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This paper describes a complete framework to predict the behaviour of interacting non-spherical parti-
cles with large Stokes numbers in a turbulent flow. A summary of the rigid body dynamics of particles
and particle collisions is presented in the framework of Quaternions. A particle-rough wall interaction
model to describe the collisions between non-spherical particles and a rough wall is put forward as well.
The framework is coupled with a DNS-LES approach to simulate the behaviour of horizontal turbulent
channel flow with 5 differently shaped particles: a sphere, two types of ellipsoids, a disc, and a fibre.
The drag and lift forces and the torque on the particles are computed from correlations which are derived
using true DNS.

The simulation results show that non-spherical particles tend to locally maximise the drag force, by
aligning their longest axis perpendicular to the local flow direction. This phenomenon is further
explained by performing resolved direct numerical simulations of an ellipsoid in a flow. These simula-
tions show that the high pressure region on the acute sides of a non-spherical particle result in a torque
if an axis of the non-spherical particle is not aligned with the flow. This torque is only zero if the axis of
the particle is perpendicular to the local direction of the flow. Moreover, the particle is most stable when
the longest axis is aligned perpendicular to the flow.

The alignment of the longest axis of a non-spherical particle perpendicular to the local flow leads to
non-spherical particles having a larger average velocity compared to spherical particles with the same
equivalent diameter. It is also shown that disc-shaped particles flow in a more steady trajectory com-
pared to elongated particles, such as elongated ellipsoids and fibres. This is related to the magnitude
of the pressure gradient on the acute side of the non-spherical particles. Finally, it is shown that the effect
of wall roughness affects non-spherical particles differently than spherical particles. Particularly, a colli-
sion of a non-spherical particle with a rough wall induces a significant amount of rotational energy,
whereas a corresponding collision with a spherical particle results in mostly a change in translational
motion.
� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/3.0/).
Introduction

Knowledge of the dynamics of turbulent gas–solid flows has a
great importance for the successful design and determination of
optimum operating conditions of numerous industrial applica-
tions, e.g. pneumatic transport, cyclone separators, fluidised beds,
dust collectors, and pulverised-coal combustors to name a few.
These systems exhibit complex flow dynamics and interactions
between flow components. In particular, the complexity of the
interaction between particles and gas-phase turbulence (Vreman,
2007) and the effect of particle–particle and particle–wall colli-
sions (Sommerfeld and Kussin, 2003) have stimulated research
work in recent years.

Turbulent gas–solid flows have been studied experimentally
(e.g. Snyder and Lumley, 1971; Kulick et al., 1994; Kussin and
Sommerfeld, 2002) and numerically. Numerical simulations can
be done in an ensemble-averaged framework, in which the particle
properties are represented by their mean or a PDF (e.g. Simonin
et al., 1993; Minier and Peirano, 2001; van Wachem et al., 2001a).
Alternatively, the location and other properties of each individual
particle can be tracked, the so-called Lagrangian approach (e.g.
Tsuji, 1993; Tsuji et al., 1992; van Wachem et al., 2001b; Kuang
et al., 2008). With this approach, various frameworks can be used
to account for the interaction of the particle with the surrounding
fluid. Most common is the so-called ‘‘point-particle’’ approach, in
which an empirical expression is used to estimate the interaction
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Fig. 1. A snapshot of an ellipsoid in a flow with significant slip (Rep ¼ 200). The
vectors indicate the flow velocity and the colours indicate the relative pressure.
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between the fluid and the particle, which is added as a momentum
source to the fluid. A valid empirical relation between the local fluid
properties and the interaction forces for the specific particle must
exist in order to use this approach. Moreover, a point-source
approach is only valid if the particle is sufficiently small with
respect to the Kolmogorov scale of the fluid. Otherwise, a more
detailed coupling algorithm must be used, which takes into account
the no-slip condition on the surface of each particle (e.g. Patankar
et al., 2000; Mittal and Iaccarino, 2005; Mark and van Wachem,
2008). Although this type of coupling is more accurate, it is also
computationally very expensive and currently very restrictive in
the number of particles it can deal with.

The majority of studies involving gas-particle flows assume that
particles are perfect spheres. This assumption is very convenient
because of several factors: perfect spheres are simple to model,
their behaviour is well known, and lastly there is a large availabil-
ity of models in the literature which describe the particle–fluid
interactions (e.g. Fan and Zhu, 1998). However, assuming the par-
ticles are perfect spheres may be unrealistic, because most applica-
tions deal with non-spherical particles. Analysis of flows with non-
spherical particles is considerably more complicated than flows
with spherical particles. While a sphere is characterised by its
diameter only, even a very simple non-spherical particle like a disc
or a fibre needs at least two parameters to be uniquely defined.
This makes the rigid body dynamics of non-spherical particles
more complex than the corresponding dynamics of spherical parti-
cles. Moreover, additional complexities arise in describing the
interaction of a non-spherical particle with a fluid. In a uniform
flow a sphere experiences only a drag force, whereas a non-spher-
ical body is also affected by a transverse lift force, a pitching torque
and a counter-rotational torque. Moreover, all of these forces act-
ing on a non-spherical body depend not only on the Reynolds num-
ber, but also on the angle between the axes of the particle and the
direction of the incoming flow. Additionally, the framework for
describing collisions requires a different approach compared to
the one used for perfect spheres; for instance, the orientation of
the particle must be taken into account. All of the factors above
contribute to the complexity of the investigated problem and are
addressed throughout this article.

A comprehensive overview of the available methods to describe
the shape, the resulting drag force based on correlations and their
associated behaviour of non-spherical particles is presented in
Chhabra et al. (1999), Mandø and Rosendahl (2010). A common
approach to describe the particle shape is by using a so-called
‘‘sphericity factor’’, U (Wadell, 1934). Sphericity is defined as the
ratio of the surface area of a sphere over the surface area of a
non-spherical particle with the equivalent volume. By definition,
the sphericity is less than or equal to one. In most engineering
handbooks (e.g. Crowe, 2005) and papers (e.g. Hölzer and
Sommerfeld, 2008) the drag of a non-spherical particle is estimated
from correlations for spherical particles which are modified to take
into account the sphericity factor.

The majority of papers concerning the simulation of the behav-
iour of non-spherical particles use the framework of Brenner
(1964) to determine the hydrodynamic drag interaction and
Jeffery (1922) to describe the hydrodynamic torque acting on a
particle from a flow (e.g. Marchioli et al., 2010; Marchioli and
Soldati, 2013; Njobuenwu and Fairweather, 2013; Zhao and van
Wachem, 2013a). However, both models assume creeping flow
and Stokes flow conditions, and are in principle not valid to
describe gas-particle flows where there is a slip between the parti-
cle and fluid velocity. Hence, simulations carried out using these
models cannot resolve gas-particle flows with non-spherical parti-
cles, where there is a slip between the particle and the fluid flow,
i.e. particles with finite Stokes numbers.
In Zastawny et al. (2012), the development of models for the
drag, lift and torques acting on non-spherical particles with a signif-
icant slip has been researched by means of true direct numerical
simulation. The term ‘‘true’’ emphasises that not only all the flow
scales are resolved but also a no-slip boundary condition is applied
at the surface of particle. As all the existing flow scales are resolved,
there are no assumptions required at this scale to capture the inter-
action of the particles with the fluid flow. The true direct numerical
simulations in this paper are shown to be grid independent, and a
large number of simulations have been performed for each particle
shape. Although there is a good agreement from the new drag, lift
and torque model with the analytical models of Brenner (1964)
and Jeffery (1922), the models show that the behaviour of non-
spherical particles at larger slip velocities is quite different from
the models put forward by Brenner (1964) and Jeffery (1922).

The most notable difference of the forces on a non-spherical
particle in a flow with a significant slip velocity, is the detachment
of the flow at the acute edges on the particles. This is illustrated by
a result of the resolved direct numerical simulation shown in Fig. 1.
This figure shows an ellipsoid in a flow with a slip velocity between
the particle and the fluid, the Reynolds number based on the slip
velocity is 200. It can be clearly seen that the acute edges of the
particle cause the flow to separate. This leads to high pressure
regions near these points of detachment, as is indicated by the col-
ours of Fig. 1. This was also confirmed in Hölzer and Sommerfeld
(2008).

These high pressure regions cause a net fluid torque to act on
the particle, and as a consequence the particle will rotate until
the pressure gradients are of equal magnitude on both sides of
the particle. Thus, the configuration as shown in Fig. 1 is unstable,
and the resulting net torque on the particle originates from the dif-
ference in pressure gradients on either side of the particle. This will
result in a rotation of the particle in the flow, until the pressure
gradients are maximum and of equal magnitude on both sides of
the particle. Hence, a non-spherical particle will tend to maximise
its drag once there is a slip velocity between the particle and the
fluid. This is also commonly observed in nature, as described for
instance in Hoerner (1965): leaves that fall from a tree do not fall
as fast as possible, but maximise their drag and their falling time.
There are numerous other examples of this in nature.
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In studying the orientation of non-spherical particles with a slip
velocity between the particle and the fluid, the application of the
drag and torque model as put forward by Brenner (1964) and
Jeffery (1922) is not applicable. The application of these models
will not result in the particles to have a preferred orientation with
respect to the mean flow, as has been shown in numerous papers
(Marchioli et al., 2010; Zhao and van Wachem, 2013a). However,
as discussed above, for the gas-particle case with a slip velocity
between the fluid and the particle, a preferred orientation is to
be expected.

The aim of this paper is to investigate the influence of the par-
ticle shape on interacting particles flowing in a horizontal turbu-
lent channel flow, for particles with a significant Stokes number.
To achieve this, large eddy simulations (LES) of a horizontal turbu-
lent channel flow laden with five different particle shapes, incorpo-
rating the drag, lift and toque model derived in Zastawny et al.
(2012), are performed. The well-documented horizontal channel
flow case described in Kussin and Sommerfeld (2002), who study
spherical particles, is used as a reference case. The measurements
in their work was done with phase Doppler anemometry (PDA),
to measure the fluid and particle velocity simultaneously. The
numerical framework applied in this paper has been previously
validated for spherical particles in Mallouppas and van Wachem
(2013). In that paper, it is shown that the comprehensive discrete
element model (DEM) is more accurate in determining the behav-
iour of the particles in this horizontal gas–solid channel flow that
the hard-sphere model. Moreover, this paper showed that the fluid
mechanics are accurately modelled using the LES framework. In
the current paper, this framework is extended to account for
non-spherical particles.

The details of the five particles researched in this article are
shown in Table 1. The results of the simulations are compared to
experimental and numerical data for spheres and the effect of
non-sphericity will be discussed. Moreover, the effect of wall
roughness of the channel walls on the behaviour of the five differ-
ent particle shapes is researched and is shown to be very
important.

In the large-scale simulation of non-spherical particles the true
DNS framework, where the flow around each particle is calculated,
is not yet feasible because of the large number of particles and the
relatively high Re number. Therefore, a point-source approxima-
tion of particles in the flow combined with LES is pursued (e.g.
Portela and Oliemans, 2003). This approach relaxes the necessity
to resolve the flow around each individual particle. The individual
Table 1
The size, shape and sphericity of the five particles considered in this paper. Also, the
definition of the angle of attack is shown.

Shape Sphericity Proportions Size

Sphere

1 200 lm

Ellipsoid 1

0.885 a
b ¼

5
2

a ¼ 368 lm

b ¼ 147 lm

Ellipsoid 2

0.991 a
b ¼

5
4

a ¼ 232 lm

b ¼ 186 lm

Disc
0.626 a

b ¼ 5 a ¼ 342 lm
b ¼ 68:4 lm

Fibre
0.639 a

b ¼ 5 a ¼ 510 lm
b ¼ 102 lm
particles are not ‘‘seen’’ by the fluid, but their presence is approx-
imated through momentum source terms and, if applicable, a local
volume fraction. The momentum source terms arise from approx-
imations of the drag and lift forces. The simulations are four-way
coupled, that is the effect of the fluid on the particles, the effect
of the particles on the fluid, and the effect of particle–particle
and particle–wall collisions are all taken into account. The individ-
ual components of the models are described in the following
sections.

Fluid phase modelling

The Reynolds number of the flow experimentally examined by
Kussin and Sommerfeld (2002) is far too high to make DNS a feasi-
ble option. In Sommerfeld (2003) an empirical velocity profile and
velocity fluctuations are assumed. It is also possible to use the Rey-
nolds averaged Navier–Stokes (RANS) approach to determine the
flow, although this requires a significant amount of empirical
parameters and a non-trivial treatment of the boundary layer near
the wall.

In this research paper, large eddy simulation (LES) is pursued. In
this approach, there are no fitting parameters (Sagaut, 2005) and
the resulting filtered momentum equations are

@ðqf ev f
j Þ

@t
þ
@ðqf ev f

j
ev f

i Þ
@xi

¼ � @
ep

@xj
þ @ð

esijÞ
@xi

�
@ðsa

ijÞ
@xi

þ Sf
j

þ bðf ;pÞ
bev f

j � ev p
j

� �
ð1Þ

where ev f represents the filtered fluid velocity and ev p the particle
velocity in the Eulerian framework. The last two terms on the right

hand side of Eq. (1) represent the general source terms, Sf
j and the

momentum exchange between the fluid phase and the particle
phase. The fluid velocity in the inter-phase momentum exchange

term is the undisturbed fluid velocity, therefore it is denoted by bev f .
The equations arising from filtering are very similar to the

Navier–Stokes equations, except for the addition of one term,
describing the behaviour of the sub-grid scale (SGS) stresses,
namely sa

ij. To close the subgrid-scale stresses, two different
approaches have been applied: the Smagorisnky model with van-
Driest damping near the wall and the dynamic model proposed
by Germano et al. (1991) and Lilly (1992). Both models are outlined
further and the results are compared to each other for horizontal
turbulent channel flow in Mallouppas and van Wachem (2013).
In Mallouppas and van Wachem (2013) it is shown that the frame-
work gives an accurate prediction of the flow dynamics; various
LES models are compared with each other and with the experimen-
tal data.

Dynamics of non-spherical particles

Although the motion or dynamics of a spherical particle is rela-
tively straightforward (e.g. van Wachem et al., 2001b), the dynam-
ics of a non-spherical particle are more complicated. The rigid body
dynamics of a non-spherical particle concern its motion and
behaviour during one or more collisions. The ordinary differential
equation describing the translational position and velocity are
the same as for a spherical particle (Newton’s second law),

Dvp

Dt
¼ ap ð2Þ

qpVpap ¼ FD|{z}
drag

þ FL|{z}
lift

þVpqpg|fflfflffl{zfflfflffl}
gravity

þ VprP|fflffl{zfflffl}
Archimedes

þqpVpac|fflfflfflffl{zfflfflfflffl}
collisions

ð3Þ

where Vp is the volume of the particle, qp the density, vp the veloc-
ity of the particle in the Lagrangian framework, and ac represents
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the forces due to collisions, which will be discussed later. The added
mass and history forces are neglected in the equation, as they are
not significant in the case studied in this paper. All the forces are
combined in the acceleration term ap. The position and velocity
are solved using the Verlet scheme (Allen and Tildesley, 1989),

xpðt þ DtÞ ¼ 2xpðtÞ � xpðt � DtÞ þ apðtÞDt2 þ OðDt4Þ ð4Þ

vpðt þ DtÞ ¼ xpðt þ DtÞ � xpðt � DtÞ
2Dt

þ OðDt2Þ ð5Þ

The velocity is determined with less accuracy than the position,
but this is not essential in this scheme, as the velocity itself is not
directly involved in updating the position of the particle; i.e. Eq. (4)
does not directly depend on the velocity.

The rotational motion of a non-spherical particle is very differ-
ent compared to that of a spherical particle. For a non-spherical
particle the orientation is important, unlike for a spherical particle.
To derive the rotational equations of motion for a non-spherical
particle, it is convenient to introduce two types of Cartesian
spaces: body space and world space, see Fig. 2. For all variables
in body space, the superscript b is employed. All variables without
this superscript represent the variables in world space.

Rotation by Quaternions

Due to the absence of singularity and Gimbal lock problems
(e.g. Evans and Murad, 1977), unit Quaternions are increasingly
popular to represent rotation of a non-spherical particle. General
Quaternions do not only change the orientation of a vector, but also
scale the length of a vector. Therefore, the equation for represent-
ing rotation cannot be a simple Quaternion multiplication, as the
length of the vector could change. To represent rotation by Quater-
nions, the length of the Quaternions must be exactly unity. Rota-
tion without scaling is performed by unit Quaternions, see Eberly
(2002), Hoffmann (1978).

Quaternions were first introduced by Sir Hamilton (Hamilton,
1844; Gsponer and Hurni, 1993) in the nineteenth century and
are widely used to represent rotation for modelling dynamic sys-
tems in the past decades. They are expressed in a complex number
system, consisting of a scalar part and a vector part. Hence, there
are a total of 4 unknowns. In dynamics, the physical meaning of
a Quaternion is to scale the length and change the orientation of
a vector (Ibanez, 2001). A Quaternion is defined by:

q ¼ q0;q½ � ð6Þ

where q0 is the scalar part, and q is the vector part. A vector s
rotated by a pair of unit Quaternions is defined by

s0 ¼ qsq�1 ð7Þ

where q is a unit Quaternion, q�1 represents the conjugation of q,

q�1 ¼ q0;�q½ � ð8Þ
Fig. 2. The relation between body space (a) and world space (b). The fixed axes of
body space, xb ; yb and zb are indicated in both figures. The position of a fixed point in
body space, pb is transformed to world space, pðtÞ.
and the vector s is interpreted as a Quaternion as s ¼ ½0; s�, thus with
the scalar part of the Quaternion equal to zero. The multiplication of
two Quaternions is defined by the Grassman product,

pq ¼ ½p0q0 � pq; p0qþ q0pþ p� q� ð9Þ

The unit Quaternion q can be directly expressed in a form con-
taining the vector around which the rotation takes place and the
angle of the rotation (Betsch and Siebert, 2009; Karney, 2007)

q ¼ cos
a
2
; sin

a
2

q̂
h i

ð10Þ

where q̂ is the normalised vector around which the rotation takes
place and the angle a indicates the rotational angle. In the unit Qua-
ternion q, the coefficients q0; q1; q2 and q3 are sometimes referred to
as Euler parameters (e.g. Betsch and Siebert, 2009), which are not
independent of each other, as they must always satisfy

kqk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

0 þ q2
1 þ q2

2 þ q2
3

q
¼ 1 ð11Þ

Many integration algorithms do not inherently respect this con-
straint and explicitly re-normalise the Quaternion after the algo-
rithm is applied, by defining the corrected Quaternion as

q̂ ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

0 þ q2
1 þ q2

2 þ q2
3

q ð12Þ

This is, however, not the same as inherently embedding the unit
length of the Quaternion, as expressed by Eq. (11), into the algo-
rithm itself. Applying Eq. (12) affects the relation between the four
parameters of the Quaternion, therefore modifying the rotation it
represents.

Most research papers applying Quaternions to represent the
orientation of non-spherical particles still determine the corre-
sponding rotation matrix explicitly to perform the rotation of vec-
tors and tensors. Obtaining the rotation matrix requires an inverse
relationship between rotation matrices and unit Quaternions and
may introduce additional inaccuracies. Therefore, the current arti-
cle uses Quaternions only, without the necessity of computing the
rotation matrix. The rotation of a vector by a Quaternion is given by
Eq. (7). The transformation of second order tensors by unit Quater-
nions can be expressed as

I0 ¼ ðqðqIq�1Þ
T
q�1Þ

T

ð13Þ

Following the above analysis, unit Quaternions can be used to trans-
form vector properties during rotation, but also to transform ten-
sors properties directly. Accordingly, rotation matrices can be
completely replaced by corresponding unit Quaternions only, and
the rotation matrix is no longer required. This will save a significant
amount of computer memory (4 instead of 9 floating point numbers
per particle), and increase the accuracy introduced by round-off
errors, as fewer operations are required.

Rigid body dynamics
The equations of motion describing non-spherical rigid particles

consist of translational and rotational components. The position of
a particle can be described equally simple in world space and in
body space, but for the orientation of a particle the equations are
significantly more complex in world space than body space. To
describe the rotation of non-spherical particles, the most common
and convenient way is to compute rotational properties of particles
in body space and, if required, transform them into world space.
The governing dynamic equations are determined by the angular
momentum equations in body space, and the differential equation
of the angular momentum is given by

_Lb þxb � Lb ¼ sb ð14Þ
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where the Lb represents angular momentum, the xb is angular
velocity and sb is torque acting on the body. The superscript b
means the variables are evaluated in the body space framework.
The angular momentum is related to the angular velocity by

Lb ¼ Ibxb ð15Þ

where the second order tensor Ib is the moment of inertia in body
space, which is constant for a rigid body. The time derivative of
angular momentum in Eq. (14) is determined by

_Lb ¼ _
Ibxb þ Ib _xb ð16Þ

in which the first item on the right hand side of the above equation
is equal to zero, because the tensor Ib is constant. Therefore, the
angular acceleration is given as

_xb ¼ Ib�1ðsb �xb � IbxbÞ ð17Þ
Numerical integration of Quaternions
The method to numerically integrate the unit Quaternion put

forward in this paper approximates the angular velocity with a
basic Lie–Euler method. In this paper, we propose the application
of the predictor–corrector direct multiplication (PCDM) method
(Zhao and van Wachem, 2013b), which is not based on Taylor ser-
ies, but applies the predictor–corrector and direct multiplication
algorithms.

Firstly, the variables which describe the rotational motion of a
particle are transformed into body space from world space at cur-
rent time level n

xb
n ¼ q�1

n xnqn ð18Þ
sb

n ¼ q�1
n snqn ð19Þ

The angular velocity expressed in body space at the mid-point
of the next time level, xb

nþ1
2

and at a quarter of next time level,
xb

nþ1
4
, are determined by

xb
nþ1

4
¼ xb

n þ
1
4

_xb
ndt

xb
nþ1

2
¼ xb

n þ
1
2

_xb
ndt

ð20Þ

where the angular acceleration in body space, _xb, is given by Eq.
(17). The predicted angular velocity at a quarter at next time level
in world space, xnþ1

4
, can be directly based on the unit Quaternion qn

xnþ1
4
¼ qnx

b
nþ1

4
q�1

n ð21Þ

Then, a prediction of the unit Quaternion at the half time inter-
val, q0

nþ1
2
, is determined by the velocity xnþ1

4
. The prime on the var-

iable emphasises that it concerns a prediction of the variable, not its
final value.

q0nþ1
2
¼ cos

kxnþ1
4
kdt

4
; sin
kxnþ1

4
kdt

4

xnþ1
4

kxnþ1
4
k

" #
qn ð22Þ

Using this predicted unit Quaternion q0
nþ1

2
, the angular velocity

xnþ1
2

at mid-point of next time level in world space is determined by

xnþ1
2
¼ q0nþ1

2
xb

nþ1
2
q0�1

nþ1
2

ð23Þ

Then, the corrected unit Quaternion qnþ1 at the new time level
can be determined as

qnþ1 ¼ cos
kxnþ1

2
kdt

2
; sin
kxnþ1

2
kdt

2

xnþ1
2

kxnþ1
2
k

" #
qn ð24Þ

Finally, the angular velocity in body space at the new time level
can be determined and transformed to the angular velocity in
world space,
xb
nþ1 ¼ xb

n þ _xb
nþ1

2
dt ð25Þ

xnþ1 ¼ qnþ1x
b
nþ1q�1

nþ1 ð26Þ

The method as outlined above presents a consistent and accu-
rate predictor–corrector direct multiplication (PCDM) method to
determine the unit Quaternion representing the orientation of a
non-spherical particle and its angular velocity. Moreover, this
method does not use a rotation matrix and does not mix time-lev-
els inconsistently in its final correction (Zhao and van Wachem,
2013b). In Zhao and van Wachem (2013b) the PCDM method is
compared to other numerical integration schemes for non-spheri-
cal particles, and is validated using 3 test cases. This paper showed
that the PCDM method has an increased order of accuracy com-
pared to other methods, and conserves both momentum and
energy. Moreover, the method is validated with a number of ana-
lytical solutions.

Determining the mass middle point and moment of inertia

The non-spherical particles are assumed rigid and homoge-
neous, which implies that the density, qp, throughout the particles
is constant. The mass of a particle is then given by

mp ¼ qpVp ð27Þ

There is no simple equation for calculating the mass and mass
centre of a non-spherical particle directly. However, it is straight-
forward to do this by first determining the volume of the particle
computationally. The volume is determined by generating points
in an imaginary box enclosing the particle. The ratio of points
which fall inside the particle, Np, over the total number of points,
N, gives the ratio of the volume of the particle over the volume
of the imaginary box, as the total number of tried points becomes
very large,

Vbody

Vbox
¼ lim

N!1

Np

N
ð28Þ

The centre of mass of the non-spherical particle can be found in
a similar way, by summing over the positions of the imaginary
points which fall inside the particle, rp,

xpðtÞ ¼ lim
NP!1

1
NP

XNp

n¼1

rp;nðtÞ ð29Þ

In order to determine the moment of inertia, a similar method
as outlined above is employed, where a different expression is used
for the diagonal terms as for the non-diagonal terms,

Ib
p;ii ¼

mp

NP
lim

Np!1

XNp

n¼1

ðrb
p;n;j � xb

p;jÞ
2 þ rb

p;n;k � xb
p;k

� �2
ð30Þ

ðsummation over j and kÞ

Ib
p;ij ¼ Ib

p;ji ¼
mp

NP

XNp

n¼1

ðrb
p;n;i � xb

p;iÞ � ðrb
p;n;j � xb

p;jÞ 8 i – j ð31Þ

The moment of inertia in body space is constant, and is
expressed as Ib, and the relation between the moment of inertia
in body space and world space is determined by application of
Eq. (13). The moment of inertia in world space thus depends on
the orientation of the non-spherical particle and varies with time.
It needs to be recomputed at every time step by application of Eq.
(13).

Contact detection

At sufficient high particle loadings both particle–particle and
particle–wall collisions are important for predicting the behaviour
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of the flow. Therefore, all potential collisions must be correctly
detected in order to determine their contribution. Moreover, the
particle–wall collisions are required to keep the particles in the
domain. There are various frameworks to describe particle colli-
sions. In the hard-sphere, or event driven, framework the collisions
are dealt with using global conservation of momentum and energy.
In the soft-sphere framework, the dynamics of the actual collision
are resolved, using approximations from elasticity theory.

In this paper we consider the soft-sphere approach, thus contact
forces and torques are determined for particles which are actually
slightly overlapping. This overlap is a representation for the local
deformation, or displacement, and a Hertzian force model can be
used to predict the resulting repellent force. Therefore, each pair
of near-neighbour particles is checked for overlap. This is possible
through describing the particle surfaces with a mathematical func-
tion (Delaney and Cleary, 2010) or by building the body from
spheres (Langston et al., 2004). In this work, we have pursued
the latter approach. Each body is then filled with a number of over-
lapping fictitious spheres, typically with varying radii, where the
number of fictitious spheres determines the accuracy of the surface
representation of the body. An example is shown in Fig. 3. This
framework allows for a similar contact detection approach as for
spherical particles, as described, for instance, in Allen and
Tildesley (1989).

Rough wall modelling

The effect of rough walls has shown to be important in a num-
ber of gas-particle flows because the particles that collide with a
rough wall have a tendency to be re-suspended into the flow more
often (Sommerfeld and Kussin, 2004). In particle-laden horizontal
channel flow simulations, neglecting the effect of wall roughness
predicts a large number of particles ‘‘grazing’’ the bottom wall. It
is shown experimentally by Kussin and Sommerfeld (2002) that
the wall roughness strongly enhances the transverse dispersion
of the particles and their fluctuating velocities throughout the
channel. The measurements have also revealed that the wall
roughness causes a significant reduction of the mean horizontal
velocity of the particles. Numerical simulations of this flow have
also been able to show these effects (Mallouppas and van
Wachem, 2013; Konan et al., 2011; Lain and Sommerfeld, 2007).

The most obvious approach to model a rough wall is a deter-
ministic approach, where the wall roughness is resolved. However,
because of the rapidly changing normal of the wall, a fully deter-
ministic approach is quite costly. Therefore, a stochastic approach
to model wall roughness is adopted. There are a number of sto-
chastic approaches described in the literature (e.g. Tsuji et al.,
1987; Fukagata et al., 2001), the most frequently applied model
Fig. 3. An example of the body shown in Fig. 2 filled with 8 spheres. The spheres are
used to find potential contact points with neighbouring particles or walls.
is of Sommerfeld (1992), later corrected for the so-called shadow
effect, in Sommerfeld and Huber (1999). A stochastic model usu-
ally works with a virtual wall concept, which changes the orienta-
tion of the wall with angle c, which is sampled from an
experimentally determined distribution of wall roughness.

Using the soft-sphere model, as done in this work, the collision
between a particle and the wall is fully resolved. To account for this
deterministic nature of the collision, a novel wall roughness model
was derived and validated in Mallouppas and van Wachem (2013).
The results of this novel rough wall model for soft-sphere collisions
provides very good results, the same as the rough wall model for
hard-sphere collisions as put forward in Sommerfeld and Huber
(1999) and the further improvements to account for secondary col-
lision effects by Konan et al. (2009). These secondary collision
effects are inherently captured by the wall roughness model for
soft-sphere collisions. The algorithm for the rough wall can be
summarised for collision with a non-spherical particle as follows:

1. When the shortest particle–wall distance is the wall roughness
amplitude (taken to be 10% of the particle diameter) one virtual
wall is generated at the point of the particle which is closest to
the wall. The virtual wall is generated with the original algo-
rithm Konan et al. (2009), Sommerfeld and Huber (1999). This
virtual wall is locally treated as deterministic, it remains at
the location until all integration steps associated with the par-
ticle–wall collision are finished.

2. If the shortest particle–wall distance becomes half of the dis-
tance at which the virtual wall was inserted, i.e. the particle
has moved closer to the wall, a second virtual wall is intro-
duced, with a newly randomly sampled angle. This is shown
in Fig. 4.

3. The addition of new virtual walls is repeated until the particle is
moving away from the wall.

The required standard deviation for the normal distribution is
taken from the experimental data provided by Kussin and
Sommerfeld (2002). In the analysed flow, up to three virtual walls
are required to deal with the rough wall collision, although almost
all collisions are dealt with by application of a single rough wall.

Contact forces

The soft-sphere collision model is applied to resolve particle–
particle and particle–wall collisions. The comparison between the
hard-sphere and the soft-sphere model for spherical particles has
been presented in Mallouppas and van Wachem (2013), showing
that both are in good agreement for the channel flow conditions
as studied in the current work. However, the hard-sphere model
is not suitable for non-spherical particles and therefore a soft-
sphere model has to be adopted.

The soft-sphere model essentially determines the slight overlap,
or the displacement, of two particles or a particle and a wall. This
Fig. 4. An illustration of the newly proposed multiple virtual wall approach. A first
virtual wall is introduced when the particle reaches the amplitude of the wall
roughness added to the actual smooth wall. Additional virtual walls are added
randomly every time the particle moves half of this amplitude closer to the wall.
One such additional virtual wall is depicted.
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overlap is used as a measure to estimate the local deformation of the
particle at the point of collision, by assuming the contact point is
locally axi-symmetric with a constant local radius, and leads to nor-
mal and tangential forces based upon Mindlin and Deresiewicz
(1953),

FnðtÞ ¼ KnðtÞd
3
2
nðtÞnðtÞ

F tðtÞ ¼min lFnðtÞ;KtðtÞdtðtÞð Þ

where l is the coefficient of friction, dnðtÞ is the scalar representing
the normal displacement, dtðtÞ is the vector representing the total
tangential displacement mapped onto the current reference frame.
The tangential displacement vector is determined by integrating the
successive tangential displacements and mapping this into the
current frame of reference of the collision. Kn and Kt are the spring
constants for the normal and tangential forces respectively, as
predicted Hertzian contact theory (Mindlin and Deresiewicz, 1953)

Kn;lðtÞ ¼
4
3

E�
ffiffiffiffiffiffiffiffi
rðtÞ

p
KtðtÞ ¼ 8G�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðtÞdtðtÞ

p
where E� represents the Young’s modulus of the pair of colliding par-
ticles, G� is the ratio of the Young’s modulus and Poisson’s ratio plus
one for the pair of colliding particles, rðtÞ represents the local radius
of the particle (the distance from the centre of the particle to the con-
tact point) and the subscript l represents loading, i.e. the particles
moving towards each other. When the particles move away from
each other, the subscript u, representing unloading will be used. To
account for the dissipative nature of the collision, a coefficient of res-
titution is introduced to determine the spring constant value for
unloading, represented by the subscript u, following Walton (1993)

e ¼
ffiffiffiffiffiffiffiffiffi
Kn;u

Kn;l

s
ð32Þ

The total force on the body is determined by adding the gravity
force, the fluid force, and summing the force contributions of all
collisions of each particle

aðtÞ ¼ g þ F f ðtÞ
mp
þ

X
c¼contacts

Fn;cðtÞ þ F t;cðtÞ
mp

ð33Þ

where mp indicates the mass of the particle, g represents the grav-
itational acceleration, F f represents the total interaction force with
the fluid, and Fn;c and F t;c represent the normal and tangential forces
from the collision of the particle.

The torque on the body is determined by adding the torque aris-
ing from the fluid and the contributions of all collisions of each
particle

sðtÞ ¼ sf ðtÞ þ
X

c¼contacts

pc � xpðtÞ
� �

� Fn;cðtÞ þ F t;cðtÞð Þ ð34Þ

where pc is the point of contact of the particle with another particle,
and xp is the centre of mass of the particle.

Fluid forces and torques on the particles

The fluid exerts two types of forces on the particle: drag force in
the direction of the flow velocity and a transverse lift force. Addi-
tionally a pitching and counter-rotational torques are present.
These interactions are given by the following equations (Zastawny
et al., 2012):

FD ¼ CD
1
2
q~v2 p

4
d2

p ð35Þ

FL ¼ CL
1
2
q~v2 p

4
d2

p ð36Þ
sP ¼ CT
1
2
q~v2 p

8
d3

p ð37Þ

sR ¼ CR
1
2
q

dp

2

� 	5

jXjX ð38Þ

where FD are the drag force, FL is the lift force, sP is the pitching tor-
que, sR is the rotational torque, CD;CL;CT and CR are the shape spe-
cific force and torque coefficients, ~v ¼ bv f � vp is the velocity of the
particle relative to the local undisturbed fluid velocity, q is the fluid
density, and dp the equivalent particle diameter, i.e. the diameter of
a sphere with the same volume as the considered particle. The rel-
ative rotation of the particle with respect to the fluid is given by

X ¼ 1
2
r� ~v �xp ð39Þ

with xp representing the angular velocity of the particle. The total
fluid induced force is determined by adding the drag and lift forces
and the total fluid induced torque is determined by adding the two
torques.

As all of the considered particles in this paper are axi-symmet-
ric, the force vector therefore consists of two principal compo-
nents, the drag force acting in the direction of the flow, and the
lift force acting in the perpendicular direction of the flow. Also
because of the axi-symmetry of the particle, the effective angle
between the flow and the longest axis through the body can be
described by a single angle of incidence. The definition of this angle
is shown in Table 1 for each of the particles. The angle of incidence
is determined in body space, by transforming the local fluid veloc-
ity from world space to body space. The fluid velocity as seen by
the particle in body space is computed as

vbðtÞ ¼ qðtÞvðtÞq�1ðtÞ ð40Þ

The angle of incidence is determined between the fluid velocity
in body space and the xb axis of the particle, corresponding to the
unique principle axis of the particle, i.e. the length of the ellipsoid
and the fibre and the thickness of the disc. Hence, the angle is
determined as

u ¼ arctan
vb

sh

vb2

ln

 !










 ð41Þ

where vb
sh is the velocity projection on the axis containing the

smallest dimension of the body and vb
ln is the projection of the

velocity on the axis containing the longest dimension.
The consequent aerodynamic forces acting on the body in body

space are then defined as

Fb
D ¼

1
2
q

1
4
pd2

eqCDðu;ReÞ vb


 

vb ð42Þ

Fb
L ¼

1
2
q

1
4
pd2

eqCLðu;ReÞ vb


 

2 ð43Þ

where the force coefficients depend on the angle of incidence and
the local particle Reynolds number. Note that the lift force above
is given as a scalar and is applied to the perpendicular direction
of the fluid velocity. Therefore, the force components in the body
space are the sum of drag and lift contributions and for the prolate
ellipsoids have the following form,

Fb
f ;x ¼

1
2
� q � 1

4
pd2

eq � CDðu;ReÞ � jvbjvb
x þ FL � sin u � signð�vb

xÞ ð44Þ

Fb
f ;y ¼

1
2
� q � 1

4
pd2

eq � CDðu;ReÞ � jvbjvb
y þ FL � cos u �

vb
yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vb2

y þ vb2

z

q ð45Þ

Fb
f ;z ¼

1
2
� q � 1

4
pd2

eq � CDðu;ReÞ � jvbjvb
z þ FL � cos u � vb

zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vb2

y þ vb2

z

q ð46Þ



Table 2
The values of fit parameters used in expressions for force coefficients of different
particle shapes (Zastawny et al., 2012).

Coefficient Ellipsoid 1 Ellipsoid 2 Disc Fiber

a0 2.0 1.95 1.96 2.12
a1 5.1 18.12 5.82 20.35
a2 0.48 1.023 0.44 0.98
a3 15.52 4.26 15.56 2.77
a4 1.05 0.384 1.068 0.396
a5 24.68 21.52 35.41 29.14
a6 0.98 0.99 0.96 0.97
a7 3.19 2.86 3.63 3.66
a8 0.21 0.26 0.05 0.16
b1 6.079 0.083 12.111 8.652
b2 0.898 �0.21 1.036 0.815
b3 0.704 1.582 3.887 0.407
b4 �0.028 0.851 0.109 �0.197
b5 1.067 1.842 0.812 0.978
b6 0.0025 �0.802 0.249 0.036
b7 0.818 �0.006 �0.198 0.451
b8 1.049 0.874 5.821 1.359
b9 0.0 0.009 �4.717 �0.43
b10 0.0 0.57 0.007 0.007
c1 2.078 0.935 3.782 0.011
c2 0.279 0.146 0.237 �0.656
c3 0.372 �0.469 2.351 8.909
c4 0.018 0.145 0.236 0.396
c5 0.98 0.116 �0.394 2.926
c6 0.0 0.748 1.615 �1.28
c7 0.0 0.041 �0.044 0.037
c8 1.0 0.221 �0.537 �15.236
c9 0.0 0.657 1.805 16.757
c10 0.0 0.044 �0.037 �0.006
r1 0.23 0.573 3.812 0.024
r2 �0.116 �0.154 �0.13 0.168
r3 96.378 116.61 283.03 77.314
r4 1.0 1.0 1.0 1.0
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The specific expressions for the components are slightly differ-
ent for the case of the disc, but follow the same idea. Once the
forces are determined in the frame of body space, they are con-
verted to world space and applied to the particle equation of
motion.

Torques acting on the particles
When determining the torque on the particle, two mechanisms

have to be considered. The first mechanism occurs if there is an
oblique angle between the fluid velocity vector in body space
and any of the principle axis of the body. When the position of
the centre of pressure on the particle does not coincide with the
centre of mass of the particle, a pitching torque will act in the axis
perpendicular to the force plane. As the bodies considered in this
paper are all axi-symmetric around the principal xb axis, the contri-
bution of this mechanism to the torque along the direction of the xb

axis in body space is always zero. The other two components for
prolate ellipsoids are given by

sb
y ¼

1
4
q

1
4
pd2

eqdpCTðu;ReÞ vb


 

 vb

z



 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vb2

y þ vb2

z

q � signðvb
xv

b
z Þ ð47Þ

sb
z ¼

1
4
q

1
4
pd2

eqdpCTðu;ReÞ vb


 

 vb

y




 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vb2

y þ vb2

z

q � signðvb
xvb

yÞ ð48Þ

Slightly modified expressions are applied in the case of particles
with a disc-like shape, similarly as the correction to the lift force
for this particle.

The second mechanism occurs if the body rotates with respect
to the fluid framework of motion. In this case, the torque acts on
the particle to counteract the rotation and is proportional to the
angular velocity of the particle, as given by Eq. (38). In the case
of axi-symmetric non-spherical particles it is reasonable to divide
the rotation into two components, namely one along the primary
axis of symmetry, i.e. along the axis xb, and one axis perpendicular
to this. Hence, the torque components in body space have the fol-
lowing form:

Tb
x ¼ �CRðu;ReÞq

2
dp

2

� 	5

Xb
x

2
ð49Þ

Tb
y ¼ �CRðu;ReÞq

2
dp

2

� 	5

jXb
yzjX

b
y ð50Þ

Tb
z ¼ �CRðu;ReÞq

2
dp

2

� 	5

jXb
yzjX

b
z ð51Þ

where the angular velocity of the particle relative to the fluid in
body space is denoted by X, and is determined by transforming
Eq. (39) in body space.

It should be noted that the Saffman nor Magnus lift forces are
not considered in the above analysis. This is the lift force caused
by a local fluid velocity gradient over the particle. As the particles
studied in this work have a high Stokes number, this contribution
is assumed to be negligible.

Correlations for the drag, lift, pitching torque and rotational torque
coefficients

The correlations for the drag, lift, pitching torque and rotational
torque to predict the forces on the individual particles are taken
from Zastawny et al. (2012). The equations have been validated
for the same particle shapes as used in this research paper and
have been determined as a function of angle of incidence (u), the
Reynolds number, and the rotational Reynolds number. The Rey-
nolds number is defined with the equivalent particle diameter,
dp, as
Re ¼ qf udp

lf
ð52Þ

and the rotational Reynolds number is defined using the magnitude
of the angular velocity

ReR ¼
qf d2

px
l

ð53Þ

as the evaluation of the forces occurs in body space, the angular
velocity of the particle in body space should be applied.

For the drag coefficient the expression which fits all the particle
shapes best is given as (Zastawny et al., 2012)

CDðuÞ ¼ CD;u¼0o þ ðCD;u¼90o � CD;u¼0o Þsina0u ð54Þ

where

CD;u¼0o ¼ a1

Rea2
þ a3

Rea4

CD;u¼90o ¼ a5

Rea6
þ a7

Rea8

where the ai represent empirical parameters given in Table 2 for the
various particle shapes.

The lift force considered is the force occurring if the flow is not
aligned with one of the axes of symmetry of the particle. This lift is
zero at 0 and 90 degrees. The expression for the lift force coefficient
that describes this phenomenon is given as (Zastawny et al., 2012)

CL ¼
b1

Reb2
þ b3

Reb4

� 	
sinðuÞb5þb6Reb7 cosðuÞb8þb9Reb10 ð55Þ

where bi represent empirical parameters given in Table 2 for the
various particle shapes.



Fig. 5. The geometry of the channel as used in the simulations. The mean flow is in
the X direction and the gravity is in the Y direction. Both the X and Z directions are
periodic for the flow and the particles. The walls of the channel are indicated in
grey.
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The pitching torque coefficient, CT , is zero at the angles of inci-
dence of 0 and 90 degrees. For the pitching torque coefficient, the
expression is (Zastawny et al., 2012)

CT ¼
c1

Rec2
þ c3

Rec4

� 	
sinðuÞc5þc6Rec7 cosðuÞc8þc9Rec10 ð56Þ

where ci represent empirical parameters given in Table 2 for the
various particle shapes.

The rotational torque is given by the expression (Zastawny
et al., 2012):

CR ¼ r1ðReRÞr2 þ r3

ðReRÞr4
ð57Þ

where ri represent empirical parameters given in Table 2 for the
various particle shapes.

The form of these correlations is the same for all particle shapes,
but the parameters in the correlations depend on the particle
shape. These parameters are all displayed in Table 2.

The drag, lift and torque models as outlined above are the result
of many true direct numerical simulations, which were presented
in Zastawny et al. (2012). In these true direct numerical simula-
tions all the flow structures are resolved, and the interaction of
the particles with the fluid is determined without any assumption.
The models have been validated by grid refinement, and match the
analytical expression for the drag, lift and torque proposed by
Brenner (1964) and Jeffery (1922) for cases in which the Reynolds
number approaches zero. Moreover, the flow patterns and findings
of these models are in agreement with the experimental findings of
Hoerner (1965) and the computational work of Hölzer and
Sommerfeld (2008).
Simulation details

Set-up

The large-scale simulations are performed in the Eulerian–
Lagrangian framework and the predictions are compared to the
experimental work of Kussin and Sommerfeld (2002). In their
work, a horizontal channel with a height of 35 mm, a width of
175 mm and a length of 6 m, corresponding to approximately
170 channel heights. A flow of an air-particle mixture with various
particle sizes and mass loadings is introduced in the horizontal
direction. The mass loading is defined as the ratio of the mass par-
ticles introduced in the domain with the mass of the fluid (i.e. air)
in the same domain.

This paper focuses on the experimental results obtained by
Kussin and Sommerfeld (2002), for the two-phase flow with mass
loading, / ¼ 1:0, with the particles of 195 lm. At this mass loading
both fluid-particle as well as particle–particle interactions are
expected to be important. The experimental Reynolds number con-
sidered based on the channel height is 42,585, arising from the
average air velocity of Uav ¼ 19:7 m=s, air density of qf ¼ 1:15

kg=m3 and a viscosity of lf ¼ 18:62 Pa s. The friction Reynolds
number based on the half channel height is Res ¼ 600. The parti-
cles considered are glass beads, qp ¼ 2500 kg=m3. In the simula-
tions, particles are tracked for 47 TL, where TL is the Lagrangian
integral time scale of turbulence at the centre of the channel. The
Stokes number of the particles depends on the changing fluid time-
scale. The Stokes number is much larger than one, irrespective of
location or precise definition. The simulations are carried out in a
three-dimensional domain of 0.175 m � 0.035 m � 0.035 m, where
the X direction corresponds to the direction of the flow and the Y
direction is the direction of gravity. The X and Z directions are
taken to be periodic and the lengths of the domain in these direc-
tions has been verified to not affect the results. The domain used
for the simulations is sketched in Fig. 5.

The simulations are carried out with the in-house code Multi-
flow (van Wachem et al., 2012; Mallouppas and van Wachem,
2013; Denner and van Wachem, 2014), which is a fully coupled
parallel computational fluid dynamics code based on finite volume
discretisation and various types of particle and fluid models.

Initial and boundary conditions

The the flow is initialised by setting a mean velocity of 19.7 m/s
based on the Reynolds number. On top of the mean, synthesised
turbulence is added as randomly sampled from a von Karman spec-
trum, using the Fourier modes of the fully developed turbulent
spectrum. The initial condition does not impose a flow profile;
the flow profile is formed as a result of solving the Navier–Stokes
equations and enforcing the no-slip condition for velocity at the
wall. The boundary conditions at the walls are set as no-slip condi-
tions. A constant forcing term is introduced everywhere in the flow
domain to keep a constant mass flow rate, _m ¼ 0:027044 kg=s,
matching the pressure drop required to overcome the wall shear
stress in equilibrium. The average resulting pressure drop equals
the total wall shear stress in the channel. The pressure is fixed to
a reference value on one arbitrary cell face inside the domain.
The pressure on the wall faces is determined by extrapolation from
the flow domain.

The particles are introduced uniformly in the domain with a
small random slip velocity compared to the local fluid velocity.
The number of particles in the domain is determined by the mass
loading and is 24,000 corresponding to a mass loading of / ¼ 1.

Computational mesh

The computational mesh contains a total of 870,000 computa-
tional cells and the wall boundary layer is resolved by 5 mesh
poins within the yþ ¼ 10 layer. Near the wall a DNS resolution is
obtained by using the y-coordinate for the nth gridpoint:

yn ¼ ymax
1
2

1þ tanh R nDy
ymax
� 1

2

� �
tanhð12 RÞ

24 3524 35 ð58Þ

where R is a constant set to 7.0 and defines the amount of refine-
ment near the wall, Dy is the average mesh spacing, and ymax ¼
35:0 mm, is the channel height. In addition, in every xþ ¼ 50 and
zþ ¼ 30;1 mesh point is uniformly added.

Mesh refinement results have been presented in Mallouppas
and van Wachem (2013), showing that the applied mesh is suffi-
ciently fine to capture the flow details. Moreover, spectra of the
single-phase flow computations are presented in Mallouppas and
van Wachem (2013), showing that all the energetic eddies are cap-
tured satisfactorily by the mesh and the assumptions for LES are
met. The results of these simulation are in very good agreement
with the experimental results of Kussin and Sommerfeld (2002).
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Fig. 6. The relative particle concentration for all considered particles, as a function
of dimensionless channel height for the simulation without considering wall
roughness, the simulation considering wall roughness, and the experimental
measurements for spherical particles from Kussin and Sommerfeld (2002).
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Discretisation

The discretisation of the Navier–Stokes equations is done using
a finite volume approach, combined with a second order accurate
three point backward Euler time discretisation for the temporal
terms and a second order accurate central differencing scheme
for the advection term. The pressure velocity coupling is done in
a fully coupled framework, using one outer iteration per time-step.
This outer iteration is solved with typically 4 iterations of the sta-
bilised bi-conjugate gradient stabilised method using incomplete
LU decomposition to precondition the linearised matrix.

Fluid-particle coupling

As the particles move in a Lagrangian framework and the fluid is
solved in a fixed Eulerian framework, the coupling between these
frameworks requires special attention. The fluid velocity as deter-
mined on the Eulerian mesh must be accurately interpolated to
each of the Lagrangian particles. Some properties of interpolation
schemes between the Eulerian and the Lagrangian frameworks
are discussed in Franklin and Lee (2010). A frequently used inter-
polation scheme is the tri-linear interpolation, which has a number
of favourable properties, such as continuity and ease of implemen-
tation, but suffers from a strong filtering of higher frequency veloc-
ity fluctuations and is probably not suitable for LES. Therefore, we
have used a polynomial spline interpolation, where a property of
the fluid at the particle is approximated by

/f @p ¼
XN

n¼1

XI;J;K
i;j;k

an;ijkDxiDyjDzk/f ;n ð59Þ

where the summation over n is over the independent points and the
summation over ði; j; kÞ is over the polynomial integer values, and
an;ijk is the constant coefficient corresponding to independent point
n and the polynomial powers of ði; j; kÞ for the three directions. The
number of independent fluid velocity points, N, used to evaluate the
spline is 27, and the order of the polynomial used is, therefore
ðI; J;KÞ ¼ ð3;3;3Þ.

Results and discussion

The simulations were performed on the HPC facility of Imperial
College London, using 16 cores per simulation. Simulations of the
single-phase flow and simulations of spherical particles have been
presented in Mallouppas and van Wachem (2013). This article will
focus on the flow with non-spherical particles. The simulations
with the non-spherical particles take approximately 40 h of com-
putational time on 16 cores to achieve steady-state statistics for
the particle phase. It is observed that it takes much longer time
for the statistics of the particle phase to become steady than for
the fluid phase. Simulations with non-spherical particles are
approximately 30% more computationally expensive than the sim-
ulations of spheres. This is due to the fact that the orientation of
the particle has to be resolved, requiring a significantly smaller
time-step compared to the spheres. are steady. From the initial
conditions, simulations have run for 35 TL before starting to sample
data, and the sampling is done for a time duration of 7 TL. TL rep-
resents the Lagrangian integral time scale of turbulence at the cen-
tre of the channel. It has been verified that the obtained statistics
are steady.

The plane averaged relative concentration for all shapes of par-
ticles considered in this study as a function of height in the channel
is shown in Fig. 6 for the experiments (spheres) and all the simu-
lations, for both the cases considering the effect of wall roughness
and neglecting wall roughness, indicated as smooth walls in the
figure. The relative concentration is calculated by averaging the
number of particles in each horizontal plane, and normalising this
average throughout the channel. Simulations without considering
the effect of wall roughness show that the particles tend to graze
near the bottom of the channel, as the relative concentration is
much higher near the bottom than near the top. The reason for this
is that next to turbulent dispersion and particle–particle collisions,
which are both very weak phenomena in this case, there is no
mechanism to re-suspend the particles back into the bulk of the
flow. This effect is even more pronounced with non-spherical par-
ticles as their orientation changes significantly, compared to in the
bulk of the flow, as they graze near the bottom of the channel.
Because non-spherical particles in the near wall region align along
the wall, the concentration becomes even higher compared to
spherical particles. This effect is strongest for fibres and discs, as
can be expected from these strongly elongated shapes.

Including the effect of rough walls in the simulation changes the
concentration profiles enormously. Fig. 7 shows an instantaneous
distribution of the location of the fibres for the simulation consid-
ering the effect of wall roughness, (a), and the simulation neglect-
ing this effect, (b). It can be clearly seen that in case (a) the fibres
are fairly homogeneously distributed in the channel, whereas for
case (b) the fibres tend to flow in the bottom part of the channel.
The wall roughness provides an additional mechanism for transfer-
ring momentum from the horizontal direction into the vertical
direction. Even though this effect is not very strong, it is sufficient
to enable the spherical particles to move through the channel so
that there is almost no concentration gradient in the vertical direc-
tion, as observed by the experiment Kussin and Sommerfeld (2002)
as well as earlier simulations of spheres, reported in Mallouppas
and van Wachem (2013).

There are significant changes when considering the behaviour
of non-spherical particles compared to spherical ones. Fig. 8 shows
the relative concentration profiles for all the shapes of particles
and the experimental data from Kussin and Sommerfeld (2002)
for rough walls only. For spherical particles, the effect of the wall
roughness is sufficient to re-suspend the spheres into the flow.
The collisions with the rough wall provide an additional, stronger,
mechanism for converting momentum from the horizontal direc-
tion into the vertical direction. However, for non-spherical parti-
cles a significant part of the horizontal momentum is not
converted to vertical translational momentum by a collision with
a rough wall, but to rotational momentum. The non-spherical par-
ticles tend to rotate more strongly in the near-wall region due to
the rough walls, and this rotational momentum does not contrib-
ute to re-suspending particles back into the flow. Therefore, the
effect of rough walls is not as pronounced for non-spherical parti-
cles as it is for the spheres, as can be clearly seen from Fig. 8.



Fig. 7. Instantaneous distribution of the fibres for simulations when the statistics have reached steady state for: (a) considering the effect of wall roughness, and (b)
neglecting the effect of wall roughness.
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Fig. 8. The relative particle concentration for all considered particles, as a function
of dimensionless channel height for the simulations considering wall roughness,
and the experimental measurements for spherical particles from Kussin and
Sommerfeld (2002).

Fig. 10. The Reynolds stresses of the fluid for the all the considered particle shapes,
as a function of dimensionless channel height and the experimental measurements
for the fluid containing spherical particles from Kussin and Sommerfeld (2002).

Fig. 11. The average particle velocities for all considered particles as a function of
dimensionless channel height for the simulations considering the effect of wall
roughness compared to the simulations excluding the effect of wall roughness.
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The particle and corresponding fluid velocities for all shapes of
particles including and excluding the effect of wall roughness are
shown in Fig. 9. The velocity of the spheres and the experimental
measurements are in very good agreement with each other. Also,
the velocity of the fluid is in good agreement with the experimen-
tal measurements. It is observed that all the non-spherical particles
flow faster through the channel than the spherical particles. This is
because the non-spherical particles tend to locally maximise the
drag force, by aligning their longest axis perpendicular to the local
flow direction. The fluid profiles are slightly influenced by the par-
ticles, as can be seen from the variations in fluid velocity shown in
Fig. 9. However, there is very little effect of the particles on the
fluid Reynolds stresses if the flow, as can be seen from Fig. 10.

The plane averaged particle velocities predicted by the simula-
tions including wall roughness are compared to the particle veloc-
ities resulting from simulations excluding wall roughness in
Fig. 11. For the simulations including the effect of wall roughness,
the particle velocity profiles are more or less symmetrical, but the
simulations without wall roughness show a strong asymmetric
Fig. 9. The average particle and fluid velocities for all considered particles, as a
function of dimensionless channel height for the simulations considering the effect
of wall roughness and the experimental measurements for spherical particles from
Kussin and Sommerfeld (2002).
profile, due to the very strong concentration gradient as earlier
shown in Fig. 6, especially for the non-spherical particles.

It can be concluded from Figs. 6, 8, 9, and 11 that ellipsoids 2
almost behave as the spherical particles, which again match very
well with the experimental measurements. The particle concentra-
tion as a function of channel height, as well as the particle velocity
as a function of channel height are very close to those of the
spheres. This can be seen as a validation of the computational
framework, as the sphericity of ellipsoids 2 is near unity, 0.99.

The average angle of attack of the non-spherical particles is
shown in Fig. 12. As confirmed by the average velocities of the par-
ticles, shown in Fig. 9, the particles tend to align their longest axis
perpendicular to the flow, hereby maximising their local drag. This
results in a high average angle of attack, a high particle flow veloc-
ity, and a higher pressure drop, compared to the spheres. Near the
walls, the effect of the collisions can be clearly seen. A measure for
the oscillation or rotation of the particles is the root mean square of
the fluctuations of the angle of attack, shown in Fig. 13 as a func-
tion of channel height. The disc-shaped particle has the highest
average angle of attack, over 70�, and the lowest root mean square



Fig. 12. The average angle of attack for the non-spherical particles, as a function of
dimensionless channel height for the simulations without considering wall
roughness and the simulations considering wall roughness.

Fig. 13. The root mean square of the fluctuating angle of attack for the non-
spherical particles, as a function of dimensionless channel height for the simula-
tions without considering wall roughness and the simulations considering wall
roughness.
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fluctuating angle of attack, so this shape oscillates the least, closely
followed by ellipse number 2. Of all the shapes considered in this
paper, the disc-shaped particle shows the most stable flow. The
fibre shaped particle and ellipse number 1 show the lowest average
angle of attack, although it is still well above 55�. However, the
root mean square of the fluctuating angles is quite large for both
the fibre as well as ellipse number 1. This is because the fibre shape
and the elongated ellipse shape exhibit the least stable flow behav-
iour compared to the other non-spherical shapes, making these
shapes relatively sensitive to fluid velocity fluctuations.

The wall roughness seems to have a small effect on the average
angle of the particles, as it de-stabilises the position of the particle
a little. When a non-spherical particle collides with a wall, rotation
of the particle is induced. A particle collision with a rough wall
induces slightly more rotation, leading to a smaller average angle
of attack. This can be observed from the difference in average angle
of attack between simulations incorporating rough walls compared
to where this effect is neglected in Fig. 12. This is also consistent
with the observation that the root mean square of the fluctuating
angle of attack is higher in cases incorporating wall roughness as
shown in Fig. 13.

Conclusions

This paper describes a complete framework to predict the
behaviour of interacting non-spherical particles with large Stokes
numbers in a turbulent flow. A summary of the rigid body dynam-
ics of particles is presented in the framework of Quaternions,
showing a novel algorithm to convert tensors from body space to
world space as well as a novel algorithm to integrate unit Quater-
nions efficiently. This new approach does not rely on the renormal-
isation of the Quaternion, but uses a method which inherently
conserves the unity of the Quaternion in time. The integration
framework for Quaternions has been scrutinised and validated by
Zhao and van Wachem (2013b).

To describe the interaction of the non-spherical particles with
the fluid, the drag and lift forces and the torque are determined
through the closures determined from DNS as described and vali-
dated in Zastawny et al. (2012). The collisions between the parti-
cles themselves and the particles and the walls are also taken
into account. This is achieved by identifying all the contact points
of the particles, and determining a collision force assuming a visco-
elastic deformation in the contact point. A subsequent repulsive
force is determined acting at the point of contact, leading to a force
and a torque on the particle. Finally, a model to deal with the inter-
action of rough walls and particles using a visco-elastic approach is
applied to non-spherical particles.

The framework is applied to turbulent channel flow, of which
the experiments for spherical particles are presented in Kussin
and Sommerfeld (2002). Five differently shaped particles are con-
sidered in this flow, each with an equivalent diameter of around
dp ¼ 195 lm and a mass loading of / ¼ 1, matching the experi-
mental parameters of Kussin and Sommerfeld (2002). The channel
flow is resolved with a hybrid DNS-LES approach. The results for
single-phase flow and the flow laden with spherical particles is
in very good agreement, and has been reported in Mallouppas
and van Wachem (2013). Moreover, the results of nearly spherical
ellipsoids, with a sphericity factor of 0.99, are very close to those of
the spheres, which serves as an additional validation of the com-
plete framework.

From the results of the flow of non-spherical particles, it is gen-
erally observed that non-spherical particles try to locally maximise
their drag, although the inertia of the particles and the local fluid
velocity fluctuations and gradients prevent this from occurring
instantaneously. This phenomena is further investigated in this
paper by performing resolved true direct numerical simulations
of a non-spherical particle in a flow. These results show that in case
of slip between the particle and the fluid, two pressure gradients
on the acute sides of the particle exist, and cause a net torque if
the axis of the particle is not exactly perpendicular to the flow
direction. The only stable orientation of the particle is if the longest
axis of the particle is aligned perpendicular to the flow direction.
This phenomenon is not captured by using the torque model of
Jeffery (1922), which is used by other research papers, because it
is derived for flow situations where there is no slip velocity
between the particles and the fluid.

The average angle between the longest axis of the non-spherical
particles and the direction of the average flow channel is as high as
70�. Because of this effect, the non-spherical particles move consid-
erably faster through the channel than the spherical particles. This
also results in a larger pressure drop. The disc-shaped particle
exhibits the most stable flow behaviour, with the highest average
angle and the lowest root mean square of fluctuation of angle. This
can be explained by the fact that the acute angle of the disc is the
sharpest compared to the other particle shapes. On the other hand,
the elongated fibre shows the least stable behaviour; it shows the
most oscillating motion around its axes as it moves through the
channel.

The wall roughness has a very important effect on the flow of
non-spherical particles, even more so than for spherical particles.
Non-spherical particles that are grazing near the bottom of the
channel are returned into the flow by the roughness, but the
roughness also induces additional rotation of the non-spherical
particles. This leads to a lower mean angle between the shortest
axis of the particle and the average channel flow direction and a
higher fluctuating angle.
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