
1 A2(A

⊥T
1 A⊥

1 )−1(A+
1 A2)

T = (A⊥T
2 A⊥

2 )−1, (12)

D12 = −A+
1 A2(A

⊥T
1 A⊥

1 )−1, (13)

D21 = −A+
2 A1(A

⊥T
2 A⊥

2 )−1, (14)

D22 = (AT
2A2)

−1 + A+
2 A1(A

⊥T
2 A⊥

2 )−1(A+
2 A1)

T = (A⊥T
1 A⊥

1 )−1, (15)

consequently, (ATA)−1 � 0 if and only if all matrices given by (12)–(15) are non-
negative.

Proof. By equality (11), we have

(ATA)−1 =
[
A′

1

A′
2

] [
A′T

1 A′T
2

]
and

(ATA)−1 =
[
A′′

1

A′′
2

] [
A′′T

1 A′′T
2

]
.

Now, we evaluate the successive blocks of the matrix (ATA)−1. We have

D11 =A′
1A

′T
1

=A+
1 A+T

1 − A+
1 A⊥+T

1 AT
2A

+T
1 − A+

1 A2A
⊥+
1 A+T

1

+A+
1 A2A

⊥+
1 A⊥+T

1 AT
2A

+T
1 .

By (2) and by (9) A+
1 A⊥+T

1 = 0. Furthermore, by (11), we get

A⊥+
1 A⊥+T

1 = (A⊥T
1 A⊥

1 )−1

and
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A+
1 A+T

1 = (AT
1A1)

−1.

Therefore

D11 = (AT
1A1)

−1 + A+
1 A2(A

⊥T
1 A⊥

1 )−1(A+
1 A2)

T.

On the other hand,

D11 = A
′′
1A

′′T
1 = (A⊥T

2 A⊥
2 )−1.

Using similar arguments we obtain equalities (15). Furthermore, by (7), (5) and (6)
we see

D12 =A
′′
1A

′′T
2 = A⊥+

2 A⊥+T
1

=(A⊥T
2 A⊥

2 )−1A⊥T
2 A⊥

1 (A⊥T
1 A⊥

1 )−1

=(A⊥T
2 A⊥

2 )−1A⊥T
2 (A2 − A1A

+
1 A2)(A

⊥T
1 A⊥

1 )−1

=−(A⊥T
2 A⊥

2 )−1A⊥T
2 A1A

+
1 A2(A

⊥T
1 A⊥

1 )−1

=−(A⊥T
2 A⊥

2 )−1A⊥T
2 A⊥

2 A+
1 A2(A

⊥T
1 A⊥

1 )−1

=−A+
1 A2(A

⊥T
1 A⊥

1 )−1.

Equality (14) can be proved analogously. �

Corollary 3.7. There holds the equality

(A⊥T
2 A⊥

2 )−1(A+
2 A1)

T = A+
1 A2(A

⊥T
1 A⊥

1 )−1.

Proof. The matrix (ATA)−1 is symmetric. Therefore, for the blocks D12 and D21
given by (13) and (14) the equality DT

21 = D12 is fulfilled. �

Corollary 3.8. There holds the equality

D11 = (AT
1A1)

−1 + D12D
−1
22 D21.

Proof. The corollary follows easily from Lemma 3.6 and from the symmetry of the
matrix (ATA)−1. �

Corollary 3.9. Let A = [A1, a] be a matrix with full column rank, where A1 is an
n × m1 matrix and a ∈ Rn. Furthermore, let a⊥ = (I − A1A

+
1 )a. Then the matrix

(ATA)−1 has the representation

(ATA)−1 =
[
(AT

1A1)
−1 + (A+

1 a)(A+
1 a)T/‖a⊥‖2 −A+

1 a/‖a⊥‖2

−(A+
1 a)T/‖a⊥‖2 1/‖a⊥‖2

]

and, consequently, (ATA)−1 is non-negative if and only if
(i) A+

1 a � 0 and
(ii) (AT

1A1)
−1 + (A+

1 a)(A+
1 a)T/‖a⊥‖2 � 0.
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Proof. The corollary follows easily if one takes A2 = a in equalities (12)–(15). �

Remark 3.10. Theorem 2.3 follows now from Corollary 3.9. Furthermore, the
results of [10, Lemma 3.2] and [4, Theorem 5] follow from Corollary 3.9 and Lemma
2.2.

Theorem 3.11. Let A = [A1, A2] be a matrix with full column rank. If
(i) (AT

1A1)
−1 � 0,

(ii) A+
1 A2 � 0,

(iii) (A⊥T
1 A⊥

1 )−1 � 0,
then (ATA)−1 � 0.

Proof. The theorem follows easily from Lemma 3.6. �

4. Obtuse cones and QR-factorization

In this section we present a form of the matrix (ATA)−1 based on the QR-fac-
torization of the block matrix A = [A1, A2]. Let A = [A1, A2] be a matrix of type
n × (m1 + m2) with full column rank and let A = QR be a QR-factorization of the
matrix A = [A1, A2]. Let Q = [Q1,Q2], where Q1 and Q2 are orthogonal matrices
of types n × m1 and n × m2, respectively. Furthermore, let

R =
[
R11 R12

0 R22

]
,

where R11, R12, R22 are matrices of types m1 × m1, m1 × m2 and m2 × m2 and
0 is a matrix of type m2 × m1 with all elements equal to 0. The following equalities
are obvious:

A1 = Q1R11, (16)

A+
1 = R−1

11 QT
1 (17)

and

A2 = A1R
−1
11 R12 + Q2R22. (18)

Theorem 4.1. There holds the equality

(ATA)−1 =
[
(RT

11R11)
−1 + R−1

11 R12(R
T
22R22)

−1RT
12R

−T
11 −R−1

11 R12(R
T
22R22)

−1

−(RT
22R22)

−1RT
12R

−T
11 (RT

22R22)
−1

]

and, consequently, (ATA)−1 is non-negative if and only if
(i) (RT

22R22)
−1 � 0,

(ii) (RT
22R22)

−1RT
12R

−T
11 � 0,

(iii) (RT
11R11)

−1 + R−1
11 R12(R

T
22R22)

−1RT
12R

−T
11 � 0.
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Proof. By equalities (8), (16)–(18) and by the properties of orthogonal matrices we
have

A⊥T
1 A⊥

1 = AT
2 (I − A1A

+
1 )T(I − A1A

+
1 )A2

= AT
2 (I − A1A

+
1 )TA2

= RT
12R

−T
11 AT

1A1R
−1
11 R12 + RT

12R
−T
11 AT

1Q2R22

−RT
12R

−T
11 AT

1Q1Q
T
1A1R

−1
11 R12 − RT

12R
−T
11 AT

1Q1Q
T
1Q2R22

+RT
22Q

T
2A1R

−1
11 R12 + RT

22Q
T
2Q2R22

= RT
22R22.

Furthermore, by equalities (17) and (18) and by the properties of orthogonal matri-
ces, we obtain

A+
1 A2 = R−1

11 R12.

The theorem follows now from Lemma 3.6 and Corollary 3.7. �

Appendix A

Proof of Lemma 1.6 (i) ⇔ (ii) Using the well-known equality Rn = LinA

+ (LinA)⊥ one can prove that (coneA)∗ = −coneA+T + (LinA)T. As a conse-
quence one obtains coneA+T = −(coneA)∗ ∩ LinA. Now the equivalence (i) ⇔
(ii) follows directly from Definition 1.1.

(i) ⇒ (iii) Suppose (i) holds and (iii) does not hold. Let y ∈ (coneA)∗ ∩ LinA

and y /∈ −coneA. Then, by the separation theorem there exists z such that 〈z, x〉 �
0 for all x ∈ −coneA, and 〈z, y〉 < 0. It is well known that z = z + z⊥, where
z ∈ LinA and z⊥ ∈ (LinA)⊥. We have z ∈ (coneA)∗ since 〈z, x〉 = 〈z − z⊥, x〉 =
〈z, x〉 � 0 for all x ∈ −coneA. Now, it follows from (i) that 〈z, y〉 = 〈z + z⊥, y〉 =
〈z, y〉 � 0 since z⊥ ∈ (LinA)⊥ and z, y ∈ (coneA)∗ ∩ LinA. We have obtained a
contradiction which proves that (i) ⇒ (iii).

(iii) ⇒ (iv) Suppose that (coneA)∗ ∩ LinA ⊂ −coneA and that bij < 0 for some
element bij of the matrix (ATA)−1. Let y = A(ATA)−1(−ej ). Then ATy = −ej �
0, i.e., y ∈ (coneA)∗ ∩ LinA. Therefore, by the assumption, y ∈ −coneA, i.e. y =
Aα for some α � 0. Furthermore, α is uniquely determined since A has full column
rank. Now we have A(ATA)−1(−ej ) = y = Aα, and consequently, α = (ATA)−1

(−ej ), i.e., αi = −bij > 0, which is a contradiction.
(iv) ⇒ (v) Let y = ATAx � 0. Then, by the assumption, x = (ATA)−1y � 0,

i.e., ATA is monotone.
(v) ⇒ (i) Let x, y ∈ (coneA)∗ ∩ LinA. Then ATx � 0 , ATy � 0 and x = Aα,

y = Aβ for some α, β ∈ Rm. Hence ATAα � 0, ATAβ � 0 and, consequently, α �
0 since ATA is monotone. Now we have xTy = αTATAβ � 0, i.e., by Definition
1.1, cone A is obtuse. �
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