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1. I N T R O D U C T I O N  

In 1829, C. F. Gauss s ta ted his celebrated principle of least constraint, which subsumes all of 
analytical mechanics [1]. The principle takes the form of a constrained quadratic optimization 
problem. In this paper,  Bellman's principle of optimali ty is used to solve Gauss '  problem in a 
sequential fashion. The  solution itself constitutes a new principle of analytical mechanics, which 

we may name the Bellman-Gauss principle for constrained motion. 

2. G A U S S '  P R I N C I P L E  OF L E A S T  C O N S T R A I N T  

Consider a system of p particles, the ith particle of which has mass m~, displacement vector xi 
in inertial Cartesian coordinates, velocity vector ±i, and acceleration vector xi. The external 
force on the ith particle in rectangular coordinates in the inertial frame of reference is f~. If  there 
were no constraints present, the free motion acceleration of the i th particle would be a~ = f/mi. 
Assume, though, tha t  the particles are subject to equality constraints of both  holonomic and 

nonholonomic type. A task of theoretical mechanics is to determine,  at any t ime t, the actual 
accelerations ~, x 2 , . . . ,  Xp resulting from both  the impressed forces and the constraint forces. 

Let ~ be the n x 1 actual acceleration vector obtained by stacking the three-dimensional ac- 

celeration vectors x 1 , ~ 2 , . . .  ,xp in the usual fashion, n = 3p, and a be the n x 1 free motion 
acceleration vector obtained by stacking the ' three-dimensional  free motion acceleration vectors 
a l ,  a 2 , . . . ,  ap. Then, Gauss '  principle of least constraint states tha t  the actual acceleration vec- 
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tor ~ is the one that  minimizes G, where 

G = (~ - a ) T M ( ~  -- a), (1) 

subject to whatever the constraints might  be on the accelerations. As usual, superscript T 
denotes transposition, and M is the n x n diagonal mass matrix. 

For all the bilateral constraints treated in Lagrangian mechanics, upon differentiating the 
holonomic constraints twice and the nonholonomic constraints once with respect to the time t, 
one is left with a consistent linear system of constraint equations for the acceleration vector 

A~ = b, (2) 

where A is an m x n matrix and b is an m x 1 vector in which m is the number of constraints. 

The matrix A need not be of full rank. Given initial conditions on x and )i, such differentiations 

of the constraints do not produce any loss in generality. In this case, Gauss' principle actually 

takes the form of minimizing G subject to the linear constraints (2). The matrix A and the 

vector b may be functions of t, x, and ±. 

To recast Gauss' principle, let 
y = M1/2(Jt - a), (3) 

so that 
= M-1/2y + a. (4) 

Consequently, equations (1) and (2) are equivalent to 

G = yVy (5) 

and 
A M - 1 / 2 y  = b - Aa.  (6) 

Gauss' principle is then reduced to the problem of finding the shortest length vector y such that  
the consistent equation (6) is satisfied. As is known [2], the solution to this problem is 

y = (AM -1/2) + (b - Aa), (7) 

or equivalently [3,4], 

= a + M -I/2 - - ( A M  -I/2) + (b - Aa), (8) 

where (AM-l/2) + is the Moore-Penrose generalized inverse [5] of the matrix AM -x/2. 

In the following, we present an alternative approach to solving this shortest length problem 

via Bellman's principle of optimality [6,7]. 

3. SOLUTION VIA BELLMAN'S PRINCIPLE OF OPTIMALITY 

Let C = AM -1/2 and d = b-Aa. Apparently, C is an m x n matrix and d is an m x I vector. 

Suppose that the rank of the matrix C is r, and its first r columns, Cl, c2,..., cr, are linearly 

independent (if C is not in this form, it can be transformed into this form in various ways [8]). 

Let ck be the k th column of the matrix C, k = I, 2,..., n. Gauss' principle is then equivalent to 

the problem of finding the set of scalars ~/I, Y2,..., Y, such that ~/12 + ~2 + ... + y2 is minimum, 

and concurrently the consistent set of linear equations Cxyl + c2y2 + • .. + cnll, = d is satisfied. 

The imbedding procedure of dynamic programming suggests the following. Let gk(dk) be the 

value of yl 2 + ~/2 +... +y~ when using an optimal set of scalars Yl, ~2,..., ~]k, where ely I -b c2~2 -[- 

• .. + c~lJk = dk is a consistent set of linear algebraic equations, dk is an m x 1 vector, and 
/~ -- r, r + 1,..., n. Optimal is in the sense that this particular set of scalars I#1, ~/2, .. •, I/k makes 
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the value of yl 2 + y2 + . . .  + y~ be minimum. Then, Bellman's principle of optimality 1 leads to 
the basic recurrence relationship 

gk(dk)-- rain + 9k_1(d  - k = r + l,r + 2,...,n. (9) 
Yk 

This is because once Yk is chosen, there is an immediate cost of y2, and Yt, Y2,..., Yk-I have to 

be chosen so that y2 + y2 2 +... + y~_ 1 is minimum subject to the consistent constraint 

clyt + c2Y2 + "'" + Ck-lYk-I = dk - ckyk. (10) 

But, by definition, this minimum is gk-l(dk --ckyk). Therefore, Yk must be chosen to minimize 

the sum in equation (9). The reason k starts from r + 1 is that there is one and only one set of 

scalars Yl, Y2,..., Yr that fulfills the constraint clyt + c2Y2 + '.. + CrYr = dr, and hence there 

is no freedom in choosing the scalars Yl,Y2,... ,Yk, when k < r, in view of the independence 

assumption. 

Denote Cr to be the m x r matrix whose columns are ct,c2,... ,cr and y(~) to be the r × 1 

vector whose elements are yl, Y2,..., yr. Since ct,c2,... ,c~ are assumed to be independent, so 

that the matrix C~Cr is of dimension r × r with rank r, it follows that the inverse (C~Cr) -I 

exists. Thus, the unique solution to the consistent set of linear algebraic equations Cry (r) = dr, 

in vector form, is 

y(r) = (C~Cr)-I C~d~. (II) 

Consequently, by definition, 

gr(dr ) = y 2  + y2 + . . . +  y2 = y(r)Ty(r) 

T [ ] (c:cr) -lc:dr (12) - - d r C r  ( C T C r ) _  1 T 

= d,T C, Cr d,. 

Denote 
T -1  T 

Rr  = Cr (CrTCr) -1 ( C r C r )  C r • (13) 

Then 
gr(dr) = d ~ R r d r ,  (14) 

where Rr  is an m x m positive semidefinite symmetric matrix. 
Assuming gk- l (dk-1)  = d~ '_lRk-ldk-1,  where Rk-1 is an m x m positive semidefinite sym- 

metric matrix, we now prove that  gk(dk) has the form gk(dk) = d~Rkdk ,  where Rk is an m x m 
positive semidefinite symmetric matrix and k = r + 1, r + 2 , . . . ,  n. 

From the recurrence relation (9), we see that  for k = r + 1,r  + 2 , . . .  ,n,  

gk(dk) = min {y~ + gk-l(dk -- ckyk)} = rain {y~ + (dk - ckyk)XRk-l(dk -- ckyk)} 
Yk Y~ - 

= min {yk 2 + dVRk_ldk - 2dVRk_lckyk + cTRk_lcky 2} (15) 
Yk 

= rain { (1 + cTRk_lCk)y~ + d~-Rk-ldk - 2d~-Rk-lckyk }. 
Yh 

Since the first order condition for the minimizing value of Yk is 

O{ } = 2 (1 + c~'Rk'~ick) Yk -- 2d:Rk-lck = 0, (16) 
ayk 

1Bellman's principle of optimality states: "An optimal policy has the property that whatever the initial decision 
is, the remaining decisions must constitute an optimal policy with regard to the state resulting from the first 
decision." 
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we have 
~jopt ~_~ d~Rk- lCk 
k 1 + c~Rk_ick (17) 

or 
opt C~- Rk- 1 
k = 1 + cTRk_lCk dk. (18) 

Substituting equation (17) or (18) into equation (15) gives 

[. opt] 2 _ 2c:Rk_idky~p t + d~-Rk-ldk gk(dk) = (I+c~TRk_ICk)L"k J 

d~'Rk-lckc~Rk-ldk _ 2d~- Rk-lCkC~Rk-1 d + d~Rk-ldk 
= (1 +C~Rk- lCk)  (1 +C~-Rk_lCk) 2 1 +c~-Rk-lCk k 

= d [ R k - l d k  - .~T Rk-lCkCkrRk-1 ~'k ~ - $ ~  dk (19) 

R_k-  kc  
=d~- Rk-1- l+e~-Rk_tek jdk 
= dkTRkdk, . 

where 
T Rk-lckck Rk-~ (20) 

Rk----Rk-1-- l q - c : R k - l C k  ' k = r + l , r + 2 , . . . , n .  

Notice that  the denominator 1 + c~Rk_ lc~ ~ 0 always holds, since Rk-1 is positive semidefinite. 
Let 

~k = Rk-lCk, k = r + 1,r + 2 , . . . , n .  (21) 

Then, equation (20) is equivalent to 

k T 
13k k = r  + l , r  + 2 , . . . , n .  (22) Rk = Rk-1 1 + cTkflk ' 

Substituting equation (22) into equations (17) and (18) gives 

~opt d~-& 
k 1 + (23) 

and 
f o p t  ---- k 

Yk 1 +--~/3k dk' (24) 

respectively, where 

dn -- d, 
(25) 

- -  C ~ opt dk = dk+l k+lYk+ 1 , k = n - l , n - 2 , . . . , r .  

Therefore, the sequence of R r , R ~ + I , . . . ,  Rn is now obtainable through formulas (13) and (22). 
The optimal values of y ( r )  Yr+l,Yr+2,... ,~kn can be calculated via equation (11) and equa- 
tion (23) or (24). 

In brief, to find the shortest length solution to the consistent set of linear algebraic equations 
C y  = d, where C is a matrix with rank r whose first r columns are linearly independent, we 
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may use the following/3 - R algorithm. We carry out the following sequence of calculations: 

R~ = C'` (C~C~) -1 (C~C'`) -1 c'`T, (26) 

/~'`+1 = R ' ` C r + l ,  

8 , - + 1  : R r  /~r+1~3"`T+1 T , (27) 
I + Cr+ l~+ l  

d'`+2 = R'`+Ic'`$2, 
T 

R r + 2  = R r + l  1 -~- r+213"`+2 cT , (28) 

~3 n : Rrt_lCn, 

1 + c : ~ n "  (29) 

Only ~r+l, ~ ' ` + 2 , . . - , ~  need to be stored• The optimal set of scalars y n , y , - 1 , . . .  , y l  is then 
obtained by 

y °pt m-~ /~nv/3, d, (30) n 1 
T 

,opt /~ - 1 
~ n - - I  = T (d - -  Cny°pt) , (31) 

1 + Cn_l]3n_l 

. opt /3r+1 opt (32)  = -y - - - -  d - c~y~ , 
~'`+1 1 -~- Cr+l/~'`+l i----r+2 / 

• / ( ÷c.op , = -1 d -  z . . ,  1 (33) 
i = r+ l  / 

tyopt.m 

Once y is determined, ~ is obtained from equation (4)• 

4. THE BELLMAN-GAUSS PRINCIPLE 

FOR CONSTRAINED MOTION 

Gauss' principle describes the relationship between the actual accelerations and the free motion 
accelerations. The algorithm derived from Bellman's principle of optimality gives an algorithm 
for converting a set of free motion accelerations to a set of actual accelerations. It is thus seen that 
equations (26)-(33) plus equation (4) constitute a free standing principle of analytical mechanics, 
which we may call the Bellman-Gauss principle for constrained motion. 

5. AN APPLICATION 

Consider a simple pendulum problem in mechanics, in which we want to find the equations of 
motion for a material point with mass ra and.coordinates (Xl, X2). See Figure 1. 

According to Gauss, the actual acceleration vector R for this pendulum is the one that minimizes 

G = (~ - a ) T S ( ~  - a), (34) 
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! 

Figure 1. The motion of a pendulum. 

subject to the constraint 

x 2 + x2 ~ = l ~, (35) 

where [o] [o o] a = and M = 
= x2 ' ' " 

To apply the Bellman-Gauss principle, we first identify the matrix C and vectors d and y. 
As before, ck denotes the k th column of matrix C and Yk denotes the k th element of vector y,  
k = 1, 2. Differentiating the holonomic constraint (35) twice gives 

In matrix form, equation (36) is equivalent to 

AJt = b, (37) 

where AI×~ = [xl  ~ ]  and b1,,1 = -(~ +:@. Therefore, 

[79201/5 0 ] = [77~-1/2Xl m-1/2x2]  (38) 0 1 x 2  ~-- A M  -1 /2  -- [Xl x2]  re_l~ 2 

d l x l - - b - A a - - - ( 5 : 2 W S : ~ ) - [ X l  x 2 ] [ O g ]  :-(d:2-l-d:22) Tgx2,  (39) 

and 

Y2×1: Ml/2(:~:_l l i ) i  i [m~ ,2 ,?.1,i7/2] ([~12] - r 7"D'l/2X1 [ .~1/~C~ + g) ]" (40) 

Obviously, the rank of the matrix C is 1, namely, r = 1. For simplicity, assume xl ~ 0. It follows 
that  C1 = Cl = m - 1 / 2 x l ,  c2 = m-1 /2x2 ,  Yl = ml/2~h,  and Y2 = ml/2(x2 + g)- Therefore, 
equations (26)-(33) provide 

R1-~C1 (cITe1) -1 (cITC1) -1 C1T = m-lxi [(m_lxl2)(m_lxi) ] = mxr 2, (41) 

J2  = R lC2  = m x l l m - l l 2 x 2  : m112x12x2 • (42) 

The optimal scalars Y2 and yt are then obtained as 

d = ml12x'12X2 

• . .  ( 4 3 )  

- ml/ '~'> [gx,>- ( .~ + :~~)] 
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and 
(c7-c,) -1 c :  (d -  o,>< 1 = C2Y2 ) 

m-I/2x2~I~I/2x2 1 
= ~ 1 / 2 x l l  -- (:~2 "t'- :~2) "t'- gx2 -- X2.-I-X 2 [gX2 -- (IT2 "t- X2)] (44) 

m112xl [gX2 - (52 -I- 52)]  

From equation (4), it is seen tha t  the equations of motion for the pendulum are 

'Xl = m - l l 2 y ~  p< ---- g X l X 2  -- X l  (,~,2 + ~2)  
+ 

- + ( 4 5 )  
X2 r ( 2 5 2 

, 

which are seen to be correct by s tandard methods. These equations were derived for xl  ~ 0. 
However, they hold even when xl  = 0. 

6. D I S C U S S I O N  

The Bellman-Gauss principle introduced in this paper  provides new insights into the nature of 
constrained motion. Not only is the relationship between the actual accelerations and free motion 
accelerations specified in a new way, but also the interrelationship among the actual accelerations 
of all the particles is prescribed. Since Gauss '  principle holds even when the system is described 
in generalized coordinates [8], the possibilities are far wider than  is indicated above. In practical 
applications, the FEED (Fast and Efficient Evaluation of Derivatives [9]) procedure would be 
employed to automatical ly calculate all the needed derivatives for the holonomic and nonholo- 
nomic constraints. The potential  utility of the Bellman-Gauss principle, bo th  conceptually and 
computationally,  remains to be explored further. 
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