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a Markov chain with an “amazing” transition matrix determined in
a 1997 paper of Holte. This same Markov chain occurs in following
the number of descents when n cards are repeatedly riffle shuffled.
We give generating and symmetric function proofs and determine
the rate of convergence of this Markov chain to stationarity. Similar
results are given for type B shuffles. We also develop connections
with Gaussian autoregressive processes and the Veronese mapping
of commutative algebra.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

We use generating functions and symmetric function theory to explain a surprising coincidence:
when n long integers are added base-b, the distribution of “carries” is the same as the distribution of
descents when n cards are repeatedly riffled shuffled. The explanation yields a sharp analysis of con-
vergence to stationarity of the associated Markov chains. A similar analysis goes through for “type B”
shuffles. In this introduction, we first explain the carries process, then riffle shuffling and finally the
connection.
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1.1. Carries

Consider adding three 50-digit numbers base 10 (in the top row, italics are used to indicate the
carries):

1 12021 01111 11111 11111 11011 10111 01111 11111 21011 1112

43935 23749 58561 74916 62215 47448 33196 51990 19807 27075

48537 53642 77448 32760 14421 72142 82116 37225 43300 51498

33618 41327 41561 16257 43616 55134 82714 63369 87142 45607

1 26091 18719 77571 23934 20253 74725 98027 52585 50250 24180

For this example, 6/50 = 12% of the columns have a carry of zero, 40/50 = 80% have a carry of
one and 4/50 = 8% have a carry of two.

If n integers (base b) are produced by choosing their digits uniformly at random in {0,1,2, . . . ,

b − 1}, the sequence of carries κ0 = 0, κ1, κ2, . . . forms a Markov chain taking values in {0,1,2, . . . ,

n−1}. Holte [23] studied this Markov chain and found fascinating structure in its “amazing” transition
matrix (P (i, j)). Here P (i, j) is the probability that the next carry is j given that the last carry was i,
and he showed, for 0 � i, j � n − 1, that

P (i, j) = 1

bn

j−�i/b�∑
l=0

(−1)l
(

n + 1

l

)(
n − 1 − i + ( j + 1 − l)b

n

)
. (1.1)

For example, when n = 3 the matrix becomes

1

6b2

(b2 + 3b + 2 4b2 − 4 b2 − 3b + 2
b2 − 1 4b2 + 2 b2 − 1

b2 − 3b + 2 4b2 − 4 b2 + 3b + 2

)
.

Among many other things, Holte shows that the jth entry of the left eigenvector with eigenvalue 1
is A(n, j)/n!, with A(n, j) the Eulerian number: the number of permutations in the symmetric group
Sn with j descents. Here σ ∈ Sn is said to have a descent at i if σ(i + 1) < σ(i). So 5 1 3 2 4 has
two descents. The fundamental theorem of Markov chain theory gives that A(n, j)/n! is the long term
frequency of carries of j when long random numbers are added. Note that this is independent of
the base b. When n = 3, A(3,0)/6 = 1/6, A(3,1)/6 = 2/3, A(3,2)/6 = 1/6 very roughly matching the
example above. We give alternative derivations of this at the end of Section 2.

We will not detail the many nice properties Holte found but warmly recommend his paper [23].
Some further properties are in [8,14], which give appearances of this same matrix in card shuffling
and in the Veronese construction for graded algebras. This is developed briefly in Section 5 below.

1.2. Shuffling

The usual method of shuffling cards proceeds by cutting a deck of n cards into two approximately
equal piles and then riffling the two piles together into one pile. A realistic mathematical model was
created by Gilbert–Shannon–Reeds: cut off c cards with probability

(n
c

)
/2n . Drop cards sequentially as

follows: if the left pile has A cards and the right pile has B cards, drop the next card from the bottom
of the left pile with probability A/(A + B) and from the right pile with probability B/(A + B). This is
continued until all cards are dropped.

A careful analysis of riffle shuffles is carried out in [3] using a generalization to b-shuffles. There,
a deck of cards is cut into b packets of size c1, c2, . . . , cb with probability

( n
c1...cb

)
/bn . The packets

are riffled together by dropping the next card with probability proportional to packet size. Thus the
original Gilbert–Shannon–Reeds model corresponds to a 2-shuffle. Two basic facts established in [3]
are:
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• The probability of the permutation σ arising after a b-shuffle is

(n+b−d(σ−1)−1
n

)
bn

(1.2)

with d(σ−1) the number of descents in σ−1.
• An a-shuffle followed by a b-shuffle is the same as an ab-shuffle.

Thus the result of r 2-shuffles is the same as a single 2r shuffle and so formula (1.2) gives a closed
form expression for the probability of any permutation after r 2-shuffles. This and some calculus
allow a sharp analysis of the rate of convergence: roughly 3

2 log2 n + c shuffles suffice to make the
distribution within 2−c of the uniform distribution. Further details are in [3].

The combinatorics of riffle shuffles has expanded. An enumerative theory of cycle and other prop-
erties under the b-shuffle measure (1.2) is equivalent to the Gessel–Reutenauer enumeration jointly
by cycles and descents [17,22]. The combinatorics of riffle shuffling is essentially the same as quasi-
symmetric function theory [21,32]. There are extensions to other types (see Section 4 below) and
to random walk on the chambers of hyperplane arrangements [7,10] and buildings [9]. Much of this
development is surveyed in [13]. Interesting new developments are in [1].

1.3. The connection

Carries and riffle shuffling seem like different subjects. However, if Pb denotes the matrix (1.1),
Holte [23] showed that

Pa Pb = Pab. (1.3)

The eigenvalues of the matrix Pb turn out to be the same as the eigenvalues of the b-shuffle transition
matrix (the multiplicities are different). This, and the appearance of descents in both subjects, led us
to suspect and then prove an intimate connection. In Section 2 we prove the following.

Theorem 1.1. The probability that the base-b carries chain goes from 0 to j in r steps is equal to the proba-
bility that the permutation in Sn obtained by performing r successive b-shuffles (started at the identity) has j
descents.

We give a generating function proof which also yields a similar statement for the inverse permu-
tation along with enumerative results of Gessel in Section 2. We have subsequently found a bijective
proof of the theorem which shows that the transition matrices of carries (1.1) and the Markov chain
generated by the number of descents after successive b-shuffles are the same [14].

The more analytic proof given here allows us to use the Robinson–Schensted–Knuth (RSK) cor-
respondence and symmetric function theory to show that the number of descents (and in fact any
function of the descent set) after r 2-shuffles is close to stationarity when r = log2 n + c. (Note from
[3] that 3

2 log2 n + c steps are required for all aspects of the permutation to be close to stationarity.)
The correspondence with carries shows that the carries chain “settles down” after log2 n + c steps.
Refining this, we show that for large n, 1

2 logb(n) + c steps of the carries chain are necessary and
sufficient for convergence to stationarity. Details are in Section 3.

The discussion so far has all been on the permutation group. There are well-established “type B”
(hyperoctahedral)-shuffles [3,5,20]. In Section 4 we develop a parallel “carries process” and show that
theorems about type B shuffles translate into theorems about adding numbers. We also point out a
connection with the theory of rounding. Section 5 shows that for large n, the carries process is well
approximated by a Gaussian autoregressive process, and develops the connection with the Veronese
mapping of commutative algebra.
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2. Two Markov chains

In this section we show that two processes derived from the Markov chain of repeated b-shuffles
on the symmetric group are Markov chains with transition probabilities from 0 to j, the same as the
carries chain. As background, note that usually a function of a Markov chain is not a Markov chain.
A simple example is nearest neighbor random walk on the integers mod n, with n odd, n � 7. Let
the walk start at 0 and move left or right with probability 1/2. Let f ( j) = 1 for 0 � j � (n − 1)/2,
f ( j) = −1 otherwise. If steps of the original walk are denoted X0 = 0, X1, X2, . . . and Y j = f (X j),
then {X j}∞j=0 is a Markov chain but {Y j}∞j=0 is not: P{Y3 = +|Y2 = +} = 2/3, P{Y3 = +|Y2 = +,

Y1 = +} = 3/4. The literature on conditions for the Markov property is often called “lumping of
Markov chains.” A useful introduction is [25] with [28] a sophisticated extension.

To begin, we show that the two basic facts about riffle shuffles give a generating function identity
of Gessel (unpublished).

Proposition 2.1. Let σ be a permutation with d descents. Let cd
i j be the number of ordered pairs (τ ,μ) of

permutations in Sn such that τ has i descents, μ has j descents, and τμ = σ . Then

∑
i, j�0

cd
i j s

i+1t j+1

(1 − s)n+1(1 − t)n+1
=

∑
a,b�0

(
n + ab − d − 1

n

)
satb.

Proof. Since an a-shuffle followed by a b-shuffle is an ab-shuffle, the formula (1.2) implies that

∑
μ∈Sn

(
n + a − d(μ) − 1

n

)
μ−1 ·

∑
τ∈Sn

(
n + b − d(τ ) − 1

n

)
τ−1 =

∑
σ∈Sn

(
n + ab − d(σ ) − 1

n

)
σ−1.

Multiplying both sides by satb , summing over all a,b � 0, and then taking the coefficient of σ−1 on
both sides yields that

∑
a,b�0

(
n + ab − d − 1

n

)
satb =

∑
(τ ,μ)
τμ=σ

[∑
a�0

sa
(

n + a − d(μ) − 1

n

)
·
∑
b�0

tb
(

n + b − d(τ ) − 1

n

)]

=
∑
(τ ,μ)
τμ=σ

sd(μ)+1

(1 − s)n+1

td(τ )+1

(1 − t)n+1

=
∑

i, j�0

cd
i j s

i+1t j+1

(1 − s)n+1(1 − t)n+1
. �

Recall that if a Markov chain has transition probabilities P (i, j), its formal time reversal with re-
spect to a stationary measure π is defined to have transition probabilities P∗(i, j) = P ( j, i)π( j)/π(i).
This P∗ is a Markov transition matrix which also has π as stationary measure. A Markov chain P is
reversible with respect to π if and only if P = P∗ .

Theorem 2.2 identifies the carries Markov chain with the formal time reversal of a chain arising
in the theory of riffle shuffles. As in the introduction, π denotes the distribution on {0,1, . . . ,n − 1}
defined by π( j) = A(n, j)/n!, where A(n, j) is the number of permutations in Sn with j descents.

Theorem 2.2. Let a Markov chain on the symmetric group Sn begin at the identity and proceed by successive
independent b-shuffles. Then the number of descents of τ−1 forms a Markov chain with stationary distribution
π( j) = A(n, j)/n!, and its formal time reversal with respect to π is identical with the carries Markov chain.
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Proof. Let d(τ−1
r ) denote the number of descents of the inverse of the permutation τr obtained after

r independent b-shuffles. Corollary 2 of [3] showed that d(τ−1
r ) forms a Markov chain. Note that

the stationary distribution of this chain is given by π( j) = A(n, j)/n!, since τ−1
r tends to a uniform

element of Sn as r → ∞.
We compute the transition probabilities of the Markov chain formed by d(τ−1

r ). By (1.2),

P(d(τ−1
r−1) = i) = A(n, i)

(n+br−1−i−1
n

)
/b(r−1)n . Clearly

P
(
d
(
τ−1

r−1

) = i,d
(
τ−1

r

) = j
) =

∑
σ : d(σ−1)=i

(n+br−1−i−1
n

)
b(r−1)n

∑
k�0

∑
μ: d(μ−1)=k
d(σ−1μ−1)= j

(n+b−k−1
n

)
bn

.

Thus

P
(
d
(
τ−1

r

) = j|d(
τ−1

r−1

) = i
) = P(d(τ−1

r−1) = i,d(τ−1
r ) = j)

P(d(τ−1
r−1) = i)

= 1

A(n, i)

∑
σ : d(σ−1)=i

∑
k�0

∑
μ: d(μ−1)=k
d(σ−1μ−1)= j

(n+b−k−1
n

)
bn

.

In the notation of Proposition 2.1, this is

A(n, j)

A(n, i)

1

bn

∑
k�0

c j
ik

(
n + b − k − 1

n

)
.

Letting [xh] f (x) denote the coefficient of xh in a series f (x), this can be rewritten as

[
tb] A(n, j)

A(n, i)

1

bn

∑
k�0

c j
ik

tk+1

(1 − t)n+1
= [

tbsi+1] A(n, j)

A(n, i)

(1 − s)n+1

bn

∑
i,k�0

c j
ik

si+1tk+1

(1 − s)n+1(1 − t)n+1
.

By Proposition 2.1, this is equal to

[
tbsi+1] A(n, j)

A(n, i)

(1 − s)n+1

bn

∑
a,d�0

(
n + ad − j − 1

n

)
satd

= [
si+1] A(n, j)

A(n, i)

(1 − s)n+1

bn

∑
a�0

(
n + ab − j − 1

n

)
sa

= A(n, j)

A(n, i)

1

bn

∑
l�0

(−1)l
(

n + 1

l

)(
n − 1 − j + (i + 1 − l)b

n

)
.

This is equal to π( j)P ( j, i)/π(i) where P is the transition probability of the carries chain (1.1). �
The next result gives a second, more direct, interpretation of the transition probabilities of the

carries chain.

Theorem 2.3. The probability that the base-b carries chain goes from 0 to j in r steps is equal to the probability
that a permutation in Sn obtained by performing r successive b-shuffles (started at the identity) has j descents.
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Proof. By (1.2) and the fact that an a-shuffle followed by a b-shuffle is an ab-shuffle, the probability
that r successive b-shuffles (started at the identity) lead to a permutation with j descents is

∑
i�0

1

brn

(
n + br − i − 1

n

)
c0

i j, (2.1)

where as in Proposition 2.1, c0
i j denotes the number of σ ∈ Sn such that d(σ−1) = i and d(σ ) = j.

Proposition 2.1 gives that

∑
i,k�0

c0
iksi+1tk+1

(1 − s)n+1(1 − t)n+1
=

∑
a,d�0

(
n + ad − 1

n

)
satd.

Taking the coefficient of sbr
on both sides gives that

∑
i,k�0

c0
ik

(n+br−i−1
n

)
tk+1

(1 − t)n+1
=

∑
d�0

(
n + brd − 1

n

)
td.

Comparing with Eq. (2.1) gives that the probability that a permutation obtained after r successive
b-shuffles has j descents is

1

brn

[
t j+1](1 − t)n+1

∑
d�0

(
n + brd − 1

n

)
td

= 1

brn

∑
l�0

(−1)l
(

n + 1

l

)(
n − 1 + ( j + 1 − l)br

n

)
.

From (1.1), this is equal to the carries transition probability Pbr (0, j). By Eq. (1.3), this is P r
b(0, j), as

claimed. �
An immediate corollary of Theorem 2.3 is that the carries chain also has π( j) = A(n, j)/n! as its

stationary distribution. We conclude this section with two alternative derivations of the stationary
distribution of the carries chain. The following lemma will be helpful. Stanley [30] and Pitman [27]
give bijective proofs.

Lemma 2.4. Let X1, . . . , Xn be independent uniform [0,1] random variables. Then for all integers j,
P( j �

∑n
i=1 Xi < j + 1) is equal to the probability that a uniformly chosen random permutation on n symbols

has j descents.

As usual we let P r(0, j) denote the distribution on {0,1, . . . ,n − 1} after r steps of the carries
chain (for the base b addition of n numbers) started from 0.

Theorem 2.5. (See [23].) The stationary distribution π of the carries chain satisfies π( j) = A(n, j)/n!, where
A(n, j) is the number of permutations in Sn with j descents.

Proof. By Holte [23], r steps of the base b carries chain is equivalent to one step of the base br carries
chain. Letting Y1, . . . , Yn be independent discrete uniform random variables on {0,1, . . . ,br − 1}, it
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follows that

P r(0, j) = P

(
jbr �

n∑
i=1

Yi < ( j + 1)br

)
.

Letting U1, . . . , Un be independent continuous uniforms on [0,br], this implies that

P r(0, j) = P

(
jbr �

n∑
i=1

�Ui� < ( j + 1)br

)

= P

(
jbr �

n∑
i=1

Ui −
n∑

i=1

(
Ui − �Ui�

)
< ( j + 1)br

)

= P

(
j �

n∑
i=1

Xi − E < j + 1

)
.

Here the Xi = Ui/br are independent uniforms on [0,1] and E = 1/br · ∑n
i=1(Ui − �Ui�).

Although E is not independent of the Xi ’s, note that when n is fixed and r → ∞, E converges
in probability to 0. Indeed, this follows since |E| � n/br with probability 1. Thus Slutsky’s theorem
implies that

lim
r→∞ P r(0, j) = P

(
j �

n∑
i=1

Xi < j + 1

)
,

and the result follows from Lemma 2.4. �
A simple analytic way to find the stationary distribution uses the closed form for P r(0, j). As r

tends to infinity,

1

brn

(
n − 1 + ( j + 1 − l)br

n

)
→ ( j + 1 − l)n

n! .

Thus by (1.1) and (1.3),

P r(0, j) = 1

brn

j∑
l=0

(−1)l
(

n + 1

l

)(
n − 1 + ( j + 1 − l)br

n

)

→ 1

n!
j∑

l=0

(−1)l
(

n + 1

l

)
( j + 1 − l)n = A(n, j)

n! .

The last equality is an identity, due to Euler, for the A(n, j) [12].

3. Rates of convergence

This section presents both upper and lower bounds on convergence to stationarity for the equiva-
lent Markov chains of Section 2. Theorem 3.2 shows that the descent set of a permutation (not just
the number of descents) is close to its stationary distribution after r b-shuffles if r = logb(n) + c. This
uses symmetric function theory. Theorem 3.3 uses stochastic monotonicity to bound convergence of
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the carries chain: it shows that at least r = 1
2 logb(n) + c steps are needed and that r = logb(n) + c

steps suffice. Theorem 3.4 shows that for large n, 1
2 logb(n) + c steps are sufficient.

All of our results involve the total variation distance between probability measures P and Q on a
finite set X , defined as

‖P − Q ‖TV = 1

2

∑
x

∣∣P (x) − Q (x)
∣∣ = max

A⊆X

∣∣P (A) − Q (A)
∣∣.

Theorem 3.1. Consider the carries chain for base b addition of n numbers. Let r = 
logb(cn)� with c > 0. Let
P r

0 denote the distribution on {0,1, . . . ,n − 1} given by taking r steps in the carries chain, started from 0. Let
π be the stationary distribution of the carries chain. Then

∥∥P r
0 − π

∥∥
TV � 1

2

√
e1/(2c2) − 1.

In fact, we prove a stronger result. This uses the notion of the descent set of a permutation σ ,
defined as the set of i, 1 � i � n − 1, such that σ(i) > σ(i + 1). For instance 5 1 3 2 4 has descent
set {1,3}. Let P̃ r(S) denote the probability that a permutation obtained after the iteration of r
b-shuffles (or equivalently a single br -shuffle) has descent set S , and let π̃ (S) denote the proba-
bility that a uniformly chosen random permutation has descent set S . Theorem 3.2 uses symmetric
function theory to upper bound the total variation distance between P̃ r and π̃ . Chapter 7 of the text
[31] provides background on the concepts used in the proof of Theorem 3.2 (i.e. Young tableaux, the
RSK correspondence, and symmetric functions).

Theorem 3.2. Let r = 
logb(cn)� with c > 0. Then

∥∥ P̃ r − π̃
∥∥

TV � 1

2

√
e1/(2c2) − 1.

Proof. We use the RSK correspondence which associates to a permutation σ a pair of standard Young
tableaux (P , Q ) called the insertion and recording tableau of σ respectively. One says that a standard
Young tableau T has a descent at i (1 � i � n − 1) if i + 1 is in a row lower than i in T . We let d(T )

denote the number of descents of T . By Lemma 7.23.1 of [31], the descent set of σ is equal to the
descent set of Q (σ ). This implies that

π̃ (S) =
∑
|λ|=n

fλ(S) fλ
n! ,

where fλ is the number of standard Young tableaux of shape λ, and fλ(S) is the number of standard
Young tableaux of shape λ with descent set S .

From Theorem 3 of [21], the probability that Q (σ ) = T (for σ obtained from a br shuffle) is
sλ(1/br, . . . ,1/br) for any standard Young tableau T of shape λ. Here br coordinates of the Schur
function sλ are equal to 1/br and the rest are 0. Thus,

∥∥ P̃ r − π̃
∥∥

TV = 1

2

∑
S⊆{1,...,n−1}

∣∣ P̃ r(S) − π̃ (S)
∣∣

= 1

2

∑
S

∣∣∣∣ ∑
|λ|=n

[
fλ(S)sλ

(
1

br
, . . . ,

1

br

)
− fλ(S) fλ

n!
]∣∣∣∣

� 1

2

∑
S

∑
|λ|=n

∣∣∣∣ fλ(S)sλ

(
1

br
, . . . ,

1

br

)
− fλ(S) fλ

n!
∣∣∣∣
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= 1

2

∑
|λ|=n

∣∣∣∣sλ

(
1

br
, . . . ,

1

br

)
− fλ

n!
∣∣∣∣∑

S

fλ(S)

= 1

2

∑
|λ|=n

∣∣∣∣ fλsλ

(
1

br
, . . . ,

1

br

)
− f 2

λ

n!
∣∣∣∣.

By the Cauchy–Schwarz inequality, this is at most

1

2

√√√√ ∑
|λ|=n

[
sλ

(
1

br
, . . . ,

1

br

)
− fλ

n!
]2 ∑

|λ|=n

f 2
λ = 1

2

√√√√n!
∑
|λ|=n

[
sλ

(
1

br
, . . . ,

1

br

)
− fλ

n!
]2

.

The functions fλsλ(1/br, . . . ,1/br) and f 2
λ /n! both define probability measures on the set of partitions

of size n; the first is the distribution on RSK shapes after a br riffle shuffle [32], and the second is
known as Plancherel measure. Hence the previous expression simplifies to

1

2

√√√√n!
∑
|λ|=n

sλ

(
1

br
, . . . ,

1

br

)2

− 1.

Let [un] f (u) denote the coefficient of un in a series f (u). By the Cauchy identity for Schur functions
[31, p. 322],

∑
|λ|=n

sλ

(
1

br
, . . . ,

1

br

)2

= [
un] ∑

|λ|�0

sλ

(
u

br
, . . . ,

u

br

)
sλ

(
1

br
, . . . ,

1

br

)

= [
un](

1 − u

b2r

)−b2r

= b−2rn
(

b2r + n − 1

n

)
.

Thus

n!
∑
|λ|=n

sλ

(
1

br
, . . . ,

1

br

)2

− 1 =
n−1∏
i=1

(
1 + i

b2r

)
− 1.

Since log(1 + x) � x for x > 0, it follows that

log

(
n−1∏
i=1

(
1 + i

b2r

))
=

n−1∑
i=1

log

(
1 + i

b2r

)
�

(
n

2

)
/b2r .

Thus

n−1∏
i=1

(
1 + i

b2r

)
− 1 � exp

((
n

2

)
/b2r

)
− 1.

Summarizing, it has been shown that

∥∥ P̃ r − π̃
∥∥

TV � 1

2

√
exp

((n

2

)
/b2r

) − 1.

If br = cn with c > 0, then
(n

2

)
/b2r � 1/(2c2), which proves the result. �
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Proof of Theorem 3.1. Theorem 2.3 showed that the base-b carries chain started from 0 is the same
as the chain for the number of descents after successive b-shuffles started from the identity. Thus
Theorem 3.2 also upper bounds the total variation distance between r iterations of the base-b carries
chain (started from 0) and its stationary distribution. �

Next we give a different approach to proving convergence using stochastic monotonicity and also
give a lower bound. The arguments show that logb n+c steps suffice for convergence and that 1

2 logb n
steps are not enough.

Theorem 3.3. For n � 3, any starting state i, and any r � 0, the Markov chain P of (1.1) satisfies

∥∥P r(i, ·) − π
∥∥

TV �
(

n − 1

2
+ i

)
/br .

Conversely, for any ε , 0 < ε < 1, if 1 � r � logb[ ε|i− n−1
2 |√

n
], then

∥∥P r(i, ·) − π
∥∥

TV � 1 − ε.

Proof. Recall that a Markov chain on {0,1, . . . ,n − 1} is stochastically monotone if for all i � i′ ,
P (i, {0, . . . , j}) � P (i′, {0, . . . , j}) for all j. We show that P is stochastically monotone by coupling.
Consider two copies of the carries chain, one at i and one at i′ with i � i′ . Each chain proceeds by
adding n random base-b digits. Couple them by adding the same digits to both. If the first process
results in a carry of k, the second process results in a carry of k or k + 1. This implies stochastic
monotonicity.

From Holte [23, Theorem 4] and the fact that n � 3, the right eigenfunctions for eigenvalues 1/b,
1/b2 can be taken as

f1(i) = i − n − 1

2
, f2(i) = i2 − (n − 1)i + (n − 2)(3n − 1)

12
.

The upper bound follows from stochastic monotonicity and the first eigenvector via [15, Theo-
rem 2.1]. For the lower bound, note that f 2

1 = f2 + A, with A = (n + 1)/12. This, and a simple
computation show that

∫ (
f1(x) − f1(y)

)2
P (x,dy) =

(
1 − 1

b

)2

f 2
1 (x) + A

(
1 − 1

b2

)
.

This is the required input for the lower bound, using [15, Theorem 2.3]. One obtains that ‖P r(i, ·) −
π‖TV � 1 − ε for r � logb[ ε|i− n−1

2 |√
8(n+1)/12

], and the result follows since 8(n + 1)/12 � n when n � 3. �
Remark. The argument for stochastic monotonicity does not depend on the assumption that the digits
are uniform and independently distributed. Any joint distribution within a column (with columns
independent) leads to a stochastically monotone Markov chain. In [14] it is shown that the transition
matrix P is totally positive of order 2. This implies stochastic monotonicity via [24, Proposition 1.3.1,
p. 22].

To close this section, we prove that 1
2 logb(n)+ c steps are sufficient for total variation convergence

when n is large.
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Theorem 3.4. With the notation of Theorem 3.1, there is a constant B > 0 (independent of n,b, c > 1) such
that for r = 1

2 logb(nc),

∥∥P r
0 − π

∥∥
TV � B√

n
+ B√

c
.

Proof. From Theorem 4.3 of [14], there is j∗ ∈ {0,1, . . . ,n−1} such that P r(0, j) � π( j) for 0 � j � j∗ ,
and that P r(0, j) � π( j) for j∗ + 1 � j � n − 1. Thus

∥∥P r
0 − π

∥∥
TV = P r

0

{
0,1, . . . , j∗

} − π
{

0,1, . . . , j∗
}
. (3.1)

From the proof of Theorem 2.5, P r(0, j) = P( jbr �
∑n

i=1 Yi < ( j + 1)br) with Yi independent discrete
uniform random variables on {0,1, . . . ,br −1}. From Lemma 2.4, one has that π( j) = P( j �

∑n
i=1 Ui <

j + 1) with Ui independent uniform random variables on [0,1]. Thus

P r
0( j) = P

(⌊
1

br

n∑
i=1

Yi

⌋
= j

)
and P r

0

{
0,1, . . . , j∗

} = P

(
1

br

n∑
i=1

Yi < j∗ + 1

)
,

π( j) = P

(⌊
n∑

i=1

Ui

⌋
= j

)
and π

{
0,1, . . . , j∗

} = P

(
n∑

i=1

Ui < j∗ + 1

)
.

From the above considerations, we have

∥∥P r
0 − π

∥∥
TV � sup

x

∣∣∣∣∣P
(

1

br

n∑
i=1

Yi < x

)
− P

(
n∑

i=1

Ui < x

)∣∣∣∣∣. (3.2)

Let μn = n/2, σ 2
n = n/12 and νn = (n/2) · (1 − 1/br), τ 2

n = (n/12) · (1 − 1/b2r). The right-hand side
of (3.2) is

sup
x

∣∣∣∣P[
( 1

br

∑n
i=1 Yi − μn)

σn
<

(x − μn)

σn

]
− P

[
(
∑n

i=1 Ui − μn)

σn
<

(x − μn)

σn

]∣∣∣∣
� sup

y

∣∣∣∣P[
( 1

br

∑n
i=1 Yi − μn)

σn
< y

]
− Φ(y)

∣∣∣∣ + sup
y

∣∣∣∣P[
(
∑n

i=1 Ui − μn)

σn
< y

]
− Φ(y)

∣∣∣∣
= I + II.

Here Φ(y) = 1√
2π

∫ y
−∞ e−t2/2 dt denotes the cumulative distribution function of the normal distribu-

tion.
From the usual Berry–Esseen bound, II � B1/

√
n with B1 involving the second and third moments

of the uniform on [0,1], uniformly bounded. Rewrite I as

sup
y

∣∣∣∣P[
( 1

br

∑n
i=1 Yi − νn)

τn
<

(σn y + μn − νn)

τn

]
− Φ(y)

∣∣∣∣
� sup

z

∣∣∣∣P[
( 1

br

∑
i Y i − νn)

τn
� z

]
− Φ(z)

∣∣∣∣ + sup
z

∣∣Φ(z) − Φ(a1z + a2)
∣∣
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with a1 = τn/σn , a2 = (νn − μn)/σn . Using the Berry–Esseen bound again, the first term is bounded
above by B2/

√
n with B2 involving the ratio

E

∣∣∣∣ Y1

br
− br − 1

2br

∣∣∣∣3

/

(
E

∣∣∣∣ Y1

br
− br − 1

2br

∣∣∣∣2)3/2

.

This is uniformly bounded in b,n, c. To bound the final term, we use the following inequality: for any
μ ∈ R, σ 2 ∈ R

+ ,

sup
z

∣∣Φ(z) − Φ(σ z + μ)
∣∣ �

∣∣σ 2 − 1
∣∣ + |μ|

√
2π

4
. (3.3)

An elegant proof of (3.3) using Stein’s identity was communicated by Sourav Chatterjee. Let W
be Normal(μ,σ 2) and Z be Normal(0,1). For any bounded f with a bounded, piecewise continuous
derivative, E(W f (W )) = μE( f (W )) + σ 2

E( f ′(W )) (Stein’s identity being used). Thus

E
(
W f (W ) − f ′(W )

) = μE
(

f (W )
) + (

σ 2 − 1
)
E

(
f ′(W )

)
.

As in [33, p. 22], choose f w0 so that for all w , one has

w f w0(w) − f ′
w0

(w) = δw�w0 − Φ(w0). (3.4)

Here w0 is fixed. Stein shows that | f w0 (w)| �
√

2π/4 for all w , and that | f ′
w0

(w)| � 1 for all w .

Taking expectations in (3.4) proves (3.3). Taking σ 2 = 1 − 1/b2r , μ = −√
3n/br = −√

3/c, it follows
that

sup
z

∣∣Φ(z) − Φ(a1z + a2)
∣∣ � B3/

√
c

with B3 independent of n,b, c > 1. �
Remark. If W is Normal(ν, τ 2) and Z is Normal(μ,σ 2), the bound (3.3) shows that the Kolmogorov
distance between their distributions is at most

min

( |μ − ν|
τ

√
2π

4
+

∣∣∣∣σ 2

τ 2
− 1

∣∣∣∣, |μ − ν|
σ

√
2π

4
+

∣∣∣∣ τ 2

σ 2
− 1

∣∣∣∣).

4. Signed permutations

Let Bn , the hyperoctahedral group, be represented as signed permutations. Thus Bn has 2nn! el-
ements. We associate elements of Bn to arrangements of a deck of n cards with cards allowed to
be face up or face down. A natural analog of the Gilbert–Shannon–Reeds shuffling model was studied
in [3]; the deck is cut approximately in half, the top half turned face up, and the two halves are riffled
together according to the G–S–R prescription. These shuffles have similarly neat combinatorial prop-
erties which allow sharp analysis of mixing times. Of course, shuffling is a natural algebraic operation
and type B shuffles have been studied from an algebraic viewpoint (with applications to Hochschild
homology) in [5,6,20]. This section develops a corresponding carries process in rough parallel with
Section 2. We also give an application to the theory of rounding.

From the previous sections, we see that the key idea is to use the fact that an a-shuffle followed by
a b-shuffle is equivalent to an ab-shuffle. A hyperoctahedral analog of (2a+1)-shuffles was considered
in [5] (see also [20] for connections with the affine Weyl group). A (2a + 1)-shuffle is defined by
multinomially cutting the deck into 2a + 1 piles, then flipping over the even numbered piles, and
riffling them together.



188 P. Diaconis, J. Fulman / Advances in Applied Mathematics 43 (2009) 176–196
View Bn as the signed permutations on n symbols, using the linear ordering

1 < 2 < · · · < n < −n < · · · < −2 < −1.

Say that

(1) σ has a descent at position i (1 � i � n − 1) if σ(i) > σ(i + 1).
(2) σ has a descent at position n if σ(n) < 0.

For example, −1 −2 −3 ∈ B3 has three descents. Let A(n, j) denote the number of elements of Bn
with j descents. The Bergerons [5] give analogs of basic properties of riffle shuffles. More precisely,
they show that if a Markov chain on the hyperoctahedral group begins at the identity and proceeds
by successive independent (2b + 1)-shuffles, then

• The probability of obtaining the signed permutation τ after r steps is

(n+ (2b+1)r −1
2 −d(τ−1)

n

)
(2b + 1)rn

. (4.1)

• A (2a + 1)-shuffle followed by a (2b + 1)-shuffle is equivalent to a (2a + 1)(2b + 1)-shuffle.

Using these gives a type B analog of Proposition 2.1. Gessel also has an unpublished proof of Propo-
sition 4.1 using P -partitions.

Proposition 4.1. Let σ ∈ Bn have d descents. Let cd
i j be the number of ordered pairs (τ ,μ) of elements of Bn

such that τ has i descents, μ has j descents, and τμ = σ . Then

∑
i, j�0

cd
i j s

it j

(1 − s)n+1(1 − t)n+1
=

∑
a,b�0

(
n + 2ab + a + b − d

n

)
satb.

Proof. Since a (2a+1)-shuffle followed by a (2b+1)-shuffle is equivalent to a (2a+1)(2b+1)-shuffle,
the r = 1 case of (4.1) gives that

∑
μ∈Bn

(
n + a − d(μ)

n

)
μ−1 ·

∑
τ∈Bn

(
n + b − d(τ )

n

)
τ−1 =

∑
σ∈Bn

(
n + 2ab + a + b − d(σ )

n

)
σ−1.

As in the proof of Proposition 2.1, one multiplies both sides by satb , sums over all a,b � 0, and then
takes the coefficient of σ−1 on both sides to obtain the result. �

Next we define a “type B” carries process, to which we will relate the type B hyperoctahedral
shuffle. This is defined as the usual carries process, where one adds n length m numbers base 2b + 1,
and to these adds the length m number (b,b, . . . ,b). Note that the state space of the type B carries
chain is {0,1, . . . ,n} (for usual carries, the most one can carry is n − 1). For example when b = 1 (so
2b + 1 = 3), adding 222 and 201 followed by appending 111 gives

2 1 1
2 2 2
2 0 1
1 1 1

2 0 1 1

with carries κ0 = 0, κ1 = 1, κ2 = 1, κ3 = 2.
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Theorem 4.2. For 0 � i, j � n,

(1) The transition probabilities of the type B carries chain are

P (i, j) = 1

(2b + 1)n

∑
l�0

(−1)l
(

n + 1

l

)(
n + ( j − l)(2b + 1) + b − i

n

)
.

(2) The r-step transition probabilities of the type B carries chain are

P r(i, j) = 1

(2b + 1)rn

∑
l�0

(−1)l
(

n + 1

l

)(
n + ( j − l)(2b + 1)r + (2b+1)r−1

2 − i

n

)

(i.e. one replaces 2b + 1 by (2b + 1)r in part (1)).

Proof. From the definition of the type B carries chain,

P (i, j) = P
(

j(2b + 1) − b � i + X1 + · · · + Xn � j(2b + 1) + b
)

where X1, . . . , Xn are independent discrete uniform random variables in {0,1, . . . ,2b}. Equivalently,

P (i, j) = (2b + 1) · P
(
i + X1 + · · · + Xn + Y = j(2b + 1) + b

)
,

where X1, . . . , Xn, Y are independent discrete uniform random variables in {0,1, . . . ,2b}. Letting
[xh] f (x) denote the coefficient of xh in a series f (x), it follows that

P (i, j) = 1

(2b + 1)n

[
x j(2b+1)+b−i](1 − x2b+1

1 − x

)n+1

= 1

(2b + 1)n

∑
l�0

(−1)l
(

n + 1

l

)[
x( j−l)(2b+1)+b−i]( 1

1 − x

)n+1

= 1

(2b + 1)n

∑
l�0

(−1)l
(

n + 1

l

)(
n + ( j − l)(2b + 1) + b − i

n

)
.

Thus the first part is proved.
To prove the second half of the theorem, we show that r steps of the base-(2b + 1) carries chain

is equivalent to one step of the base (2b + 1)r carries chain. To compute the carry after r steps of
the type Bn carries chain, add b(1 + (2b + 1) + · · · + (2b + 1)r−1) to the sum of n length r numbers
base 2b + 1. To compute the carry after one step of the type Bn base (2b + 1)r carries chain, add
[(2b +1)r −1]/2 to the sum of n length 1 numbers base (2b +1)r . These computations are equivalent,
so the result follows by replacing 2b + 1 by (2b + 1)r in part (1). �

Now we relate hyperoctahedral shuffles to type B carries. In what follows, π denotes the distribu-
tion on {0,1, . . . ,n} defined by π( j) = A(n, j)/(2nn!).

Theorem 4.3. Let a Markov chain on the hyperoctahedral group Bn begin at the identity and proceed by
successive independent (2b + 1)-shuffles. Then the number of descents of τ−1 forms a Markov chain, and its
formal time reversal with respect to its stationary distribution π is identical with the carries Markov chain.
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Proof. Let τr be the element of Bn obtained after r independent b-shuffles (started at the identity).
Arguing as in the proof of Theorem 2.2 gives that d(τ−1

r ) forms a Markov chain with transition prob-
abilities

P
(
d
(
τ−1

r

) = j|d(
τ−1

r−1

) = i
) = A(n, j)

A(n, i)(2b + 1)n

∑
k�0

c j
ik

(
n + b − k

n

)
.

Here c j
ik is as in the statement of Proposition 4.1.

Letting [xh] f (x) denote the coefficient of xh in a series f (x), the transition probability in the
previous paragraph can be written as

[
tb] A(n, j)

A(n, i)(2b + 1)n

∑
k�0

c j
ik

tk

(1 − t)n+1

= [
tbsi] A(n, j)

A(n, i)(2b + 1)n
(1 − s)n+1

∑
i,k�0

c j
ik

sitk

(1 − s)n+1(1 − t)n+1
.

By Proposition 4.1 this is equal to

[
tbsi] A(n, j)

A(n, i)(2b + 1)n
(1 − s)n+1

∑
a,c�0

(
n + 2ac + a + c − j

n

)
satc

= A(n, j)

A(n, i)(2b + 1)n

∑
l�0

(−1)l
(

n + 1

l

)[
tb]∑

c�0

(
n + (i − l)(2c + 1) + c − j

n

)
tc

= A(n, j)

A(n, i)(2b + 1)n

∑
l�0

(−1)l
(

n + 1

l

)(
n + (i − l)(2b + 1) + b − j

n

)
.

Comparing with Theorem 4.2, this is equal to π( j)P ( j, i)/π(i), as needed. �
The next theorem is easily proved by the technique used to prove Theorem 2.3 (using Proposi-

tion 4.1 instead of Proposition 2.1).

Theorem 4.4. The probability that the type B carries chain goes from 0 to j in r steps is equal to the probability
that an element of Bn obtained by performing r successive (2b + 1)-shuffles (started at the identity) has j
descents.

The following corollary is immediate from Theorem 4.4.

Corollary 4.5. The stationary distribution of the type B carries chain is given by π( j) = A(n, j)/(2nn!), where
A(n, j) is the number of signed permutations on n symbols with j descents.

Corollary 4.6 gives a closed formula for A(n, j). (This can also be obtained by combining Proposi-
tion 4.7 below with Eq. (19) of [11].)

Corollary 4.6.

A(n, j) =
j∑

l=0

(−1)l
(

n + 1

l

)
(2 j − 2l + 1)n.
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Proof. Let r → ∞ in part (2) of Theorem 4.2, and apply Corollary 4.5. �
As an application of the above results, we give a new proof of the following lovely fact from [29]

(see also Section 9 of [11] for closely related results). Note that it can be interpreted as computing
the probability that the sum of n independent uniform random variables on [0,1], when rounded to
the nearest integer, is equal to j.

Proposition 4.7. Let U1, . . . , Un be independent, identically distributed continuous uniform random variables
in [0,1]. Then

P

(
j − 1

2
� U1 + · · · + Un � j + 1

2

)
= A(n, j)

2nn! .

Proof. Let X1, . . . , Xn be independent discrete uniform random variables on {0,1, . . . ,2b}. From the
definition of the type Bn base-(2b + 1) carries chain,

P (0, j) = P

(
j(2b + 1) − b �

n∑
i=1

Xi < j(2b + 1) + b + 1

)
.

Let Y1, . . . , Yn be independent continuous uniform random variables on [0,2b + 1]. Then it follows
that

P (0, j) = P

(
j(2b + 1) − b �

n∑
i=1

�Yi� < j(2b + 1) + b + 1

)

= P

(
(2b + 1)

(
j − 1

2

)
�

n∑
i=1

Yi −
n∑

i=1

(
Yi − �Yi�

) − 1

2
< (2b + 1)

(
j + 1

2

))

= P

(
j − 1

2
�

n∑
i=1

Ui − E < j + 1

2

)
.

Here the Ui = Yi/(2b + 1) are independent continuous uniform random variables on [0,1], and

E = 1

2b + 1

n∑
i=1

(
Yi − �Yi�

) + 1

2(2b + 1)
.

Note that when n is fixed and b → ∞, E converges to 0 with probability 1. Thus Slutsky’s theorem
implies that

lim
b→∞

P (0, j) = P

(
j − 1

2
�

n∑
i=1

Ui < j + 1

2

)
.

However by Theorem 4.2 and Corollary 4.5,

lim
b→∞

P (0, j) = π( j) = A(n, j)

2nn! ,

which completes the proof. �
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5. Two final topics

The carries matrix also comes up in studying sections of generating functions via the Veronese
map. The large n limit of the carries process is well approximated by a classical auto-regressive pro-
cess.

5.1. Eulerian polynomials and Hilbert series of Veronese subrings

Some natural sequences ak , 0 � k < ∞, have generating functions

∞∑
k=0

akxk = h(x)

(1 − x)n+1

with h(x) = h0 +h1x+· · ·+hn+1xn+1 a polynomial of degree at most n +1. Suppose we are interested
in every bth term {abk}, 0 � k < ∞. It is not hard to see that

∞∑
k=0

abkxk = h〈b〉(x)

(1 − x)n+1

for another polynomial h〈b〉(x) of degree at most n + 1. The study of these generating functions arises
naturally in algebraic geometry [18] and lattice point enumeration [4].

Brenti and Welker [8] show that the ith coefficient of h〈b〉(x) satisfies

h〈b〉
i =

n+1∑
j=0

C(i, j)h j

with C an (n + 2)× (n + 2) matrix with (i, j) entry (0 � i, j � n + 1) equal to the number of solutions
to a1 + · · · + an+1 = ib − j where 0 � al � b − 1 are integers. In [14] we show that the n × n matrix
given by deleting the first and last rows and columns of C , then multiplying by b−n and taking the
transpose is precisely the carries matrix (P (i, j)) of (1.1).

Since iterates of the carries chain converge, the matrix (C(i, j)) has nice limiting behavior. Brenti
and Welker [8] show that the zeros of h〈b〉 converge and Beck and Stapledon [4] show that the
zeros converge to the zeros of the nth Eulerian polynomial pn(x), defined as

∑
j�0 A(n, j)x j+1, where

A(n, j) is the number of permutations in Sn with j descents. The following is a refinement.

Theorem 5.1. Suppose that h(1) �= 0 and let pn(x) be the nth Eulerian polynomial. Then as b → ∞ with n
fixed,

h〈b〉(x)

bn · h(1)
→ pn(x)

n! .

Proof. Let [yk] f (y) denote the coefficient of yk in a power series f (y). Then the definition of C(i, j)
gives that

C(i, j) = [
yib− j] (1 − yb)n+1

(1 − y)n+1
=

∑
l�0

(−1)l
(

n + 1

l

)[
y(i−l)b− j] 1

(1 − y)n+1

=
∑
l�0

(−1)l
(

n + 1

l

)(
n + (i − l)b − j

n

)
.
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Supposing that 1 � i � n, it follows that

lim
b→∞

C(i, j)

bn
= 1

n!
i∑

l=0

(−1)l
(

n + 1

l

)
(i − l)n = A(n, i − 1)

n! (5.1)

where the second equality uses a well-known formula for Eulerian numbers [12]. Since C(0, j) = δ0, j
and C(n + 1, j) = δn+1, j , clearly

lim
b→∞

C(0, j)

bn
= lim

b→∞
C(n + 1, j)

bn
= 0. (5.2)

Combining Eqs. (5.1) and (5.2) yields that

lim
b→∞

h〈b〉(x)

bn · h(1)
= lim

b→∞

∑n+1
i=0 [∑n+1

j=0 C(i, j)h j]xi

bn · h(1)

=
∑n

i=1[A(n, i − 1)
∑n+1

j=0 h j]xi

n! · h(1)

= pn(x)

n! . �
Here is an example. The coordinate ring R of a projective variety in n + 1 variables decomposes

into its graded pieces Rk , 0 � k � ∞ and the Hilbert series has the form [2, Theorem 11.1]

∞∑
k=0

dim(Rk)xk = h(x)

(1 − x)n+1
.

The bth Veronese embedding replaces the variables by all degree b monomials in these variables. (If
b = 3, {x, y} are replaced by x3, x2 y, xy2, y3.) The image of the coordinate ring has Hilbert series
h〈b〉(x)/(1 − x)n+1. As a simple special case, the full projective space has coordinate ring C[x1 . . . xn+1].
The degree k homogeneous polynomials have dimension

(n+k
n

)
and

∞∑
k=0

(
n + k

n

)
xk = 1

(1 − x)n+1
. (5.3)

When n + 1 = 2,

∞∑
k=0

(k + 1)xk = 1

(1 − x)2
and

∞∑
k=0

(bk + 1)xk = (b − 1)x + 1

(1 − x)2
.

When n + 1 = 3,

∞∑
k=0

(
k + 2

2

)
xk = 1

(1 − x)3
and

∞∑
k=0

(
bk + 2

2

)
xk = x2(b(b − 3) + 2) + x(b(b + 3) − 4) + 2

2(1 − x)3
.

Dividing the right-hand sides of these expressions by bn · h(1) (here b and b2 respectively), then
multiplying by (1 − x)n+1 and letting b → ∞, gives pn(x)/n! (here x and (x2 + x)/2 respectively).
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5.2. Autoregressive approximation

This section studies the large n limit of the carries process and shows it is well approxi-
mated by a classical autoregressive process. Throughout, we work with a general base b and let
n be the number of summands. Let κ0 = 0, κ1, κ2, . . . be the carries process on {0,1, . . . ,n − 1}.
Let Yt = (κt − n/2)/

√
n/12, t = 0,1,2, . . . . Theorem 5.2 relates Yt to a Gaussian autoregressive

process W0, W1, W2, . . . defined by W0 = −√
3n, Wt+1 = Wt/b + εt , with the εt independent

Normal(0,1 − 1/b2) random variables.

Theorem 5.2. Let Pn be the law of the process Yt , 0 � t < ∞, on R
∞ . Let Q be the law of the process

W0, W1, . . . on R
∞ . Then Pn ⇒ Q as n → ∞.

The following lemma will be helpful for proving Theorem 5.2.

Lemma 5.3. The base b carries process can be represented as follows:

If κt = r mod b, let κt+1 = κt − r

b
+ εt+1 (5.4)

where P(εt+1 = k) is the probability that the sum of n + 1 independent discrete uniform random variables on
{0,1, . . . ,b − 1} is equal to bk + b − r − 1, given that the sum is congruent to b − r − 1 mod b.

Proof. From page 140 of Holte [23] one can write the carries transition probability as

P (i, j) = 1

bn

[
x( j+1)b−i−1](1 + x + · · · + xb−1)n+1

(5.5)

where [xk] f (x) denotes the coefficient of xk in a polynomial f (x). If i = r mod b, write j = (i − r)/
b + εt+1. Then (5.5) becomes

1

bn

[
xb−r−1+(εt+1)b](1 + x + · · · + xb−1)n+1

.

To see that this implies the lemma, note that the sum of n + 1 discrete uniform random variables on
{0,1, . . . ,b − 1} is equidistributed mod b, and so is congruent to b − r − 1 mod b with probability
1/b. �
Proof of Theorem 5.2. We show convergence by showing that {Pn}∞n=1 is tight and that the finite
dimensional distributions of Pn converge to the finite dimensional distributions of Q . This is enough
from [19, 2.2, 4.3, 4.5]. From [19, 2.4], Pn is tight if and only if the family P h

n of hth marginal distri-
butions is tight. Thus it is enough to show that the finite dimensional distributions converge.

By Lemma 5.3 the carries process can be represented as:

If κt = r mod b, let κt+1 = κt − r

b
+ εt+1 (5.6)

where P(εt+1 = k) is the probability that the sum of n + 1 independent uniform random variables on
{0,1, . . . ,b − 1} is equal to bk + b − r − 1, given that the sum is congruent to b − r − 1 mod b. Hence
bεt+1 (for κt = b − 1 mod b) has the distribution of the sum of n + 1 uniform random variables on
{0,1, . . . ,b − 1} given that the sum is congruent to 0 mod b. A generating function argument then
shows that if n � 2 then εt+1 has mean n+1

2 (1 − 1/b) and variance n+1
12 (1 − 1/b2). By the local central

limit theorem for sums of independent, identically distributed random variables,
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εt+1 − n
2 (1 − 1

b )√
n
12 (1 − 1

b2 )

�⇒ N (0,1)

as n → ∞, and a similar argument gives the same conclusion for κt congruent to any r mod b, with
error term O (n−1/2) since b is fixed.

From these considerations, the joint distribution of (ε1, ε2, . . . , εh), normalized as above, converges
to the product of h independent standard normal variables (h fixed, n large).

Next, write κt+1 = (κt − δt)/b + εt+1 with δt = κt mod b. Thus, for t = 1,2,3, . . . ,h − 1, with
κ0 = δ0 = 0,

κt+1 = κ0

bt+1
+

(
εt+1 + εt

b
+ · · · + ε1

bt

)
−

(
δt

b
+ δt−1

b2
+ · · · + δ0

bt+1

)
.

Since κt+1 = √
n/12 · Yt+1 + n/2 and κ0 = √

n/12 · Y0 + n/2, it follows that

Yt+1 = Y0

bt+1
− n/2√

n/12

(
1 − 1

bt+1

)
+ 1√

n/12

(
εt+1 + εt

b
+ · · · + ε1

bt

)

− 1√
n/12

(
δt

b
+ δt−1

b2
+ · · · + δ0

bt+1

)

= Y0

bt+1
+ 1√

n/12

[(
εt+1 − n

2

(
1 − 1

b

))
+ · · · + (ε1 − n

2 (1 − 1
b ))

bt

]

− 1√
n/12

(
δt

b
+ δt−1

b2
+ · · · + δ0

bt+1

)
.

As noted earlier, the [εi − n
2 (1 − 1/b)]/√n/12 converge to independent N (0,1 − 1/b2)’s. Since |δi | � b

for all i, the term involving the δ’s converges to 0 with probability 1, so by Slutsky’s theorem, it can
be disregarded. We thus have that the joint distribution of (Y0, Y1, . . . , Yh) converges to the joint
distribution of (W0, W1, . . . , Wh), and the proof is complete. �
Remark. The Gaussian autoregressive process Xn+1 = 1

b Xn + εn+1 (with X0 = x) is carefully studied
in [16]. It has eigenvalues 1,1/b,1/b2, . . . and takes order logb |x| + c steps to converge [16, Propo-
sition 4.9]. Taking x = −√

3n as in Theorem 5.2, this is consistent with our result in Section 3 that
1
2 logb(n) + c steps is the right answer for the carries chain.

Remark. Theorem 5.2 implies that many properties of Gaussian autoregressive processes (here the
discrete time Ornstein–Uhlenbeck process) apply to carries—at least in the limit. For example Corol-
lary 2 of Lai [26] implies, in the notation above, that

P(Wt � bt i.o.) = 1 or 0 according as
∞∑

t=0

b−1
t e−b2

t /2 = ∞ or < ∞.

It follows for carries that

P

(
κt � n

2
+

√
n

12

(
log(t)

)1+ε
i.o.

)
= 1 or 0 according as ε � 1 or ε > 1.
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