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We give an abstract algebraic characterization of semigroups of tolerance relations and 
semigroups of symmetric binary relations. 

1. Introduction 

A binary relation p between elements of a set A is called symmetric if 
(al, a2) • p ::)> (a2, al) • p for all al, a2 • A. It is called partly reflexive if 

(al, a2) • D : ~  (al, al) • p and (a2, a2) E/9, 

and reflexive if (a, a )e  p for all al, a2, a cA .  It is called a partial tolerance 
relation if it is both symmetric and partly reflexive; it is called a tolerance relation 
if it is symmetric and reflexive. Of course, if a binary relation p is represented by 
a (finite or infinite) square Boolean matrix consisting of 0 and 1 entries, then p is 
symmetric if and only if the matrix corresponding to p is symmetric, and p is 
reflexive if and only if the matrix has the main diagonal consisting of l's. 

A symmetric binary relation can be called a graph, in which case partial 
tolerance relations are precisely the graphs which have a loop at each non- 
isolated vertex. If p and o are binary relations on A, then their product po is 
defined as usual: 

(al, a2)6poC~(3a)[(al,  a ) • p  and (a, a2)•o].  

Clear ly ,  Mpo = MoMo, where Mp, Mo and Mpo are the 0, 1-matrices correspond- 
ing to p, o, and po, and the product of matrices is the Boolean one (i.e., 
1 + 1 = 1). If p is a binary relation, then p-1 = {(a2, al): (al, a2) • p)  denotes the 
converse of p. For example, p is symmetric preCisely when p - t =  p. While a 
product of reflexive relations is always reflexive, the product of two partly 
reflexive, or symmetric, or tolerance relations need not have the same property. 
However, a set of symmetric relations (or relations of another type) may be 
closed under multiplication, in which case it forms a semigroup of symmetric 
relations. We find algebraic conditions characterizing such semigroups, i.e., 
necessary and sufficient conditions under which a semigroup is isomorphic to a 
semigroup of symmetric binary relations, or to a semigroup of (partial) tolerance 
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relations. We solve these problems also when the symmetric or tolerance 
relations are between elements of some algebras (say, groups) and they are 
compatible with the operations in thb algebras. 

Tolerance relations have attracted considerable attention in recent years (the 
corresponding publications are too numerous to be mentioned here),  and they 
have various applications. Therefore,  consideration of semigroups of tolerance 
relations may be interesting. Some of our results (in a weaker form) were 
announced without proof in [1]. 

Semigroups isomorphic to semigroups of reflexive binary relations, were 
characterized in [2], semigroups isomorphic to semigroups of partly reflexive 
binary relations, in [3]. 

2. Semigroups of symmetric binary relations 

The following result gives an abstract characterization of semigroups of 
symmetric binary relations. 

Theorem 1. A semigroup S is isomorphic  to a semigroup o f  symmetr ic  binary 

relations i f  and only i f  

(1) S is commutat ive;  

(2) S satisfies the condition x = xy2z 2 ~ x = xy  2 for  all x,  y,  z ~ S. 

Proof .  Necessity. Without loss of generality we may assume that S is a semigroup 
of symmetric binary relations on a set A. It is known (and trivial) that  
( p o )  - l = o - l p  -1 for two relations p and o. If s, t e S ,  then st e S ,  so that 
st = (st) -1 = t - l s  -~ = ts. Thus, S is commutative. 

To check (2) assume that x = xy2z 2 for some x, y, z e S. Because of com- 
mutativity, x = xz2y 2. Suppose that (al ,  a2) e x for some al ,  a2 e A .  Then 
(al,  a2) e xz2y 2. It follows that (a3, a2) e y for some a3 e A. Since y is symmetric, 
(a2, a3) e y, so that (a2, a2) .e y2. It follows that (al, a2) e xy  2. 

Conversely, suppose that (al,  a 2 ) e x y  2. Then (al, a 4 ) e x  and (a4, a2 )ey2  for 
some a4 e A. Since x = xy2z 2, it follows that (al,  a4) e xy2z 2, hence (a5, a4) E Z for 
some a5 e A. By symmetry of z, (a4, a5) e z, whence (a4, a4) E Z 2 and (al, a4) E 
x z  2. Therefore,  (al,  a2) e xz2y 2 = x. 

We have proved that (al,  a2) e x ¢~ (al ,  a2) e xy  2 for arbitrary al ,  a2 e A. Thus, 
x = xy  2 and (2) holds. 

Sufficiency. Suppose that S satisfies both (1) and (2). If S has an identity 
element put S 1 = S. If S has none,  add a new element e to S defining it to be the 
identity element of S ~ = S U {e}. S x is deaf ly  commutative, and S ~ satisfies (2) for 
x, y, z e S. If y = e or z = e, (2) becomes trivial. If e = x ~ S, then e = y2z2. It 
follows that y = z  = e  and (2) holds again. Clearly, it suffices to find a 
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represen ta t ion  of  S 1 by symmetr ic  binary re la t ions .  This  representa t ion  can be 

always restr ic ted to S. 
For  x, y • S ~ define x < y wheneve r  there  exists z • S 1 such that  y = x z  2. T h e  

fol lowing l e mma  gives some proper t ies  of this re la t ion.  

Lemma 1. The  relation < is a (partial) order  relation compat ib le  with the 

mul t ip l icat ion  in S ~. A l s o  x < x y  2 f o r  all x,  y • S ~. 

Proof .  Since x = xe  2, we see tha t  x < x for a l l x  • S ~, i .e . ,  < is reflexive. Suppose 

tha t  x < y  and  y < z for  some x, y, z • S 1. T h e n  y = x u  2 and z = y v  2 for  some 

u, v • S 1. I t  follows that  z = x u 2 v  2 = x ( u v )  2, hence  x < z and < is transit ive.  Here  

we used the  ident i ty  u2v 2 =  (uv)  2 which follows f rom commutat ivi ty .  

Now,  if x < y and  y < x for  some x, y • S ~, then  y = x u  2 and x = y v  2 for  some 

u, v • S 1. It  follows that  x = x u 2 v  2. Applying  (2) we obta in  x = x u  2 = y, i .e . ,  < is 

ant isymmetr ic .  Thus ,  < is an  o rder  re la t ion on  S 1. 
_ 2 for some zi • S 1. Suppose  tha t  xi <Yi  for  some xi, yi • S 1, i = 1, 2. Then  yi -x~z~  

It  follows tha t  YlY2 = x l z 2 x 2 z  2 = x~x2(z~z2) 2, hence  x~x2 < Y~Y2, i .e. ,  < is com- 

pat ib le  with mult ipl icat ion.  The  inequal i ty  x < x y  2 follows from the defini t ion of 

< .  L e m m a  1 is proved.  [] 

W e  say tha t  a subset T ~ S 1 is majorant  if x e T and x < y imply y E T for all 

x, y E S 1. He re  and e lsewhere  the  inclusion c is reflexive, i .e. ,  T c T. Ma jo ran t  

subsets have  been  considered in the l i terature  under  various names ("up-set  dual  

o rder  idea ls"  is one  of  them) .  
Le t  M deno te  the set of all ma jo ran t  subsets of  S 1. For  any subset T c S ~ let 
= {y E $1: (3x)[x  • T and  x < y ] } .  Clearly,  T c- 1" and I" • M. For  every  s • S 

define a b inary  re la t ion Ps • M x M: 

( A ,  B ) • p ,  C~ A s  c B and Bs c A 

for  all A,  B E M. Here  A s  = {as: a E A}. Clear ly ,  p~ is a symmetric  binary 

relat ion.  

Next  we prove  that  s ~ P s  is an i somorph ism of  S on to  a semigroup of  

symmetr ic  b inary  relat ions.  

Indeed ,  if (A ,  B )  E p~p, for  some A, B • M and s, t • S, then (A, C) • Ps and 

(C, B)  • p, for  some C • M. It follows tha t  A s  ~ C, Cs c A ,  Ct ~ B,  and Bt  c C. 

There fo re ,  A s t  c Ct c B and Bst  = Bts ~ Cs ~ A ,  hence  (A ,  B )  • P~t. Thus,  

P~Pt ~ Pst. 
Converse ly ,  suppose tha t  (A, B ) •  p,, for  some A,  B • M. Let  C = A s  U Bt. 

T h e n  C • M,  A s  ~ C and B t  ~ C. To prove  tha t  Cs ~ A and Ct c B, assume that  

y • C. T h e n  x < y for some x • A s  tA Bt. By symmet ry  we may assume that  x • A s ,  

then  x = as for  some a • A. Therefore ,  a < a s 2 =  xs < y s .  Since A is ma jo ran t ,  

ys  • A .  Also  x t  = ast • A s t  ~ B.  Since xt  < y t  and B is ma jo ran t ,  we obta in  y t  • B. 
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It follows that Cs ~- A and Ct c B, i.e., (A, C) e p, and (C, B) e Pt. Therefore, 
(A, B ) •  p,pt which proves that p,, cO,p, .  Thus, p,p, = p,,, i.e., the mapping 
s ~ p, is a homomorphism. 

Next suppose that ps = p,. We write g for {s}. We prove that (~, g) • p,. Let 
x • ~. Then e < x and s < es < xs. Therefore, xs • g, i.e., ~s c £ Now, if y • g, then 
s < y and e < es 2 = s 2 < ys, so that ys • ~ and gs c & Therefore, (~, g) e p,. It 
follows that (~, g) • p ,  hence t = et • ~t ~ g. Thus, s < t. By symmetry t < s. 
Therefore s = t and s ~ ps is an isomorphism of S onto the semigroup {p,: s • S} 
of symmetric binary relations on the set M. [] 

In fact, we have proved more than promised. A binary relation p c A x A is 
called a multipermutation if, for every a cA,  there exist at, a 2 e A  such that 
(al, a ) •  p and (a, a 2 ) • p .  All the relations Ps are multipermutations of M. 
Indeed, for every A e M and s e S, we have As  ,--As and (As)s c A.  The second 
inclusion follows from Lemma 1. Thus, (A, AS)e p,. Since p, is symmetric, 
(As, A )  • Ps; therefore, p, is a multipermutation. 

A binary relation p between the elements of a universal algebra A is called 
stable if p is a (possibly, empty) subalgebra of A x A. Stable binary relations are 
sometimes called compatible, invariant, preserved by the operations, etc. For 
example, if A is a group (considered as an algebra with two operations: a binary 
multiplication and a unary inversion), then p c A  x A is stable if and only if 
(al, a2), (a3, a4) • 19 22~ (ala3, a2a4) • p and (at, a2) • p ::~ (a l  1, a2 t) • P. If A is a 
vector space, then p is stable when it is a subspace of A x A. 

It is easily seen that the set M introduced in the proof of sufficiency of Theorem 
1 is a complete distributive lattice under the set-theoretical operations. Our 
relations ps = M x M are stable (in fact, they are complete sublattices of M x M). 
We omit an easy proof of this statement. It follows from the obvious properties: 

A r- B ~ A s  c Bs and (A LJ B )s = As  U Bs, 

which hold for any A,  B c St and s e S. 

Thus, we arrive at 

Corollary 1. I f  a semigroup S is isomorphic to a semigroup o f  symmetric binary 

relations, it is also isomorphic to a semigroup o f  stable and symmetric multiper- 

mutations o f  a distributive lattice. I f  S is finite, the distributive lattice can be chosen 

to be finite. 

Since every lattice is a semilattice with respect to any one of its operations, and 
any semilattice is a (commutative) semigroup, we can replace "distributive 
lattice" in Corollary 1 either by "semigroup" or by "commutative semigroup". 

Corog~ry 2. A semigroup S is isomorphic to a semigroup o f  symmetric binary 
relations i f  and only i f  S is commutative and there exists an order relation ~ on S 
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such that s <~ st 2 for  all s, t e S (i.e., all squares t 2 are 'positive elements' o f  S with 

respect to <~). 

Proof. Necessity. Suppose that S is isomorphic to a semigroup of symmetric 
binary relations. Then S satisfies the conditions (1) and (2) of Theorem 1 and, by 
Lemma 1, the relation < on S satisfies the conditions of Corollary 2. 

Sufficiency. Supose that S is commutative and has an ordering ~ such that 
s <~ st 2 for all s, t e S. Suppose that x = xy2z 2 for some x, y, z e S. Then x <- xy 2 <~ 
xy2z 2= x, hence x = xy 2. Thus, S satisfies conditions (1) and (2) of Theorem 
1. [] 

Remark. We could require the order relation ~< in Corollary 2 to be stable. 

If S is a semigroup of binary relations, then it is ordered by the set-theoretical 
inclusion c .  Clearly, c is stable on S. If S consists of symmetric multipermuta- 
lions then it is easy to check that s ~ st 2 for all s, t e S, i.e. that c satisfies the 
conditions for ~< stated in Corollary 2. However, if S consists of symmetric 
relations which are not necessarily multipermutations, than s c st 2 may not hold. 
Nevertheless, by Corollary 1, S is always isomorphic to a semigroup T of 
symmetric multipermutations. The inclusion relation on T does satisfy the 
conditions for ~< of Corollary 2. 

As we have mentioned in Corollary 1, if a semigroup S is representable by 
symmetric binary relations, the relations can be chosen to be stable multiper- 
mutations on lattices. An immediate question is: when can we choose stable 
symmetric relations or stable multipermutations on structures of such importance 
as groups, rings, modules, vector spaces, or Boolean algebras? It turns out that S 
must satisfy an additional condition. 

Theorem 2. The following conditions are equivalent for  any semigroup S: S is 
isomorphic to a semigroup o f  stable symmetric binary relations on 

(A) a Boolean algebra; (B) a ring; (C) a group; 
(D) a vector space; (E) a module. 

The stable symmetric binary relations on these structures can be chosen to be 
multipermutations and, if  S is finite, the structures (A)- (E)  can be chosen to be 

finite. 
A semigroup S satisfies any (or all) o f  the equivalent conditions (A)-(E)  i f  and 

only i f  it satisfies the following conditions (1) and (3): 

S is commutative, (1) 

x = x 3 for  every x eS .  (3) 

Proof. Every Boolean algebra can be considered as a (Boolean) ring, and every 
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By (i), it 
that (B, A) 

as is 
We shall 

~(S). 

ring is an abelian group with respect to addition. Thus, the implications 
(A) ~ ( B ) ~  (C) are obvious. Every Boolean algebra can be considered as a 
vector space (take the two element field GF(2) for scalars, and define an obvious 
multiplication of scalars and vectors). Every vector space is a module and every 
module is an (additive) abelian group. Thus, the implications ( A ) f f  ( D ) ~  (E) 
(C) are obvious. The implication ( C ) ~  (1) follows from Theorem 1. 

(C) ~ (3). An easy argument belonging to the folklore shows that every stable 
binary relation p on a group is difunctional, i.e., p p - l p  = p. Indeed, p c p p - l p  
holds for every relation p: if (g, h) e p, then (g, h) e p, (h, g) e p - ' ,  and 
(g, h) e p which implies that (g, h) e p p - l p .  Conversely, supose that (g, h) • 
p p - l p ,  i.e., (g, u) • p, (u, v) e p - l ,  and (v, h) • p for some u, v • G. Then 
(v, u) e p, hence (v -1, u -1) • p and (g, h) = (gv-Xv, u u - l h )  e p, i.e., p p - l p  ~_ p. 

If p is symmetric, then p - l = p  and the difunctionality of p means that p3= p. 
Thus, (C) implies (3). 

Now suppose that S is a semigroup which satisfies (1) and (3). Note that 
conditions (1) and (3) imply condition (2) of Theorem 1. Indeed, if S satisfies (1) 
and (3) and if xy2z 2 = x for some x, y, z • S, then xy 2 = xy2z2y 2 = xy2z 2 = x 

because, by (3), y4=y2. For every s e S and every subset A of S define 
As = {a cA" as2= a}. Let ~(S) denote the set of all subsets of S. For every 
A e ~(S) we obtain (As) ,  = As.  Indeed, (As)s c As.  Conversely, if a • A, then 
as- s 2 = as 3 = as so that as • (As)~ which implies A s  c (As)s. Also, A c B 
A~ c B~ for all A, B • ~(S) and s • S. Therefore, if As  c B, then As  = (As)s c B~. 

For every s • S define a binary relation tr, on [9(S) as follows: 

(A, B)  • ¢r~ ¢~Ass - Bs for all A, B • ~(S). 

We find some properties of these relations. 
(i) trs is a symmetric binary relation. 

Indeed, if (A, B) etrs, then Ass = B~. Multiplying this equality by s we obtain 
A s s  2 "- Bss. However, A s  $2 --  As by the definition of A,. Therefore Bss = As, i.e., 
(B, A )  e tr~. 

(ii) tr, is a multipermutation of ~(S). 
suffices to prove that, for every A e ~(S), there exists B • ~(S) such 
• tr,. Indeed, (A,s)~s = (A~s)s = Ass 2 = A~, so that (Ass, A )  • trs. 
stable on the Boolean algebra ~(S). 
prove even more: as is a complete Boolean subalgebra of ~ ( S ) x  

Suppose that (Ai,  B i ) e  o, for all i from some index set L Then (Ai)ss-" (ni)$° 
Obviously, (U  Ai)s = U (Ai)s. Therefore, 

(U A,)ss = [U (A,)~]s = U (Ai)ss = U (B,)~ = (U  B,)s, 

hence ( U  Ai,  U Bi) e try. 

Now suppose that (A, B ) e  a~, i.e., Ass = Bs. Assume that a ¢ A and as 2= a, 
i.e., that a e (A')s, where A '  is the complement of A in S. If as e B, then as e Bs 
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and a = as 2 • Bss = Ass  • s = As $2 = As c A ,  i.e., a • A contrary to our assump- 
tion. Thus, (A' )ss  c B '  an so (A')ss c (B')s. Analogously, (B' )ss  c (A')s.  

Multiplying the last inclusion by s we obtain (B')s = ( B ' ) s s 2 c  (A')ss.  T h u s ,  

(A')~s =(B')~,  i.e:, (A',  B ' ) •  o~. It follows that os is a complete Boolean 
subalgebra of ~(S)  x ~(S).  

(iv) OxOy = oxy for all x, y • S. 
Suppose that (A, B) e trxtry, i.e., (A, C) e trx and (C, B) • try for some C e 

~(S).  Then A g  = C~ and Cyy = By. If a • A~y, i.e., if a(xy )  2 = a, then ax 2 = a by 

(2). Therefore a • A~, i.e., Axy ~ A x. Because of commutativity of multiplication, 
Axe c Ay.  Let  a • Axy. Then a • A~, hence ax • A~x c C. Now, axy 2 = ay2x = ax, 

because a • A r. Thus, ax • Cy. It follows that axy • Cry ~ B,  whence axy • Bxy. 
Thus, A~yxy c B~y. If b • Bxy, then b • By = Cry, hence b = cy for some x e C r. 
Therefore, by = cy 2 = c • C. Since b y .  x 2 = bx2y = by follows from B~ r = B~, we 
see that by • Cx = A~x,  so that by = ax for some a • A~. Therefore, bxy = byx = 

a x 2 = a  • A ,  whence bxy • A x y .  It follows that b = b ( x y ) 2 • A x y x y .  Thus, A~rxy = 

Bxy, i.e., (A,  B)  e axy. We have proved that tr~oy c o~y. 

Conversely, suppose that (A, B) • Oxy, i.e., A~yxy = B~y. Let C = A x x  U Bry. 

Then A x x  c C, therefore, Axx c C~. If c • C~, then either c • A~x or c • Bry. In 
the latter case c = by for some b • By. Therefore, b(xy )  2 = byx2y = cx2y = cy = 

by 2 = b, i.e., b • B~y = Axyxy.  Thus, b = axy for some a • Axy ~ A r. It follows that 
c = by = axy 2 = ay2x = ax • A~yx c A~x. Thus, C~ = A~x. Analogously, Cy = Byy, 

whence Cry = Byy 2 = By. Therefore, (A, C) • a~ and (C, B )  • oy which implies 

(A ,  B )  • axay. So a T c axay. 
(v) t r x = o y ~ x = y .  

Let tr~ = oy. As we have seen in the proof of (ii), (Ass, A ) •  trs for every 
A • ~(S) .  Thus, (S~x, S)  e o~. Obviously, S :  c S, so that S~x ~ Sx. On the other 
hand, using S~ c S and Sx c S, we obtain that S~ - S~x 2 c Sx  2 = S x .  x = (Sx)~x c 

S~x. Therefore, S~x = Sx. It follows that (Sx, S) • trx, whence (S~, S) • or. By the 
symmetry of try we have (S, S~) • oy, i.e., Syy = (S~)y. However,  Syy = Sy as we 
have just seen. Also (S~)y c S~. Therefore Sy ¢-- Sx. Obviously, y • Sy. Thus, y • Sx. 
Therefore, y x 2 = y ,  i.e., {y}~= {y}. Also {y}y={y}  and {y2}y = {y2}, so that 
{y }yy = {y }y = {y2} = {y2}y and ({y }, {y2}) • try. It follows that ({y }, {y2}) • try, 

i.e., {y}~x= {y2}~. However, {y}~ = {y}, so that {y}xX= {y}x = {yx} .  Thus, 
{yx} = {y2}x c {y2}, i.e., y x  = y2. Interchanging x and y, we can obtain xy  = x 2 in 
an analogous way. Therefore, x = x -  x 2 = x2y = yx  2 = y. 

Properties (i)-(v) show that the mapping s ~ tr, is an isomporphism of S onto 
the semigroup {o~: x • S} of stable symmetric multipermutations of the Boolean 
algebra ~(S) ,  i.e., (A) holds. It remains to notice that if S is finite, then ~(S)  is 
finite. Theorem 2 is proved. [] 

Remark. The readers familiar with the rudiments of the theory of semigroups 
would instantly recognize that semigroups satisfying (1) and (3) are precisely 
semilattices of groups of exponent 2. Also they are precisely subdirect products of 
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sufficiently many copies of the two-element group and the same group with an 
adjoined zero. This fact can yield an alternative proof of Theorem 2. 

The semigroups satisfying (1) and (2) are precisely the commutative semigroups 
for which every Schtitzenberger group is of exponent 2 (i.e.,  it satisfies the 
identity x 2 =  1). Since this paper  is not aimed at semigroup theorists, here is a 
short definition of Schiitzenberger groups of a semigroup S. Elements  s, t e S are 
R-related if sx = t and ty = s for some x, y ~ S 1 (i.e., when s and t divide each 
other on the left, or equivalently, when s and t generate the same principal right 
ideals of S). Dually,  one defines ~-related elements. Elements are ~-related if 
they are both 9t- and ~- re la ted .  Let H be an equivalence class modulo ~ .  For 
every t e S one of the two possibilities holds: either Ht = H or Ht N H = t~. In the 
former case the mapping h ~-> ht, h ~ H, is a permutation of H. The set of all such 
permutat ions forms a simply transitive group F(H)  of transformations of H. This 
group is called the Schiitzenberger group of H. Clearly, IF(H)[ = IHI and if H is a 
subgroup of S (which is true exactly when H contains an idempotent) ,  then F(H) 
is isomorphic to H. 

3. Semigroups of tolerance relations 

T h e o r e m  3. 

(a) 

(13) 
(c) 

The following conditions are equivalent for every semigroup S: 

S is isomorphic to a semigroup of  tolerance relations, 

S is isomorphic to a sernigroup o f  partial tolerance relations, 

S is commutative and satisfies the condition 

x = x y z = > x = x y  f o r a l l x ,  y, z e S .  (4) 

Proof.  (A) ==> (B) is obvious. 
(B) ==> (C). Without loss of generality we may assume that S is a semigroup of 

partial tolerance relations between elements of a set A. By Theorem I S is 
commutative.  Let x = xyz  for some x, y, z e S. If (a l ,  a2) e x for some al,  a2 e A, 
then (al ,  a2) e xzy, and so (a, a2) ~ y for some a ~ A. Since y is partly reflexive, 
(a2, a2) e y, whence (al, a2) e xy.  It shows that x c xy. 

Now suppose that  (al ,  a 2 ) e x y  for some a~, a2eA .  Then (al,  a ) e x  and 
(a, a2) e y for some a ~ A. Thus,  (al, a) ~ xyz. It follows that (a3, a) e z for some 
a3 ~ A. Since z is partly reflexive, (a, a) e z. Thus, (al,  a) e x, (a, a)  e z, and 
(a, a2) ~ y, hence (al ,  a2) e xzy  = x and xy c x. Therefore, x = x y  and (4) holds. 
Note that in the proof  of (4) we used commutativity of S and reflexivity of 
Ps, s ¢S.  Thus,  (4) holds for commutative semigroups of reflexive binary 
relations. 

( C ) ~  (A).  Let S be a commutative semigroup which satisfies (4). In all 
essential features the proof  which follows is similar to our proof  of sufficiency in 
Theorem 1, so we give it here in less detail. 
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It is easy to see that the semigroup S 1 is commutative and satisfies (4). For 
x, y e S 1 define x [ y if y = xz for some z e SL Thus, '1' is the divisibility relation. 
As in Lemma 1, we may prove that '[' is a (partial) order compatible with 
multiplication in S 1. Obviously, 'l ' is positive, i.e.,  x ]xy for any x, y ~ SL 
Condition (4) means that '1' is antisymmetric, i.e., x [ y and y [ x imply that  x = y. 

Next we introduce the set M of all majorant  subsets of S ~ with respect to '1', 
precisely as we did in the proof  of Theorem I with respect to <.  In fact, M is the 
set of all (including the empty one)  ideals of S ~. For every s e S consider a binary 
relation Ps as defined in the proof  of Theorem 1. This time Ps is not only 
symmetric but also reflexive. Indeed, if A ~ M then a l a s  for every a c A .  
Therefore,  as ~ A, i.e., As c A  and (A, A ) ~  ps. Thus, p~ is a tolerance relation 
on M. 

As in the previous proof, we check that PsPt = P~t for any s, t ~ S. Let p~ = p,. 
For a e S put ~ = Sa. Now (~, ~) ~ p~, therefore, (~, ~) ~ Pt and ~t c ~. It  follows 
that t ~ ~, i.e.,  s [ t. Analogously,  t ls, so that by (4) s = t. 

Thus, s ~-, ps is an isomorphism of S onto a semigroup of tolerance relations on 
A. E] 

Remark.  A commutative semigroup satisfies (4) precisely when all of its 
Schfitzenberger groups are trivial. Analogously to Corollary 1 to Theorem 1 we 
obtain now 

Corollary 1. I f  a semigroup S is isomorphic to a semigroup of  tolerance relations, 
it is also isomorphic to a semigroup of  stable tolerance relations on a distributive 
lattice. I f  S is finite, the lattice can be chosen to be finite. 

The words "distributive lat t ice" can be replaced by "semigroup" or "commuta-  
tive semigroup".  

Corollary 2. A semigroup is isomorphic to a semigroup of  tolerance relations if  
and only i f  it is commutative and isomorphic to a semigroup of  reflexive binary 
relations. 

Proof. The "only if" part is trivial, and for the " i f"  part see our proof  of 
(B) ~ (C) in Theorem 3. [] 

Remark.  It was proved in [2] that  a commutative semigroup is i somorphic  to a 
semigroup of reflexive binary relations if and only if it satisfies (4). 

Again, we can ask which semigroups are representable as semigroups of stable 
tolerance relations on structures listed in Theorem 2. The answer is very simple: 
the semigroups are semilattices (i.e., commutative and idempotent  semigroups). 
Indeed, if p is a stable tolerance relation on, say a group, then p = p3. By (4), it 
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follows that p _p2 ,  i.e., p is an equivalence relation. Since p is stable, it is a 
congruence relation on the group. The fact that stable tolerance relations on 
groups are congruences is both trivial and known. Of course, congruences of 
groups (Boolean algebras, rings, vector spaces, modules) are in one-to-one 
correspondence with normal subgroups (ideals of Boolean algebras or rings, 
subspaces of vector spaces, submodules of modules). Therefore, every semilattice 
can be embedded either in the semigroup of all congruences on these structures 
or in the (join-) semilattice of all normal subgroups, ideals, subspaces, sub- 
modules. We do not state this result formally because it is very simple, its proof is 
a greatly simplified version of our proof of Theorem 2. It is easy to prove that if a 
tolerance relation is stable with respect to a group multiplication, then it is also 
stable with respect to this group inversion operation. 
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